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Abstract

Social interactions are multifaceted, complex, and critical to social behaviour as they help
gather information, develop social connections, and regulate social behaviour (Lakey &
Orehek, 2011; Testard et al., 2021; Jolly & Chang, 2021). Among social interactions,
conversations find a special place for humans due to the nuances associated with
language, conversational behaviour (e.g., gestures), and context (e.g., where
conversations occur and what is discussed). Researchers have studied aspects of single
conversation behaviour, content related to conversations, and brain function (Sievers et
al., 2020). However, little is known about the brain function of densely-sampled
in-person conversation behaviour. Filling this gap is important, given that real-world
conversation happens frequently and is an index of social connectedness. We utilise the
passive-mobile sensing approach from the StudentLife study (Wang et al., 2014; daSilva
et al., 2021) to track real-world conversations and relate the features to resting-state
functional connectivity via fMRI. In this thesis, we show that resting state functional
connectivity of left inferior frontal gyrus (LIFG, a region associated with language;
Turken & Dronkers, 2011; Klaus & Hartwigsen, 2019) with the dorsomedial prefrontal
cortex (AIMPFC) subsystem of the default mode network (DMN), which is a network
associated with social-cognitive processes (Collier & Meyer, 2020; Sippel et al., 2021),
of an individual is related to the time they spend in the vicinity of conversations.
Consistent with social psychological literature (Delormier, Frohlich, & Potvin, 2009;
Dunbar, 2017), we also find that features of conversation — average time spent, the
variance associated with, and total time spent around conversations — at places associated
with ‘social eating’ was related to the same brain function. Our results suggest that the
importance of LIFG within the dMPFC subsystem may be associated with (1) average
time spent around conversations generally, and (2) conversations occurring specifically in
socially relevant situations. This thesis also supports that passive-mobile sensing can be
useful to study real-world conversations, and that adding neuroimaging modalities to
otherwise densely-sampled behavioural features can open new avenues of research to

better understand the brain-basis of social interactions.
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Introduction

Social integration is critical for human health and development (Barnett & Gotlib,
1988; Diener & Seligman, 2002; Holt-Lunstad, Smith, & Layton, 2010; Holt-Lunstad,
Robles, & Sbarra, 2017; Dunbar, 2018). Greater social connectedness is linked to better
mental health (Holt-Lunstad, Smith, & Layton, 2010; Dunbar, 2018), better physical
health (Baumeister & Leary, 1995; Holt-Lunstad, Robles, & Sbarra, 2017), and overall
increased happiness (Diener & Seligman, 2002). On the flipside, isolation tends to make
individuals more stressed (Barnett & Gotlib, 1988), vulnerable to depression (Barnett &
Gotlib, 1988; Cacioppo et al., 2006), less physically healthy (Hawkley & Cacioppo,
2003; Holt-Lunstad, Smith, & Layton, 2010; Holt-Lunstad, Robles, & Sbarra, 2017), and
more susceptible to substance abuse (Akerlind & Hérnquist, 1992; Hawkley & Cacioppo,
2003). Studying interaction behaviours have led scientists to show that humans, among
other higher-order social animals, actively seek out social connections (Dunbar, 2018;
Templer et al., 2018; Testard et al., 2021), leading to the belief that perhaps, the brain
may have evolved to be “social by default” (Dunbar, 1998; Meyer, 2019).

Studies in modern social psychology have focussed on interactions in various
forms (Dunbar, Marriott, & Duncan, 1997; Momennejad, Duker, & Coman, 2019;
Dunbar, 2018). Recent social cognitive research has focussed on the multiple aspects of
social integration from large networks of communities (Sallet et al., 2011; Baek et al.,
2022; Baek & Parkinson, 2022) to solitary individuals (Hawkley & Cacioppo, 2003;
Hyon et al., 2020), from synchrony between folks (Dikker et al., 2017; Czeszumski et al.,
2022) to self-regulating effects of mental health (daSilva et al., 2021; Sippel et al., 2021;
Baek et al., 2022), and from well-defined conversations (Bogels & Levinson, 2017;
Templeton et al., 2022) to more ambiguous everyday interactions (Dunbar, 2017).
However, there is a gap in literature for studying the brain function behind real-world
social integration. Most neuroscience studies mentioned earlier use blood oxygen
level-dependent functional magnetic resonant imaging (BOLD-fMRI) as the chief
neuroimaging modality as the technology provides greater spatial resolution while
limiting mobility and temporal resolution. Although some studies have used more

real-world-like paradigms (e.g., participants converse while undergoing fmri or converse
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in a lab before and after fMRI; Bogels & Levinson, 2017; Sievers et al., 2020), ecological
validity of social interactions largely remain questionable when one is confined to a small
space and/or in a lab setting. Contemporary social-cognitive neuroimaging studies favour
more mobile, comparatively inexpensive technologies like electroencephalography (EEG;
Dikker et al.,, 2017) or functional near-infrared spectroscopy (fNIRS; Burns &
Lieberman, 2020; Hirsch et al., 2021; Czeszumski et al., 2022) which may offer
opportunities for ecologically valid conversation sampling. Despite this push, more
ecological studies on neural bases of social interactions remain few.

To begin the neural exploration of real-world social interactions, for ecological
human social behaviours are multifaceted and complex, we propose combining passive
mobile sensing methods designed to detect time spent conversing with people with
resting state functional magnetic resonance imaging. Such an integration of methods is
done in the StudentLife project (Wang et al., 2014). StudentLife is a large-scale passive
mobile sensing study that recruits and tracks the undergraduate students at Dartmouth
College over the duration of their academic year. The project uses a mobile app to track
the mental health of students with self-reports, their physical location with GPS, and their
resting-state brain function with regular fMRI scans. Previous research combining
everyday student behaviour assessed with mobile sensing and brain function has
implicated resting state functional connectivity (RSFC) between subgenual cingulate
cortex (sgCC) and ventromedial/orbitofrontal cortex (OFC) to predict phone usage
(Huckins et al., 2019a-2019b). Per the ethical requirements of Dartmouth College’s
Institutional Review Board (IRB), the mobile application removes all identity-level and
content-level information from the records. Instead, the StudentLife application uses
online HMM-based vocal-classification to differentiate conversations from soliloquy or
any other noise (Rabbi et al., 2011; Lane et al., 2012-2014). While we do not record the
language or voice in conversations, we were able to capture time spent in and close to
real-world conversations. Our method utilises the mobile-sensed conversation log over a
period of 8 weeks per subject to calculate persistent conversation behaviours. This thesis
connects some of the conversation data to brain function as collected from the fMRI

scans at the centre of these 8-week tracking periods.
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Although our primary aim targets an exploration of general conversation-traits,
there is contextual relevance to these behaviours. That is, zow one interacts with others
strongly depends on where the social interaction is taking place. To this extent, we take
advantage of the global positioning system (GPS) coordinates that the StudentLife mobile
application tracks. Among the conversations happening in everyday life, literature in
social psychology has implicated those over meals as being important to share impactful
social knowledge, establish alliances, and form social bonds (Dunbar et al., 1997;
Dunbar, 2017). Hence, it becomes important to explore the brain-basis of interaction
behaviour at such socially salient locations.

Research from the StudentLife project connect brain function with everyday
behaviours (Huckins et al., 2019a-2019b) and implicates mental health with social
interactions (daSilva et al., 2021), providing the opportunity to bridge conversation
behaviours with brain function. Human social cognitive research has implicated neural
processes occuring in the default mode network (DMN; Amodio & Frith, 2006;
Heatherton et al., 2006; Andrews-Hanna et al., 2010; Denny et al., 2012; Mars et al.,
2012; Meyer et al., 2019). Graph theoretic tools have been used to distribute the network
into three major subsystems, of which the dorsomedial prefrontal cortex (dMPFC)
subsystem (also shortened to ‘dorsomedial subsystem’) has regions that, research shows,
engage in mentalizing (Tamir & Thornton, 2018; Saxe & Kanwisher, 2003),
value-perception (Behrens et al., 2008), and social learning (Lieberman et al., 2019;
Meyer et al., 2019; Collier & Meyer, 2020). Particular to the dorsomedial subsystem of
the DMN is left inferior frontal gyrus (L-IFG), a region participating in language (Uddén
& Bahlmann, 2012; Klaus & Hartwigsen, 2019) and size of active-participation social
networks (Mori & Haruno, 2022), processes that are important for conversations. Hence,
we predict that the connectivity of left IFG within the dMPFC subsystem may be
important in conversation-related behaviours. Moreover, we hypothesise that L-IFG
functional connectivity may be related to trait-level real-world behaviours that occur in
situations furthering social interactions.

The aim of this thesis is to investigate associations between brain function (here,
assessed by resting state functional connectivity) and real-world social interactions.

Specifically, we establish that the connectivity of left IFG within the AMPFC subsystem
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of DMN plays a key role in how long an individual tends to be exposed to conversations.
Honing in on the location-specificity of conversations, we show that the same
brain-to-conversation relationship exists when examining time spent in conversations
over meals. Our analyses support the theories from social neuroscience that suggest that
regions of the DMN and the dMPFC subsystem are integral to social cognition and social
network maintenance (Collier & Meyer, 2020; Inagaki & Meyer, 2020; Sippel et al.,
2021). Our analyses also support the theories from social psychology that emphasise the
importance of conversations happening over meals for social bonding (Dunbar, Marriott,
& Duncan, 1997; Dunbar, 2017). Moreover, our method of combining passive mobile
sensing with neuroimaging presents an avenue on how one may study the brain functions
associated with complex, densely-sampled, real-world human behaviours for future

research.
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Data and Methods

Participants

115 Dartmouth first-year college students between the ages of 18-22 years agreed
to participate in this study. Subjects with poor quality or incomplete data were removed.
The study retained 88 participants (ages = 18.25 Mean + 0.64 SD; 70.5% Females; 60.2%
white, 22.7% asian, 3.4% black, 10.2% multi-racial, and 3.5% did not report) with 8
weeks of mobile-sensing data and a complete resting-state fMRI scan, collected across
the Winter and Spring quarters of the academic year. The following subsections discuss
the data in further detail. All participants provided informed consent in accordance with

the Dartmouth College Institutional Review Board (IRB).

Resting State fMRI

JMRI Data Acquisition

The Dartmouth Brain Imaging Center uses a 3T Siemens Magnetom Prisma MRI
scanner with a 32-channel phased array head coil. Blood oxygen level dependent
(BOLD) functional MR images were acquired using an EPI gradient echo sequence with
2.5 x 2.5 x 2.5 mm isotropic voxels, reaction time (TR) of 1000 msec and echo time (TE)
of 33 ms, 3.5 mm slice thickness with 0.5 mm skip between slices, Field of View (FoV) =
240 mm % 240 mm, matrix size of 96 x 96, 90° flip angle, and a sense factor of 2. A
T2-weighted structural image was acquired coplanar with the functional images
(MP-RAGE; 160 sagittal slices; 1 mm x 1 mm x 1 mm voxels; 9.9 ms TR and 4.6 ms TE;
0.9-mm slice thickness; 240 mm % 240 mm FoV; 8° flip angle; sense factor of 4). The
resting state scan lasted 12 minutes and 54 seconds during which time participants were

instructed to lie still and let their mind wander.

Resting state fMRI preprocessing
fMRI data was preprocessed using the Power et al. (2014) and Huckins et al.
(2019a-2019b) processing streams, with frame-displacement (FD) thresholded at 0.25
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mm and 24 motion parameters. Additional slice-correction, rigid-body realignment, and
within-run intensity normalisation were performed to correct for head-movement and
voxel activation scaled to set the modal intensity of 1000 units with a signal-change of
1%. The brain scans were transformed to standardised MNI atlas space with
frame-censoring. The resulting, uncensored fMRI signals were nuisance-regressed with
interpolation and band-pass filtered between 0.009 Hz and 0.08 Hz, per Huckins et al.
(2019a-2019b). We used the python library n/tools (Chang et al., 2020) to regress out 24
motion parameters that included the head motion and rotation, square of the head motion
and rotation, change in head motion and rotation, and the square of change in head
motion and rotation. We also regressed out the global, white-matter, and cerebrospinal
fluid (CSF) signals alongside those corresponding up to two orders of polynomial powers

and activity related to brain spikes.

Resting state functional connectivity

We parcelled the preprocessed BOLD signals into Thomas Yeo et al. (2011) 17
networks functional atlas with 100 regions-of-interest (ROI) and removed voxel-clusters
with fewer than 5 voxels. This parcellation scheme is derived from a large sample size
(1,000 subjects) and their default network (or default mode network; DMN) regions are
anatomically similar to those determined with task-based fMRI studies examining social
cognition (Saxe & Kanwisher, 2003; Amodio & Frith, 2006; Denny et al., 2012), making
the functional atlas useful for us. Thomas Yeo et al. (2011) also provide clustering of
three default network subsystems with regions divided to fall in the dorsomedial (or, the
dorsoMedial PreFrontal Cortex; dMPFC) subsystem, the core DMN (a.k.a. Core)
subsystem, and the Medial-Temporal (or, the Medial Temporal Lobe; MTL) subsystem.
Table 01 lists the regions in the three DMN subsystems.
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Table 01: Regions in the three DMN subsystems: the centroids listed here are as derived from
Thomas Yeo et al. (2011). ROIs with fewer than 5 voxels have been removed. The MNI

coordinates follow the MNI-152 system with 2 mm x 2 mm x 2 mm voxel dimensions.

Centroid
Network Larger Anatomical Region Voxels
X Y Z
MTL -39  -80 32 L Middle Occipital Lobule 82
Subsystem 48.2 -70.8 27.2 R Middle Occipital Gyrus 111
-12.4 -55.4 12.6 L Calcarine Gyrus, L Precuneus 119
13.8 -53.2 13.8 R Cuneus, R Precuneus 141
274 -28 -20.2 R Fusiform Gyrus 189
-26.8 -33 -18 L Fusiform Gyrus 271
Core 61.8 -6.8 -18.2 R Middle Temporal Gyrus 232
Subsystem 23.4 -48.8 44 R Superior Frontal Gyrus 352

-22.4 28.8 46.6 L Middle Frontal Gyrus / L Superior Frontal Gyrus 377

-44.4 -68.2 37.4 L Angular Gyrus 570
51.4 -57.4 29.6 R Angular Gyrus /R Middle Temporal Gyrus 622
-0.6 -50.8 31 R/LPCC 1494
06 50 52 MPFC/ACC 2648
dMPFC 55.6 24.6 8.2 R Inferior Frontal Gyrus 98
Subsystem 61.8 -25.8 -6.2 R middle Temporal Gyrus 183
-40.4 12.6 50.4 L Middle Frontal Gyrus 241
43  29.6 -13.8 R Inferior Frontal Gyrus 282
-52.4 -55.6 28.6 L Angular Gyrus 423
51.8 3.8 -30.2 R Medial Temporal Pole 424
-46.6 26.8 -2.2 L Inferior Frontal Gyrus 1201
-56.6 -12.2 -19 L Middle Temporal Gyrus 1667
-24 45.6 41.2 Bilateral IMPFC 1783



https://doi.org/10.1152/jn.00338.2011

Figure 01: Functional atlas of the dorsomedial subsystem of DMN: Shaded in blue are all the
regions of the dorsomedial prefrontal cortex (AMPFC) subsystem of the default mode network
(DMN) as derived from Thomas Yeo et al. (2011). ROIs with fewer than 5 voxels were removed.

Of the three DMN sub-networks, literature has shown that regions of the dMPFC
subsystem participate in theory of mind (ToM; Saxe & Kanwisher, 2003), social value
perception (Behrens et al., 2008; Kable & Glimcher, 2007; Piva et al., 2019), and social
learning (Meyer et al., 2019; Collier & Meyer, 2020), making the subsystem important to
study in the context of real-world social interaction. Within this subsystem is the region
of Left Inferior Frontal Gyrus (L-IFG), which research has shown to be linked with
language comprehension (Uddén & Bahlmann, 2012; Klaus & Hartwigsen, 2019) and
size of active-participation social networks (Mori & Haruno, 2022), making it important
to study the connectivity of L-IFG with other dorsomedial ROIs when examining

real-world conversation behaviour in particular. To that end, we used Fisher’s
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z-transformed Pearson’s correlation between the time-course of the parcellated ROI pairs
to create a resting state functional connectivity (RSFC) network for each subject. From
this network, we extracted the adjacency matrices for the ROIs belonging to the three
DMN subsystems. From the adjacency matrix, we extract all the between-ROI
edge-weights and average them to calculate the within-network RSFC. The mean of
column-vectors affiliated to each ROI in the adjacency matrix, without self-loops, is
calculated as the average ROI connectivity. For each analysis, we treated subjects with
functional connectivity, conversation, and/or self-report trait scores (e.g., self-esteem),
more than 2.5 standard deviations from the respective means as outliers excluded from
analyses. Furthermore, each analysis was followed-up with complementary sets of

analyses into other ROIs and features to distil the results for clearer inferences.

Passive Mobile Sensing

Wang et al.’s (2014) StudentLife iOS and Android applications were used to
collect mobile-sensing data. Enrolled participants downloaded the app at the onset of the
study and the application passively sensed audio, screen-based, text-message, call-based,
and gps features. Further and detailed information on the preprocessing and analyses of
passively-sensed data can be found in related publications (Rabbi et al., 2011; Lane et al.,
2012; Chen et al., 2013; Wang et al., 2014). Given that the subjects in this study were
freshmen undergraduates at Dartmouth College, temporal periods were chunked in order
of weeks (multiples of 7 days) to remove any inconsistencies due to the students’ class
schedules. In other words, any structure to conversation behaviour specific to certain days
of the week was held constant by creating week-specific values. Trait-level conversation
features were thus calculated over an 8-week (56 days) period. A period of 8-weeks also

allowed us to retain a larger population size.

Tracking Conversation Time

Smartphone microphones were used as sensors to collect audio features with a
sampling ratio of 1 min ON to 3 min OFF. The detected features were fed into a Hidden
Markov Model (HMM) to classify the audio as human voice and to detect if the audio
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may resemble a conversation (Lane et al., 2014). HMM-based classifiers have been
shown to have high audio-based feature-detection accuracy (84-94%; Rabbi et al., 2011;
Lane et al., 2012). Once determined that the participant was exposed to conversations
occurring in close vicinity, the microphone keeps logging the features until the detected
conversation has ended. For ethical practices and in accordance with Dartmouth
College’s IRB, all personal and identity-based information, including voice and content
of the conversations, were not saved. All the feature-detection was carried out on-line,
and only the features approved by the IRB were logged.

From the logged conversation data per subject, four main conversation-based
features were extracted. First is the total duration of conversation, calculated as the sum
of all individual conversation durations over a subject’s 8-week period. Second was the
total number of conversations over the 8-week period. Third was the average duration of
conversations, defined as the mean of all individual conversations per subject over the
8-week period. Last was the variance in conversation durations, calculated as the variance

of all individual conversations durations.

Tracking Location

Primarily, the GPS coordinates were logged to track the movement of a subject on
and around the campus. However, we take advantage of these GPS logs to track
interaction behaviour of our participants at various locations, particularly at and around
eateries. We reason that conversations around meals are important, which aligns with the
literature in social psychology suggesting that they convey socially salient information
(Dunbar, Marriott, & Duncan, 1997; Dunbar, 2017).

The mobile application logged the GPS coordinates every 10 minutes, sampling a
total of 144 location points a day per subject. This spatial data consisted of altitude (not
used), latitude, longitude, and accuracy in metres, the last of which implies higher
accuracy for lower values. The spatial data was collected parallel to the conversation
data, and we merged these two streams of data in a rolling fashion, since a conversation
log will have a location ping recorded within 5 minutes of either occurring. Observations
containing more than 20 minutes of inconsistencies were dropped, resulting in an average

3% data loss (daSilva et al., 2021). Density-based spatial clustering of applications with
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noise (DBSCAN; Ester et al., 1996) was used to cluster the cleaned data to spatial

locations on and around Dartmouth Campus. These locations were then further grouped

into twelve ‘types,’ as reported in Table 02.

Table 02: Spatial clustering of tracked locations: Each cluster gives a list of locations found on

or around the campus. The location lists (the column ‘Locations’) also include those locations

found outside the town of Hanover, NH, that are often visited by the students. Locations with an

asterisk (*) next to the cluster name have a comparatively larger population size (N>40).

Location Cluster

Locations

Athletic Facilities*

'berry_sports_center', 'canoe', 'chase-field', 'football', 'ladyard cacoe',
'leverone', 'lodge', 'softballfield', 'sport-venues', 'sport-venues-press',

'tennis', 'thompson_arena'

Classroom Buildings*

'Hillel', 'Mckenzie', 'Tuck hall', ‘'batrlett’, 'buchanan', 'burke',
'butterfield’, 'byrnehall', 'carpenterhall’, 'chasehall’, 'cummings', 'currier’,
'hallgarten', 'hopkins', 'hopkins-spaulding’, 'kemeny', 'lsb', 'maclean’,
'massrow’, 'mclaughlin', 'moore', 'morano', 'murdough’, 'raven-house’',
'remsen’, 'ripley’, 'robinson’, 'rockefeller-center’,
'rockefeller-social-sciences', 'russell-sage', 'silsby-rocky', 'smith',
'steele’, 'streeter', ‘'sudikoff, ‘'thayer secure', 'thornton', ‘'vail,
'webster cottage', 'websterhall', 'wentworth', 'whittemore', 'wilson',

'woodburyhall', 'woodward'

Culture and Arts*

'hood', 'hopkins', 'hopkins-spaulding', 'lodge', 'native_american_house',

'rockefeller-center’, 'rockefeller-social-sciences', 'sphinx', 'vac'

Eateries*

'53 _commons', 'candela', 'capizza', 'collis', 'domino', 'hopkins-food',
'HanoverInn', 'indian_food', 'mexican-food', 'mollys', 'murphy', 'noodle',
'orient', 'pine', 'ramunto', 'salt-hill', 'starbucks', 'sushiya', 'tuktuk’,

'umpleby'

Greek Housing™*

'ACA', 'AD', 'AP', 'AT", 'AXD', 'BAO', 'BG', 'CGE', 'CH', 'DDD', 'EKT,
'GDC', 'KD', '’KDE', 'KKG', 'KKK', 'PDA', 'PT', 'SAE', 'SN', 'SPE',
'"TDC', 'ZP', 'tabard'

The Green

‘green’
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Location Cluster

Locations

Student Housing* '13-EWL', '"19-EWL', '9-EWL', 'Cohen', 'andres', 'bissell’, 'brown_hall’,
'channing-cox/, 'east-wheelock’, 'fahey-mclane’, 'fairchild',
'fayerweather', 'fayerweather-south’, 'french’, 'gile', 'judge', 'lacasa',
'ledyard’, ‘little hall', 'lord, ‘'maxwell', ‘'mcCulloch’, 'morton',
'native_american_house',  'north-park’,  'richardson', 'six-south',
'south-house', 'tlic', 'topliff', 'wheeler', 'zimmerman'

Libraries* 'baker-berry', 'dana-library’, 'feldberg_library', 'library-default-services',
'Isl', 'sanborn’

Marketplace* 'NuggetTheaters', 'carson-tech services', 'post-office', 'bookstore',

'fairbanks', 'coop', 'lemon_gift', 'Jcrew', 'talbots'

Medical Facilities

'CVS''DHMC', 'hitchcock’, ropeferry’

Religious Places

'StDenisCatholicChurch’,  'StThomasEpiscopalChurch',  'aquinas',

'christian_reading', 'church’, 'rollins-chapel'

Miscellaneous™

'blunt_alumni_center', 'dartmouth_hall', 'den’, 'dewey', 'mcnutt’, 'ovis',

'parkhurst’, 'payroll', 'reed', 'rTemote_offices HREAP'

We used the location types (clusters) as a categorical variable to test if conversation

variables at certain locations show any significant relation to the brain function. First, we

removed the ‘miscellaneous’ locations and the ones where subjects did not frequent

(locations with population size N<40), leaving us with 8 locations. Then, we extracted the

four conversation features (duration, number, average, and variance) for each remaining

location. Results relating the brain functional connectivity to conversation features were

also compared.

Personality Questionnaires

On the day of the scan, all subjects filled out a series of personality and mental

health questionnaires. These self-reported scores include the 8-item Patient Health
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Questionnaire which assesses depressive symptoms (PHQ-8; Kroenke et al., 2009),
7-item General Anxiety Disorder (GAD-7; Spitzer et al., 2006), Janis-Field Feelings of
Inadequacy scale (Janis & Field, 1956), 14-item Perceived Stress Scale (PSS-14; Cohen,
Kamarck, & Mermelstein, 1983), and the State Self Esteem scale (SSES; Heatherton &
Polivy, 1991). The SSES is further divided into 3 sub-scales: (1) Performance (SSE-Per)
subscale reports a score for how an individual may think they are performing in their
everyday life, (2) Social (SSE-Soc) subscale reports what the person thinks others may
perceive of them, and (3) Appearance (SSE-App) subscale reports how one perceives of
their physical self. Since the thesis primarily aims at exploring connections between the
brain and conversation behaviour, we did not use personality and mental health scores as
primary variables. However, we explored the interaction of mental state in terms of
personality trait or mental health with conversation trait-features or location-categorised

conversation behaviours.
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Results

A high-level look at the main data is summarised below, with the complete set of
statistics available in Appendix A. For each variable, we present the mean, standard
deviation (std), 1-sample, 2-tailed t-score against the null of zero-mean (p = 0), the
degrees of freedom associated with the t-test, and the corresponding p-value . All our data

have distributions that are significantly different from null.

Table 03: Statistics of the data and features used: the ‘Features’ column contains the name of
the data feature recorded in the results. ‘Avg. Conversation’ is the average duration of
conversations over a span of 8 weeks and is recorded in the unit of minutes (min), ‘Conversation
Var.’ is variance in unique conversation durations over the same time and is recorded in the unit
of minutes-squared (min’), and the two resting state functional connectivity (‘RSFC’) variables
are BOLD-activity derived network features. The statistics reported for each feature are presented
in their respective rows under the columns of ‘mean’, standard deviation (‘std’), 1-sample
2-tailed t-score (‘t’), the degree of freedom (‘df’), and t-tested p-value (‘p’). Note that the

categorical variable of ‘Gender’ is not reported in this table.

Feature mean std t df p
Avg. Conversation (min) 9.594 4.017 21.628 81 213 x107%
Avg. Conversation at Eateries (min) 11.574 5.223 19.821 79 2.14 x 10
Conversation Var. (min®) 319.302 546.408 5.292 81 1.01 x 10°¢
Conversation Var. at Eateries (min?) 193.065 163.814  10.541 79 9.98 x 107"
LIFG-dMPFC RSFC 0.456 0.110 38.684 86 3.61 x 107°
LIFG-DMN RSFC 0.181 0.102 16.541 86 1.88 x 1072
SSE-Performance 19.765 2.308 78.966 84  1.35x10%
SSE-Social 18.435 6.288 27.032 84 331 x10%
PSS-14 31.729 7.680 38.089 84 9.04 x 10>
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To test whether there is a categorical gender difference in these features, we run
independent 2-tailed t-tests with unequal variance for each category. We find that average
disposition to conversations do not show any gender-based differences, regardless of if
the conversations occur in their vicinity generally (t(78)= 0.186, p = 0.85) or
specifically at eateries (t(78) = 1.356, p = 0.18). We find the same result for the
variance in unique conversations, in that they do not show significant gender-based
differences,  regardless = of  the  conversations  across all  locations
(t(77) = 1.56, p = 0.12), though it is noteworthy that there is a marginal effect at
eateries (t(77) = 1.95, p = 0.06), with females spending more time around
conversations at eateries. When categorically distributed according to the participants’
gender, we do not find differences in the self-reported mental health scores from
perceived stress scale (t(82)= 0.35, p = 0.73) or the social-subscale of the
self-esteem (t(83) = 0.54, p = 0.59). However, we see a significant gender-difference
in the performance-subscale of the state self-esteem (t(83) = -2.069, p = 0.045),
with females having lower self-esteem than males, on average. The LIFG-dMPFC
subsystem RSFC shows no significant relation to or differences within gender
(B = -0.015, t(85)= 0.626, p = 0.53), and neither does the LIFG average
connectivity within the DMN (t(84) = -0.408, p = 0.69). Although we only find
gender-differences in state self esteem (SSE) performance subscale, the following

sections report interactions with the variable to rule out gender differences.

LIFG-dMPFC connectivity relates to average time spent around conversations

LIFG RSFC is related to the average duration

To test our hypothesis of the role of Left IFG-dorsomedial subsystem function in
conversations, we ran a correlation analysis between average LIFG-dorsomedial
subsystem functional connectivity and conversation-based features. We observe that Left
IFG functional connectivity within the dorsomedial subsystem tracks the average
duration that the individual is exposed to conversations
(pearson'sr = 0.26, p = 0.024). However, the functional connectivity does not

significantly correlate to the total duration of exposure to conversations
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(r = 0.18, p = 0.13), number of times an individual may be exposed to conversations
over the 8-week period (r = 0.12, p = 0.32), nor to the variance in individual
conversations (r = 0.09, p = 0.42). We do not see gender differences interacting with

this relationship (f = -0.0128, t(77) = 1.00, p = 0.32).

(a) r=0.175,p = 0.13 (b) r=0.116, p = 0.32
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Figure 02: Correlations between LIFG-dMPFC subsystem fc and behavioural conversation
features: The four plots presented above include the correlations between the average Left
IFG-dorsomedial subsystem functional connectivity on the Y-axis and the behavioural feature on
X-axis. The behaviours reported in the figure include. (a) total time spent around conversations
(measured in min; blue), (b) HMM-sensed total number of conversations (unitless; orange), (c)
average time spent around a given conversation (measured in min, green), and (d) variance in

time spent around unique conversations (measured in min’; red).
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Numerous factors may affect one’s average disposition to conversations. One such
variable may be the mental state of the individual indulging in conversations, such as
their mental health (daSilva et al., 2021). To test if there are any interactions between the
mental health, functional connectivity, and conversation, we ran a generalised linear
model with an interaction term between conversation and mental health self-reports.
Although the functional connectivity of L-IFG within the dorsomedial subsystem at rest
is marginally correlated with the self-reported perceived stress scores (PSS-14;
r = -0.191, p = 0.089) and the performance subscale of state self esteem (SSE-Per;
r = -0.187, p = 0.095), we do not see an interaction with either the PSS-14 scores
(B = 0.016, t(69)= 1.208, p = 0.231) or with the SSE-Performance subscale
scores (B = 0.013, t(69) = 1.18, p = 0.242). In other words, participants’ mental
health on the day of the scan does not influence the relationship between
LIFG-dorsomedial subsystem connectivity and average time spent in conversation over

the eight weeks.

Only LIFG RSFC is related to the average duration

Although we focus on average LIFG functional connectivity in the dMPFC
subsystem of DMN, there are other regions that make up the subsystem. So, we first ran a
correlation analysis with within-subsystem connectivity and average conversation

duration, given that within-dMPFC connectivity is significantly and positively correlated

with average LIFG RSFC in the subsystem (pearson'sr = 0.76, p = 5.19 X 10_17).
However, we do not observe any significant correlation for within-dorsomedial
subsystem  functional  connectivity and  average  conversation  duration
(r = 0.103, p = 0.37). The strongly significant correlation between within-subsystem
connectivity and LIFG-dMPFC RSFC may be because of other regions’ contribution to
the functional connectivity in the dorsomedial subsystem. To test if these regions show
similar relationships with conversation as the average LIFG RSFC, we run correlations
with average functional connectivities of other ROIs with average conversation duration.
However, using other dorsomedial subsystem ROIs as seeds in the dorsomedial
subsystem connectivity did not show significant relationships with average conversation

duration (r's < 0.16, p's > 0.1). Next, we checked to see if the correlation between
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LIFG-dorsomedial subsystem functional connectivity and average duration was itself
significantly different from the (non-significant) correlations examining the same
relations but with the other dorsomedial subsystem seeds. None of these comparisons
were significant (t(74) < 3.03, p > 0.7). Thus, while only the LIFG-dorsomedial
subsystem shows a meaningful relationship with average conversation duration, this
relationship may not be systematically different from other regions in the same
subsystem.

These results suggest that among other ROIs and among the possible features that
we were able to extract from the participants’ real-world social interaction behaviour, the
functional connectivity of Left IFG within the dorsomedial subsystem of the DMN is
significantly related to the average duration an individual may spend in or around a
conversation. Since available mental health scores do not interact with these results, we
may assume that depressive symptoms, perceived stress, or state self-esteem does not
mediate the relationship between the given brain function and conversation behaviour.
We also do not observe any interactions with gender, suggesting that males and females

similarly demonstrate the observed relationships.

LIFG-dMPFC RSFC relates to average time spent around conversations at eateries

Literature in social psychology suggests that there may be situational dependency
on interaction behaviour, with a particular focus on the role of conversing over meals for
social bonding (Dunbar, Marriott, & Duncan, 1997; Dunbar, 2017). We extract the
conversation features from before per location and run correlations for average
conversations at each location. Consistent with the social psychology literature and
building on the previous results, we found that the LIFG connectivity within the
dorsomedial subsystem relates to average duration of conversations at eateries
(pearson'sr = 0.286, p = 0.012). We also find that such a relation does not exist for
other locations with one marginal result (conversations at athletic facilities;
r = 0.232, p = 0.075) or not significant (|r| < 0.2, p > 0.1). The behaviour in
itself does not depend on gender (t(78)= 1.356, p = 0.18), or show an interaction

with gender to explain LIFG average functional connectivity
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(B = 0.019, t(78) = 1.625, p = 0.108). We also do not see an interaction with
either the stress scores (PSS-14; f = 0.016, t(66) = 1.39, p = 0.168) or with SSE
performance subscale scores (§ = 0.005, t(66) = 0.518, p = 0.606).

LIFG-dMPFC RSFC relates to variance and total duration in conversations at eateries

Unlike general conversation behaviour, we find average LIFG functional
connectivity is significantly correlated to variance in duration of conversations one may
be exposed to at eateries (pearson'sr = 0.286, p = 0.028). Variance of conversation
durations at other locations are marginally (r = 0.2, p = 0.076, df = 72 for
conversations at libraries) or not correlated (|r|< 0.07, p = 0.4, df > 53) with
average LIFG RSFC within the dorsomedial subsystem. It is noteworthy that the
correlation between LIFG-RSFC within the dorsomedial subsystem and conversation at
eateries is not significantly different from the other seed-based correlations with average
time spent around conversations (t(74)< 2.66, p > 0.7) or with conversation
variance (t(70) < 3.45, p > 0.7). We may observe these results because the variance
of conversation duration in the case of eateries is more significantly correlated with the
average duration of exposure to conversations at the location (r = 0.64, p < 0.0001),
but we do not see any interaction between the variance and average of conversation
durations (3 = -0.0007, t(66) = -0.06, p = 0.952) to explain average LIFG
functional connectivity. This may imply that it is not the trait-level exposure to average
conversations that this LIFG-dorsomedial subsystem connectivity may be predicting, but
the overall conversation exposure at eateries, a location where individuals tend to share
highly salient social information. To test this idea, we correlate average LIFG-dMPFC
RSFC with total duration of exposure to conversations at eateries and find significant
correlation (r = 0.284, p = 0.013). However, the total number of such unique
exposures to conversations at eateries is not significantly correlated with the neural
metric (r = 0.089, p = 0.45), suggesting that the app’s classification of audio into

unique conversations may not be subjectively meaningful.
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Figure 03: Correlations between LIFG-dMPFC subsystem fc and behavioural features for
conversations at eateries: The four plots presented above include the correlations between the
average Left IFG-dorsomedial subsystem functional connectivity on the Y-axis and the
behavioural feature for conversations occurring only at eateries' on X-axis. The behaviours
reported in the figure include: (a) total time spent around conversations (measured in min, blue),
(b) HMM-sensed total number of conversations (unitless, orange), (c) average time spent around
a given conversation (measured in min; green), and (d) variance in time spent around unique

conversations (measured in min’; red).

! Similar plots for all the locations with larger sample sizes (n>40) are reported in Appendix B.
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Other locations also show non-significant relationships between total duration and
LIFG average functional connectivity in AIMPFC subsystem (|r|'s < 0.12, p's > 0.3)
, with an exception for ‘culture and arts’ (r = 0.27, p = 0.038). It is noteworthy here
too that the correlation between LIFG-RSFC within the dorsomedial subsystem and total
duration of exposure to conversations at eateries is not significantly different from the
other locations (t(72) < 2.13, p > 0.8). As with variance in duration, we do not
observe gender differences in total duration spent around conversations
(t(61) = 0.47, p = 0.64) at ecateries. We don’t see any interactions of the
duration-variance in unique conversations with perceived stress (PSS-14 scores;
B =0.012, t(66) = 1.017, p = 0.313), or with the performance-subscale scores of
the state self esteem inventory (SSE-Per subscale scores;
B = 0.013, t(66) = 0.992, p = 0.32), to explain average LIFG-dMPFC functional
connectivity. The total duration around conversations also do not show interactions with
perceived stress (B = 0.019, t(66) = 1.494, p = 0. 14) or the performance-scores of
self esteem scale ( = 0.0085, t(66) = 0.715, p = 0.477), to predict the average
LIFG-dorsomedial subsystem RSFC. Moreover, correlations between the RSFC and
average duration does not seem to be significantly different from variance
(t(71) = 1.188, p = 0.88) or total duration (t(73) = 0.289, p = 0.61), and
neither do the latter two correlations seem significantly different from one-another
(t(69) = 0.183, p = 0.57).

These results suggest that conversations occurring over meals (at eateries) may be
important to brain function in regions associated with social cognition and language
comprehension. Since the variance, total, and average statistics show significant
correlations, there may be a more general feature that the LIFG may track. As with
previous results observed for conversations across-locations, we don’t see interactions
between mental states of depression, anxiety, stress, or self-esteem. The present results
suggest that the LIFG-dMPFC subsystem RSFC may indicate not only everyday

real-world conversations, but those that occur around socially salient situations.
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Discussion

From behavioural studies (Holt-Lunstad, Robles, & Sbarra, 2017; Dunbar, 2018;
Templeton et al., 2022) to those involving neuroimaging (Dikker et al., 2017; Burns &
Lieberman, 2020), recent social scientific research aims to understand the brain and
behavioural bases of real-world social interactions. Our method of combining passive
mobile sensing to track everyday behaviour with neuroimaging using BOLD-fMRI
provides an avenue to study the brain activities that may reflect these behaviours. Earlier
work with mobile-sensing applications have implicated brain activity associated with
frequent phone-access (or screen-time; Huckins et al., 2019a-2019b) and studies using
the StudentLife app have also shown that elements of social interactions may show
dependency on one’s state of mental health (daSilva et al., 2021). Adding to this
literature, we showed that one can utilise mobile sensing measures to link a person’s
conversation behaviour to their brain function. Specifically, we observe that the resting
state functional connectivity of Left IFG, a region implicated in language (Turken &
Dronkers, 2011; Uddén & Bahlmann, 2012; Klaus & Hartwigsen, 2019) and social
processes (Mori & Haruno, 2022; Kim et al., 2023), within the social-cognitive
processing region of the dorsomedial (AMPFC) subsystem of DMN (Saxe & Kanwisher,
2003; Behrens et al., 2008; Collier & Meyer, 2020; Sippel et al., 2021) can predict an
individual’s close exposure to conversations.

We began by examining the behaviour of an individual across a period of 8
weeks. Our observations suggested that the functional connectivity of Left IFG within the
dMPFC subsystem may relate to the average duration an individual is around
conversations, a behavioural metric that describes how long that individual was exposed
to conversations in their close vicinity. One possible implication for this relationship may
hint at the quality of conversations occurring around the participants. Studies on
loneliness often express that these subjective feelings of isolation may occur due either to
the lack of quantity or quality in the social interactions (Perlman & Peplau, 1981; Baek &
Parkinson, 2022). That is to say, individuals indulging in shorter conversations may also

report feeling lonelier. However, to answer questions pertaining to loneliness and
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real-world interactions will require further work focussed on feelings of isolation, quality
of such conversations, and individual differences observed in brain function.

We also observed that self-reported mental health scores described the brain
function with marginal level of significance. Past studies have reported that individuals’
mental state may control the conversations of that individual in the near future (daSilva et
al., 2021), however, we do not see an effect of the participants’ self-reported mental
health (stress, depression, or self-esteem) to explain the relationship between brain
function and our conversation variable. This inconsistency between the literature and our
results may be attributed to the fact that past work linked daily mental health (i.e., stress
levels) to daily conversation behaviour, whereas the present results look at mental health
at a single time point (the day of the scan). Future work that densely samples resting state
functional connectivity may be better suited to identify links between brain function,
mental health, and conversation. Then again, interactions are not all the same. Literature
has shown that certain types of interactions (Dunbar, 2018; Jolly & Chang, 2021) and
conversations occurring in places of high social importance (Dunbar, Marriott, &
Duncan, 1997; Dunbar, 2017) may further social connections. So, we looked at the
subjects’ conversation behaviours across various locations to find that the same brain
function — connectivity of Left IFG within the dorsomedial subsystem — is related to
social interactions occurring at eateries. Consistent with the results mentioned earlier, we
find that an individual’s brain function is related to the average duration they spend
around conversations. We also find that this brain function is related to the variance in
conversation durations at eateries across the 8-week period, such that higher resting state
functional connectivity of L-IFG within the dMPFC subsystem may be linked to more
varied conversations an individual may indulge in. Literature in social sciences often
discusses patterns of interaction during ‘social eating’ (Giddens, 1982; Delormier,
Frohlich, & Potvin, 2009; Dunbar, 2017). Given that conversations over meals are
generally socially transactive, informative, or support-seeking (Delormier, Frohlich, &
Potvin, 2009; Dunbar, 2017), one can argue that such interactions tend to be more
reflective of an individual’s gain and exchange of meaningful social knowledge, leading
to variance in one’s behaviour over time. Perhaps, this variable (variance in duration of

conversations) may additionally reflect a personality variable of ‘brokerage’ in their
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social networks (Burt, Kilduff, & Tasselli, 2013; Parkinson, Kleinbaum, & Wheatley,
2017). That is, an individual may choose to partake in different lengths of conversations
when having meals with different, otherwise unconnected groups (or social
sub-networks). Like the previous result, further research is required to understand the
individual differences in variance and a deeper investigation into the social networks of
individuals indulging in such ‘social eating.’

The third relation we find is that a sum of all the time spent around conversations
at eateries is related to the functional connectivity of Left IFG within the dorsomedial
subsystem of DMN, but not the total number of unique conversations. One possibility for
not observing a significant relationship between the number of conversations and the
brain function may be due to the inconsistency between what the mobile application
defines as a ‘unique conversation’ and what an individual may classify as a conversation.
For example, perhaps humans would not subjectively count a brief exchange as a
meaningful conversation. Alternatively, the time spent around conversations may be more
meaningful in qualifying an interaction as a conversation than merely exposure to unique
conversations. Perhaps, the brain prefers tracking unique points of information rather
than conversation in general. Much like literature linked to episodic memories (Johnson
et al., 1988; Spaniol et al., 2009; Baldassano, Hasson, & Norman, 2018), recordings of
conversations in such scenarios may be useful to determine if event-boundaries are more
reflective of the brain function (Marsh, Richardson, & Schmidt, 2009; Sievers et al.,
2020). Combining these findings, one may posit that the functional connectivity of Left
IFG within the dorsomedial subsystem of the default mode might track a more complex
variable of conversation occurring in socially impactful environments and that these

conversations may be reflected in our everyday interactions happening elsewhere.
Limitations

Although we show that one can use mobile-sensing combined with BOLD-fMRI
to study real-world conversations, limits are imposed in the data that one may collect. In
our case, this limitation was observed in the absence of textual data or vocal transcripts

that may have been helpful in studying active-participation in conversations, participation
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ratio, turn-taking, topics of conversation, dominance, and possibly, the social network
information related to each interaction. We were also limited in neuroimaging with only
the resting state scans available to study. With our methods, we were able to explore the
importance of Left IFG as a hub within the dorsomedial subsystem of the default network
using linear models. Even though we found significant relationships of the region with
conversation variables, we were not able to establish a clear uniqueness of this
association to L-IFG among other regions of the dorsomedial subsystem. Another
methodical limitation might show that the brain function is non-linearly related to

behaviour, a theory that may be explored in future studies.

Conclusion

Conversations are a complex and important medium of social interaction. This
multifaceted behaviour may be reflected in different and multiple parts of the brain. We
have shown that the functional connectivity of Left IFG within the dorsomedial
subsystem of the default network may be related to our everyday conversations.
Moreover, the same region might specifically track social interactions happening over
meals. From the literature, we posit that such interactions are socially important
(Delormier, Frohlich, & Potvin, 2009; Dunbar, 2017). Moreover, our method of
combining resting state fMRI with passively sensed real-world conversations support
studies that explore brain-basis of our everyday behaviours (Huckins et al., 2019a-2019b;
daSilva et al., 2021). We end with a discussion on the topics of enquiry that may further
the understanding of brain-behaviour relationship of our real-world social interactions

and thus, open more avenues of research.
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Appendix A

Table Al: Statistics of all the variables mentioned in the thesis: This table lists the variables
used under the ‘Feature’ column. ‘Avg. Conversation’ is the average duration of conversations
over a span of 8 weeks and is recorded in the unit of minutes (min), ‘Conversation Var.’ is
variance in unique conversation durations over the same time and is recorded in the unit of
minutes-squared (min’), ‘Number of Conversation’ is a count of unique conversations (the value
is unitless), and ‘Sum of Conversations’ is the total duration of conversations over the period
(minutes, min). The four rest-state functional connectivity (‘RSFC’) variables are BOLD-derived
network features. The statistics for each feature are presented under ‘mean’, standard deviation

(‘std’), I-sample 2-tailed t-score (‘t’), the degree of freedom (‘df’), and the p-value (‘p’).>

Feature mean std t df p
Avg. Conversation across all locations (min) 9.59 4017 21.628 81 2.13x10%
Avg. Conversation at Athletic Facilities (min) 10.686 18.563  4.533 61 2.77x10™®
Avg. Conversation at Classrooms (min) 7.386 3.46 19.095 79 2.47 x107
Avg. Conversation at Culture and Arts (min) 9.525 7.544 10335 66 1.97 x107"
Avg. Conversation at Eateries (min) 11.574 5223 19.821 79 2.14 x10*
Avg. Conversation at Greek Housing (min) 16.022 16.098 8207 67 1.02x10"
Avg. Conversation at Libraries (min) 6.908 3.611 16.786 76 2.79 x107%
Avg. Conversation at Marketplace (min) 12.361 11.34 823 56 3.24x10™"
Avg. Conversation at Student Housing (min) 9.4 9.459  8.833 78 228 x107"

Conversation Var. across all locations (min?) 319.302 546.408 5.292 81 1.01 x107
Conversation Var. at Athletic Facilities (min?) ~ 120.528 209.943 452 61 290 x10™%

Conversation Var. at Classrooms (min?) 123.080 173.138 6.358 79 1.22x10*
Conversation Var. at Culture and Arts (min?) 166.965 282.193 4.843 66 8.07 x10™
Conversation Var. at Eateries (min?) 193.065 163.814 10.541 79 9.98 x107"7
Conversation Var. at Greek Housing (min?) 237.359 320.395 6.109 67 5.73 x107%®
Conversation Var. at Libraries (min?) 118.498 231.735 4.487 76 2.52x10%
Conversation Var. at Marketplace (min?) 255.314 673.245 2.863 56  0.0059

Conversation Var. at Student Housing (min?) 475.534 1701.237 2.484 78 0.0151
Number of Conversations across all locations 498.939 251.616 17.956 81 5.67x107°

2 Also see: Table 03, “Statistics of the data and features used.”
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Feature mean std t df p

Number of Conversations at Athletic Facilities  18.613 25967 5.644 61 4.59 x10"
Number of Conversations at Classrooms 66.063  75.027 7.876 79 1.52x10"
Number of Conversations at Culture and Arts 16.731 18593 7366 66 3.61x10"°
Number of Conversations at Eateries 66.225 40.476 14.634 79 3.34x10*
Number of Conversations at Greek Housing 15.074 17.537 7.088 67 1.06x10™"
Number of Conversations at Libraries 40.831 41.111 8715 76 4.69 x107"
Number of Conversations at Marketplace 7.439 8.588 6.54 56 1.99 x10™
Number of Conversations at Student Housing 82.443 74942 9778 78 3.38x10"
Sum of Conversations across all locations (min) 5218.492 3893.787 12.136 81 6.52 x10%°
Sum of Conversations at Athletic Facilities

(min) 203.363 359341 4.456 61 3.63 <10
Sum of Conversations at Classrooms (min) 594.791 810366 6.565 79 5.01 x10™%
Sum of Conversations at Culture and Arts (min) 173.839 210.195 6.77 66 4.15x10%
Sum of Conversations at Eateries (min) 789.864 624.863 11.306 79 3.49 x107'"®
Sum of Conversations at Greek Housing (min)  207.063 261.078  6.54 67 9.99 x10°%
Sum of Conversations at Libraries (min) 334.536 383.299 7.659 76 4.94x107"
Sum of Conversations at Marketplace (min) 86.313 102.893 6.333 56 4.34x10
Sum of Conversations at Student Housing (min) 1008.791 1863.221 4.812 78 7.16 x10™%
GAD-7 3.988 3.202 11485 84 6.65x107"
Janis-Field Score 111.976  25.004 41.289 84 1.45x107
PHQ-8 5.235 4.067 11.868 84 1.19x107"
PSS-14 31.729  7.681  38.089 84 9.04 x107*
SSE Total 56.0 7.064  73.085 84 823 x107®
SSE Appearance 17.8 2444  67.157 84 891 x107
SSE Performance 19.765  2.308 78966 84 1.35x107*
SSE Social 18435  6.288 27.032 84 3.31x10%
LIFG-Core subsystem RSFC 0.125 0.145 8.053 86 4.14x10"
LIFG-MTL subsystem RSFC -0.121  0.131  -8.624 86 2.86x107"
LIFG-dMPFC subsystem RSFC 0.456 0.11 38.684 86 3.61 x107
LIFG-DMN RSFC 0.181 0.102 16.541 86 1.88 x10*®
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Appendix B

The following figures are supplemental to the main material of the thesis. Only the
locations with a larger sample size (n>40) are included in all the results. A complete list
of such locations is provided in the Tracking Location subsection of the Data and

Methods section in the thesis’.

Figure B1: Correlations between L-IFG resting state functional connectivity within the
dorsomedial subsystem and behavioural features for conversations at various locations: 7/e
following plots presented below show the correlations between the average Left IFG-dorsomedial
subsystem functional connectivity on the Y-axis and the behavioural features for conversations
occurring at locations belonging to (a) athletic facilities, (b) classroom buildings, (c) cultural and
art venues, (d) eateries’, (e) greek housing, (f) student housing, (g) libraries, and (h) marketplace
on their respective X-axes. The behaviours reported in the figure include: (i) total time spent
around conversations (measured in min; blue), (ii) HMM-sensed total number of conversations
(unitless; orange), (iii) average time spent around a given conversation (measured in min; green),

and (iv) variance in time spent around unique conversations (measured in min’; red).

3 See: Table 02, “Spatial clustering of tracked locations.”
* The plots (d-i to d-iv; conversation behaviours tracked at Eateries) are also presented as Figure

03, “Correlations between LIFG-dMPFC subsystem fc and behavioural features for
conversations at eateries” in the Results section of the thesis.
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