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Abstract

Social interactions are multifaceted, complex, and critical to social behaviour as they help

gather information, develop social connections, and regulate social behaviour (Lakey &

Orehek, 2011; Testard et al., 2021; Jolly & Chang, 2021). Among social interactions,

conversations find a special place for humans due to the nuances associated with

language, conversational behaviour (e.g., gestures), and context (e.g., where

conversations occur and what is discussed). Researchers have studied aspects of single

conversation behaviour, content related to conversations, and brain function (Sievers et

al., 2020). However, little is known about the brain function of densely-sampled

in-person conversation behaviour. Filling this gap is important, given that real-world

conversation happens frequently and is an index of social connectedness. We utilise the

passive-mobile sensing approach from the StudentLife study (Wang et al., 2014; daSilva

et al., 2021) to track real-world conversations and relate the features to resting-state

functional connectivity via fMRI. In this thesis, we show that resting state functional

connectivity of left inferior frontal gyrus (LIFG, a region associated with language;

Turken & Dronkers, 2011; Klaus & Hartwigsen, 2019) with the dorsomedial prefrontal

cortex (dMPFC) subsystem of the default mode network (DMN), which is a network

associated with social-cognitive processes (Collier & Meyer, 2020; Sippel et al., 2021),

of an individual is related to the time they spend in the vicinity of conversations.

Consistent with social psychological literature (Delormier, Frohlich, & Potvin, 2009;

Dunbar, 2017), we also find that features of conversation – average time spent, the

variance associated with, and total time spent around conversations – at places associated

with ‘social eating’ was related to the same brain function. Our results suggest that the

importance of LIFG within the dMPFC subsystem may be associated with (1) average

time spent around conversations generally, and (2) conversations occurring specifically in

socially relevant situations. This thesis also supports that passive-mobile sensing can be

useful to study real-world conversations, and that adding neuroimaging modalities to

otherwise densely-sampled behavioural features can open new avenues of research to

better understand the brain-basis of social interactions.
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Introduction

Social integration is critical for human health and development (Barnett & Gotlib,

1988; Diener & Seligman, 2002; Holt-Lunstad, Smith, & Layton, 2010; Holt-Lunstad,

Robles, & Sbarra, 2017; Dunbar, 2018). Greater social connectedness is linked to better

mental health (Holt-Lunstad, Smith, & Layton, 2010; Dunbar, 2018), better physical

health (Baumeister & Leary, 1995; Holt-Lunstad, Robles, & Sbarra, 2017), and overall

increased happiness (Diener & Seligman, 2002). On the flipside, isolation tends to make

individuals more stressed (Barnett & Gotlib, 1988), vulnerable to depression (Barnett &

Gotlib, 1988; Cacioppo et al., 2006), less physically healthy (Hawkley & Cacioppo,

2003; Holt-Lunstad, Smith, & Layton, 2010; Holt-Lunstad, Robles, & Sbarra, 2017), and

more susceptible to substance abuse (Åkerlind & Hörnquist, 1992; Hawkley & Cacioppo,

2003). Studying interaction behaviours have led scientists to show that humans, among

other higher-order social animals, actively seek out social connections (Dunbar, 2018;

Templer et al., 2018; Testard et al., 2021), leading to the belief that perhaps, the brain

may have evolved to be “social by default” (Dunbar, 1998; Meyer, 2019).

Studies in modern social psychology have focussed on interactions in various

forms (Dunbar, Marriott, & Duncan, 1997; Momennejad, Duker, & Coman, 2019;

Dunbar, 2018). Recent social cognitive research has focussed on the multiple aspects of

social integration from large networks of communities (Sallet et al., 2011; Baek et al.,

2022; Baek & Parkinson, 2022) to solitary individuals (Hawkley & Cacioppo, 2003;

Hyon et al., 2020), from synchrony between folks (Dikker et al., 2017; Czeszumski et al.,

2022) to self-regulating effects of mental health (daSilva et al., 2021; Sippel et al., 2021;

Baek et al., 2022), and from well-defined conversations (Bögels & Levinson, 2017;

Templeton et al., 2022) to more ambiguous everyday interactions (Dunbar, 2017).

However, there is a gap in literature for studying the brain function behind real-world

social integration. Most neuroscience studies mentioned earlier use blood oxygen

level-dependent functional magnetic resonant imaging (BOLD-fMRI) as the chief

neuroimaging modality as the technology provides greater spatial resolution while

limiting mobility and temporal resolution. Although some studies have used more

real-world-like paradigms (e.g., participants converse while undergoing fmri or converse
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in a lab before and after fMRI; Bögels & Levinson, 2017; Sievers et al., 2020), ecological

validity of social interactions largely remain questionable when one is confined to a small

space and/or in a lab setting. Contemporary social-cognitive neuroimaging studies favour

more mobile, comparatively inexpensive technologies like electroencephalography (EEG;

Dikker et al., 2017) or functional near-infrared spectroscopy (fNIRS; Burns &

Lieberman, 2020; Hirsch et al., 2021; Czeszumski et al., 2022) which may offer

opportunities for ecologically valid conversation sampling. Despite this push, more

ecological studies on neural bases of social interactions remain few.

To begin the neural exploration of real-world social interactions, for ecological

human social behaviours are multifaceted and complex, we propose combining passive

mobile sensing methods designed to detect time spent conversing with people with

resting state functional magnetic resonance imaging. Such an integration of methods is

done in the StudentLife project (Wang et al., 2014). StudentLife is a large-scale passive

mobile sensing study that recruits and tracks the undergraduate students at Dartmouth

College over the duration of their academic year. The project uses a mobile app to track

the mental health of students with self-reports, their physical location with GPS, and their

resting-state brain function with regular fMRI scans. Previous research combining

everyday student behaviour assessed with mobile sensing and brain function has

implicated resting state functional connectivity (RSFC) between subgenual cingulate

cortex (sgCC) and ventromedial/orbitofrontal cortex (OFC) to predict phone usage

(Huckins et al., 2019a-2019b). Per the ethical requirements of Dartmouth College’s

Institutional Review Board (IRB), the mobile application removes all identity-level and

content-level information from the records. Instead, the StudentLife application uses

online HMM-based vocal-classification to differentiate conversations from soliloquy or

any other noise (Rabbi et al., 2011; Lane et al., 2012-2014). While we do not record the

language or voice in conversations, we were able to capture time spent in and close to

real-world conversations. Our method utilises the mobile-sensed conversation log over a

period of 8 weeks per subject to calculate persistent conversation behaviours. This thesis

connects some of the conversation data to brain function as collected from the fMRI

scans at the centre of these 8-week tracking periods.
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Although our primary aim targets an exploration of general conversation-traits,

there is contextual relevance to these behaviours. That is, how one interacts with others

strongly depends on where the social interaction is taking place. To this extent, we take

advantage of the global positioning system (GPS) coordinates that the StudentLife mobile

application tracks. Among the conversations happening in everyday life, literature in

social psychology has implicated those over meals as being important to share impactful

social knowledge, establish alliances, and form social bonds (Dunbar et al., 1997;

Dunbar, 2017). Hence, it becomes important to explore the brain-basis of interaction

behaviour at such socially salient locations.

Research from the StudentLife project connect brain function with everyday

behaviours (Huckins et al., 2019a-2019b) and implicates mental health with social

interactions (daSilva et al., 2021), providing the opportunity to bridge conversation

behaviours with brain function. Human social cognitive research has implicated neural

processes occuring in the default mode network (DMN; Amodio & Frith, 2006;

Heatherton et al., 2006; Andrews-Hanna et al., 2010; Denny et al., 2012; Mars et al.,

2012; Meyer et al., 2019). Graph theoretic tools have been used to distribute the network

into three major subsystems, of which the dorsomedial prefrontal cortex (dMPFC)

subsystem (also shortened to ‘dorsomedial subsystem’) has regions that, research shows,

engage in mentalizing (Tamir & Thornton, 2018; Saxe & Kanwisher, 2003),

value-perception (Behrens et al., 2008), and social learning (Lieberman et al., 2019;

Meyer et al., 2019; Collier & Meyer, 2020). Particular to the dorsomedial subsystem of

the DMN is left inferior frontal gyrus (L-IFG), a region participating in language (Uddén

& Bahlmann, 2012; Klaus & Hartwigsen, 2019) and size of active-participation social

networks (Mori & Haruno, 2022), processes that are important for conversations. Hence,

we predict that the connectivity of left IFG within the dMPFC subsystem may be

important in conversation-related behaviours. Moreover, we hypothesise that L-IFG

functional connectivity may be related to trait-level real-world behaviours that occur in

situations furthering social interactions.

The aim of this thesis is to investigate associations between brain function (here,

assessed by resting state functional connectivity) and real-world social interactions.

Specifically, we establish that the connectivity of left IFG within the dMPFC subsystem

3
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of DMN plays a key role in how long an individual tends to be exposed to conversations.

Honing in on the location-specificity of conversations, we show that the same

brain-to-conversation relationship exists when examining time spent in conversations

over meals. Our analyses support the theories from social neuroscience that suggest that

regions of the DMN and the dMPFC subsystem are integral to social cognition and social

network maintenance (Collier & Meyer, 2020; Inagaki & Meyer, 2020; Sippel et al.,

2021). Our analyses also support the theories from social psychology that emphasise the

importance of conversations happening over meals for social bonding (Dunbar, Marriott,

& Duncan, 1997; Dunbar, 2017). Moreover, our method of combining passive mobile

sensing with neuroimaging presents an avenue on how one may study the brain functions

associated with complex, densely-sampled, real-world human behaviours for future

research.

>>
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Data and Methods

Participants

115 Dartmouth first-year college students between the ages of 18-22 years agreed

to participate in this study. Subjects with poor quality or incomplete data were removed.

The study retained 88 participants (ages = 18.25 Mean ± 0.64 SD; 70.5% Females; 60.2%

white, 22.7% asian, 3.4% black, 10.2% multi-racial, and 3.5% did not report) with 8

weeks of mobile-sensing data and a complete resting-state fMRI scan, collected across

the Winter and Spring quarters of the academic year. The following subsections discuss

the data in further detail. All participants provided informed consent in accordance with

the Dartmouth College Institutional Review Board (IRB).

Resting State fMRI

fMRI Data Acquisition

The Dartmouth Brain Imaging Center uses a 3T Siemens Magnetom Prisma MRI

scanner with a 32-channel phased array head coil. Blood oxygen level dependent

(BOLD) functional MR images were acquired using an EPI gradient echo sequence with

2.5 × 2.5 × 2.5 mm isotropic voxels, reaction time (TR) of 1000 msec and echo time (TE)

of 33 ms, 3.5 mm slice thickness with 0.5 mm skip between slices, Field of View (FoV) =

240 mm × 240 mm, matrix size of 96 × 96, 90° flip angle, and a sense factor of 2. A

T2-weighted structural image was acquired coplanar with the functional images

(MP-RAGE; 160 sagittal slices; 1 mm × 1 mm × 1 mm voxels; 9.9 ms TR and 4.6 ms TE;

0.9-mm slice thickness; 240 mm × 240 mm FoV; 8° flip angle; sense factor of 4). The

resting state scan lasted 12 minutes and 54 seconds during which time participants were

instructed to lie still and let their mind wander.

Resting state fMRI preprocessing

fMRI data was preprocessed using the Power et al. (2014) and Huckins et al.

(2019a-2019b) processing streams, with frame-displacement (FD) thresholded at 0.25

5
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mm and 24 motion parameters. Additional slice-correction, rigid-body realignment, and

within-run intensity normalisation were performed to correct for head-movement and

voxel activation scaled to set the modal intensity of 1000 units with a signal-change of

1%. The brain scans were transformed to standardised MNI atlas space with

frame-censoring. The resulting, uncensored fMRI signals were nuisance-regressed with

interpolation and band-pass filtered between 0.009 Hz and 0.08 Hz, per Huckins et al.

(2019a-2019b). We used the python library nltools (Chang et al., 2020) to regress out 24

motion parameters that included the head motion and rotation, square of the head motion

and rotation, change in head motion and rotation, and the square of change in head

motion and rotation. We also regressed out the global, white-matter, and cerebrospinal

fluid (CSF) signals alongside those corresponding up to two orders of polynomial powers

and activity related to brain spikes.

Resting state functional connectivity

We parcelled the preprocessed BOLD signals into Thomas Yeo et al. (2011) 17

networks functional atlas with 100 regions-of-interest (ROI) and removed voxel-clusters

with fewer than 5 voxels. This parcellation scheme is derived from a large sample size

(1,000 subjects) and their default network (or default mode network; DMN) regions are

anatomically similar to those determined with task-based fMRI studies examining social

cognition (Saxe & Kanwisher, 2003; Amodio & Frith, 2006; Denny et al., 2012), making

the functional atlas useful for us. Thomas Yeo et al. (2011) also provide clustering of

three default network subsystems with regions divided to fall in the dorsomedial (or, the

dorsoMedial PreFrontal Cortex; dMPFC) subsystem, the core DMN (a.k.a. Core)

subsystem, and the Medial-Temporal (or, the Medial Temporal Lobe; MTL) subsystem.

Table 01 lists the regions in the three DMN subsystems.

>
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Table 01: Regions in the three DMN subsystems: the centroids listed here are as derived from

Thomas Yeo et al. (2011). ROIs with fewer than 5 voxels have been removed. The MNI

coordinates follow the MNI-152 system with 2 mm × 2 mm × 2 mm voxel dimensions.

Network
Centroid

Larger Anatomical Region Voxels
X Y Z

MTL

Subsystem

-39 -80 32 L Middle Occipital Lobule 82

48.2 -70.8 27.2 R Middle Occipital Gyrus 111

-12.4 -55.4 12.6 L Calcarine Gyrus, L Precuneus 119

13.8 -53.2 13.8 R Cuneus, R Precuneus 141

27.4 -28 -20.2 R Fusiform Gyrus 189

-26.8 -33 -18 L Fusiform Gyrus 271

Core

Subsystem

61.8 -6.8 -18.2 R Middle Temporal Gyrus 232

23.4 -48.8 44 R Superior Frontal Gyrus 352

-22.4 28.8 46.6 L Middle Frontal Gyrus / L Superior Frontal Gyrus 377

-44.4 -68.2 37.4 L Angular Gyrus 570

51.4 -57.4 29.6 R Angular Gyrus / R Middle Temporal Gyrus 622

-0.6 -50.8 31 R / L PCC 1494

0.6 50 5.2 MPFC / ACC 2648

dMPFC

Subsystem

55.6 24.6 8.2 R Inferior Frontal Gyrus 98

61.8 -25.8 -6.2 R middle Temporal Gyrus 183

-40.4 12.6 50.4 L Middle Frontal Gyrus 241

43 29.6 -13.8 R Inferior Frontal Gyrus 282

-52.4 -55.6 28.6 L Angular Gyrus 423

51.8 3.8 -30.2 R Medial Temporal Pole 424

-46.6 26.8 -2.2 L Inferior Frontal Gyrus 1201

-56.6 -12.2 -19 L Middle Temporal Gyrus 1667

-2.4 45.6 41.2 Bilateral dMPFC 1783

>
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Figure 01: Functional atlas of the dorsomedial subsystem of DMN: Shaded in blue are all the

regions of the dorsomedial prefrontal cortex (dMPFC) subsystem of the default mode network

(DMN) as derived from Thomas Yeo et al. (2011). ROIs with fewer than 5 voxels were removed.

Of the three DMN sub-networks, literature has shown that regions of the dMPFC

subsystem participate in theory of mind (ToM; Saxe & Kanwisher, 2003), social value

perception (Behrens et al., 2008; Kable & Glimcher, 2007; Piva et al., 2019), and social

learning (Meyer et al., 2019; Collier & Meyer, 2020), making the subsystem important to

study in the context of real-world social interaction. Within this subsystem is the region

of Left Inferior Frontal Gyrus (L-IFG), which research has shown to be linked with

language comprehension (Uddén & Bahlmann, 2012; Klaus & Hartwigsen, 2019) and

size of active-participation social networks (Mori & Haruno, 2022), making it important

to study the connectivity of L-IFG with other dorsomedial ROIs when examining

real-world conversation behaviour in particular. To that end, we used Fisher’s
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z-transformed Pearson’s correlation between the time-course of the parcellated ROI pairs

to create a resting state functional connectivity (RSFC) network for each subject. From

this network, we extracted the adjacency matrices for the ROIs belonging to the three

DMN subsystems. From the adjacency matrix, we extract all the between-ROI

edge-weights and average them to calculate the within-network RSFC. The mean of

column-vectors affiliated to each ROI in the adjacency matrix, without self-loops, is

calculated as the average ROI connectivity. For each analysis, we treated subjects with

functional connectivity, conversation, and/or self-report trait scores (e.g., self-esteem),

more than 2.5 standard deviations from the respective means as outliers excluded from

analyses. Furthermore, each analysis was followed-up with complementary sets of

analyses into other ROIs and features to distil the results for clearer inferences.

Passive Mobile Sensing

Wang et al.’s (2014) StudentLife iOS and Android applications were used to

collect mobile-sensing data. Enrolled participants downloaded the app at the onset of the

study and the application passively sensed audio, screen-based, text-message, call-based,

and gps features. Further and detailed information on the preprocessing and analyses of

passively-sensed data can be found in related publications (Rabbi et al., 2011; Lane et al.,

2012; Chen et al., 2013; Wang et al., 2014). Given that the subjects in this study were

freshmen undergraduates at Dartmouth College, temporal periods were chunked in order

of weeks (multiples of 7 days) to remove any inconsistencies due to the students’ class

schedules. In other words, any structure to conversation behaviour specific to certain days

of the week was held constant by creating week-specific values. Trait-level conversation

features were thus calculated over an 8-week (56 days) period. A period of 8-weeks also

allowed us to retain a larger population size.

Tracking Conversation Time

Smartphone microphones were used as sensors to collect audio features with a

sampling ratio of 1 min ON to 3 min OFF. The detected features were fed into a Hidden

Markov Model (HMM) to classify the audio as human voice and to detect if the audio
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may resemble a conversation (Lane et al., 2014). HMM-based classifiers have been

shown to have high audio-based feature-detection accuracy (84–94%; Rabbi et al., 2011;

Lane et al., 2012). Once determined that the participant was exposed to conversations

occurring in close vicinity, the microphone keeps logging the features until the detected

conversation has ended. For ethical practices and in accordance with Dartmouth

College’s IRB, all personal and identity-based information, including voice and content

of the conversations, were not saved. All the feature-detection was carried out on-line,

and only the features approved by the IRB were logged.

From the logged conversation data per subject, four main conversation-based

features were extracted. First is the total duration of conversation, calculated as the sum

of all individual conversation durations over a subject’s 8-week period. Second was the

total number of conversations over the 8-week period. Third was the average duration of

conversations, defined as the mean of all individual conversations per subject over the

8-week period. Last was the variance in conversation durations, calculated as the variance

of all individual conversations durations.

Tracking Location

Primarily, the GPS coordinates were logged to track the movement of a subject on

and around the campus. However, we take advantage of these GPS logs to track

interaction behaviour of our participants at various locations, particularly at and around

eateries. We reason that conversations around meals are important, which aligns with the

literature in social psychology suggesting that they convey socially salient information

(Dunbar, Marriott, & Duncan, 1997; Dunbar, 2017).

The mobile application logged the GPS coordinates every 10 minutes, sampling a

total of 144 location points a day per subject. This spatial data consisted of altitude (not

used), latitude, longitude, and accuracy in metres, the last of which implies higher

accuracy for lower values. The spatial data was collected parallel to the conversation

data, and we merged these two streams of data in a rolling fashion, since a conversation

log will have a location ping recorded within 5 minutes of either occurring. Observations

containing more than 20 minutes of inconsistencies were dropped, resulting in an average

3% data loss (daSilva et al., 2021). Density-based spatial clustering of applications with
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noise (DBSCAN; Ester et al., 1996) was used to cluster the cleaned data to spatial

locations on and around Dartmouth Campus. These locations were then further grouped

into twelve ‘types,’ as reported in Table 02.

Table 02: Spatial clustering of tracked locations: Each cluster gives a list of locations found on

or around the campus. The location lists (the column ‘Locations’) also include those locations

found outside the town of Hanover, NH, that are often visited by the students. Locations with an

asterisk (*) next to the cluster name have a comparatively larger population size (N>40).

Location Cluster Locations

Athletic Facilities* 'berry_sports_center', 'canoe', 'chase-field', 'football', 'ladyard_cacoe',

'leverone', 'lodge', 'softballfield', 'sport-venues', 'sport-venues-press',

'tennis', 'thompson_arena'

Classroom Buildings* 'Hillel', 'Mckenzie', 'Tuck_hall', 'batrlett', 'buchanan', 'burke',

'butterfield', 'byrnehall', 'carpenterhall', 'chasehall', 'cummings', 'currier',

'hallgarten', 'hopkins', 'hopkins-spaulding', 'kemeny', 'lsb', 'maclean',

'massrow', 'mclaughlin', 'moore', 'morano', 'murdough', 'raven-house',

'remsen', 'ripley', 'robinson', 'rockefeller-center',

'rockefeller-social-sciences', 'russell-sage', 'silsby-rocky', 'smith',

'steele', 'streeter', 'sudikoff', 'thayer_secure', 'thornton', 'vail',

'webster_cottage', 'websterhall', 'wentworth', 'whittemore', 'wilson',

'woodburyhall', 'woodward'

Culture and Arts* 'hood', 'hopkins', 'hopkins-spaulding', 'lodge', 'native_american_house',

'rockefeller-center', 'rockefeller-social-sciences', 'sphinx', 'vac'

Eateries* '53_commons', 'candela', 'capizza', 'collis', 'domino', 'hopkins-food',

'HanoverInn', 'indian_food', 'mexican-food', 'mollys', 'murphy', 'noodle',

'orient', 'pine', 'ramunto', 'salt-hill', 'starbucks', 'sushiya', 'tuktuk',

'umpleby'

Greek Housing* 'ACA', 'AD', 'AP', 'AT', 'AXD', 'BAO', 'BG', 'CGE', 'CH', 'DDD', 'EKT',

'GDC', 'KD', 'KDE', 'KKG', 'KKK', 'PDA', 'PT', 'SAE', 'SN', 'SPE',

'TDC', 'ZP', 'tabard'

The Green ‘green’
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Location Cluster Locations

Student Housing* '13-EWL', '19-EWL', '9-EWL', 'Cohen', 'andres', 'bissell', 'brown_hall',

'channing-cox', 'east-wheelock', 'fahey-mclane', 'fairchild',

'fayerweather', 'fayerweather-south', 'french', 'gile', 'judge', 'lacasa',

'ledyard', 'little_hall', 'lord', 'maxwell', 'mcCulloch', 'morton',

'native_american_house', 'north-park', 'richardson', 'six-south',

'south-house', 'tllc', 'topliff', 'wheeler', 'zimmerman'

Libraries* 'baker-berry', 'dana-library', 'feldberg_library', 'library-default-services',

'lsl', 'sanborn'

Marketplace* 'NuggetTheaters', 'carson-tech_services', 'post-office', 'bookstore',

'fairbanks', 'coop', 'lemon_gift', 'Jcrew', 'talbots'

Medical Facilities 'CVS','DHMC','hitchcock','ropeferry'

Religious Places 'StDenisCatholicChurch', 'StThomasEpiscopalChurch', 'aquinas',

'christian_reading', 'church', 'rollins-chapel'

Miscellaneous* 'blunt_alumni_center', 'dartmouth_hall', 'den', 'dewey', 'mcnutt', 'ovis',

'parkhurst', 'payroll', 'reed', 'remote_offices_HREAP'

We used the location types (clusters) as a categorical variable to test if conversation

variables at certain locations show any significant relation to the brain function. First, we

removed the ‘miscellaneous’ locations and the ones where subjects did not frequent

(locations with population size N<40), leaving us with 8 locations. Then, we extracted the

four conversation features (duration, number, average, and variance) for each remaining

location. Results relating the brain functional connectivity to conversation features were

also compared.

Personality Questionnaires

On the day of the scan, all subjects filled out a series of personality and mental

health questionnaires. These self-reported scores include the 8-item Patient Health
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Questionnaire which assesses depressive symptoms (PHQ-8; Kroenke et al., 2009),

7-item General Anxiety Disorder (GAD-7; Spitzer et al., 2006), Janis-Field Feelings of

Inadequacy scale (Janis & Field, 1956), 14-item Perceived Stress Scale (PSS-14; Cohen,

Kamarck, & Mermelstein, 1983), and the State Self Esteem scale (SSES; Heatherton &

Polivy, 1991). The SSES is further divided into 3 sub-scales: (1) Performance (SSE-Per)

subscale reports a score for how an individual may think they are performing in their

everyday life, (2) Social (SSE-Soc) subscale reports what the person thinks others may

perceive of them, and (3) Appearance (SSE-App) subscale reports how one perceives of

their physical self. Since the thesis primarily aims at exploring connections between the

brain and conversation behaviour, we did not use personality and mental health scores as

primary variables. However, we explored the interaction of mental state in terms of

personality trait or mental health with conversation trait-features or location-categorised

conversation behaviours.

>>
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Results

A high-level look at the main data is summarised below, with the complete set of

statistics available in Appendix A. For each variable, we present the mean, standard

deviation (std), 1-sample, 2-tailed t-score against the null of zero-mean , the(µ = 0)

degrees of freedom associated with the t-test, and the corresponding p-value . All our data

have distributions that are significantly different from null.

Table 03: Statistics of the data and features used: the ‘Features’ column contains the name of

the data feature recorded in the results. ‘Avg. Conversation’ is the average duration of

conversations over a span of 8 weeks and is recorded in the unit of minutes (min), ‘Conversation

Var.’ is variance in unique conversation durations over the same time and is recorded in the unit

of minutes-squared (min2), and the two resting state functional connectivity (‘RSFC’) variables

are BOLD-activity derived network features. The statistics reported for each feature are presented

in their respective rows under the columns of ‘mean’, standard deviation (‘std’), 1-sample

2-tailed t-score (‘t’), the degree of freedom (‘df’), and t-tested p-value (‘p’). Note that the

categorical variable of ‘Gender’ is not reported in this table.

Feature mean std t df p

Avg. Conversation (min) 9.594 4.017 21.628 81 2.13 × 10–35

Avg. Conversation at Eateries (min) 11.574 5.223 19.821 79 2.14 × 10–32

Conversation Var. (min2) 319.302 546.408 5.292 81 1.01 × 10–6

Conversation Var. at Eateries (min2) 193.065 163.814 10.541 79 9.98 × 10–17

LIFG-dMPFC RSFC 0.456 0.110 38.684 86 3.61 × 10–56

LIFG-DMN RSFC 0.181 0.102 16.541 86 1.88 × 10–28

SSE-Performance 19.765 2.308 78.966 84 1.35 × 10–80

SSE-Social 18.435 6.288 27.032 84 3.31 × 10–43

PSS-14 31.729 7.680 38.089 84 9.04 × 10–55
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To test whether there is a categorical gender difference in these features, we run

independent 2-tailed t-tests with unequal variance for each category. We find that average

disposition to conversations do not show any gender-based differences, regardless of if

the conversations occur in their vicinity generally or(𝑡 78( ) = 0. 186,  𝑝 = 0. 85)

specifically at eateries . We find the same result for the(𝑡 78( ) = 1. 356,  𝑝 = 0. 18)

variance in unique conversations, in that they do not show significant gender-based

differences, regardless of the conversations across all locations

, though it is noteworthy that there is a marginal effect at(𝑡 77( ) = 1. 56,  𝑝 = 0. 12)

eateries , with females spending more time around(𝑡 77( ) = 1. 95,  𝑝 = 0. 06)

conversations at eateries. When categorically distributed according to the participants’

gender, we do not find differences in the self-reported mental health scores from

perceived stress scale or the social-subscale of the(𝑡 82( ) = 0. 35,  𝑝 = 0. 73)

self-esteem . However, we see a significant gender-difference(𝑡 83( ) = 0. 54,  𝑝 = 0. 59)

in the performance-subscale of the state self-esteem ,(𝑡 83( ) = –2. 069,  𝑝 = 0. 045)

with females having lower self-esteem than males, on average. The LIFG-dMPFC

subsystem RSFC shows no significant relation to or differences within gender

, and neither does the LIFG average(β = –0. 015,  𝑡 85( ) = 0. 626,  𝑝 = 0. 53)

connectivity within the DMN . Although we only find(𝑡 84( ) = –0. 408,  𝑝 = 0. 69)

gender-differences in state self esteem (SSE) performance subscale, the following

sections report interactions with the variable to rule out gender differences.

LIFG-dMPFC connectivity relates to average time spent around conversations

LIFG RSFC is related to the average duration

To test our hypothesis of the role of Left IFG-dorsomedial subsystem function in

conversations, we ran a correlation analysis between average LIFG-dorsomedial

subsystem functional connectivity and conversation-based features. We observe that Left

IFG functional connectivity within the dorsomedial subsystem tracks the average

duration that the individual is exposed to conversations

. However, the functional connectivity does not(𝑝𝑒𝑎𝑟𝑠𝑜𝑛'𝑠 𝑟 = 0. 26,  𝑝 = 0. 024)

significantly correlate to the total duration of exposure to conversations
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, number of times an individual may be exposed to conversations(𝑟 = 0. 18,  𝑝 = 0. 13)

over the 8-week period , nor to the variance in individual(𝑟 = 0. 12,  𝑝 = 0. 32)

conversations . We do not see gender differences interacting with(𝑟 = 0. 09,  𝑝 = 0. 42)

this relationship .(β = –0. 0128,  𝑡 77( ) = 1. 00,  𝑝 = 0. 32)

Figure 02: Correlations between LIFG-dMPFC subsystem fc and behavioural conversation

features: The four plots presented above include the correlations between the average Left

IFG-dorsomedial subsystem functional connectivity on the Y-axis and the behavioural feature on

X-axis. The behaviours reported in the figure include: (a) total time spent around conversations

(measured in min; blue), (b) HMM-sensed total number of conversations (unitless; orange), (c)

average time spent around a given conversation (measured in min; green), and (d) variance in

time spent around unique conversations (measured in min2; red).>
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Numerous factors may affect one’s average disposition to conversations. One such

variable may be the mental state of the individual indulging in conversations, such as

their mental health (daSilva et al., 2021). To test if there are any interactions between the

mental health, functional connectivity, and conversation, we ran a generalised linear

model with an interaction term between conversation and mental health self-reports.

Although the functional connectivity of L-IFG within the dorsomedial subsystem at rest

is marginally correlated with the self-reported perceived stress scores PSS-14;(

and the performance subscale of state self esteem SSE-Per;𝑟 = –0. 191,  𝑝 = 0. 089) (

, we do not see an interaction with either the PSS-14 scores𝑟 = –0. 187,  𝑝 = 0. 095)

or with the SSE-Performance subscale(β = 0. 016,  𝑡 69( ) = 1. 208,  𝑝 = 0. 231)

scores . In other words, participants’ mental(β = 0. 013,  𝑡 69( ) = 1. 18,  𝑝 = 0. 242)

health on the day of the scan does not influence the relationship between

LIFG-dorsomedial subsystem connectivity and average time spent in conversation over

the eight weeks.

Only LIFG RSFC is related to the average duration

Although we focus on average LIFG functional connectivity in the dMPFC

subsystem of DMN, there are other regions that make up the subsystem. So, we first ran a

correlation analysis with within-subsystem connectivity and average conversation

duration, given that within-dMPFC connectivity is significantly and positively correlated

with average LIFG RSFC in the subsystem .(𝑝𝑒𝑎𝑟𝑠𝑜𝑛'𝑠 𝑟 = 0. 76,  𝑝 = 5. 19 × 10–17)

However, we do not observe any significant correlation for within-dorsomedial

subsystem functional connectivity and average conversation duration

. The strongly significant correlation between within-subsystem(𝑟 = 0. 103,  𝑝 = 0. 37)

connectivity and LIFG-dMPFC RSFC may be because of other regions’ contribution to

the functional connectivity in the dorsomedial subsystem. To test if these regions show

similar relationships with conversation as the average LIFG RSFC, we run correlations

with average functional connectivities of other ROIs with average conversation duration.

However, using other dorsomedial subsystem ROIs as seeds in the dorsomedial

subsystem connectivity did not show significant relationships with average conversation

duration . Next, we checked to see if the correlation between(𝑟'𝑠 < 0. 16,  𝑝'𝑠 > 0. 1)
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LIFG-dorsomedial subsystem functional connectivity and average duration was itself

significantly different from the (non-significant) correlations examining the same

relations but with the other dorsomedial subsystem seeds. None of these comparisons

were significant . Thus, while only the LIFG-dorsomedial(𝑡 74( ) < 3. 03,  𝑝 > 0. 7)

subsystem shows a meaningful relationship with average conversation duration, this

relationship may not be systematically different from other regions in the same

subsystem.

These results suggest that among other ROIs and among the possible features that

we were able to extract from the participants’ real-world social interaction behaviour, the

functional connectivity of Left IFG within the dorsomedial subsystem of the DMN is

significantly related to the average duration an individual may spend in or around a

conversation. Since available mental health scores do not interact with these results, we

may assume that depressive symptoms, perceived stress, or state self-esteem does not

mediate the relationship between the given brain function and conversation behaviour.

We also do not observe any interactions with gender, suggesting that males and females

similarly demonstrate the observed relationships.

LIFG-dMPFC RSFC relates to average time spent around conversations at eateries

Literature in social psychology suggests that there may be situational dependency

on interaction behaviour, with a particular focus on the role of conversing over meals for

social bonding (Dunbar, Marriott, & Duncan, 1997; Dunbar, 2017). We extract the

conversation features from before per location and run correlations for average

conversations at each location. Consistent with the social psychology literature and

building on the previous results, we found that the LIFG connectivity within the

dorsomedial subsystem relates to average duration of conversations at eateries

. We also find that such a relation does not exist for(𝑝𝑒𝑎𝑟𝑠𝑜𝑛'𝑠 𝑟 = 0. 286,  𝑝 = 0. 012)

other locations with one marginal result conversations at athletic facilities;(

or not significant . The behaviour in𝑟 = 0. 232,  𝑝 = 0. 075) ( 𝑟| | ≤ 0. 2,  𝑝 > 0. 1)

itself does not depend on gender , or show an interaction(𝑡 78( ) = 1. 356,  𝑝 = 0. 18)

with gender to explain LIFG average functional connectivity
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. We also do not see an interaction with(β = 0. 019,  𝑡 78( ) = 1. 625,  𝑝 = 0. 108)

either the stress scores PSS-14; or with SSE( β = 0. 016,  𝑡 66( ) = 1. 39,  𝑝 = 0. 168)

performance subscale scores .(β = 0. 005,  𝑡 66( ) = 0. 518,  𝑝 = 0. 606)

LIFG-dMPFC RSFC relates to variance and total duration in conversations at eateries

Unlike general conversation behaviour, we find average LIFG functional

connectivity is significantly correlated to variance in duration of conversations one may

be exposed to at eateries . Variance of conversation(𝑝𝑒𝑎𝑟𝑠𝑜𝑛'𝑠 𝑟 = 0. 286,  𝑝 = 0. 028)

durations at other locations are marginally for(𝑟 = 0. 2,  𝑝 = 0. 076,  𝑑𝑓 = 72

conversations at libraries or not correlated with) ( 𝑟| | < 0. 07,  𝑝 ≥ 0. 4,  𝑑𝑓 > 53)

average LIFG RSFC within the dorsomedial subsystem. It is noteworthy that the

correlation between LIFG-RSFC within the dorsomedial subsystem and conversation at

eateries is not significantly different from the other seed-based correlations with average

time spent around conversations or with conversation(𝑡 74( ) < 2. 66,  𝑝 > 0. 7)

variance . We may observe these results because the variance(𝑡 70( ) ≤ 3. 45,  𝑝 > 0. 7)

of conversation duration in the case of eateries is more significantly correlated with the

average duration of exposure to conversations at the location ,(𝑟 = 0. 64,  𝑝 < 0. 0001)

but we do not see any interaction between the variance and average of conversation

durations to explain average LIFG(β = –0. 0007,  𝑡 66( ) = –0. 06,  𝑝 = 0. 952)

functional connectivity. This may imply that it is not the trait-level exposure to average

conversations that this LIFG-dorsomedial subsystem connectivity may be predicting, but

the overall conversation exposure at eateries, a location where individuals tend to share

highly salient social information. To test this idea, we correlate average LIFG-dMPFC

RSFC with total duration of exposure to conversations at eateries and find significant

correlation . However, the total number of such unique(𝑟 = 0. 284,  𝑝 = 0. 013)

exposures to conversations at eateries is not significantly correlated with the neural

metric , suggesting that the app’s classification of audio into(𝑟 = 0. 089,  𝑝 = 0. 45)

unique conversations may not be subjectively meaningful.
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Figure 03: Correlations between LIFG-dMPFC subsystem fc and behavioural features for

conversations at eateries: The four plots presented above include the correlations between the

average Left IFG-dorsomedial subsystem functional connectivity on the Y-axis and the

behavioural feature for conversations occurring only at eateries1 on X-axis. The behaviours

reported in the figure include: (a) total time spent around conversations (measured in min; blue),

(b) HMM-sensed total number of conversations (unitless; orange), (c) average time spent around

a given conversation (measured in min; green), and (d) variance in time spent around unique

conversations (measured in min2; red).

1 Similar plots for all the locations with larger sample sizes (n>40) are reported in Appendix B.
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Other locations also show non-significant relationships between total duration and

LIFG average functional connectivity in dMPFC subsystem ( 𝑟| |'𝑠 < 0. 12,  𝑝'𝑠 > 0. 3)

, with an exception for ‘culture and arts’ . It is noteworthy here(𝑟 = 0. 27,  𝑝 = 0. 038)

too that the correlation between LIFG-RSFC within the dorsomedial subsystem and total

duration of exposure to conversations at eateries is not significantly different from the

other locations . As with variance in duration, we do not(𝑡 72( ) ≤ 2. 13,  𝑝 > 0. 8)

observe gender differences in total duration spent around conversations

at eateries. We don’t see any interactions of the(𝑡(61) = 0. 47,  𝑝 = 0. 64)

duration-variance in unique conversations with perceived stress PSS-14 scores;(

, or with the performance-subscale scores ofβ = 0. 012,  𝑡 66( ) = 1. 017,  𝑝 = 0. 313)

the state self esteem inventory SSE-Per subscale scores;(

, to explain average LIFG-dMPFC functionalβ = 0. 013,  𝑡 66( ) = 0. 992,  𝑝 = 0. 32)

connectivity. The total duration around conversations also do not show interactions with

perceived stress or the performance-scores of(β = 0. 019,  𝑡 66( ) = 1. 494,  𝑝 = 0. 14)

self esteem scale , to predict the average(β = 0. 0085,  𝑡 66( ) = 0. 715,  𝑝 = 0. 477)

LIFG-dorsomedial subsystem RSFC. Moreover, correlations between the RSFC and

average duration does not seem to be significantly different from variance

or total duration , and(𝑡(71) = 1. 188,  𝑝 = 0. 88) (𝑡(73) = 0. 289,  𝑝 = 0. 61)

neither do the latter two correlations seem significantly different from one-another

.(𝑡(69) = 0. 183,  𝑝 = 0. 57)

These results suggest that conversations occurring over meals (at eateries) may be

important to brain function in regions associated with social cognition and language

comprehension. Since the variance, total, and average statistics show significant

correlations, there may be a more general feature that the LIFG may track. As with

previous results observed for conversations across-locations, we don’t see interactions

between mental states of depression, anxiety, stress, or self-esteem. The present results

suggest that the LIFG-dMPFC subsystem RSFC may indicate not only everyday

real-world conversations, but those that occur around socially salient situations.

>
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Discussion

From behavioural studies (Holt-Lunstad, Robles, & Sbarra, 2017; Dunbar, 2018;

Templeton et al., 2022) to those involving neuroimaging (Dikker et al., 2017; Burns &

Lieberman, 2020), recent social scientific research aims to understand the brain and

behavioural bases of real-world social interactions. Our method of combining passive

mobile sensing to track everyday behaviour with neuroimaging using BOLD-fMRI

provides an avenue to study the brain activities that may reflect these behaviours. Earlier

work with mobile-sensing applications have implicated brain activity associated with

frequent phone-access (or screen-time; Huckins et al., 2019a-2019b) and studies using

the StudentLife app have also shown that elements of social interactions may show

dependency on one’s state of mental health (daSilva et al., 2021). Adding to this

literature, we showed that one can utilise mobile sensing measures to link a person’s

conversation behaviour to their brain function. Specifically, we observe that the resting

state functional connectivity of Left IFG, a region implicated in language (Turken &

Dronkers, 2011; Uddén & Bahlmann, 2012; Klaus & Hartwigsen, 2019) and social

processes (Mori & Haruno, 2022; Kim et al., 2023), within the social-cognitive

processing region of the dorsomedial (dMPFC) subsystem of DMN (Saxe & Kanwisher,

2003; Behrens et al., 2008; Collier & Meyer, 2020; Sippel et al., 2021) can predict an

individual’s close exposure to conversations.

We began by examining the behaviour of an individual across a period of 8

weeks. Our observations suggested that the functional connectivity of Left IFG within the

dMPFC subsystem may relate to the average duration an individual is around

conversations, a behavioural metric that describes how long that individual was exposed

to conversations in their close vicinity. One possible implication for this relationship may

hint at the quality of conversations occurring around the participants. Studies on

loneliness often express that these subjective feelings of isolation may occur due either to

the lack of quantity or quality in the social interactions (Perlman & Peplau, 1981; Baek &

Parkinson, 2022). That is to say, individuals indulging in shorter conversations may also

report feeling lonelier. However, to answer questions pertaining to loneliness and
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real-world interactions will require further work focussed on feelings of isolation, quality

of such conversations, and individual differences observed in brain function.

We also observed that self-reported mental health scores described the brain

function with marginal level of significance. Past studies have reported that individuals’

mental state may control the conversations of that individual in the near future (daSilva et

al., 2021), however, we do not see an effect of the participants’ self-reported mental

health (stress, depression, or self-esteem) to explain the relationship between brain

function and our conversation variable. This inconsistency between the literature and our

results may be attributed to the fact that past work linked daily mental health (i.e., stress

levels) to daily conversation behaviour, whereas the present results look at mental health

at a single time point (the day of the scan). Future work that densely samples resting state

functional connectivity may be better suited to identify links between brain function,

mental health, and conversation. Then again, interactions are not all the same. Literature

has shown that certain types of interactions (Dunbar, 2018; Jolly & Chang, 2021) and

conversations occurring in places of high social importance (Dunbar, Marriott, &

Duncan, 1997; Dunbar, 2017) may further social connections. So, we looked at the

subjects’ conversation behaviours across various locations to find that the same brain

function – connectivity of Left IFG within the dorsomedial subsystem – is related to

social interactions occurring at eateries. Consistent with the results mentioned earlier, we

find that an individual’s brain function is related to the average duration they spend

around conversations. We also find that this brain function is related to the variance in

conversation durations at eateries across the 8-week period, such that higher resting state

functional connectivity of L-IFG within the dMPFC subsystem may be linked to more

varied conversations an individual may indulge in. Literature in social sciences often

discusses patterns of interaction during ‘social eating’ (Giddens, 1982; Delormier,

Frohlich, & Potvin, 2009; Dunbar, 2017). Given that conversations over meals are

generally socially transactive, informative, or support-seeking (Delormier, Frohlich, &

Potvin, 2009; Dunbar, 2017), one can argue that such interactions tend to be more

reflective of an individual’s gain and exchange of meaningful social knowledge, leading

to variance in one’s behaviour over time. Perhaps, this variable (variance in duration of

conversations) may additionally reflect a personality variable of ‘brokerage’ in their
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social networks (Burt, Kilduff, & Tasselli, 2013; Parkinson, Kleinbaum, & Wheatley,

2017). That is, an individual may choose to partake in different lengths of conversations

when having meals with different, otherwise unconnected groups (or social

sub-networks). Like the previous result, further research is required to understand the

individual differences in variance and a deeper investigation into the social networks of

individuals indulging in such ‘social eating.’

The third relation we find is that a sum of all the time spent around conversations

at eateries is related to the functional connectivity of Left IFG within the dorsomedial

subsystem of DMN, but not the total number of unique conversations. One possibility for

not observing a significant relationship between the number of conversations and the

brain function may be due to the inconsistency between what the mobile application

defines as a ‘unique conversation’ and what an individual may classify as a conversation.

For example, perhaps humans would not subjectively count a brief exchange as a

meaningful conversation. Alternatively, the time spent around conversations may be more

meaningful in qualifying an interaction as a conversation than merely exposure to unique

conversations. Perhaps, the brain prefers tracking unique points of information rather

than conversation in general. Much like literature linked to episodic memories (Johnson

et al., 1988; Spaniol et al., 2009; Baldassano, Hasson, & Norman, 2018), recordings of

conversations in such scenarios may be useful to determine if event-boundaries are more

reflective of the brain function (Marsh, Richardson, & Schmidt, 2009; Sievers et al.,

2020). Combining these findings, one may posit that the functional connectivity of Left

IFG within the dorsomedial subsystem of the default mode might track a more complex

variable of conversation occurring in socially impactful environments and that these

conversations may be reflected in our everyday interactions happening elsewhere.

Limitations

Although we show that one can use mobile-sensing combined with BOLD-fMRI

to study real-world conversations, limits are imposed in the data that one may collect. In

our case, this limitation was observed in the absence of textual data or vocal transcripts

that may have been helpful in studying active-participation in conversations, participation
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ratio, turn-taking, topics of conversation, dominance, and possibly, the social network

information related to each interaction. We were also limited in neuroimaging with only

the resting state scans available to study. With our methods, we were able to explore the

importance of Left IFG as a hub within the dorsomedial subsystem of the default network

using linear models. Even though we found significant relationships of the region with

conversation variables, we were not able to establish a clear uniqueness of this

association to L-IFG among other regions of the dorsomedial subsystem. Another

methodical limitation might show that the brain function is non-linearly related to

behaviour, a theory that may be explored in future studies.

Conclusion

Conversations are a complex and important medium of social interaction. This

multifaceted behaviour may be reflected in different and multiple parts of the brain. We

have shown that the functional connectivity of Left IFG within the dorsomedial

subsystem of the default network may be related to our everyday conversations.

Moreover, the same region might specifically track social interactions happening over

meals. From the literature, we posit that such interactions are socially important

(Delormier, Frohlich, & Potvin, 2009; Dunbar, 2017). Moreover, our method of

combining resting state fMRI with passively sensed real-world conversations support

studies that explore brain-basis of our everyday behaviours (Huckins et al., 2019a-2019b;

daSilva et al., 2021). We end with a discussion on the topics of enquiry that may further

the understanding of brain-behaviour relationship of our real-world social interactions

and thus, open more avenues of research.

>>
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Appendix A

Table A1: Statistics of all the variables mentioned in the thesis: This table lists the variables

used under the ‘Feature’ column. ‘Avg. Conversation’ is the average duration of conversations

over a span of 8 weeks and is recorded in the unit of minutes (min), ‘Conversation Var.’ is

variance in unique conversation durations over the same time and is recorded in the unit of

minutes-squared (min2), ‘Number of Conversation’ is a count of unique conversations (the value

is unitless), and ‘Sum of Conversations’ is the total duration of conversations over the period

(minutes; min). The four rest-state functional connectivity (‘RSFC’) variables are BOLD-derived

network features. The statistics for each feature are presented under ‘mean’, standard deviation

(‘std’), 1-sample 2-tailed t-score (‘t’), the degree of freedom (‘df’), and the p-value (‘p’).2

Feature mean std t df p

Avg. Conversation across all locations (min) 9.59 4.017 21.628 81 2.13 ×10–35

Avg. Conversation at Athletic Facilities (min) 10.686 18.563 4.533 61 2.77 ×10–05

Avg. Conversation at Classrooms (min) 7.386 3.46 19.095 79 2.47 ×10–31

Avg. Conversation at Culture and Arts (min) 9.525 7.544 10.335 66 1.97 ×10–15

Avg. Conversation at Eateries (min) 11.574 5.223 19.821 79 2.14 ×10–32

Avg. Conversation at Greek Housing (min) 16.022 16.098 8.207 67 1.02 ×10–11

Avg. Conversation at Libraries (min) 6.908 3.611 16.786 76 2.79 ×10–27

Avg. Conversation at Marketplace (min) 12.361 11.34 8.23 56 3.24 ×10–11

Avg. Conversation at Student Housing (min) 9.4 9.459 8.833 78 2.28 ×10–13

Conversation Var. across all locations (min2) 319.302 546.408 5.292 81 1.01 ×10–06

Conversation Var. at Athletic Facilities (min2) 120.528 209.943 4.52 61 2.90 ×10–05

Conversation Var. at Classrooms (min2) 123.080 173.138 6.358 79 1.22 ×10–08

Conversation Var. at Culture and Arts (min2) 166.965 282.193 4.843 66 8.07 ×10–06

Conversation Var. at Eateries (min2) 193.065 163.814 10.541 79 9.98 ×10–17

Conversation Var. at Greek Housing (min2) 237.359 320.395 6.109 67 5.73 ×10–08

Conversation Var. at Libraries (min2) 118.498 231.735 4.487 76 2.52 ×10–05

Conversation Var. at Marketplace (min2) 255.314 673.245 2.863 56 0.0059

Conversation Var. at Student Housing (min2) 475.534 1701.237 2.484 78 0.0151

Number of Conversations across all locations 498.939 251.616 17.956 81 5.67 ×10–30

2 Also see: Table 03, “Statistics of the data and features used.”
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Feature mean std t df p

Number of Conversations at Athletic Facilities 18.613 25.967 5.644 61 4.59 ×10–07

Number of Conversations at Classrooms 66.063 75.027 7.876 79 1.52 ×10–11

Number of Conversations at Culture and Arts 16.731 18.593 7.366 66 3.61 ×10–10

Number of Conversations at Eateries 66.225 40.476 14.634 79 3.34 ×10–24

Number of Conversations at Greek Housing 15.074 17.537 7.088 67 1.06 ×10–09

Number of Conversations at Libraries 40.831 41.111 8.715 76 4.69 ×10–13

Number of Conversations at Marketplace 7.439 8.588 6.54 56 1.99 ×10–08

Number of Conversations at Student Housing 82.443 74.942 9.778 78 3.38 ×10–15

Sum of Conversations across all locations (min) 5218.492 3893.787 12.136 81 6.52 ×10–20

Sum of Conversations at Athletic Facilities

(min) 203.363 359.341 4.456 61 3.63 ×10–05

Sum of Conversations at Classrooms (min) 594.791 810.366 6.565 79 5.01 ×10–09

Sum of Conversations at Culture and Arts (min) 173.839 210.195 6.77 66 4.15 ×10–09

Sum of Conversations at Eateries (min) 789.864 624.863 11.306 79 3.49 ×10–18

Sum of Conversations at Greek Housing (min) 207.063 261.078 6.54 67 9.99 ×10–09

Sum of Conversations at Libraries (min) 334.536 383.299 7.659 76 4.94 ×10–11

Sum of Conversations at Marketplace (min) 86.313 102.893 6.333 56 4.34 ×10–08

Sum of Conversations at Student Housing (min) 1008.791 1863.221 4.812 78 7.16 ×10–06

GAD-7 3.988 3.202 11.485 84 6.65 ×10–19

Janis-Field Score 111.976 25.004 41.289 84 1.45 ×10–57

PHQ-8 5.235 4.067 11.868 84 1.19 ×10–19

PSS-14 31.729 7.681 38.089 84 9.04 ×10–55

SSE Total 56.0 7.064 73.085 84 8.23 ×10–78

SSE Appearance 17.8 2.444 67.157 84 8.91 ×10–75

SSE Performance 19.765 2.308 78.966 84 1.35 ×10–80

SSE Social 18.435 6.288 27.032 84 3.31 ×10–43

LIFG-Core subsystem RSFC 0.125 0.145 8.053 86 4.14 ×10–12

LIFG-MTL subsystem RSFC –0.121 0.131 –8.624 86 2.86 ×10–13

LIFG-dMPFC subsystem RSFC 0.456 0.11 38.684 86 3.61 ×10–56

LIFG-DMN RSFC 0.181 0.102 16.541 86 1.88 ×10–28

>>
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Appendix B

The following figures are supplemental to the main material of the thesis. Only the

locations with a larger sample size (n>40) are included in all the results. A complete list

of such locations is provided in the Tracking Location subsection of the Data and

Methods section in the thesis3.

Figure B1: Correlations between L-IFG resting state functional connectivity within the

dorsomedial subsystem and behavioural features for conversations at various locations: The

following plots presented below show the correlations between the average Left IFG-dorsomedial

subsystem functional connectivity on the Y-axis and the behavioural features for conversations

occurring at locations belonging to (a) athletic facilities, (b) classroom buildings, (c) cultural and

art venues, (d) eateries4, (e) greek housing, (f) student housing, (g) libraries, and (h) marketplace

on their respective X-axes. The behaviours reported in the figure include: (i) total time spent

around conversations (measured in min; blue), (ii) HMM-sensed total number of conversations

(unitless; orange), (iii) average time spent around a given conversation (measured in min; green),

and (iv) variance in time spent around unique conversations (measured in min2; red).

4 The plots (d-i to d-iv; conversation behaviours tracked at Eateries) are also presented as Figure
03, “Correlations between LIFG-dMPFC subsystem fc and behavioural features for
conversations at eateries” in the Results section of the thesis.

3 See: Table 02, “Spatial clustering of tracked locations.”
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