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Abstract

Fixed-wing unmanned aerial vehicles (UAVs) are commonly used for remote sensing
applications over water bodies, such as monitoring water quality or tracking harmful
algal blooms. However, there are some types of measurements that are difficult to
accurately obtain from the air. In existing work, water samples have been collected
in situ either by hand, with an unmanned surface vehicle (USV), or with a vertical
takeoff and landing (VTOL) UAV such as a multirotor. We propose a path planner,
landing control algorithm, and energy estimator that will allow a low-cost and energy
efficient fixed-wing UAV to carry out a combined remote sensing and direct water
sampling mission without requiring sophisticated sensors and using limited onboard
computation. Finally, we demonstrate a fully autonomous mission on a modified off-
the-shelf RC aircraft. The aircraft flies a survey pattern, lands at a series of sampling
points and then returns to the starting location while respecting the available energy
budget. In our experiments, we completed multiple sampling missions in the real
world with no aborted landings or crashes and an overall energy estimation error of
approximately 5%.
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Chapter 1

Introduction

In this thesis, we aim to develop and test an energy-aware path planner to allow
a fixed-wing unmanned aerial vehicle (UAV) to conduct a fully autonomous water
sampling mission. UAVs are commonly used for remote sensing. Remote sensing
cameras carried by UAVs can quickly provide coverage of large areas. UAVs provide
both higher spatial and temporal resolution than satellites, while also having far lower
costs and increased flexibility compared to manned aircraft. In particular, UAV based
remote sensing has been applied to monitor harmful algal blooms (HABs) and track
water quality [1], [2]. However, some information can only be obtained through direct
sampling of the water. Traditionally, water samples have been made by hand, and
more recently unmanned surface vehicles have been applied to the task, such as in
[3]. Others have started to use UAVs for water sampling as well, but most existing
work uses vertical-takeoff and landing (VTOL) UAVs such as multirotors [4], [5].
VTOL aircraft are easy to deploy and control because they do not require large areas
to takeoff and land and can follow arbitrary three-dimensional paths. This flexibility
comes at the expense of efficiency. A VTOL aircraft requires more power than a fixed-
wing aircraft to carry the same payload, resulting in a shorter range. For example,
the DJI Mavic 3 quadcopter has a maximum flight time of 46 minutes with the
built-in camera payload, while the AgEagle (senseFly) eBee X fixed-wing UAV has
a maximum flight time of 90 minutes with a mapping camera payload. In addition,
fixed-wing aircraft are mechanically simpler and less expensive. This lower efficiency
can be partially mitigated by using a helicopter or a hybrid fixed-wing/multirotor
design, commonly known as a quadplane, but both types of aircraft are complex and
expensive.

Pure fixed-wing aircraft are mechanically simple, fast, efficient and low-cost. A
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CHAPTER 1. INTRODUCTION

Figure 1.1: Image of our experimental aircraft in flight during a snowstorm.
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CHAPTER 1. INTRODUCTION

wide variety of designs are produced commercially as remote control (RC) aircraft,
and these can be adapted into UAVs with low-cost hardware and open source soft-
ware. On the other hand, the flight dynamics of fixed-wing UAVs place constraints on
the paths they can follow and increase the pilot skill required to operate them. Our
approach solves these problems by providing a framework to enable fully autonomous
remote sensing and direct sampling missions with a single vehicle. We propose an
asymptotically optimal PRM* based path planner that generates energy efficient
paths while respecting fixed-wing dynamics constraints in the presence of static ob-
stacles. Additionally, we develop a reliable landing control technique that does not
require an airspeed sensor or altitude rangefinder. We converted an off-the-shelf RC
floatplane to a water landing UAV (see Figure 1.1), successfully demonstrated online
planning, and executed a series of fully autonomous takeoffs, flights and landings on
a lake to simulate a water sampling mission. Our work lays the foundation for more
capable and lower cost environmental monitoring tools. A high level schematic of our
work is shown in Figure 1.2.
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Chapter 2

Related Work

Other researchers have applied various types of UAVs for both remote sensing and
direct sampling of water bodies. A traditional approach for remote sensing is to use
a fixed-wing aircraft equipped with a camera as is done in [6]. [1] and [2] review
seven applications of fixed-wing aircraft specifically to remote sensing of harmful
algal blooms. Most of these use flying wing style airframes equipped with RGB
and near-infared cameras. Two use more exotic sensors: a hyperspectral camera
and a spectroradiometer. VTOL aircraft have also been used for remote sensing. A
quadcopter equipped with a multispectral camera is described in [7], while [1] and
[2] additionally review several papers that rely on different types of multirotors and
helicopters for remote sampling. [8] applies a less common type of aircraft, a tethered
balloon. [2] discusses the tradeoffs between different kinds of aircraft for remote
sensing, noting that fixed-wing aircraft have longer flight times than multirotors or
helicopters but are more difficult to operate because they normally need large open
areas adjacent to the water body for takeoff and landing. Our work aims to overcome
the limitations of fixed-wing aircraft through increased autonomy.

For water sampling tasks, existing work primarily uses VTOL capable rotorcraft.
A common approach is to dangle a water collection device from the bottom of the
aircraft and collect data while hovering. Both [4] and [5] use a hexacopter in this
manner, while [9] uses a helicopter. As in our work, one alternative is to land on the
water while collecting samples [10]. Rather than a water collection device, [11] uses
a dangling sensor array deployed from a hexacopter while hovering to measure water
temperatures at different depths.

Outside of work designed specifically for HAB monitoring, a wide range of designs
for amphibious UAVs have been proposed. Many models of flying-boat or floatplane
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CHAPTER 2. RELATED WORK

RC aircraft are commercially available and can be adapted as UAVs. A few aircraft,
such as the AeroMapper Talon (used in [12]) and SELab Hamadori [13], are designed
as amphibious UAVs; however, the AeroMapper Talon can land on water but cannot
take off again. Our work targets these traditional style aircraft; however, others have
proposed novel aircraft designs for aquatic environments. [14], [15] and [16] propose
designs for fixed-wing aircraft that can operate underwater as well as in the air. These
vehicles land by splashing down into the water and accelerate underwater while tak-
ing off. This requires a high thrust to weight ratio and a robust structure, which
limits payload capacity but reduces the need for precise control. [17] develops a sub-
mersible quadcopter that uses its flight motors for propulsion and control underwater
in addition to a variable buoyancy system. Some add flotation to traditional VTOL
aircraft designs to allow water landings, as was done in [10]. Another such design is a
hexacopter with a foam frame/propeller guard to allow it to float [18]. This aircraft
is partially submerged while landed, requiring full waterproofing of its electronics.
[19] uses a unique design of a tilt-rotor fixed-wing/multirotor hybrid that includes
flotation in the tilting motor frame to achieve flotation. [20] and [21] describe designs
for a multirotor aircraft attached to a hovercraft to allow landing and maneuvering
on the water surface.

Some researchers have developed floatplane or flying boat style fixed-wing UAVs.
[22] describes the “Flying Fish,” a custom built solar powered floatplane designed
to drift on the ocean and make short flights to reposition itself. This aircraft was
designed to withstand ocean waves, but this increased its weight and limited its flight
time. The authors discuss the numerous issues they faced with fouling of airspeed
sensors. They added pitot heaters and a redundant pitot tube, while also developing
an algorithm to reject measurements from fouled or faulty sensors [23]. The authors
also implement a landing control technique that relies on an ultrasonic rangefinder
to trigger the flare at the correct altitude above the water surface. [24] describes a
twin-hull flying boat, with the added unique capability of folding the wings to act
as sails. This allows efficient propulsion on the water surface. Autonomous takeoff
and landing are implemented using the standard functions provided by the PX4 flight
controller firmware. [25] describes another twin-hull flying boat, with a simple landing
controller that maintains a constant airspeed until touchdown by controlling pitch.
Lastly, [26] describes a conceptual design for a solar powered flying boat, which is
designed to fly during the day and drift on the water surface at night. Most of these
projects rely on an airspeed sensors, and in particular the issues faced by the “Flying
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CHAPTER 2. RELATED WORK

Fish” project motivated us to avoid this requirement in our work.
A wide variety of planning algorithms have been developed for fixed-wing UAVs

and other types of aircraft. [27] describes a A* based path planner that uses an
energy metric based on a simplified aircraft physics model, neglecting wind and energy
consumed during turns. Additionally, this planner does not incorporate takeoffs or
landings. Another energy aware planner was developed for the “Flying Fish” aircraft
[28]. This planner supports multiple goals and generates Dubins paths between each
pair of goals. The planner solves a traveling salesman problem (TSP) to choose
an ordering of goals. The planner considers finite height cylindrical obstacles. If the
Dubins path between a pair of goals collides with an obstacle, this path is not included
in the TSP graph. Solving the TSP is complicated by the presence of negative costs
due to energy recovery with solar panels. The energy model is based on a second-
order polynomial mapping from throttle to power. Average throttle values measured
during different flight segments are used to estimate the average power during each
segment, and the segment durations were estimated by calculating the groundspeed
in the presence of wind. This energy model is similar to ours but does not incorporate
a dynamics model or support spatially varying wind fields. [29] proposes a multi-goal
planner to solve an orienteering problem with a fixed-wing aircraft. The planner
attempts to maximize the reward obtained from visiting goals while subject to a
limited travel budget. A Dubins path is generated between each goal. The Dubins
path may also incorporate a climb or descent, subject to climb angle limits. If these
limits are exceeded, spiral turns are added to allow time for the aircraft to climb or
descend. [30] develops an RRT based planner for an autonomous helicopter. Paths
generated by the planner are then smoothed with a cubic Bezier spline.

Other researchers have developed energy models for UAVs, independent of a path
planner. [31] describes an energy model for a quadcopter, derived from energy mea-
surements under a variety of controlled conditions. These measurements were used
to fit polynomial models that describe energy usage under various flight states, such
as takeoff, flying horizontally, flying vertically or hovering. [32] proposes an energy
model for a fixed-wing aircraft based on a Fourier series regression. Such a regression
is periodic, so this model is only applicable to missions with repetitive segments, or
phases with fixed lengths such as takeoff or landing. The model cannot be used to
predict the energy of a new mission under arbitrary wind conditions, as required in
our application. Lastly, [33] develops an instantaneous power model derived from
the physical dynamics of a fixed-wing aircraft. Predicting the power with this model
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CHAPTER 2. RELATED WORK

requires full knowledge of the current aircraft state as well as detailed characteriza-
tion of the aircraft’s aerodynamic parameters. This characterization requires a wind
tunnel, while our model can be tuned using flight data only.
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Chapter 3

Overview

We consider a fixed-wing UAV that can takeoff, land and fly in a 3D environment,
while constrained by aircraft dynamics, wind conditions and an energy budget. The
environment may contain known static obstacles, which could be extracted from satel-
lite imagery. Our proposed system executes a mission split into two phases: (1) the
survey phase, during which the sampling points are identified, and (2) the sampling
phase, which starts when the predicted energy required to visit the sampling points
equals the remaining energy in the battery, minus a safety margin. This work fo-
cuses on the sampling phase. We assume that a survey coverage pattern is given
and there exists a way to detect sampling points during the survey phase. Given the
sampling points, the current wind conditions and a map of obstacles as inputs, our
algorithm generates a path to land at each of the sampling points while minimizing
the total energy consumed. This approach serves to demonstrate how each of our
proposed techniques can work together, but the individual components could serve
as the building blocks of other types of missions for specific applications.

We performed experiments to validate each component both in simulation and
using a small, fixed-wing UAV. The UAV uses an embedded Linux computer to run
the planner and mission controller, while a flight controller running the open source
ArduPilot firmware [34] performs real-time control, including executing the landing
algorithm.

The following chapters describe in greater detail the path planner, landing con-
trol algorithm, energy estimator and demonstration mission controller. For ease of
reference, Table 3.1 includes symbols that are used throughout the thesis.

8



CHAPTER 3. OVERVIEW

Table 3.1: Nomenclature.

atakeoff = average acceleration during the beginning of takeoff
E = energy
hin = unfiltered target altitude
h0 = first altitude filter output
hout = final filtered target altitude
hflare = landing flare altitude
htakeoff = takeoff target altitude
kroll = roll to throttle gain
P = power
Pflare = average power during landing flare
Ptakeoff = average power during takeoff
r = turn radius
t = time
T = throttle
Tcruise = throttle to maintain cruise airspeed in level flight
Tmax = maximum throttle
Tmin = minimum throttle
va = airspeed
va,app = airspeed during landing approach
va,cruise = cruise airspeed in level flight
va,max = airspeed at maximum descent rate
va,takeoff = airspeed during takeoff
vc = climb rate
vc,max = maximum demanded climb rate
vc,min = minimum demanded climb rate (negative)
vc,flare = climb rate during landing flare (negative)
vc,takeoff = average climb rate during takeoff
vg = groundspeed
vg,3d = groundspeed including vertical component
wx, wy = wind vector
x, y = position in local coordinates
γ = pitch angle
γ0 = pitch angle to maintain level flight at cruise

9



CHAPTER 3. OVERVIEW

γmax = maximum demanded pitch angle
γmin = minimum demanded pitch angle (negative)
ϕ = roll angle
θ = heading angle

10



Chapter 4

Path Planning

We develop an asymptotically optimal probabilistic roadmap (PRM*) [35] based path
planner to allow the aircraft to navigate in the presence of static obstacles. The plan-
ner generates energy optimal paths using the energy estimator as a cost function.
The planner roadmap is constructed at the beginning of the flight (and could be
generated offline if necessary) and is used to answer many planning queries over the
course of the survey and landings. Obstacles are represented as 2D polygons with
an optional associated minimum altitude constraint. The aircraft altitude must be
above the specified minimum altitude while inside the obstacle boundary polygon.
Obstacles may also be inverted, which means the minimum altitude constraint must
be satisfied while the aircraft is outside the boundary polygon. If no minimum al-
titude is specified, the obstacle is assumed to be infinitely tall. There must exist at
least one inverted obstacle with no minimum altitude, which defines the outer bound-
ary of the navigation area. If there are multiple such obstacles, the intersection of
their boundary polygons defines the navigation area. The rectangular bounding box
of the navigation area defines the horizontal position sampling domain for the path
planner. Where there are no defined obstacles, the ground is assumed to be flat and
located at zero altitude relative to the aircraft’s starting position. This assumption
normally holds while operating over a water body. In our implementation, obsta-
cles are represented using the GeoJSON format [36]. Each obstacle is represented by
a polygon feature contained in a top-level feature collection. Each obstacle feature
has properties to specify the minimum altitude and whether it is inverted. In Geo-
JSON format, obstacle polygon vertices are specified in WGS84 latitude/longitude
coordinates, but planning is done in a local tangent plane coordinate frame using a
spherical Earth approximation. Given a WGS84 coordinate (λ, ϕ) and origin coordi-
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CHAPTER 4. PATH PLANNING

nate (λ0, ϕ0), the local easting coordinate x and northing coordinate y are given by
Equations 4.1 and 4.2, respectively. A spherical approximation is used rather than
the more accurate ellipsoidal approximation in order to match the flight controller’s
internal local coordinate calculations.

x = kλ cosλ(ϕ− ϕ0) (4.1)
y = kλ(λ− λ0) (4.2)

where

kλ =
6378100m · π

180 deg
(4.3)

Plans are constructed from a set of motion primitives, each of which corresponds
to a type of waypoint supported by the flight controller. The motion primitives are
takeoff, landing, transit, and turn. Transits are straight line segments corresponding
to simple waypoints placed at the end of the transit leg. The start and end of a transit
may be at different altitudes, subject to limits on the maximum climb or sink rate of
the aircraft. Turn primitives are modeled as constant altitude, constant radius turns
and are implemented as circular loiters, where the planner guarantees that the end
of the previous transit and the start of the next transit are both tangent to the loiter
circle. The flight controller is configured to exit the loiter along the tangent when the
aircraft is pointing toward the next waypoint.

In most circumstances, all planned paths start from either a midair loiter or a
takeoff and consist of an alternating sequence of transits and turns, followed by a
landing. By using loiter turns to transition between each segment of the mission, we
can precisely predict the path of the aircraft and be confident that it will not collide
with obstacles. The aircraft may deviate slightly from the predicted path due to
external disturbances and the transient behavior of the aircraft as it transitions from
straight to turning flight and vice versa, but these effects tend to be small in practice.
If the mission were to consist only of straight transit segments with no loiter turns in
between, the behavior of the aircraft while turning would be highly dependent on the
tuning of the flight controller control loops and would be difficult to model. On the
other hand, when using loiters as constant radius turns, we cannot guarantee that the
flight controller will trigger the aircraft to immediately exit the loiter upon reaching

12



CHAPTER 4. PATH PLANNING

Figure 4.1: Example path containing two elided sharp turns followed by a normal
rounded turn. Because elided turns do not use loiter commands, their turn circles
are allowed to intersect obstacles. Normal rounded loiter turns must have the entire
turn circle in free space.

the target heading. There are certain cases where external disturbances can cause the
aircraft to complete a full loiter circle before exiting; therefore, for safety, we must
guarantee that the entire loiter circle is free of obstacles, even when we expect to only
traverse a small portion of it. This restriction makes it difficult or impossible to plan
paths in free areas smaller than the loiter circle diameter. To avoid this problem, a
smooth turn is not required if the change in heading between two transits is less than
a configurable threshold. This enables the planner to navigate around tight spaces
and narrow corridors.

Planning occurs in a four-dimensional space – Cartesian x and y position, altitude
and heading. However, PRM milestones are not directly sampled from this space.
Instead, loiter turn centers are sampled from the 3D position space, along with a turn
direction (i.e., clockwise or counterclockwise). Samples are chosen from within the
rectangular bounding box of the map, between user defined minimum and maximum
altitudes. If any portion of the disk bounded by the turn circle does not collide
with an obstacle, the turn is added to the roadmap. When a loiter turn is used,
the entire turn circle must not collide with an obstacle, as described previously. On
the other hand, small loiter turns may be elided and represented by two consecutive
transits. In this case, only a small portion of the elided turn must not collide with
an obstacle. Figure 4.1 provides an example of a path containing two elided turns.
When the turn is initially sampled, it does not have any start or end heading defined;
therefore, it is opportunistically added to the roadmap if there is any possibility of

13
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✗
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Figure 4.2: Examples of sampled turn circle milestones. The blue filled polygons
represent obstacles. Turns in red would be rejected, while those in green would be
accepted and added to the roadmap. Note how a turn is accepted if any portion is in
free space.

a non-colliding pair of start and end headings. In other words, turn milestones are
added if any portion of the disk bounded by the turn circle lies in free space. Collision
checking is performed on the disk rather than the turn circle itself because it is far less
computationally expensive. This optimization only makes the planner slightly more
conservative by not allowing turns around obstacles that are fully contained within
the turn circle. Figure 4.2 provides examples of each case.

It is most difficult to find paths within areas that are filled with closely spaced
obstacles. Therefore, the planner uses the bridge test to increase sampling density
within these regions [37]. A configurable portion of the milestones are sampled with
the bridge test, rather than the normal sampling described previously. To sample a
milestone using the bridge test, first a pair of locations is sampled from the obstacle
space. If the midpoint between the pair of locations does not collide with an obstacle,
a turn milestone is added such that a point on the turn circle is tangent to the
midpoint. In this manner the line between the two colliding points creates a “bridge”
between obstacles. The tangent line is placed perpendicular to the line between the
two colliding points, and the turn direction is chosen at random. Two examples of
turns sampled with the bridge test are shown in Figure 4.3.

Each sampled turn is then connected to nearby milestones in the roadmap. Con-
nections are attempted to the k-nearest neighbor milestones, where k is a function of
the number of milestones n given in Equation 4.4. The derivation of this equation is

14



CHAPTER 4. PATH PLANNING

Figure 4.3: Example turn circles sampled with the bridge test. The blue polygons
represent obstacles, and a dashed line is drawn between the two sampled colliding
points that form the bridge.

given in [35].

k = 2e log n (4.4)

The planner attempts to create a connection to and from each of the nearest
neighbor milestones. Each connection results in a directed edge in the graph from
the source milestone to the target milestone. The edge has a cost which equals the
energy required by the turn around the source milestone plus the energy required by
the transit from the source to the target milestone. The source turn energy depends
on the incoming heading, which depends on the edge used to arrive at the source
milestone. This makes the edge costs path dependent, which is not permissible when
searching the roadmap for the lowest cost path using A*. Therefore, an extra step is
needed while connecting turn milestones to remove this path dependence. Each time
an incoming edge is added to a milestone, a sub-milestone of the new edge’s target
milestone is created that corresponds to the incoming heading for the transit from
the source turn to the target turn. An edge is created between the source parent
node and the new target sub-milestone. Additionally, all outgoing edges connecting
the target parent milestone to other sub-milestones are replicated on the new target
sub-milestone. A* search is performed over the sub-milestones only, eliminating the
path dependence. Figure 4.4 illustrates how sub-milestones are connected.
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(a) Small subset of milestones from a PRM roadmap, along with the connections between
them, shown in the workspace.
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(b) Schematic representation of the milestones and connections from Figure 4.4a, showing
the sub-milestones that are created to avoid path dependent costs. Only the solid edges are
included in the A* search; the others are only used when determining how to connect new
milestones to the roadmap.

Figure 4.4: Diagram illustrating how sub-milestones are used to resolve path-
dependent costs during A* search.
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CHAPTER 4. PATH PLANNING

A connection between milestones is only made if the transit does not collide with
obstacles. If any part of the milestone turn circle collides with an obstacle, connections
between sub-milestones are only created if the net heading change through the turn
is small enough to allow the loiter turn to be elided. Cost calculations and feasibility
checks that depend on the wind are not performed until a planning query is made, as
the wind conditions may change over the course of the flight.

The planner supports several types of start and goal conditions, each of which is
represented in the roadmap by a corresponding type of milestone. Plans may start
from a certain state (3D position and heading) in midair, from a loiter circle or from a
takeoff state. The supported goals are a 3D position (without a heading constraint),
a loiter circle or a landing location. The most commonly used start conditions are a
loiter circle or a takeoff from the ground. A loiter provides a stable condition that the
aircraft can hold while planning, which allows it to smoothly transition into executing
the plan. Internally, both the start and goal loiter conditions are represented similarly
to a turn milestone, except that they do not require any complex logic to handle turn
elision. No part of the loiter circle is ever allowed to collide with an obstacle. Takeoff
milestones are always connected to exactly two turn milestones, both tangent to the
end state of the takeoff, but with opposite turn directions. This allows the planner to
choose the best direction to turn after taking off. Landings use a similar approach,
except there are a range of possible landing headings. The heading range is primarily
determined by the wind, while obstacles may additionally make certain headings
infeasible. The heading bounds are set by maximum crosswind and tailwind limits
based on the aircraft’s capabilities. The landing headings are constrained such that
the wind component perpendicular to the direction of flight at each heading does
not exceed the crosswind limit and the wind component in the direction of flight
does not exceed the tailwind limit. If the wind speed is less than both the crosswind
and tailwind limits, all headings are allowed. Landing with a tailwind is generally
undesirable, but it is useful to allow a small tailwind to improve planning results
when the wind speed is too small to obtain a reliable wind direction estimate. The
combination of the crosswind and tailwind constraints may result in up to three non-
contiguous ranges of allowable headings. Examples of landing heading ranges under
different wind conditions are shown in Figure 4.5. Headings within this range are
sampled using a base-2 van der Corput low discrepancy sequence. A minimum of 16
samples are taken to allow a reasonable range of possible headings in the case where
there are no nearby obstacles. Sampling continues until at least 5 feasible landing

17



CHAPTER 4. PATH PLANNING

0°
45°

90°

135°
180°

225°

270°

315°

Wind: 3.0 m/s
 Max crosswind: 2.0 m/s

 Max tailwind: 0.0 m/s

0°
45°

90°

135°
180°

225°

270°

315°

Wind: 1.8 m/s
 Max crosswind: 2.0 m/s

 Max tailwind: 0.5 m/s

0°
45°

90°

135°
180°

225°

270°

315°

Wind: 2.1 m/s
 Max crosswind: 2.0 m/s

 Max tailwind: 1.0 m/s

Landing Headings

Figure 4.5: Ranges of allowable landing headings under different wind conditions.

headings are found, or the limit of 512 sampling attempts is reached. This adaptive
approach allows the planner to use a small discrete step size to find landings around
dense obstacles, while not making the A* search slow by adding too many landing
options in open areas. Each of the feasible landings is connected to a pair of turn
milestones in opposite directions tangent to the start of the landing, allowing the
planner to choose both the best landing heading and incoming turn direction.

A* search is used to find the optimal path through the roadmap. The A* heuristic
is the energy required to make a straight transit from the source to the target node.
Given the complexity of the power model, it is difficult to prove that this heuristic will
be admissible in all cases, but it produces reasonable results in practice. As discussed
previously, only sub-milestones of turn milestones are included in the search to avoid
path dependent costs. The planner incorporates a wind model, which predicts the
wind vector at each point in space. The energy cost calculation depends on the wind,
and the wind model is also used to ensure the maximum climb or sink rate is not
violated. The aircraft climb/sink rate limits with respect to time (i.e., in units of
meters/second) do not depend on the wind, but the feasible climb slope (i.e., meters
climbed per meter of horizontal distance) is wind dependent. For example, a climb
between two points that is feasible with no wind may become infeasible with a tailwind
because the time required to cover the horizontal distance decreases. Additionally,
the aircraft cannot reach its maximum climb/sink rate instantaneously, which further
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CHAPTER 4. PATH PLANNING

limits the average climb or descent altitude, particularly for short transits. The target
climb rate is filtered and limited by the flight controller, and the planner models these
factors to determine the maximum achievable altitude change between two points.
The details of this modeling are described in the energy estimation chapter.

The cost calculation is the most expensive part of the search, so several techniques
are used to reduce the number of cost calculations that must be performed. First,
all costs are cached, allowing multiple queries under the same wind conditions to
be answered efficiently. Secondly, the outgoing transit costs for each milestone are
calculated separately and reused for each of the sub-milestones. Each sub-milestone
corresponds to a particular turn start heading, and therefore each has a different turn
cost. However, each sub-milestone is likely to share many of the same outgoing neigh-
bors, and all sub-milestones will use the same transit to reach a particular neighbor.
Therefore, the transit cost only needs to be calculated once per neighbor and then
added to the sub-milestone specific turn cost to get the cost for a particular edge.

After the A* star search completes, the initial path is further refined using a
shortcutting optimizer. This optimizer repeatedly picks a pair of turns in the path
and attempts to generate a direct transit between them. If this transit is feasible and
reduces the overall cost of the mission, it replaces the existing segments connecting
the two turns. This process is repeated 100 times or until there are no more segments
that could possibly be removed. The 100 iteration limit was chosen empirically to
significantly exceed the maximum number of useful iterations observed during the
experiments.
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Chapter 5

Landing Control

The most complex part of fixed-wing flight is landing. Our approach is designed to
work using only the IMU and inaccurate barometric altimeter included in standard
flight controllers. Compared to other approaches, it minimizes the number of sensors
required for landing and achieves safe and controlled landings with minimal tuning.
Landing begins with a steep descent at a fixed slope angle until the aircraft reaches
the flare altitude (usually 4-6 meters above the ground). During flare, the aircraft
pitches up to hold its nose a few degrees above level and begins to use throttle alone
to maintain a constant sink rate. This combination of constant pitch and sink rate
should produce a constant airspeed. The desired pitch and sink rate must be chosen
to ensure the resultant airspeed stays above the stall airspeed. This landing profile is
illustrated in Figure 5.1.

This technique differs from other common auto-landing algorithms, such as the
one normally implemented in the ArduPilot flight control software. With ArduPilot,
the motor is stopped during flare, and pitch is used to control airspeed via feedback
from an airspeed sensor. Additionally, there is a minimum pitch limit to keep the
aircraft from impacting the nose wheel into the ground or diving the front of the
floats underwater. With the nose high and the motor off, the aircraft will eventually
run out of kinetic energy and stall, so touchdown must occur quickly. In practice,
this means the aircraft would require a rangefinder to trigger the flare at precisely the
right distance above the ground. This approach requires two extra sensors over our
method: an airspeed sensor and a rangefinder. Airspeed sensors are problematic when
operating on water, as the most common type uses differential pressure measurements
from a pitot tube, which can easily be fouled by water [38]. In addition, it is difficult
to find a low-cost rangefinder that works reliably over water. A sensor with adequate
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CHAPTER 5. LANDING CONTROL
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Figure 5.1: Plot of the aircraft’s altitude during landing approach and flare. The
aircraft’s attitude is also shown at various points along the landing.

performance would make up a large percentage of the overall cost of the system.
Our approach avoids both of these sensor requirements. We control airspeed

indirectly, using pitch and sink rate, which are easy to measure without specialized
sensors. By keeping the motor on, we can continue the flare indefinitely, allowing us
to trigger flare at a higher altitude to prevent premature collision with the ground
even when using a somewhat inaccurate altitude measurement from a barometric
altimeter.
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Chapter 6

Energy Estimation

The path planner requires a mission energy estimate to generate energy optimal paths.
Additionally, the mission manager requires an energy estimate to ensure the aircraft
will be able to visit all landing locations while respecting the energy budget. Dur-
ing normal flight (transits and turn segments), we estimate energy by numerically
integrating an estimate of the instantaneous power consumption over the planned
trajectory. For takeoff and landing flare, we assume a fixed average power consump-
tion. This is multiplied with the time estimate for the segment to obtain the total
energy.

Section 6.1
Power Model

A power model for fixed-wing aircraft can be derived from physical laws, as is done
in [33]. The final model of steady state power derived in that paper is as follows:

P =
dE

dt
= Kp

v3a
η

+Ki
cos2 γ

ηva cos2 ϕ
+mg

va sin γ

η
(6.1)

where Kp and Ki are constants that depend on the aircraft’s aerodynamic properties,
η is the combined motor and propeller efficiency, va is the current airspeed, m is
the aircraft mass, g is the gravitational acceleration, γ is the climb angle (equal to
the pitch angle in steady state flight), and ϕ is the roll angle. There are several
difficulties involved in applying this model directly to a planning problem. First, it
contains several unknowns that are difficult to determine without extensive aircraft
characterization. η depends heavily on both airspeed and motor speed, and likely can
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6.1. POWER MODEL CHAPTER 6. ENERGY ESTIMATION

only be accurately modeled using data collected on a thrust stand in a wind tunnel.
With an efficiency model, it may be possible to determine Kp and Ki from flight data.
However, even if all this information was known, the airspeed is still difficult to predict
while planning. Without an airspeed sensor, the flight controller can only perform
open loop control of airspeed. Pitch is controlled to maintain the desired climb rate,
and throttle is set using a piecewise linear function of pitch. This generally maintains
a safe airspeed, but it is difficult to accurately predict the airspeed that will result
from a particular climb rate. Additionally, the electrical power is not linear with
respect to throttle due to varying efficiency and airspeed.

Given the difficulty in applying the previously described power model to the plan-
ning problem, we chose to develop a simpler model derived from experimental data
and the control laws used by the flight controller. In the absence of disturbances, the
target pitch of the aircraft is set as a function of the climb rate, and the throttle is
in turn a function of the target pitch and roll. We then map throttle to power using
a fourth-order polynomial model fit to experimental data.

The mapping from climb rate to pitch is described by the piecewise linear rela-
tionship given in Equation 6.2. In addition to a feed-forward term from climb rate
to pitch, the flight controller includes proportional and integral feedback terms to
correct for altitude error. The proportional term should be close to zero on average,
while the integral term should settle on a steady state pitch required to maintain
constant altitude. With proper configuration of the aircraft cruise attitude, the inte-
gral term should remain at zero, but in practice it effectively applies a small constant
pitch offset, represented by γ0.

γ = γ0 +

 vc
vc,max

(γmax − γ0) vc ≥ 0

vc
vc,min

(γmin − γ0) vc < 0
(6.2)

Equation 6.3 describes the relationship between pitch (γ), roll (ϕ) and throttle
(T ). This consists of a piecewise linear relationship between pitch and throttle and a
term that applies additional throttle to compensate for induced drag in turns. The
induced drag term gain depends on a flight controller parameter, which we refer to
as kroll. When calculating the energy required for a transit, the roll is assumed to
be zero, and therefore the induced drag term is also zero. Assuming roll and pitch
are known accurately, this equation will exactly reproduce the throttle that will be
applied by the flight controller.
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Figure 6.1: Data-driven energy model.

T = Tcruise + kroll
1

cosϕ− 1
+


γ

γmax
(Tmax − Tcruise) γ ≥ 0

γ
γmin

(Tmin − Tcruise) γ < 0
(6.3)

After pitch has been determined from climb rate and throttle from pitch, we
map throttle to power using a fourth-order polynomial fit to power data derived
from voltage and current measurements on board the aircraft. This fit uses robust
regression with a Huber loss function. Figure 6.1a shows the experimental data
and polynomial model. The polynomial order was selected by minimizing the mean
squared error (MSE) using k-fold cross-validation with k=10 to avoid overfitting.
Figure 6.1b shows the cross-validation MSE for different polynomial orders. This
relationship should be largely independent of battery state of charge because the
flight controller automatically scales the throttle output to compensate for changing
battery voltage.

Section 6.2
Altitude Model

Combining these equations allows instantaneous power to be determined from the
instantaneous climb rate. The target climb rate then depends on the flight controller’s
altitude controller. The target altitude is filtered using a pair of first-order low pass

24



6.2. ALTITUDE MODEL CHAPTER 6. ENERGY ESTIMATION

filters. The climb rate limit is applied between the first and second filter and the final
target climb rate used to compute the target pitch is computed from the differences
in filtered target altitude between two time steps. We assume the target climb rate
is met exactly, as it is difficult to account for disturbances when performing energy
estimation. For small altitude changes (less than 15 meters by default), a step change
in target altitude hin is applied to the low-pass filters. For larger altitude changes,
hin is interpolated between the start and end altitudes as the aircraft travels between
waypoints. This effectively applies a ramp input to the low-pass filter, resulting in
a phase delay equal to the filter time constant. These filters are modeled by the
system of ordinary differential equations (ODEs) given in Equations 6.4 and 6.5. h0

represents the output of the first filter, and hout is the final output target altitude,
the time derivative of which is the climb rate vc. τ1 and τ2 are the time constants of
the first and second filters, respectively.

dh0

dt
= clamp

(
h0 − hin

τ1
, vc,min, vc,max

)
(6.4)

vc =
dhout

dt
=

hout − h0

τ2
(6.5)

The phase delay in the altitude controller causes the aircraft to consistently arrive
below or above the waypoint at the end of each climb or descent, respectively. If
not compensated for, this would result in an error in the start altitude of the next
mission segment, making the subsequent predicted path inaccurate. To compensate
for the phase lag, the planner always includes another waypoint at the target altitude
placed a certain distance before the end position of the transit. This produces a
section of flat target altitude that gives the aircraft controller time to level out and
asymptotically approach the target altitude. The length of this level out segment is
chosen to guarantee that the aircraft will arrive at the end of the transit with less
than 2 meters of altitude error. The minimum level out distance required to satisfy
this constraint cannot be determined except through iterative optimization, which
would be unacceptably slow in this application. Therefore, a heuristic is used to
over-estimate the minimum level out distance. If the heuristic produces a distance
longer than the total length of the transit, the aircraft is commanded to climb or
descend as fast as possible. If this results in a final altitude more than two meters
from the target altitude, the transit is rejected as infeasible. This approach guarantees
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safety, but often results in transits that are steeper than required, potentially reducing
efficiency.

Figure 6.2 shows several transit altitude and climb rate profiles produced by the
altitude controller model under different conditions. These include a level out segment
where applicable.

Lastly, groundspeed is needed to convert time derivatives such as power and climb
rate into distance derivatives. Groundspeed refers to the horizontal speed of the
aircraft relative to the ground. It is a function of airspeed, climb rate and wind. As
discussed previously, airspeed is difficult to estimate, but for groundspeed calculations
we use a piecewise linear function of the climb rate:

va ≈

va,cruise vc ≥ 0

va,cruise +
vc

vc,min
(va,cruise − va,max) vc < 0

(6.6)

For positive climb rates, the function is flat, and the airspeed remains at the level
cruise speed va,cruise. For negative climb rates, the airspeed increases linearly until
it reaches a maximum value va,max at the minimum climb rate (i.e., maximum sink
rate) vc,min.

Given an estimate of airspeed, wind and climb rate, the ground speed (vg) is
computed according to Equation 6.9. If the radicand becomes negative, this indicates
that the wind conditions make it impossible to maintain the desired course.

w =
[
wx wy

]
(6.7)

d =
[
dx dy

]
=

[
cos θ sin θ

]
(6.8)

vg = d ·w +
√

2wxwydxdy − w2
xd

2
y − w2

yd
2
x − v2c + v2a (6.9)

With these relationships defined, we can integrate a system of ODEs to determine
the power over the length of the transit segment to determine total energy. Our im-
plementation uses the Dormand–Prince method [39], a popular technique for solving
ODEs.
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(a) Gradual climb and descent such that the target slope remains below the maximum
achievable climb rate. The actual altitude lags behind the target altitude by a fixed amount.
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(b) Fast climb and descent such that the target altitude slope exceeds the maximum achiev-
able climb rate. The actual altitude diverges from the target altitude, requiring a longer
flat region to allow the altitude to catch up.
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(c) For altitude changes below 15 meters, the flight controller does not calculate a slope.
Instead, the target altitude is changed abruptly, and the aircraft climbs or descends as fast
as it can.

Figure 6.2: Plots of transit climb/descent side profiles. Except for the small alti-
tude change transits in (c), all transits consist of one waypoint that establishes the
climb/descent slope, and one waypoint that establishes a flat target altitude segment
to allow the aircraft to level out and approach the final desired altitude. The blue
target altitude lines represent the input to the vertical rate filter (hin), while the or-
ange lines represent the output of the filter (hout). The green shaded areas represent
the polygons that are checked for collisions.
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dh0

dx
=

dh0

dt

dt

dx
=

dh0

dt

1

vg
(6.10)

dhout

dx
=

dhout

dt

dt

dx
=

vc
vg

(6.11)

dE

dx
=

dE

dt

dt

dx
=

P

vg
(6.12)

For turns, a similar approach is used, except that the differential equations are in
terms of heading and the roll angle used when estimating throttle in Equation 6.3 is
no longer zero. The roll angle is given in Equation 6.13, where r is the turn radius
and g is the gravitational acceleration.

ϕ =
v2g
rg

(6.13)

dh0

dθ
=

dh0

dt

dt

dθ
=

dh0

dt

r

vg
(6.14)

dhout

dθ
=

dhout

dt

dt

dθ
=

rvc
vg

(6.15)

dE

dθ
=

dE

dt

dt

dθ
=

rP

vg
(6.16)

The aircraft applies approximately constant throttle during takeoff, so the average
power is nearly the same in all takeoffs. We then need to estimate the time required for
takeoff. We model takeoff as a period of constant acceleration until the aircraft reaches
the takeoff airspeed, followed by a period of constant climb rate until the takeoff end
altitude is reached. Under this model, the takeoff time is given in Equation 6.18

va,start = −wx cos θ − wy sin θ (6.17)

ttakeoff = max

(
va,takeoff − va,start

atakeoff
, 0

)
+

htakeoff

vc,takeoff
(6.18)

As discussed in the path planning chapter, the planner uses a takeoff command to
climb only half the desired takeoff altitude, while a transit segment is used to climb
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the second half. The model described above is only used for the takeoff command;
the transit is modeled in the standard manner.

Landing consists of two phases, approach and flare. Approach is similar to a
transit, except the altitude controller compensates for the phase delay caused by the
low pass filters. We therefore assume the aircraft exactly follows the line between the
start of the approach and the start of the flare. To determine the climb rate, we first
calculate the aircraft speed along this line (the “3D” groundspeed vg,3d that includes
the vertical component) using Equation 6.22. The climb rate can then be calculated
by extracting the vertical component of this groundspeed (Equation 6.23).

w =
[
wx wy 0

]
(6.19)

d =
[
x1 − x0, y1 − y0, h1 − h0

]
(6.20)

d̂ =
[
dx dy dh

]
=

d

|d|
(6.21)

vg,3d = d̂ ·w +
√

(v2a,app − w2
y)d

2
x + (v2a,app − w2

x)d
2
y + (v2a,app − w2

x − w2
y)d

2
h + 2wxwydxdy

(6.22)

vc = clamp (dhvg,3d, vc,min, vc,max) (6.23)

The approach energy can be calculated by integrating Equation 6.24 over the 3D
length of the approach segment.

dE

dx
=

dE

dt

dt

dx
=

P

vg,3d
(6.24)

Finally, we calculate the flare energy by multiplying the average power during
flare by the flare time, in Equation 6.25.

E =
Pflarehflare

−vc,flare
(6.25)
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Chapter 7

Wind Estimation

Wind plays a large role in both planning and energy estimation for fixed-wing air-
craft. Wind affects takeoff and landing trajectories and is included in the time and
energy estimation equations described in the previous chapter. It is possible to esti-
mate the wind vector during flight using a zero sideslip assumption. This approach
is implemented in ArduPilot and provides an instantaneous wind estimate at each
point during the flight. During planning, one approach is to assume a constant wind
field that matches the latest wind estimate, but this assumption does not usually hold
under real wind conditions. In particular, the wind speed tends to increase with alti-
tude, and an aircraft that spends most of its time at high altitudes will overestimate
the wind at ground level, leading to an inaccurate landing.

Our planner supports arbitrary spatial wind models, where the wind vector can
vary continuously over 3D space. The wind model does not allow for changes in wind
as a function of time, but this restriction could be easily removed. This means that the
model itself currently does not include time as a variable, not that the model cannot
change over time (between different planning queries). In practice, we use a linear
model of wind speed versus altitude. The linear model is fit to instantaneous wind
speed and altitude measurements collected during flight using recursive least squares
estimation, while the wind direction is assumed to match the latest measurement.
More complex models may be the subject of future work.
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Chapter 8

Water Sampling Mission

While there are multiple possible applications of our work, to demonstrate our pro-
posed planner, landing approach, and energy estimator, we consider a water sampling
mission. Our demonstration water sampling mission is orchestrated by a mission man-
ager component. This component receives input from the user, runs the path planner,
and communicates the results to the flight controller. The sampling mission consists
of two phases: a survey phase and a sampling phase. During the survey phase, the
aircraft flies a survey pattern while using remote sensing to locate points of interest
for direct sampling. The aircraft then visits each of these sampling points during the
sampling phase, before finally returning home.

Section 8.1
Survey Phase

The user plans a mission for the survey phase using standard tools such as ArduPilot
Mission Planner or QGroundControl. This mission normally contains a takeoff, a
lawnmower pattern survey that covers the area of interest, a landing, and finally a
marker item to indicate the mission should trigger a sampling mission. If the marker
item is missing, the mission manager will ignore the mission. This avoids unintentional
activation of the sampling mission logic.

Once the user uploads the mission, the mission manager post-processes the mission
and extracts information from it. The manager also looks for a landing command
and saves the landing location from this command to use as the return position for
the final landing of the sampling phase. Lastly, the manager optimizes the mission to
round all sharp corners. Rounding is important because the aircraft has aggressive
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navigation tuning to allow it to follow auto-generated missions during the sampling
phase with low cross-track error, thereby improving energy estimates and collision
detection accuracy. With this aggressive tuning, sharp corners in missions would
cause large attitude changes that are normally undesirable.

After validating and processing the mission, the mission manager waits for the
user to arm the vehicle and switch to the auto flight mode, which causes the flight
controller to start executing the survey mission. As the survey runs, we assume
that the aircraft uses remote sensing to search for sampling targets, which are then
provided to the mission manager. For this demonstration, we simulate detection of a
predetermined set of points. We simulate a camera with a circular field of view. Any
sampling point that falls within the circular projection of the camera’s cone of vision
is added to the list to visit. The simulated camera image plane is always parallel to
the water surface; effects of aircraft attitude are not modeled.

While executing the survey phase, the manager periodically uses the path planner
to generate plans for the complete sampling phase, starting from the current location,
landing at all sampling points and finally landing at the home location extracted from
the survey mission.

Section 8.2
Sampling Phase

The order in which the sampling points are visited is determined by solving an asym-
metric traveling salesman problem (TSP). The planner is used to calculate the mini-
mum energy cost to travel between each pair of sampling points, as well as the cost
to travel from the start location to each sampling point, and from each sampling
point to the home location. These costs are arranged into a matrix and the TSP
solver provided by Google OR-Tools [40] is used to find the lowest energy ordering of
sampling points.

In our scenario, we want to ensure that all discovered sampling points can be
visited in a single flight without recharging the battery. The energy estimate for the
sampling plan is used to determine the turn-around point where the mission manager
should exit the survey phase and begin the sampling phase. As the aircraft flies
and discovers more sampling points, the energy remaining in the battery decreases
and the energy required to visit all the sampling points increases. Once these two
values are equal (with a safety margin), the sampling phase begins. For this to work
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correctly, the energy estimate must accurately model the energy consumption of the
aircraft. If the estimate were solely used as a cost function for the path planner, it
would only need to be accurate up to a scale factor to allow it to be used to compare
candidate paths. The requirement for absolute accuracy means that the energy model
parameters must be characterized for a specific model of aircraft. This is one of the
simplest sampling approaches that serves primarily to demonstrate and validate the
path planner and energy estimator.

Once the aircraft reaches the turnaround point, it executes the first planned land-
ing. After landing, the aircraft uses sensors to collect information from the water at
that location. After sampling is complete, the aircraft prepares to take-off to visit
the next sampling point. Rather than continuing to execute the previous plan, the
manager generates a new plan, with the takeoff heading matching the aircraft’s cur-
rent heading. The original plan calculated the takeoff heading to point into the wind,
according to its estimate of the wind, which may have some error and may not reflect
changing conditions. Once on the ground, the aircraft acts like a weathervane, provid-
ing an estimate of the current wind direction. In addition, forcing the takeoff heading
to match the current heading avoids any need to attempt to rotate the aircraft. The
aircraft then begins to travel toward the next sampling point and repeats the process
until the final landing location (from the original survey mission) is reached.

The mission manager is designed to fail safe in case of an error and to avoid ever
taking control away from a human pilot that is attempting to override its control. If
an error occurs while the vehicle is armed, the manager will send no more commands
to the flight controller and will remain in a fail-safe state until the vehicle is disarmed,
at which point it will restart. Inaction by the mission manager should never result
in an aircraft safety issue, even if the human pilot does not immediately take over. If
an error occurs while the vehicle is disarmed, the manager delays before restarting,
to avoid getting stuck in a fast restart loop. If the human pilot changes flight modes
while the manager is in control, the manager goes into an idle state. This avoids the
possibility of the manager fighting with the human pilot for control of the aircraft. As
soon as the flight mode returns to what the manager expects, it resumes the mission
from the last saved state transition. For example, if the survey phase is interrupted,
returning to auto mode will simply continue the survey from where it left off. If a
landing mission is interrupted, resuming will cause a new mission to be planned from
the current position and automatically executed.

In addition to the primary sampling mission workflow, the mission manager sup-
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ports planning and executing one-off missions. The user provides an outline of the
mission, potentially including waypoints, loiters, and a landing location. After the
user uploads the outline, the planner generates a full mission that takes into ac-
count wind conditions and obstacles. This mode is useful for demonstrating planner
performance in difficult landing scenarios, particularly on land.
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Experiments

Our approach is designed to work with a wide range of aircraft, using only stan-
dard sensors found on off-the-shelf flight controllers. We ran our experiments on a
low-cost platform based on the E-Flite Twin Otter model airplane with a Matek H743-
WING V2 flight controller running the open source ArduPilot firmware. This flight
controller fuses measurements from a 9-axis inertial measurement unit (IMU), baro-
metric altimeter and GPS and executes the attitude and navigation control loops.
A Raspberry Pi 4 Model B with 2 GiB of RAM was included onboard to run the
planning algorithm, communicating with the flight controller using the MAVLink
protocol over UART. The total cost of all components was approximately US$600.
This aircraft can be seen in Figure 1.1. The path planner and energy estimator were
implemented in Rust. The Twin Otter worked well for this application because it
supports both wheeled landing gear and floats for operation on land and water. Ad-
ditionally, its dual motors allow differential thrust to improve maneuverability on the
water. A flying boat style airframe with a buoyant hull rather than floats would have
yielded greater efficiency due to reduced drag, but floats offered greater flexibility
while testing.

We ran experiments to test the planner by itself and demonstrate the full sampling
mission. We tested the planner on land in different environments, including an open
field and a former golf course (see Figure 10.1). The golf course contained rows of trees
with areas of flat grass in between. The trees were all less than 40 meters tall, and
the gaps between rows of trees were 30-40 meters in most places. This environment
provided plenty of obstacles, while still having room to allow the aircraft to takeoff and
land. We completed many successful flights in the golf course and other environments
while refining the planner.
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We ran the sampling mission on three days in Herrick Cove on Lake Sunapee in
New London, NH. The first and third days had relatively low wind speeds, while the
second day had relatively high wind. We executed a lawnmower pattern survey at
an altitude of 70 meters that covered the entire cove and a small portion of the main
body of the lake. Simulated sampling points were scattered inside and just outside
the cove. At 70 meters altitude, the wind on the first day was from the northeast with
speeds between 2-4 m/s. The second day had wind from the northwest between 6-9
m/s, while the third day had wind from the west-northwest with speeds between 3-5
m/s. On the third day, the air was nearly calm at ground level. The same survey was
run five times across the three days, although log data was partially lost on one run
due to water ingress, and the final run was aborted part way through the sampling
phase due to sunset.

In simulation, we compared the behavior of our planner using our proposed energy
cost function against a configuration that used a traditional distance cost function.
The distance cost function was computed as the sum of the arc lengths of each turn
and the 3D straight line distances between the start and end point of each transit.
The exact trajectory of the aircraft as determined by the vertical dynamics model
was not used in the transit distance calculation. We looked at a realistic scenario on
Lake Sunapee where the aircraft takes off from one location and lands at another,
with a peninsula serving as an obstacle in between these locations. The aircraft has
the option of flying over the peninsula or around it. We generated a large number of
plans with different random number generator seeds to account for the probabilistic
variation in paths due to different sets of sampled milestones.
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Results

We completed ten autonomous takeoffs and landings on the same day in the golf
course. The planner and aircraft performed well in all cases and never collided with
obstacles despite the limited open space in the environment. In one case, the aircraft
flipped over on landing because the landing point was mistakenly placed in an area
of tall grass. An example path flown in the golf course can be seen in Figure 10.1.

During the lake experiments, all landings (24 in total) were completed successfully
with no aborts. The energy-aware TSP chose a landing order that was clearly different
from what would have been chosen by a simple TSP based on the distance between
sampling points. The TSP chose to visit the points in several passes. The distance
between most of the points is smaller than the distance required to takeoff and land

Aircraft	Path
Start	Point
Goal	Point

Figure 10.1: Aircraft path during a flight between two points in the golf course.
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again, so it is more efficient to do multiple passes to avoid having to repeatedly
backtrack after each takeoff. This effect can be observed in the ordering of the
sampling points in Figures 10.2b and 10.3b. In all but one case, the aircraft reached
the energy budget turnaround point before the entire survey was completed. In the
final run, decreasing wind speeds allowed the aircraft to complete the entire survey
before hitting the energy threshold.

On the day with the highest wind speeds, the aircraft tended to undershoot the
landing. The average measured groundspeed was lower than the predicted ground-
speed, indicating the wind speed was higher than predicted by the wind model. Ad-
ditionally, wind shear in the last few meters above the water caused the airspeed
to drop, increasing the sink rate. The landing flare controller responded slowly to
this disturbance, causing the aircraft to touch down early at a higher sink rate than
expected. These issues could be mitigated by an improved wind speed model and
more robust control of sink rate in the face of disturbances. The high wind speed
also prevented the aircraft from completing enough of the survey to detect all the
sampling points. The third day had lower wind speeds, and in this case the aircraft
tended to overshoot the landing. This appeared to be attributable primarily to wind
estimation and barometer altitude error.

We compared the predicted and actual energy consumption during the experi-
ments. The overall prediction error across all experiments was -5%. The full break-
down of error by command type is shown in Table 10.1. This table shows both the
overall energy error for each command type as well as the error weighted by the frac-
tion of total energy consumed by the command type. This latter metric shows how
much each command type contributes to the overall error.

The results of our simulated comparison between plans generated using the energy
cost function versus the distance cost function varied depending on the chosen wind
conditions. If a constant wind field is simulated, with no wind speed dependence on
altitude, there is little difference between the plans generated when using each cost
function. In this case, optimizing for energy reduces the predicted energy consumption
by only approximately 0.4%. With either cost function, the aircraft usually takes the
straight route and flies over the obstacle. The aircraft incurs a small energy and
distance penalty while climbing to the height required to clear the obstacle, but this
is still less than the cost required to take the indirect route around the obstacle.

As discussed earlier, assuming constant wind does not provide a good model of
real conditions. If we include a positive linear dependence of wind speed on altitude,
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Aircraft	Path
Start	Point
Sampling	Points

(a) Aircraft path during the survey phase. The aircraft flies a square path at low altitude
to improve the wind estimate before starting the lawnmower pattern. The high wind speed
slowed the aircraft and prevented the survey from progressing far enough to detect the last
sampling point.

Aircraft	Path
Home	Point
Sampling	Points
Undetected	Sampling	Point

(b) Aircraft path during the sampling phase. The sampling points are numbered in the
order they were visited. The aircraft tended to slightly undershoot the target landing point
because the linear wind model underestimated the wind speed near the ground and wind
shear caused a higher than desired sink rate.

Figure 10.2: Results of a water sampling mission on Lake Sunapee. The wind speed
was 6-9 m/s at 70 meters altitude during this run, which is considered relatively high
for our aircraft.
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Aircraft	Path
Start	Point
Sampling	Points

(a) Aircraft path during the survey phase. The aircraft flies a square path at low altitude
to improve the wind estimate before starting the lawnmower pattern.

Aircraft	Path
Home	Point
Sampling	Points

(b) Aircraft path during the sampling phase. The sampling points are numbered in the
order they were visited. The aircraft tended to slightly overshoot the target landing point
because the linear wind model overestimated the wind speed near the ground.

Figure 10.3: Results of a water sampling mission on Lake Sunapee. The wind speed
was 3-5 m/s at 70 meters altitude during this run, with little wind at ground level.
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Command Energy Error Weighted Energy Error
Waypoint -6.2% ±15.6% -2.3%
Waypoint (excluding takeoff) -2.7% ±10.9% -0.8%
Loiter 15.3% ±45.2% 4.1%
Loiter (excluding start) 0.3% ±19.9% 0.1%
Takeoff -11.6% ±10.8% -2.3%
Landing -18.3% ±15.1% -2.3%
All -4.9% ±31.0%

Table 10.1: Energy estimator error for each type of mission command during the lake
experiments. The energy error column gives the estimation error as a fraction of the
total energy consumption for the corresponding command type. The energy error
uncertainty is given as the standard deviation weighted by the energy consumed by
each command sample. The weighted energy error column gives the estimation error
as a fraction of the total energy consumed by all commands.

Energy	Optimized	Path
Distance	Optimized	Path
Takeoff	Point
Landing	Point

Figure 10.4: Example paths generated in the Lake Sunapee peninsula environment
using the energy and distance cost functions. In this scenario, the wind speed increases
with altitude. The energy optimized path goes around the peninsula so it can remain
at low altitude.
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the results change dramatically. If the landing point is upwind of the takeoff point,
climbing to a higher altitude incurs a large energy penalty because the aircraft must
fight the increased wind. Therefore, flying over an obstacle requires much more energy
than remaining at a lower altitude and flying around the obstacle, even though going
over the obstacle results in a shorter travel distance. In this simulated scenario, the
planner finds paths that use 17% less energy on average when optimizing for energy
rather than distance. Example results from this scenario are shown in Figure 10.4.
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Discussion

The experiments showed that our proposed approach allows successful execution of
water sampling missions. Here we discuss the main insights we gained through this
research and how they will guide our future work.

To operate in confined environments such as the golf course, we overcame several
challenges. The first was ensuring that the PRM roadmap had adequate sampling
density to allow solutions to be found reliably. During takeoff and landing the aircraft
must climb or descend, respectively, near its maximum limit to clear the trees. This
requires milestones to be found along the takeoff/landing path at a small range of
altitudes. Too low, and the path will not clear obstacles; too high, and the path is not
feasible. This problem motivated incorporating the bridge test, which causes more
milestones to be sampled in narrow passages, thereby increasing the probability of
choosing milestones with the appropriate altitudes. The bridge test largely solved the
problem, but sometimes the start and end points needed to be adjusted to successfully
generate a plan. In some cases, there may have been no feasible path even if the
planner was perfect, but it is difficult to distinguish this scenario from inadequate
milestone density or connectivity. The planner generally performed better with a
headwind, as this increases the maximum climb/descent slope.

The second issue involved yaw control during takeoff. The flight controller does not
perform closed loop yaw control during the first phase of takeoff, so the aircraft tends
to turn during takeoff. These turns appeared to be primarily caused by crosswinds,
as well as a mechanical bias that caused the aircraft to tend to turn to the left during
takeoff. We were unable to conclusively identify the cause of this bias, and it was not
detectable at higher airspeeds during normal flight. This behavior can be observed
in Figure 10.3b and results in the curving paths seen in some of the takeoffs. On the
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open environment of the lake, the lack of yaw control was harmless, but it was more
problematic in the golf course where it caused the aircraft to fly closer to obstacles
than desired during some of the flights.

We found that the aircraft exhibited less weathervaning behavior than expected.
Waves appeared to have more impact on the aircraft heading than wind and tended
to turn the aircraft broadside to the waves, placing it perpendicular to the wind.
Under the wind conditions during the experiments, this tended to point the aircraft
toward land, sometimes preventing the aircraft from having enough room to takeoff
again. In these cases, we had to use the radio control transmitter to manually ro-
tate the aircraft to a more favorable heading using differential thrust before resuming
the autonomous mission. We experimented with autonomous heading control using
differential thrust, but the non-linear interaction between the aircraft and the water
makes control difficult, and more work would be required to get satisfactory perfor-
mance. In fact, it is even challenging to control the aircraft heading with manual
control.

Lastly, we ran into difficulty getting the aircraft to precisely land at the desired
location. This was primarily caused by inaccurate wind estimates near the ground.
The wind speed tends to decrease quickly near the ground, increasing the ground
speed and the flare distance. Landing precision would likely be improved by alterna-
tive wind models. Additionally, we had issues with barometer altitude measurements.
The air flow around the aircraft during flight appeared to cause the measured altitude
to be approximately one meter lower than reality. The aircraft travels at approxi-
mately 10 m/s during flare with a sink rate of 0.5 m/s, so each meter of altitude error
contributes to 20 meters of landing point error. We partially mitigated this issue by
including a configurable offset in the planner’s predicted flare altitude. Fully solving
this problem would require a more accurate source of altitude information, such as
a rangefinder. The planner currently assumes the ground is perfectly flat and that
landing touchdown will occur at zero altitude relative to the aircraft’s home posi-
tion. This assumption was violated slightly in the golf course, as there was a small
altitude difference between some of the takeoff and landing locations chosen for our
experiments. This contributed to landing undershoot or overshoot, depending on if
the landing point was above or below the takeoff point.

Examining the energy estimation results (Table 10.1) shows that energy estima-
tion error varies between mission segment types. Landings have the largest relative
error magnitude. This comes primarily from underestimation of the required flare
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time, due to factors discussed previously. Takeoff error comes primarily from errors
in determining the takeoff power (Ptakeoff) parameter. In earlier flights that were used
to characterize the model, the average takeoff power was lower than during the lake
tests. The average waypoint error was biased by waypoint commands that were exe-
cuted immediately after takeoff. As discussed previously, takeoffs had poor heading
control, so the next waypoint command often resulted in a large course correction,
increasing estimation error. Excluding these takeoff waypoints greatly reduces the
energy estimation error. Loiter commands have a similar bias due to missions that
start with a loiter in midair. In these cases, the initial aircraft heading is unknown, so
the energy cannot be estimated accurately. We always assume a full circle turn was
executed, which tends to result in an overestimate. If these initial loiter commands
are excluded, the average error decreases by two orders of magnitude. In reality, the
overestimation for initial loiters is not as large as it appears because the aircraft will
usually have spent some time in loiter mode while planning before starting the auto
mission, but this time is not included in the data.

Planning multiple landings in a water sampling mission requires multiple planning
queries under the same wind conditions. This motivated the use of the multi-query
PRM* planner, but this choice ultimately presented several unexpected challenges,
particularly in achieving adequate performance to enable onboard planning. The
difficulty in implementing an efficient PRM* planner stems from the fact that the
wind estimate may change over the course of the flight. This limits how much can be
computed while building the roadmap. Cost estimates, trajectory feasibility checks
(i.e., checking climb rate limits) and even collision detection depend on the wind.
In the case of collision detection, an initial permissive wind-independent collision
check can be done when building the roadmap, which prevents most infeasible edges
from being added. On the other hand, cost calculations and trajectory feasibility
checks have to be entirely deferred to query time. This does not entirely eliminate
the benefit of a multi-query planner, because generating the water sampling mission
requires running several planning queries under the same wind conditions. Therefore,
trajectory feasibility and costs can be cached between these queries.

Additionally, our approach is slow to detect that a planning solution cannot be
found. Since we do not know for certain which edges are feasible while building the
roadmap, we cannot keep track of the connected components of the graph. Therefore,
the only way to know that the start and goal are disconnected is to perform an
exhaustive search. In practice, connectivity gaps most often occur within a few steps
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of the start or the goal. The search begins from the start, so gaps near the start
are found quickly, while discovering gaps near the goal requires searching nearly the
entire graph.

Our linear wind model is designed to roughly account for the commonly observed
positive correlation between altitude and wind speed. Least squares estimation of
the linear function is the simplest way to capture this relationship, but there are
likely other approaches that would result in better prediction performance. In our
experiments, accurate wind modeling is hampered by low quality data provided by the
flight controller’s side-slip based wind estimator. In particular, the wind estimate is
only updated when the aircraft is in a certain range of attitudes. Therefore, the wind
estimate is often outdated and does not immediately account for changing conditions
as the aircraft climbs or descends. Internally, the flight controller uses an extended
Kalman filter to generate the wind estimate, which should provide an uncertainty
metric, but this is not currently available externally. If uncertainty information were
available, it could be used to weight the inputs to the wind model, or to reject samples
with too high uncertainty.

We use a simple recursive least squares estimator to determine our wind model,
and this approach means that each new wind measurement has less and less impact on
the model coefficients. This causes two problems; first, the model is unable to respond
to changing wind conditions. This may become more important if the aircraft flies
longer missions. This limitation could be overcome by using a forgetting technique to
allow the least squares estimator to follow changes in parameters. The aircraft will
spend long periods at constant altitude, so any forgetting solution must not simply
consider the age of the measurements, but also whether old measurements are obsolete
and can be adequately replaced with new measurements.

In the future, we may explore alternative wind models described in existing cli-
matology literature. Of particular note is the log wind profile, which is a standard
model of wind speed in the atmospheric surface layer under certain conditions. This
model predicts the wind speed as a function of the natural logarithm of altitude [41,
p. 56].

During the mission, the planner runs periodically to check whether the energy
required to visit all sampling points indicates that the aircraft needs to end the
survey phase and start the landings. This requires computing the full cost matrix for
the TSP solver, which can require significant computation time and is quadratic in
the number of sampling points. In our experiments, this computation required on the
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order of 30 seconds with six sampling points. By the time the planner has finished,
the energy estimate is outdated. In the worst case, the turnaround point may occur
immediately after starting a planner run, in which case it will not be detected until
the following planning run completes. During this time the aircraft will have used
around 5% of its total available energy, and, in the absence of a safety margin, may
no longer have enough energy to complete all the landings. In practice, we include
a safety margin in the energy budget, which somewhat mitigates these problems at
the expense of the maximum mission length. Once the sampling phase begins, the
aircraft tries to visit all sampling points regardless of the energy budget. This ignores
disturbances and energy estimation errors that become apparent as the aircraft flies
and, if the safety margin was insufficient, could result in the aircraft running out of
energy before it visits all the sampling points.
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Future Work

There are several opportunities to extend and improve our proposed approach. We
focused heavily on designing an energy estimator that allows accurate absolute predic-
tions of the energy consumed during the mission. Our approach requires numerically
integrating systems of differential equations. It is computationally expensive to inte-
grate large systems of equations while achieving small errors. In the future, we may
incorporate additional elements into the cost function to further reduce estimation
error, and these are likely to make computation slower. On the other hand, we only
require accurate absolute energy estimation when deciding whether a mission satisfies
the available energy budget. While running the path planner, only a relative energy
metric is needed to decide which path is the most efficient. Additionally, we can
tolerate larger energy errors, as small errors during planning do not have a direct
impact on the safety or feasibility of the mission and may only result in a slightly
sub-optimal path. This motivates the development of a simplified energy metric that
neglects some terms of the full model or simply uses a larger integration step size.
We can explore the tradeoff between computation time and estimator accuracy. In
some cases, such as when the aircraft is loitering while waiting for the planner, a
sub-optimal path found quickly may reduce the overall energy consumption.

We demonstrated the efficiency advantages of our energy-aware planner over a
traditional distance based planner in simulation but have not yet confirmed these
results through real world experiments. We plan to conduct field trials where the
aircraft must choose between flying over or around an obstacle under real world wind
conditions.

We implemented PRM* to improve the efficiency of multi-query planning, but it
is not clear that this benefit is born out in practice. We may want to explore imple-
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menting a similar planner using a single-query algorithm, such as rapidly-exploring
random trees (RRT), to determine whether a single-query planner may be more ef-
ficient in practice. In addition, single-query planners enable better techniques to
find paths through difficult environments, which may allow a single-query planner to
succeed in cases where PRM* would fail. We have implemented a proof-of-concept
planner based on the bidirectional RRT-Connect algorithm [42]. This algorithm is
not asymptotically optimal, but initial informal experiments show that it can find a
solution to difficult planning problems, such as landing in the golf course, faster than
our current planner without a dramatic hit to energy efficiency.

In the future, we would like to relax the assumption that the ground is perfectly
level by incorporating a digital elevation model (DEM). The planner could use the
DEM to predict the altitude at the landing location as well as to include terrain as
an obstacle. This would allow the planner to operate more effectively on land.

In our experiments, detection of sampling points and the sampling process itself
was entirely simulated. We would like to develop more realistic approaches to detect
areas of interest to sample. As a first step, we could detect easily recognizable targets
on the water with a camera. Next, we could apply algorithms for HAB detection to
allow the aircraft to find real sampling points. Lastly, we could add a fluoroscope to
the aircraft to carry out practical HAB tracking missions.

As discussed previously, the airframe we used for experiments is relatively ineffi-
cient, with flight times of approximately 20 minutes, which is not much different from
VTOL aircraft such as quadcopters. Fixed-wing aircraft at this scale can be easily
capable of a flight time of 40 minutes to an hour, with the most efficient aircraft
achieving even longer flights. We would like to explore alternative off-the-shelf and
custom designs that can carry larger batteries and have reduced drag. In particular,
flying-boat style airframes would enable longer flight times due to the lack of drag
from floats.

To demonstrate our planner, we implemented a sampling mission where the air-
craft lands at a set of sampling points. Our approach is basic and lacks features that
might be desired in practical applications. As discussed previously, the long plan-
ning time causes a delay in deciding when the aircraft needs to end the survey phase
and start the sampling phase, requiring a large energy budget safety margin. Even
without increasing planner performance, this delay could be mitigated by placing the
planning start point at a future point in the mission, rather than at the current po-
sition. We may also consider tradeoffs between energy allocation to the survey and
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sampling phases. There may be cases where it is beneficial to skip a sampling point
to spend more time searching for points in the survey phase. We may also explore
splitting sampling missions over multiple flights.
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Conclusions

Our proposed energy-aware planner allows energy-efficient and safe combined survey
and sampling missions with a fixed-wing UAV. In addition, we show that our simpli-
fied landing controller is reliable under real-world conditions without using specialized
sensors. The experimental results also show that considering energy and wind is im-
portant and leads to significant changes to the order of landings at the identified
sampling points.

Overall, our proposed system for fixed-wing UAVs has the potential to be used
for environmental monitoring missions that require both surveying and sampling,
contributing to the understanding of our planet.
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