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Abstract

The Λ-cold dark matter (ΛCDM) model has become the standard model of cosmology

because of its ability to reproduce a vast array of cosmological observations, from the

earliest moments of our Universe, to the current period of accelerated expansion,

which it does with great accuracy. However, the success of this model only distracts

from its inherent flaws and ambiguities. ΛCDM is purely phenomenological, providing

no physical explanation for the nature of dark matter, responsible for the formation

and evolution of large-scale structure, and giving an inconclusive explanation for dark

energy, which drives the current period of accelerated expansion.

Furthermore, cracks in its observational grounding have begun to form. When

ΛCDM is used to interpret recent high precision measurements, tensions appear be-

tween individual experiments: the inferred values of the current cosmic expansion

rate H0 and the amplitude of cosmic density fluctuations S8 based on early universe

measurements of the cosmic microwave background (CMB), are in disagreement with

the values measured in the local universe, probed by supernovae, weak lensing, and

galaxy surveys. These tensions, if not caused by unaccounted for systematics, suggest

that the model we use to interpret early universe data may be incomplete.

This thesis collects works investigating alternative cosmologies and new analysis

techniques which aim to explain these tensions and ambiguities in ΛCDM, and provide

new probes of beyond the standard model physics. I present four main projects here: I

developed an assisted quintessence model of early dark energy (EDE), linking the early
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and late epochs of cosmic acceleration, which provides a solution to theH0 tension and

coincidence problem of dark energy; I investigated the role that microphysics plays

on the EDE solution to the Hubble tension, and found that EDE with an anisotropic

shear can solve both the Hubble and S8 tensions simultaneously; I developed a method

of using line-intensity mapping to constrain beyond the standard model physics, which

I used to forecast constraints on non-CDM models and non-Gaussianity; and I derived

the cosmological perturbations and initial conditions for a dark energy model built

from a three classical U(1) gauge fields coupled to a scalar field, which I will use to

investigate the compatibility of a such a scenario with cosmological observations.
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Chapter 1

Introduction

The past 25 years have been a golden age for cosmology, with many experiments pro-

viding unprecedented insight into the building blocks of the Universe. The discovery

of the accelerated expansion of the Universe [2, 3] drastically altered our view of the

cosmic energy budget, and led to the establishment of a standard cosmological model.

It is now understood that only 5% of the Universe is made of known particles, while

25% is composed of an unknown form of gravitationally interacting matter known

as “dark matter”. The dominant remaining 70% is made of “dark energy,” the even

more mysterious unknown piece responsible for the accelerated expansion.

The Λ-cold dark matter (ΛCDM) model, named for its dark sector components,

parameterizes dark matter as a cold, or non-relativistic, and collisionless fluid, and

dark energy as a cosmological constant Λ. ΛCDM has become the standard model

of cosmology because of its ability to accurately reproduce a vast range of obser-

vations, from the cosmic microwave background (CMB) [4], to large-scale structure

(LSS) [5, 6], to the expansion history of the Universe [7]. However, the success of

this model only distracts from its inherent flaws. It offers no explanation of the

physical nature of its dark sector components, making it a phenomenological model,

not a comprehensive theory. Furthermore, when it is used to interpret recent high
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Figure 1.1: Evolution of the Hubble tension in the last 20 years using direct measure-
ments from the distance ladder (in blue) and CMB-based measurements assuming
ΛCDM (in black). Adapted from [1].

precision measurements, discrepancies appear between individual experiments: the

inferred values of the current cosmic expansion rate H0, and the amplitude of cosmic

density fluctuations S8, based on early universe measurements of the CMB, are in

disagreement with the values measured in the local universe, probed by supernovae,

weak lensing and galaxy surveys. These parameter mismatches have become known

as the Hubble or H0 tension, and the S8 tension, respectively.

The Hubble constant tension is a disagreement that has been growing for years,

increasing as both early- and late- universe measurements yield ever more precise

results, as shown in Fig. 1.1. Today, this tension is seen mostly clearly between

the SH0ES collaboration measurement of H0 = 73.04 ± 1.04 km/s/Mpc [8], and

the Planck inference of H0 = 67.4 ± 0.5 km/s/Mpc [4], showing a greater than 5σ

discrepancy. Similarly for S8, the inference from the Planck mission gives S8 =

0.832± 0.013, in 3σ tension with the most recent Dark Energy Survey measurement

of S8 = 0.776 ± 0.017 [6]. However, it is yet to be understood whether the S8

2
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tension is real or due to systematic [9], or non-linear modelling [10] effects in late-

time measurements. The key to understanding the root of these tensions comes with

how these different measurements are taken. Late-universe measurements rely on

the direct measurement of distance to astrophysical objects, and the distribution

of galaxies and galaxy clusters to measure H0 and S8, respectively. On the other

hand, early-universe inferences of these parameters rely on fitting a cosmological

model, usually chosen to be ΛCDM, to the power spectrum of fluctuations in the

CMB radiation, making them model-dependent estimates. The tension between these

two types of measurements seem to be unexplained by unknown systematics in any

experiment [11–14], therefore suggesting that the model we use to interpret early-

universe data is incomplete.

While the Hubble and S8 tensions show cracks in standard model around the time

of recombination, other inconsistencies and ambiguities exist in both the very early

and late universe. ΛCDM itself offers no explanation for how the initial conditions of

the Universe it requires came to be. An early period of inflationary expansion prior

to the Hot Big Bang, is the most accepted paradigm for explaining the quantum fluc-

tuations that seed the observed large-scale structure and CMB anisotropies, however

the specific model which gives rise to such an epoch is weakly constrained by current

cosmological data, leaving a large ambiguity in cosmological theory.

At the opposite end of cosmic history, the standard models predictions at small

(sub-galactic) scales are in disagreement with observations [15], particularly, too much

dark matter is predicted in the inner-most regions of galaxies, giving rise to what is

known as the “cusp-core” problem [16]. One possible solution is to go beyond the

standard CDM description and look at alternative DM scenarios which introduce

a small-scale suppression of gravitational clustering. Furthermore, while we know

dark energy is currently driving a period of accelerated cosmic expansion, the entire

3
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catalog of cosmological data cannot yet distinguish the underlying physics responsible

for dark energy.

The many attempts to resolve the Hubble tension fall in two broad categories: late-

universe solutions which alter local-universe determinations of H0, and early-universe

solutions which change pre-recombination physics to alter the CMB inference of H0

(see [17, 18] and references therein). Early dark energy (EDE) models have emerged

as one of the most promising classes of early universe solutions to the H0 tension,

and generally consist of adding a scalar field that temporarily adds dark energy,

equal to about 10% of the total cosmological energy density, in between matter-

radiation equality and recombination (for a review see Ref. [19]). This briefly boosts

the expansion rate in the early universe, raising the CMB determination of the Hubble

constant. By introducing this new component at this time in cosmic evolution, you

can add a relatively low-density component and still have enough of an impact to

fix the Hubble tension, without spoiling the exquisite fit to CMB data that comes

in ΛCDM. Scalar fields arise naturally in high-energy physics as the driving force

behind inflation, and possibly the current period of accelerated expansion. If the

timeline of our Universe begins and ends with scalar field driven acceleration, you

must appreciate the possibility of it existing in the intermediate epochs.

However, it is an open question if the simple scenarios of early dark energy that

have been considered thus far serve as suitable cosmological models. The dynamics of

the canonical scalar fields used in these models appear to preclude a fully satisfactory

solution. Planck data does not favor EDE as a cosmological model on its own. It is

only through the inclusion of a late-universe prior on H0 that preference for EDE is

found in non-negligible amounts. This is avoided in analyses which use alternative

CMB datasets, yet more work needs to be done to see if these differing constraints are

due to experimental systematics [20–22]. More importantly, while EDE models offer
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a good solution to the Hubble tension within CMB data, the CMB-preferred value of

S8 is increased in these models, exacerbating the S8 tension. As such, when standard

EDE models are confronted with current LSS data, they are strongly disfavored,

potentially precluding EDE as a viable cosmological model [23–28].

This thesis collects works investigating alternative cosmologies that aim to explain

these tensions and ambiguities in the standard ΛCDM model and its so-far proposed

extensions, as well as novel techniques which can probe beyond the standard model

(BSM) physics in a new way. In Chapter 2, I test an assisted quintessence (AQ) model

of early dark energy (EDE) as a potential solution to both the Hubble tension, and

coincidence problems of both early and late dark energy. Chapter 3 explores what

types of perturbative evolution is necessary to strengthen and improve on current

solutions to the Hubble tension. In Chapter 4, I forecast the ability of future line-

intensity mapping experiments to constrain non-cold dark matter models and local-

type non-Gaussianity. And finally in Chapter 5, I derive the cosmological linear

perturbations and initial conditions which describe the full evolution of a dark energy

model built from a trio of classical U(1) gauge fields, which I plan to use to investigate

the compatibility of this scenario with cosmological observations.
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Chapter 2

Assisted Quintessence as Early

Dark Energy

With minor changes, this chapter is adapted from Sabla, V.I. & Caldwell,

R.R. “No H0 assistance from assisted quintessence.” Phys. Rev. D 103,

103506. arXiv: 2103.04999 (2021).

Early Dark Energy (EDE), while one of the most promising possible solutions to

the Hubble tension, appears fine tuned. Why should dark energy, or a related dark-

sector field, emerge near matter-radiation equality at a trace amplitude – just enough

to shift the length scales imprinted into the CMB – before falling dormant? Not only

that, dark energy itself appears fine tuned – why should it come to dominate so late

in the history of the Universe? Surprisingly, both of these issues are addressed in an

assisted quintessence scenario [29].

In assisted quintessence (AQ), multiple scaling fields are present. None of the

fields alone is sufficient to drive cosmic acceleration. But as time progresses, more

and more such fields thaw from the Hubble friction and activate, becoming dynamical.

Due to the scaling behavior, the fields evolve as a tiny but constant fraction of the
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2.1 Assisted Quintessence Cosmology

background energy density. Eventually, the cumulative effect of the scaling fields is

enough to catalyze cosmic acceleration. In this context, given a spectrum of scaling

fields, early dark energy and dark energy are inevitable: EDE is just the thaw and

activation of a scaling field; dark energy is the cumulative effect of a series of EDE

fields.

In this work we assume the true value of H0 is the one implied by the SH0ES

measurement of H0 = 74.03 ± 1.42 km/s/Mpc [30], and we explore the ability of

an individual AQ field to bring the CMB-derived value into concordance. We show

that, at the background level, this new component of the energy density seems to

be the balm needed to relieve the tension. However, the scaling behavior of the

AQ field leaves a significant imprint on the inhomogeneities, ultimately spoiling the

concordance and, in fact, exacerbating the tension.

This chapter is organized as follows. In Sec. 2.1 we introduce the AQ-EDE model

as a potential solution to the Hubble tension. We describe the background solution as

well as the behavior of linear perturbations. We present the cosmological data used

in the MCMC analysis of the model in Sec. 2.2. Results of our parameter estimation,

in particular H0, are given in Sec. 2.3. We conclude our discussion in Sec. 2.4 with

our main findings. Appendices provide details of the numerical implementation of

the model, and extended data analysis results.

Section 2.1

Assisted Quintessence Cosmology

The proposed scenario consists of the standard cosmological model, with dark energy

in the form of assisted quintessence. The action is

S =

∫
d4x

√
g

(
1
2
M2

PR + LM −
∑
i

[1
2
(∂ϕi)

2 + Vi(ϕi)]

)
, (2.1)

7



2.1 Assisted Quintessence Cosmology

where LM represents the Standard Model plus cold dark matter, and the index i

sums over the contributions of the AQ scaling fields. In the following, we describe the

background dynamics, the proposed solution to the Hubble tension, and the behavior

of linear perturbations used to evaluate the imprint of the AQ-EDE model on the

CMB and the inferred Hubble constant.

2.1.1. Background Dynamics

Tracking fields, proposed as a way to circumvent the cosmic coincidence problem

[31], have an attractor-like solution leading to a common evolutionary track. For

dark-energy tracking solutions, the equation of state wϕ is a constant, less than or

equal to the equation of state of the background fluid wB. Scaling is a special case of

tracking where the scaling fields have the same equation of state as the background,

wϕ = wB. For an individual field with potential V (ϕ), the capacity for scaling or

tracking behavior depends on the quantity [31]

Γ =
V,ϕϕV

(V,ϕ)2
(2.2)

where V,ϕ = ∂V/∂ϕ. For convergence to a tracking solution, Γ must be nearly con-

stant, in which case the equation of state is

wϕ ≈ wB − 2(Γ− 1)

1 + 2(Γ− 1)
. (2.3)

Scaling requires Γ ≈ 1, which implicates an exponential potential.

Exponential potentials arise naturally in higher-dimensional particle physics theo-

ries including Kaluza-Klein and string theories, and a variety of super-gravity models.

In cosmology, they have mainly been studied within the context of inflation and for

a possible role in late-time cosmology. See Refs. [32–40] and references therein.

8



2.1 Assisted Quintessence Cosmology

We consider a sequence of exponential potentials of the form

Vi(ϕi) = µ4
i e

−βiϕi . (2.4)

For a single AQ field with this potential, the resulting field evolution,

ϕ̈+ 3Hϕ̇+ V,ϕ = 0, (2.5)

has a well-known exact solution in a background with equation of state wB [32],

βϕ(t) = ln

(
1

2

1 + wB

1− wB

β2µ4t2
)
. (2.6)

This scaling solution yields an energy density that is a constant fraction of the dom-

inant background

Ωϕ(t) = 3(1 + wB)/β
2. (2.7)

The parameter β controls the energy density and is analogous to fEDE of Ref. [41].

For self-consistency of solution, β2 > 1/3(1+wB) is required. When β is too low, the

potential is sufficiently flat that the scalar field will inflate rather than scale.

The evolution of a single field in the exponential potential proceeds as follows. We

consider the field to be initially frozen by the Hubble friction at ϕ = 0, in which case

the equation of state is wϕ ≈ −1. The field begins to thaw and activate at a time

determined by the parameter µ which is analogous to the zc of Ref. [41]. The larger

the value of µ, the earlier it thaws. As the field evolves toward the attractor solution,

the equation of state scales according to the dominant background component. In

Fig. 2.1 we plot the evolution of wϕ as a function of scale factor for a field that becomes

dynamical right around matter-radiation equality. As the field thaws, the equation

of state jumps upwards to match the dominant component, initially overshooting its

9



2.1 Assisted Quintessence Cosmology

10−5 10−4 0.001 0.01 0.1 1.0

a

−1.0

−0.5

0.0

0.5

1.0

w

wφ
wB

Figure 2.1: The evolution of the equation of state of the AQ field, wϕ (blue, solid),
as a function of scale factor for a model with β = 12 and µ = 3.5 Mpc−1/2. There is a
downturn near a ∼ 0.4 due to the onset of dark energy domination. For comparison,
the background equation of state is shown (black, dashed).

mark, before it settles to the matter-dominant evolutionary track.

The addition of multiple scaling fields in the AQ scenario changes the system

dynamics [29]. A succession of fields thaw and activate, each at a time determined by

µi. All active fields contribute to the energy density, each satisfying β2
i ≫ 1/3(1+wB).

However, the ensemble is characterized by an effective β,

1

β2
eff

=
∑
i

1

β2
i

. (2.8)

As fields are successively thawed, βeff is lowered, thereby raising the collective energy

density. This continues until the bound on β2
eff is saturated, when the fields “flatten

the potential” and inflate. At late times, the equation of state asymptotes to

wϕ = −1 +
1

3
β2
eff , (2.9)

approaching this limit from below [29].

Without the scaling behavior, the energy densities of the individual fields would

be too small to ever dominate and acceleration would never arise. In this way, AQ

10



2.1 Assisted Quintessence Cosmology

provides an ideal framework for EDE and dark energy. The necessary succession of

thawing and scaling fields makes an early component plausible, and eventual cosmic

acceleration inevitable.

There are many different ways to configure early and late dark energy components

using N fields, each introducing two parameters. In order to address the Hubble ten-

sion, we will consider a single early component that activates near matter-radiation

equality. For simplicity, we will consider the remaining AQ fields to sufficiently resem-

ble a component with wϕ ≈ −1 so that we may safely replace them with a cosmological

constant.

2.1.2. Resolving the Hubble Tension

Early universe solutions to the Hubble tension are grounded in the theoretical de-

scription of the CMB. One of the best constrained features of the CMB anisotropy

pattern is the angular size of the first acoustic peak, modeled as θs = rs(z∗)/DA(z∗).

Here, rs(z∗) is the comoving sound horizon at decoupling, and DA(z∗) is the comoving

angular diameter distance to the surface of last scattering,

rs(z∗) =

∫ ∞

z∗

csdz
′

H(z′)
, (2.10)

DA(z) =

∫ z∗

0

dz′

H(z′)
, (2.11)

where cs is the sound speed. The sound horizon is dependent on pre-recombination

energy densities and roughly scales with the Hubble parameter as H
−1/2
0 , whereas

DA(z∗) depends on densities after decoupling and scales as H−1
0 . This implies that if

we decrease the sound horizon by adding new components to the energy density, and

assuming the sound speed is unchanged, then we can increase the Hubble constant

deduced from the CMB acoustic scale. As suggested in Ref. [42], we focus on the

brief window between matter-radiation equality and recombination as this is when

11
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Figure 2.2: The evolution of the fraction of the total energy density in the AQ
model to the ΛCDM model as a function of scale factor. For higher β and higher
µ, the contribution of the AQ field to the energy budget decreases and peaks earlier,
respectively. Note that µ has units of Mpc−1/2. The black-dashed line shows the
best-fit n=3 oscillating scalar field model of EDE from Ref. [43] for comparison.

the majority of the sound horizon accrues. By adding a small amount of EDE, it

is possible to adequately lower the sound horizon, thereby increasing the Hubble

constant inferred from the CMB.

An AQ field that activates during the epoch between equality and recombination,

like the ones illustrated by the solid curves in Fig. 2.2, can produce enough of a spike in

the total energy density to lower the sound horizon and raise the CMB inference of H0

into agreement with local universe measurements. For example, based on Eqs. (2.10-

2.11), a model with β = 12 and µ = 3.5 Mpc−1/2 and otherwise standard parameters

should result in H0 ≃ 73 km/s/Mpc. The use of a tracker potential has the added

benefit of not demanding strict initial conditions, requiring only a two parameter

extension to ΛCDM as opposed to the three parameter extensions required of other

EDE models [41, 43–48]. The overshoot in the equation of state helps sharpen the

spike in energy, and afterwards the AQ field remains present at a trace level due to

the matter-era scaling solution.
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Figure 2.3: The evolution of the heat flux of all relevant components as a function of
scale factor for the k = 0.1 Mpc−1 wave mode. These curves are generated by a model
with the best-fit parameter values taken from the “semi-background” AQ model run
with θϕ allowed to evolve. The scaling behavior of the AQ field leads to the dominant
contribution over the standard components, at z ≲ 100 in the case shown.

2.1.3. Linear Perturbations

We have shown that at the background level an AQ field can resolve the Hubble

tension. However, the viability of this scenario hinges on the behavior of the linear

perturbations. For a single AQ field, the linear field perturbation δϕ evolves according

to the equation of motion

δϕ′′ + 2Hδϕ′ + (k2 + a2V,ϕϕ)δϕ = −h
′

2
ϕ′, (2.12)

where H = a′/a, the primes indicate the derivative with respect to conformal time

′ = ∂/∂τ , h is the synchronous gauge metric potential (see [49]), and we work in

Fourier space. The system is equivalent to a damped, driven, harmonic oscillator.

The homogeneous solution is negligible: any initial conditions set by inflation or other

early universe processes have long been lost or erased as a consequence of the frozen

field with wϕ ≈ −1 [50, 51]. Once the field begins to thaw, the inhomogeneous solution

begins to take form, with an effective frequency of oscillation ωeff =
√
k2 + a2V,ϕϕ.

To analyze the driving term, we focus on a field that thaws from the Hubble
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Figure 2.4: Evolution of the Weyl gravitational potential as a function of scale factor
for the k = 0.1 Mpc−1 wave mode. The solid blue curve shows the gravitational
potential for a model with the best-fit parameters taken from the “semi-background”
AQ model run with θϕ allowed to evolve. The best-fit ΛCDM model is shown by
the black-dashed line. Due to the large heat flux of the scalar field, the gravitational
potentials are shallower than in the ΛCDM model.

friction at or around matter-radiation equality so that the relevant evolution occurs

in a matter-dominated background with a ∝ τ 2. We start from the well-known result

that the CDM density contrast evolves in proportion to the scale factor, δc ∝ a, and

that h′ = −2δ′c [49]. From this, we infer that h′ ∝ a′ ∝ τ . Next, according to the

scaling solution in Eq. (2.6), ϕ′ = aϕ̇ ∝ τ 2/t. Since conformal and cosmic time are

related via t ∝ τ 3, we obtain ϕ′ ∝ τ−1. Hence, the product h′ϕ′ is independent of

time. The driving term in Eq. (2.12) is constant as a result of the scaling solution for

ϕ.

There are two regimes of response to the constant driving term: for ωeff ≲ H,

δϕ grows in proportion to the scale factor; for ωeff ≳ H, the perturbation solution is

simply

δϕ = − h′ϕ′

2(k2 + a2V,ϕϕ)
. (2.13)

This solution divides into two cases. For the brief interval when ωeff ≳ H and k2 ≪

a2V,ϕϕ, the scaling solution again dictates that δϕ ∝ a, whereas at smaller scales, for

k2 ≫ a2V,ϕϕ, δϕ is a constant. Hence, we have a simple story for the evolution of the

14



2.1 Assisted Quintessence Cosmology

AQ field perturbation: after an initial transient, δϕ grows in proportion to the scale

factor until the comoving mass scale drops below the wave number, k2 ≫ a2V,ϕϕ, after

which δϕ is a constant. We note that if the AQ field decayed more rapidly than the

background, then δϕ would also decay.

We can use the results of this simple analysis to forecast the behavior of the AQ

field perturbations in terms of fluid variables. The most significant role is played by

the heat flux qϕ = 8πGa2(ρϕ + pϕ)θϕ, where θϕ is the velocity divergence of the AQ

field. The heat flux obeys the equation

q′ϕ + 2Hqϕ = 8πGa2k2δpϕ, (2.14)

where δpϕ is the pressure perturbation. The heat flux is related to our AQ field via

θϕ through

(ρϕ + pϕ)θϕ =
k2

a2
ϕ′δϕ. (2.15)

Again, we can use the scaling solution ϕ′ ∝ a−1/2 and δϕ ∝ a , in which case the

heat flux grows ∝ a1/2, until the comoving mass scale drops below the wave number.

Thereafter qϕ decays ∝ a−1/2. This is significant, because all other contributions due

to CDM, baryons, photons, neutrinos are zero (CDM) or decay more rapidly, and will

eventually grow subdominant to the scalar field contribution. An example based on

our numerical calculations is shown in Fig. 2.3. Despite contributing to the energy

budget at a percent level, the AQ field has an outsize effect.

On the same scales, the AQ density perturbation δρϕ loses energy, decaying at the

same rate as the background so that δϕ = δρϕ/ρϕ is constant. Moreover, the pressure

perturbation is δpϕ ≈ −δρϕ, like a tension. Hence, the fluctuation response of the

scalar field inhibits clustering.

The AQ contribution to the heat flux sources the trace-free scalar metric pertur-
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2.1 Assisted Quintessence Cosmology

bation, η [49]. In more physical terms, it causes the post-recombination gravitational

potentials to decay, resulting in an additional integrated Sachs-Wolfe effect, an ex-

ample of which is shown in Fig. 2.4. Due to the timing of this behavior, it primarily

affects modes that determine the shape of the CMB anisotropy pattern at degree

scales and larger. But there are more facets to the ultimate impact on the predicted

CMB temperature and polarization ansiotropy pattern, which we turn to next.
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Parameter ΛCDM β = 12, µ = 3.5 β = 12, µ = 3.5, θϕ = 0

100ωb 2.235 (2.237) ± 0.015 2.182 (2.186) ± 0.014 2.068 (2.070) ± 0.016
ωc 0.1202 (0.1199) ± 0.0013 0.1297 (0.1294) ± 0.0013 0.1052 (0.1055) ± 0.0014

100θs 1.04089 (1.04105) ± 0.00032 1.04017 (1.04011) ± 0.00031 1.04220 (1.04212) ± 0.00033
τ 0.0553 (0.0551) ± 0.0076 0.0594 (0.0596)+0.0071

−0.0084 0.113 (0.106)+0.015
−0.022

ln(1010As) 3.046 (3.045) ± 0.015 3.069 (3.070)+0.014
−0.016 3.121 (3.106)+0.029

−0.040

ns 0.9645 (0.9644) ± 0.0043 0.9574 (0.9581) ± 0.0041 1.0010 (0.9994) ± 0.0053
β - 12 (fixed) 12 (fixed)

µ [Mpc−1/2] - 3.5 (fixed) 3.5 (fixed)
H0 [km/s/Mpc] 67.27 (67.45) ± 0.56 64.20 (64.29) ± 0.55 73.12 (72.98) ± 0.77

S8 0.834 (0.829) ± 0.013 0.858 (0.856) ± 0.013 0.726 (0.723) ± 0.013
Total χ2

min 1014.09 1048.38 1307.81

Table 2.1: The mean (best-fit) ±1σ error of the cosmological parameters for ΛCDM, the AQ model with β = 12, µ = 3.5
Mpc−1/2 and the “semi-background” model with θϕ = 0. Constraints are based on the full Planck 2018 dataset.

17



2.2 Data and Methodology

Section 2.2

Data and Methodology

We run a complete Markov Chain Monte Carlo (MCMC) using the public code

CosmoMC1 [52] interfaced with a modified version of CAMB to directly solve the lin-

earized scalar field equations [53]. Details are provided in Appendix 2.A. We model

the neutrinos as two massless and one massive species with mν = 0.06 eV and

Neff = 3.046. We use a dataset consisting of Planck 2018 measurements of the

CMB via the TTTEEE Plik lite high-ℓ, TT and EE low-ℓ, and lensing likelihoods

[54]. The Plik lite likelihood is a foreground and nuisance marginalized version of

the Plik likelihood [54]. We have found that the two datasets return nearly identi-

cal posterior distributions for a typical AQ model. Based on this, we infer that the

AQ model has negligible effect on the Planck nuisance parameters, allowing us to

use the lite likelihood in place of the full likelihood, and speeding up our MCMC

analysis. We restrict ourselves to only CMB data to determine whether a scaling

field can independently raise the CMB-derived value of the Hubble constant, without

the influence of late universe measurements, although we give results for extended

datasets in Appendix 2.B.

We perform an analysis with a Metropolis-Hastings algorithm with flat priors on

the six standard cosmological parameters {ωb, ωc, θs, τ, ln(10
10As), ns} as well as the

model parameters β and µ. Our results are obtained by running eight chains and

monitoring convergence via the Gelman-Rubin criterion, with R − 1 < 0.05, for all

parameters, being considered complete convergence [55]. Throughout this paper we

absorb a factor of (8πG)1/2 into the parameter β, allowing us to report it as a unitless

scale parameter, matching its implementation within CAMB. Similarly, we report µ in

1Publically available at: https://cosmologist.info/cosmomc/
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2.3 Observational Constraints

units of Mpc−1/2 where we absorb a factor of (8πG)1/4.

Section 2.3

Observational Constraints

In this section we explore the implications of adding an AQ field for CMB-derived

cosmological parameters. For fixed β and µ we show that the homogeneous AQ

field can provide a resolution to the Hubble tension. However, the scaling behavior

leads to strong perturbations that spoil the concordance. We then explore the model

parameter space and show that the data ultimately prefers AQ models that resemble

ΛCDM.

2.3.1. Fixed Model Parameters

We fix the model parameters to β = 12 and µ = 3.5 Mpc−1/2 such that the AQ field

provides an approximately 4% spike in the background energy density in the epoch

between matter-radiation equality and recombination, as shown in Fig. 2.2. An early

contribution of this size should be enough to raise the value of the Hubble constant

inferred by CMB measurements [41, 42].

We consider two alternative models for comparison. The first is ΛCDM, as a

control. The second is also an AQ model with β = 12 and µ = 3.5 Mpc−1/2, but

for which the AQ velocity divergence is artificially set to zero, θϕ = 0. We refer to

this model as “semi-background”. Without the inclusion of the velocity divergence,

this model is self-inconsistent. However, we find the model to be helpful to illustrate

the influence of the velocity divergence on cosmological parameters in this scenario.

Note that the inclusion of the density perturbation of the field has little effect on the

temperature and polarization anisotropies since the total energy density perturbation

is dominated by CDM.
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The results of the MCMC analysis, consisting of constraints to the cosmological

parameters for the AQ cosmology, the “semi-background” AQ cosmology, and ΛCDM,

are presented in Table 2.1. We show the posterior distributions for the relevant

parameters in these models in Fig. 2.5.

These constraints paint an interesting picture. The AQ “semi-background” model

yields a best-fit value of H0 = 72.98 km/s/Mpc, in excellent agreement with the

SH0ES determination of H0. Hence, our initial rationale for selecting this model is

justified. However, the quality of the fit to the data is poor compared to ΛCDM,

as seen in the increased χ2
min. This is nearly entirely due to the self-inconsistency

of the model. Without the complete evolution of field perturbations, terms that

normally cancel the strong, late-time ISW effect in the CMB are absent leading to

a huge increase in power in the large scale CMB anisotropy pattern [56]. Restoring

the velocity divergence, the AQ cosmology with β = 12 and µ = 3.5 Mpc−1/2 yields

a surprise. The model not only fails to solve the Hubble tension but exacerbates

it even further, giving a best-fit value of H0 = 64.29 km/s/Mpc as shown in Table

2.1. What these results suggest is that at the homogeneous level, the spike in the

energy density given by the AQ field would indeed raise the CMB inferred value of

the Hubble constant. But the dominant role of the AQ contribution to the heat flux

spoils the concordance.

We can now take a sharper look at the role of the AQ perturbations, with the

benefit of hindsight of the parameter analysis. We use the best-fit parameter values

determined for the “semi-background” model, and apply them to the full AQ model.

This enables us to see the effect of the heat flux on the metric perturbations and the

full CMB anisotropy.

During the matter era, the density contrast of the AQ field is constant, meaning

the density perturbation δρϕ must be losing energy. This is matched by the growth
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of the heat flux qϕ = 8πGa2(ρϕ + pϕ)θϕ, shown in Fig. 2.3. This behavior has the

same effect as the free-streaming of photons and neutrinos out of potential wells,

bringing energy with them as they go. This outflow of energy causes rarefaction of

the gravitational potential wells when compared to ΛCDM, as shown in Fig. 2.4.

The change in the potential wells has widespread consequences. Most importantly

for the Hubble tension, there is now an additional integrated Sachs-Wolfe (ISW) effect

driven by the AQ heat flux. For the parameters of these models, this new ISW raises

the power of the CMB spectrum across the first acoustic peak. To compensate for this

change, there is a series of parameter changes when compared to ΛCDM, as shown

in Table 2.1. Most notably, the CDM density is increased, which introduces a phase

shift in the acoustic oscillations toward larger angular scales for all multipoles. To

maintain the correct angular scale of the acoustic peaks, H0 is lowered.

The residual between the best-fit ΛCDM model and our AQ model, shown in

Fig. 2.6, makes these parameter changes clearer. In the solid red line we show the

residual for the best-fit AQ model using the full Planck dataset and in orange we

show the residual for the AQ model using standard model parameters specified by

the best-fit ΛCDM model. Setting the standard model parameters to their ΛCDM

values and adding in an AQ field allows us to illustrate the full influence of the AQ

field on the CMB spectrum. In the AQ model with ΛCDM parameters, the oscillation

in the residual seen at high-ℓ in both temperature and polarization shows a phase-

shift toward high-ℓ, which can be remedied by a higher value of H0. However, the

additional ISW effect caused by the domination of the heat flux of the AQ field,

seen most clearly between 10 < ℓ < 400, is too strong to overcome. When we shift

the parameter values to match the best-fit AQ model, the higher CDM density and

lower value of H0 deepen the gravitational potentials, and restore the angular scale of

acoustic oscillations, resulting in a closer match to the data, although one that is still
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not on par with ΛCDM. This poor fit is consistent among the individual likelihoods

in the Planck 2018 dataset (to remind, these are: high-ℓ TT,TE,EE; low-ℓ TT; low-

ℓ EE; lensing). The biggest deviation comes from the high-ℓ TT,TE,EE likelihood

with ∆χ2
min ≈ 25, supported by the offset of the best-fit AQ model residuals from the

Planck 2018 data points in Fig. 2.6.

The overall change in level of the gravitational potentials also leaves imprints

on the matter power spectrum, which can be summarized through the parameter

S8 = σ8(Ωm/0.3)
1/2. Weak lensing surveys like KiDS-450 measure S8 = 0.745± 0.039

[57]. This is in a ∼ 2σ tension with the high value of S8 = 0.832 ± 0.013 estimated

by Planck using ΛCDM [58]. We can see from Table 2.1 that the “semi-background”

model lowers the value of S8 estimated by Planck data into agreement with the local

universe measurement from KiDS-450. However, similarly to H0, when the velocity

divergence is restored to the AQ model, this concordance is lost, and the tension is

exacerbated.

With a lower preferred value of H0 and a worse fit to the full Planck 2018 dataset,

it seems that the scaling behavior present in this model, which provides a natural link

between early and late dark energy as well as a framework to solve the “why now”

problem, is the very mechanism that spoils this model as a solution to the Hubble

tension.

2.3.2. Full Results

We now promote β and µ to free parameters and allow them to vary alongside the

six standard model parameters with flat priors, 5 < β < 30 and 0.0001 < µ < 20

Mpc−1/2. We leave out µ = 0 for numerical stability within CAMB. The parameter

constraints derived from the Planck 2018 dataset are presented in Table 2.2, with

posterior distributions for the relevant parameters shown in Fig. 2.7. We include the

posteriors for the best-fit ΛCDM model for comparison.
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It is clear from Fig. 2.7 that the data prefers high values of β and low values of µ.

For the best-fit value of β = 23.1, the AQ field constitutes < 1% of the total energy

density once it settles to its scaling solution. For such a low density component, the

time that the AQ field thaws from the Hubble friction is inconsequential, resulting

in a wide spread in the posterior distribution of µ. However, the best-fit value of

µ = 0.005 Mpc−1/2 and the preference for µ < 7.07 Mpc−1/2 gives us some insight

into these results.

As previously discussed, low values of µ correspond to later activation of the AQ

field, meaning the field behaves like a cosmological constant with a negligible energy

density for most of its evolution. For the best-fit values of β = 23.1 and µ = 0.005

Mpc−1/2, the AQ field thaws from the Hubble friction during dark energy domination

at which time its scaling behavior forces it to behave as an additional, subdominant

cosmological constant. In this case, the field forgoes the post-recombination decay

of gravitational potentials caused by the domination of the heat flux of the AQ field

during the matter-era, allowing for the best-fit matter densities to remain unchanged

from their values in the ΛCDM model. However, Fig. 2.7 shows us that even an AQ

field present with a small abundance shifts the peak of the posterior distribution of

H0 toward smaller values, furthering the evidence that this model cannot resolve the

Hubble tension.

The best-fit AQ cosmology, introducing a new component that makes up < 1% of

the total energy density, is statistically indistinguishable from ΛCDM with ∆χ2
min =

−0.53. These results tell us there is little to no evidence for the presence of an AQ

scaling field within the full Planck 2018 dataset.

We note that the changes to the gravitational potentials discussed in Sec. 2.3.1

also affect the imprint of gravitational lensing on the CMB power spectrum. As CMB

photons travel along the line-of-sight, they are gravitationally deflected by the large-
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Parameter β, µ free

100ωb 2.232 (2.237) ± 0.015
ωc 0.1220 (0.1199)+0.0014

−0.0015

100θs 1.04061 (1.04078) ± 0.00033
τ 0.0565 (0.0543) ± 0.0076

ln(1010As) 3.052 (3.049) ± 0.015
ns 0.9630 (0.9647) ± 0.0042
β > 25.6 (23.1)

µ [Mpc−1/2] < 7.07 (0.005)
H0 [km/s/Mpc] 66.52 (67.22) ± 0.58

S8 0.839 (0.833) ± 0.013
Total χ2

min 1013.56

Table 2.2: The mean (best-fit) ±1σ error of the cosmological parameters in the full
AQ model analyzed using the Planck 2018 dataset.

scale distribution of matter in the Universe. This lensing effect blurs the anisotropy

pattern and smooths the acoustic peaks. When we artificially turn off the effects of

CMB lensing and use only Planck high-ℓ TT, TE, EE, and low-ℓ TT and EE data,

we find that the AQ model provides a statistically better fit to the data than ΛCDM.

Results for this analysis in the AQmodel with free β and µ are shown in Appendix 2.C.

However, due to the scaling of the AQ field, the gravitational potentials are shallower,

implying less blurring and smoothing. Turning lensing back on results in a poorer

relative fit to data than ΛCDM. When considering the S8 tension between Planck

and local universe weak lensing surveys, and the AL anomaly present in Planck data

[59], these results become more interesting and may warrant further investigation.

Section 2.4

Discussion and Conclusions

The Hubble tension has motivated a variety of extensions to the standard ΛCDM

cosmological model, most of which focus on injecting energy at or around the time

of matter-radiation equality. In this paper we considered the possibility that a scal-
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ing field which activates just prior to recombination provides this energy injection.

Specifically, we evaluated the impact on the CMB of a scalar field with an exponen-

tial tracking potential of the form V (ϕ) = µ4e−βϕ in the context of an AQ scenario

for EDE and DE. This model constitutes a two parameter extension to the standard

ΛCDM model specified by the steepness of the potential β, and the effective mass of

the field µ. In this scenario, early dark energy is simply a sign of the build up of dark

energy.

The Hubble tension would appear ameliorated at the background level by a sce-

nario with β = 12 and µ = 3.5 Mpc−1/2. Solving for the dynamics of the linearized

perturbations of the field, however, we find a different story. The scaling behavior of

the AQ field results in the domination of the heat flux of the AQ field over that of the

standard model components. The impact on the CMB power spectrum actually wors-

ens the Hubble tension to an almost 7σ difference with local universe measurements.

Ultimately, we find that Planck 2018 temperature and polarization data, plus Planck

estimates of the lensing potential, constrain the AQ model parameters to resemble a

ΛCDM-like cosmology; the best-fit AQ model is statistically indistinguishable from

ΛCDM.

The failure of this model offers insight into the ability of new physics to resolve the

Hubble tension. In this case, the pressure fluctuation drives the growth of the heat flux

on subhorizon scales as shown in Eq. 2.14. This sets off a cascade of effects, softening

the gravitational potentials, shifting the acoustic peaks in the CMB, and ultimately

exacerbating the Hubble tension. A few ways around this result are suggested. For

example, if we abandon the scaling solution and use a model that spikes just prior to

recombination and then decays faster than the background, then the pressure source

decays, too. This is the method employed in Refs. [41, 43, 48, 60]. The price of

which is an additional parameter, which may require the fine tuning of the initial
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conditions. Another solution would be to introduce an additional term on the right

hand side of Eq. 2.14 to damp or diminish the pressure. This might be accomplished

by coupling to another field [61]. Yet neither of these fixes do more than soften the

Hubble tension.

One would expect that a compelling solution would raise the CMB-inferred value

of H0 into complete agreement with local universe measurements while also address-

ing (or at the very least, not exacerbating) other cosmological tensions. This may

require dropping the scalar field as a possible solution. If EDE does play a role in

resolving the various tensions between ΛCDM and cosmological observations, it will

necessarily have more structure than the most basic scenarios that have been con-

sidered. Currently, no model has succeeded at independently and adequately solving

the Hubble tension. Improved measurements of the CMB, H(z), and BAO at various

redshifts will give us better insight into possible physics beyond the standard model.

26



2.4 Discussion and Conclusions

0.021 0.022

Ωbh
2

65

70

75

H
0

0.96

0.98

1.00

n
s

3.05

3.10

3.15

3.20

ln
(1

010
A
s
)

0.05

0.10

0.15

τ

1.040

1.041

1.042

1.043

10
0θ

M
C

0.11

0.12

0.13

Ω
ch

2

0.11 0.12 0.13

Ωch
2

1.040 1.042

100θMC

0.05 0.10 0.15

τ

3.1 3.2

ln(1010As)

0.95 1.00

ns

65 70 75

H0

ΛCDM

β=12, µ=3.5

β=12, µ=3.5, θφ=0

Figure 2.5: Posterior distributions of the AQ model with β = 12, µ = 3.5 Mpc−1/2

and θϕ turned on (red) and off (blue), and the ΛCDMmodel (gray) for the Planck 2018
dataset. The darker inner (lighter outer) regions correspond to 1σ (2σ) confidence
intervals. The SH0ES determination of H0 is shown in the orange bands.

27



2.4 Discussion and Conclusions

2 10 30

−0.8

−0.04

0.0

0.04

0.08

∆
C
T
T

l

C
T
T

l

500 1000 1500 2000

−0.04

0.0

0.04
ΛCDM b.f. model w/ β = 12, µ = 3.5

β = 12, µ = 3.5 b.f. model

2 10 30
−2.0

−1.0

0.0

1.0

2.0

∆
C
E
E

l

C
E
E

l

500 1000 1500 2000

`

−0.2

−0.1

0.0

0.1

0.2

Figure 2.6: Temperature and polarization power spectrum residuals between the
best-fit ΛCDM model and the best-fit AQ cosmology (solid red), as well as an AQ
cosmology with the six standard model parameters unchanged from their best-fit
ΛCDM values (dashed orange). We show the residuals from Planck 2018 data in
blue. Left (right) vertical axis scaling is for multipoles less (greater) than 30.

28



2.4 Discussion and Conclusions

0.0220 0.0225

Ωbh
2

65

66

67

68

H
0

5

10

15

µ

16

20

24

28

β

0.95

0.96

0.97

n
s

3.00

3.05

3.10

ln
(1

01
0
A
s
)

0.04

0.06

0.08

τ

1.0400

1.0405

1.0410

1.0415

10
0θ

M
C

0.118

0.120

0.122

0.124

0.126

Ω
ch

2

0.120 0.125

Ωch
2

1.040 1.041

100θMC

0.04 0.06 0.08

τ

3.00 3.05 3.10

ln(1010As)

0.95 0.96 0.97

ns

16 20 24 28

β

5 10 15

µ

66 68

H0

β, µ free

ΛCDM

Figure 2.7: Posterior distributions of the AQ model with β, and µ as free parameters
(red) and the ΛCDM model (blue) for the Planck 2018 dataset. The darker inner
(lighter outer) regions correspond to 1σ (2σ) confidence intervals.

29



Appendix

Section 2.A

Numerical Implementation

In CAMB, the evolution of the perturbation equations and the construction of the an-

gular power spectra require the background densities of all components to be specified

throughout cosmic history. The standard model background densities all follow sim-

ple scaling relations for which only the present day density is needed to completely

specify their evolution. The background evolution of the AQ field is non-trivial and

must be numerically solved prior to the evolution of the perturbations in order to

obtain accurate results. The background evolution of the field is specified by the

homogeneous Klein-Gordon equation, which requires initial conditions on ϕ and ϕ′

in order to be evolved. For the exponential potential we can absorb the initial value

of ϕ into the parameter µ, allowing us to set ϕi = 0. The use of a tracker potential

means that for a wide range of initial values of ϕ′, the field will settle to its attractor

solution, hence we can arbitrarily set ϕ′ = 0, following slow-roll conditions. With

initial conditions set, we numerically solve Eq. (2.5) to create arrays of values for

ϕ and ϕ′ over cosmic time which we interpolate whenever background values for the

field are needed during the evolution of the cosmological perturbations.

The evolution of the AQ field fluctuations are solved numerically alongside the
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2.A Numerical Implementation

standard model perturbations. To properly interface the scalar field with the standard

model components, we need to translate the field perturbations into fluid variables.

Linearly perturbing the scalar field stress-energy tensor yields:

δρϕ = a−2ϕ′δϕ′ + V,ϕδϕ, (2.16)

δpϕ = a−2ϕ′δϕ′ − V,ϕδϕ, (2.17)

(ρϕ + pϕ)θϕ =
k2

a2
ϕ′δϕ, (2.18)

(ρϕ + pϕ)σϕ = 0, (2.19)

where θϕ = ikjvj represents the velocity divergence, and σϕ is the anisotropic stress,

which is zero for a scalar field. Using these, we can show that the conservation of the

scalar field stress-energy follows that of a single uncoupled fluid [49]:

δ′ϕ = −(1 + wϕ)

(
θϕ +

h′

2

)
− 3H

(
δpϕ
δρϕ

− wϕ

)
δϕ, (2.20)

θ′ϕ = −H(1− 3wϕ)θϕ −
w′

ϕ

1 + wϕ

θϕ +
δpϕ/δρϕ
1 + wϕ

k2δϕ, (2.21)

where δϕ = δρϕ/ρϕ and δpϕ/δρϕ = c2ϕ gives the adiabatic sound speed squared. While

these fluid equations of motion are mathematically equivalent to the linearized KG

equation, they are numerically unstable in practice since wϕ = −1 prior to the slow

roll of the field. In our numerical implementation we instead directly evolve the

linearized KG equation, Eqs. (2.12), and construct the necessary fluid variables using

Eq. 2.16-2.19.

In CAMB, distance and time are measured in Mpc. For numerical simplicity, we

absorb a factor of (8πG)1/2 into β and a factor of (8πG)1/4 into µ so that

1

2

(
ϕ′

a2

)2

+ V (ϕ) = 8πGρ (2.22)
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2.B Extended Results for Fixed Model Parameters

CMB+BAO ΛCDM β = 12, µ = 3.5

100ωb 2.240 (2.240) ± 0.013 2.217 (2.220) ± 0.014
ωc 0.11947 (0.11954) ± 0.00097 0.1247 (0.1246) ± 0.0011

100θs 1.04098 (1.04103) ± 0.00030 1.04075 (1.04086) ± 0.00028
τ 0.0573 (0.0570) ± 0.0074 0.0739 (0.0736) ± 0.0093

ln(1010As) 3.049 (3.048) ± 0.014 3.089 (3.090) ± 0.018
ns 0.9663 (0.9659) ± 0.0038 0.9685 (0.9688) ± 0.0038
β - 12 (fixed)

µ [Mpc−1/2] - 3.5 (fixed)
H0 [km/s/Mpc] 67.59 (67.58) ± 0.44 66.33 (66.43) ± 0.46

S8 0.828 (0.828) ± 0.011 0.815 (0.814) ± 0.011
Total χ2

min 1020.02 1082.89

Table 2.A.1: The mean (best-fit) ±1σ error of the cosmological parameters for
ΛCDM and the AQ model with β = 12, µ = 3.5 Mpc−1/2. Constraints are based on
the CMB and BAO datasets.

has units of Mpc−2. To convert to standard particle physics units, remember that 1

Mpc = 1.5637×1038 GeV−1. Converting the model parameters presented in Sec. 2.3.1

from CAMB units to particle physics units gives β = 5× 10−18/GeV, and µ = 0.43 eV.

Section 2.B

Extended Results for Fixed Model Parameters

In this Appendix we present an extended MCMC analysis on the AQ model with

fixed model parameters. To fully analyze the cosmological impact of the AQ model

we use a wider range of cosmological datasets for parameter estimation:

• Cosmic Microwave Background (CMB): We use the Planck 2018 mea-

surements of the CMB (via TTTEEE Plik lite high-ℓ, TT and EE low-ℓ, and

lensing likelihoods [54],

• Baryon acoustic oscillation (BAO) data: We use data from the BOSS sur-

vey (data release 12) at z = 0.38, 0.51, and 0.61 [62], low redshift measurements

from the 6dF survey at z = 0.106 [63], and the BOSS main galaxy sample at
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2.B Extended Results for Fixed Model Parameters

CMB+BAO+R19 ΛCDM β = 12, µ = 3.5

100ωb 2.252 (2.250) ± 0.013 2.231 (2.230) ± 0.014
ωc 0.11837 (0.11819) ± 0.00095 0.12317 (0.12313) ± 0.00098

100θs 1.04113 (1.04117) ± 0.00029 1.04092 (1.04105) ± 0.00028
τ 0.0608 (0.0589) +0.0071

−0.0080 0.081 (0.079) ± 0.010
ln(1010As) 3.054 (3.051) +0.014

−0.016 3.100 (3.095) ± 0.019
ns 0.9689 (0.9702) ± 0.0037 0.9721 (0.9728) ± 0.0039
β - 12 (fixed)

µ [Mpc−1/2] - 3.5 (fixed)
H0 [km/s/Mpc] 68.13 (68.18) +0.39

−0.43 67.05 (67.09) ± 0.43
S8 0.817 (0.814) ± 0.011 0.803 (0.801) ± 0.011

Total χ2
min 1039.15 1109.79

Table 2.A.2: The mean (best-fit) ±1σ error of the cosmological parameters for
ΛCDM and the AQ model with β = 12, µ = 3.5 Mpc−1/2. Constraints are based on
the CMB, BAO, and R19 datasets.

z = 0.15 [64],

• Local Hubble constant measurement (R19): The measurement of the

local Hubble constant giving H0 = 74.03± 1.42 km/s/Mpc the SH0ES collabo-

ration [30].

In a series of tables we show the constraints on cosmological parameters in ΛCDM

and the AQ model with fixed model parameters utilizing the CMB and BAO datasets

(Table 2.A.1), and the CMB, BAO, and R19 datasets (Table 2.A.2). We show the

best-fit χ2 for individual experiments in these models in Table 2.B.1. The posterior

distributions for the relevant parameters are shown in Fig. 2.C.1 for the CMB and

BAO datasets, and in Fig. 2.C.2 for the CMB, BAO and R19 datasets.

The inclusion of more cosmological data does not change the conclusions made in

Sec. 2.3.1. The parameter changes we saw for Planck 2018 data alone shown in Table

2.1 are still present with the inclusion of more datasets. The difference between the

best-fit value of H0 in ΛCDM and the AQ model is narrowed when the BAO and R19

datasets are considered. However, the worse overall fits to the data in the AQ model
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2.C Extended Results for Free Model Parameters

with fixed model parameters, tell us that this comes at a price. In particular, the AQ

model provides a worse fit to the SH0ES likelihood than ΛCDM, as shown in Table

2.B.1, providing further proof that the effect of the scaling behavior on perturbations

in this model are too great to overcome to resolve the H0 tension.

Section 2.C

Extended Results for Free Model Parameters

In this Appendix we present the results of our MCMC analysis on ΛCDM and the

AQ model with free model parameters utilizing the TTTEEE Plik lite high-ℓ, and

TT and EE low-ℓ likelihoods. We give the constraints on cosmological parameters in

Table 2.C.1 and the posterior distributions for all parameters in Fig. 2.C.3.

These constraints show that with the effect of CMB lensing turned off, an AQ

scaling field which becomes dynamical after recombination provides a statistically

better fit to the Planck temperature and polarization data than ΛCDM with ∆χ2
min =

−14.87 as seen in Table 2.C.1. This is likely because the AQ field lowers the depth

of gravitational potentials, smoothing the CMB spectrum which mimics the effect of

gravitational lensing. Since the introduction of lensing results in a much better fit

to Planck measurements in the ΛCDM model, the AQ field brings the AQ model

into better agreement with Planck measurements by mimicking this effect. However

the resulting best-fit value of the Hubble constant is H0 = 60.57 km/s/Mpc. This

result, combined with the “S8-tension” and the AL anomaly present in Planck 2018

data, suggest the need for a more general analysis of cosmological data, with relaxed

assumptions of dark energy, lensing, and expansion history.
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Dataset ΛCDM β = 12, µ = 3.5
Planck high-ℓ TT, TE, EE 588.29 619.76

Planck low-ℓ TT 22.50 23.08
Planck low-ℓ EE 396.99 408.21
Planck lensing 9.19 21.66
BAO low-z 1.75 0.67
BAO high-z 3.47 12.55

SH0ES 16.96 23.86
Total χ2

min 1039.15 1109.79

Table 2.B.1: The best-fit χ2 per experiment for the standard ΛCDM model and the
AQ model with β=12 and µ = 3.5 Mpc−1/2. The BAO low-z and high-z datasets
correspond to 0.1 < z < 0.15 and 0.38 < z < 0.61 respectively. Constraints are based
on the CMB, BAO, and R19 datasets.

Parameter ΛCDM β, µ free

100ωb 2.140 (2.142) ± 0.015 2.097 (2.079) ± 0.020
ωc 0.1235 (0.1236) ± 0.0015 0.1252 (0.1256)+0.0018

−0.0021

100θs 1.04031 (1.04031) ± 0.00030 1.04024 (1.04032) ± 0.00032
τ 0.0459 (0.0473)+0.0083

−0.0065 0.0448 (0.0444)+0.0086
−0.0073

ln(1010As) 3.026 (3.030)+0.017
−0.014 3.018 (3.015)+0.019

−0.016

ns 0.9510 (0.9514)± 0.0045 0.9486 (0.9491) ± 0.0052
β - 13.3 (10.0)+1.6

−3.5

µ [Mpc−1/2] - 1.52 (1.35)0.230.51

H0 [km/s/Mpc] 65.17 (65.12) ± 0.064 62.5 (60.57)+1.5
−1.1

S8 0.870 (0.873) ± 0.019 0.836 (0.8216) ± 0.026
Total χ2

min 1575.67 1560.80

Table 2.C.1: The mean (best-fit) ±1σ error of the cosmological parameters in the
AQ model with free β and µ from our run using only Planck high-ℓ TT,TT,EE, and
low-ℓ TT and EE data (i.e. no lensing).
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Chapter 3

Microphysics of Early Dark Energy

With minor changes, this chapter is adapted from Sabla, V.I. & Caldwell,

R.R. “Microphysics of early dark energy.” Phys. Rev. D 106, 063526.

arXiv: 2202.08291 (2022).

Early dark energy (EDE) has proven to be one of the most promising classes

of early-universe solutions, with many models significantly reducing the H0 tension,

while yielding a comparable fit to the observational data compared to ΛCDM [20, 21,

65–79]. A leading example is standard EDE, consisting of a scalar field that briefly

bumps up the expansion rate between equality and recombination.

However, the perturbative dynamics of the canonical scalar field used in these

models appear to preclude a fully satisfactory solution. Planck data alone does not

favor EDE as a cosmological model. It is only with the inclusion of a late-universe

prior onH0 that EDE is favored in non-negligible amounts. This is avoided in analyses

with alternative CMB datasets, yet more work needs to be done to determine if these

differing constraints are physical, or due to experimental systematics [20–22]. More

importantly, EDE models tend to exacerbate the discrepancy between early- and late-

universe measurements of the structure growth parameter, known as the “S8 tension”.
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Microphysics of Early Dark Energy

A possible interpretation of this continuing tension is that new physics is required,

but it may not be a canonical scalar field.

Previous studies have investigated the implications of varying the sound speed in

EDE-like models from its canonical scalar field value with favorable results [69, 73].

In this chapter, we pursue a description of EDE as a phenomenological fluid com-

ponent, whose background evolution is matched to a family of viable EDE models.

The perturbative dynamics of this EDE fluid are specified by a gauge-invariant sound

speed, relating pressure and density perturbations, and a gauge-invariant anisotropic

stress, modeled either via an equation of state inspired by proposed dark sector stress

models [80, 81], or via an equation of motion formalism inspired by generalized dark

matter models [82]. We refer to the constitutive relations necessary to define this

perturbative sector as the microphysics of EDE. We explore what types of perturba-

tive evolution is necessary to strengthen and improve on current EDE solutions to

the Hubble tension, without specifying a particular physical model.

For canonical EDE scalar fields, the microphysics is fixed: the evolution of the

perturbations follow that of a single, uncoupled fluid with no anisotropic shear, and

a relationship between the density and pressure giving a gauge-invariant sound speed

of c2ϕ = 1. By exploring deviations from this framework, specifically with the addi-

tion of anisotropic shear, we implicitly explore the viability of non-scalar field EDE.

Examples of theoretical models that yield anisotropic stress include free-streaming

neutrinos [83] as well as more exotic cases such as topological defects, cosmic lattice

models such as elastic dark energy, and coherent vector fields [81, 84–90]. However,

these models are not specifically known to predict the full range of properties (equa-

tion of state history, parallel and perpendicular sound speeds) that are investigated

in this paper. Instead, we have constructed phenomenological models with general-

ized properties beyond the specific examples. This approach is similar in spirit to
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3.1 Phenomenological Fluid Model (PFM)

generalized dark matter [82] and elastic dark energy [80, 81] constructions.

We find that EDE with an added anisotropic stress can simultaneously soften both

the H0 and S8 tensions when compared to a scalar field EDE model, implying that

EDE need not be the result of a scalar field. Current data cannot definitively dis-

criminate among these possibilities, but future measurements may be more decisive.

This chapter is organized as follows. In Sec. 3.1 we outline our phenomenological

fluid parametrization of EDE. We describe the background solution to the Hubble

tension as well as the different microphysics variations that we analyze. In Sec. 3.2, we

present the cosmological data used to test the viability of the different microphysics

scenarios. Results are given in Sec. 3.3, and we conclude our discussion in Sec. 3.4

with our main findings. Additional details about the models considered and extended

results can be found in the Appendixes.

Section 3.1

Phenomenological Fluid Model (PFM)

We work in a scenario consisting of the standard cosmological model with cold dark

matter (CDM), and dark energy in the form of a cosmological constant. We intro-

duce an EDE component in the form of a phenomenological fluid with perturbative

dynamics that differ from a canonical scalar field. In this section we describe the

background fluid dynamics and introduce the constitutive relations necessary to con-

sistently describe the microphysics.
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3.1 Phenomenological Fluid Model (PFM)

3.1.1. Background dynamics

Our proposed scenario mimics the background evolution of standard EDE by speci-

fying a time-varying equation of state

wϕ(a) = −1 +
2

1 + (at/a)n
, (3.1)

which evolves from wϕ = −1 to wϕ = 1 at a time given by the transition scale

factor at, as shown in Fig. 3.1.1. The sharpness of this transition is controlled by the

parameter n with higher n corresponding to a faster and sharper transition in the

equation of state. This transition in wϕ resembles the thaw of a scalar field from the

Hubble friction, causing the energy density in our phenomenological fluid to spike in

a similar fashion, as shown in Fig. 3.1.2. We control the amount of energy added by

this fluid component by setting the energy density of EDE in the present day ρϕ,0. In

turn, the evolution of the energy density in the phenomenological fluid is given by

ρϕ(a) = ρϕ,0a
−6

(
1 + ant

1 + (at/a)n

)6/n

. (3.2)

Equations (3.1) and (3.2) give us a background model for EDE as a phenomenological

fluid, constituting a 3-parameter extension to ΛCDM.

Our EDE fluid model differs from the effective fluid approximation of EDE pre-

sented in Ref. [72] mainly through the definition of the equation of state. Reference

[72] defines

wϕ(a) =
1 + wn

1 + (ac/a)3(1+wn)
− 1, (3.3)

where wn = (nstd−1)/(nstd+1). Here the “std” subscript indicates Ref. [72] variables

as distinct from our parameters. In Ref. [72], the equation of state transitions from

a value of wϕ = −1 to wn at a time specified by a transition scale factor ac. Hence,
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3.1 Phenomenological Fluid Model (PFM)

the parameter nstd effectively controls the rate at which the energy density in the

field dilutes after becoming dynamical. In contrast, the final equation of state in our

phenomenological EDE fluid is fixed to wϕ = 1, with the energy density diluting as

a−6, and our parameter n controls the sharpness of the transition from the starting

value of wϕ. For constraints on the final equation of state see Refs. [69, 72]. We

choose the parametrization given in Eq. (3.1) to more generally model a component

whose energy density “gets out of the way” fast enough to not have adverse effects

at the background level, allowing us to focus on the perturbative changes discussed

in Sec. 3.1.2. However, these two parametrizations are equivalent for the cases of

nstd = ∞ and n = 6. At the background level, with n = 6, at = 3.1 × 10−4, and

log(1010Ω0) = −3.95, where Ω0 = ρϕ,0/ρcrit,0, this model faithfully reproduces the

standard EDE best-fit nstd = ∞ model of Ref. [72].

EDE as a solution to the Hubble tension is grounded in the theoretical description

of the CMB angular power spectrum. The CMB is sensitive to H0 via the angular

size of the first acoustic peak, which can be modeled as θs = rs(z∗)/DA(z∗), where

rs(z∗) is the comoving sound horizon at decoupling, and DA(z∗) is the comoving

angular diameter distance to the surface of last scattering. The sound horizon, which

depends on pre-recombination background energy densities, scales as H
−1/2
0 , whereas

DA(z∗), which is dependent on post-recombination energy densities, scales as H−1
0 .

We may decrease the size of the sound horizon by adding new components to the

energy density, and thereby expect an increase in the value of H0 inferred from the

CMB.

The above-described procedure is based solely on the background cosmological

model. However, linear perturbations of all components of the cosmic fluid play a

significant role in the creation of the CMB angular power spectrum.
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Figure 3.1.1: The evolution of the equation of state wϕ, the adiabatic sound speed c2a,
and the dynamical sound speed cϕ(a) for different values of acϕ as a function of scale
factor for a model with n = 6 and at = acϕ = 3.1 × 10−4. The vertical black dotted
line delineates the transition scale factor at.

3.1.2. Perturbative microphysics

Standard, scalar field EDE is relativistic and does not cluster, which is manifest in the

behavior of the density and velocity perturbations. As a result, EDE perturbations

lead to an enhancement in power of the first acoustic peak of the CMB when compared

to Planck data, which is compensated for by an increase in the dark matter density

ωcdm, and a subsequent increase in the spectral index ns. These changes lead to a

larger S8, increasing the S8 tension, and restricting the amount of EDE allowed by

the data. In fact, standard EDE never fully resolves the H0 tension. In this work, we

frame our EDE model as a phenomenological fluid and examine how changes to the

microphysics affect the clustering response, and ultimately the proposed solution to

the H0 tension.

For a generalized fluid component, the standard description of linearized perturba-

tions requires the specification of four variables: energy density, pressure, momentum

density, and anisotropic stress. Traditionally, the pressure perturbation δpϕ is set

via c2s = δpϕ/δρϕ, where c
2
s is the effective sound speed, normally set equal to unity,

and δρϕ is the density perturbation. However, this formulation is gauge dependent
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Figure 3.1.2: The evolution of fϕ = ρtot,ϕ/ρtot,ΛCDM − 1 as a function of scale factor.
The black solid line shows our baseline model with n = 6, log(1010Ω0) = −3.95, and
at = 3.1 × 10−4. The blue dashed line shows the baseline model with n = 2. The
orange dashed line shows the baseline model with at = 5.1× 10−4. The dotted green
line shows the baseline with log(1010Ω0) = −3.75. The gray dot-dashed line shows the
best-fit nstd = 3 oscillating scalar field model of EDE from Ref. [73] for comparison.

and lacks generality, so to be as exhaustive as possible we consider a gauge-invariant

formulation of the pressure perturbation

δpϕ = c2ϕδρϕ + 3H(c2ϕ − c2a)(ρϕ + pϕ)θϕ/k
2, (3.4)

where we work in Fourier space, θϕ is the velocity divergence, and c2ϕ is now the ef-

fective sound speed of our fluid, which is a free parameter in this generalized fluid

formulation. The adiabatic sound speed c2a takes on a simple form in our phenomeno-

logical model

c2a ≡
p′ϕ
ρ′ϕ

= wϕ −
w′

ϕ

3H(1 + wϕ)
= wϕ −

n

6
(1− wϕ), (3.5)

where primes denotes derivatives with respect to conformal time ′ = ∂/∂τ . In our

scenarios, wϕ starts near −1 at early times. Consequently, the adiabatic sound speed

starts out negative before evolving towards c2a = 1 on the same time scale as the

transition in the equation of state, as shown in Fig. 3.1.1 for a case with n = 6. The

higher the value of n, the more negative the starting value of c2a.
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Case c2ϕ Aσ Description

1 0 0 pressure-less fluid
2 cϕ(a) 0 dynamic cϕ with acϕ = at
3 cϕ(a) 0 dynamic cϕ with acϕ < at
4 cϕ(a) 0 dynamic cϕ with acϕ > at

Table 3.1.1: Outline of various sound speed cases considered for the shear-less PFM
model. In case 1 the sound speed is constant and set to c2ϕ = 0. Cases 2-4 consider the
dynamical sound speed presented in Eq. (3.8) with different transition scale factors.

The conservation of the stress-energy tensor yields two equations of motion for

the density contrast of the fluid δϕ = δρϕ/ρϕ and the velocity divergence,

δ′ϕ = −3H(c2ϕ − wϕ)δϕ − (1 + wϕ)
h′

2
−
[
k2 + 9H2(c2ϕ − c2a)

]
(1 + wϕ)θϕ/k

2 (3.6)

θ′ϕ = −H(1− 3c2ϕ)θϕ +
c2ϕ

1 + wϕ

k2δϕ − k2σϕ (3.7)

where H = a′/a is the conformal Hubble parameter, σϕ is the anisotropic stress, h

is the synchronous gauge metric potential (see [91]), and we have explicitly used our

definition of the gauge-invariant pressure perturbation. From Eq. (3.6) and (3.7) we

can see there are two free parameters that define the evolution of linear perturbations:

the effective sound speed of the fluid, c2ϕ, and the anisotropic shear σϕ. It is through

variation of these parameters that we test noncanonical EDE microphysics.

Varied sound speed. Our first test of microphysics comes with shear-less models

where the only perturbative parameter we have to define is the sound speed c2ϕ.

The role of the gauge-invariant sound speed is dependent upon the time rate of

change of the background equation of state. For a slowly varying equation of state, c2ϕ

determines the fluctuation response on subhorizon scales. Here, slow means w′
ϕ/wϕ ≲

a′/a. Whereas for a rapidly varying equation of state, w′
ϕ/wϕ ≳ a′/a, a new scale is

introduced into the system. Roughly speaking, for subhorizon perturbations in the
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3.1 Phenomenological Fluid Model (PFM)

range a′/a ≲ k ≲ w′
ϕ/wϕ, the effective sound speed may differ dramatically. Consider

c2eff = ⟨δp⟩/⟨δρ⟩, where the angle brackets indicate an appropriate time averaging.

Only on smaller scales, k ≳ w′
ϕ/wϕ, does the gauge-invariant sound speed c2ϕ play an

important role. It is in this way that a rapidly oscillating scalar field can achieve a

nonrelativistic sound speed, despite c2ϕ = 1. (See, for example, Refs. [92, 93].)

For the phenomenological fluid model described in Sec. 3.1.1, the equation of state

changes slowly, allowing c2ϕ = 1 to represent a canonical scalar field. It would certainly

be possible to introduce rapid variations in wϕ that affect the microphysics. However,

designing such a wϕ(t) time history seems baroque in the absence of a particular

underlying model to serve as a guide. Hence, for the purposes of this work, a fluid

with c2ϕ = 1 will be used to delineate a scalar field-like model, with deviations from

this value probing alternative microphysics scenarios.

We consider two distinct scenarios with varied sound speeds: (i) a constant sound

speed c2ϕ = 0, giving a pressureless fluid, and (ii) a dynamical formulation of the

sound speed such that

c2ϕ(a) = 1− 1

1 + (acϕ/a)
n
. (3.8)

In this dynamical model, the sound speed will transition from c2ϕ = 1, to c2ϕ = 0 at

a time specified by a critical scale factor acϕ , as shown in Fig. 3.1.1. Similarly to

the transition in the background equation of state, the sharpness of this transition

is set by n. This transition in the sound speed can either occur simultaneously with

the transition in the equation of state such that acϕ = at, or acϕ can be altered to

happen before or after the background transition as shown in Fig. 3.1.1. In this way

we have four distinct cases of non-canonical sound speeds which we outline in Table

3.1.1. Case 1 gives our pressureless fluid with a constant sound speed c2ϕ = 0. Cases

2-4 consider the dynamical sound speed model with different values of sound speed

transition scale factor acϕ .
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3.1 Phenomenological Fluid Model (PFM)

The acoustic dark energy (ADE) model of Ref. [69] explores the phenomenology

of noncanonical constant sound speed in a similar EDE fluid model. They find that

joint variations to the final equation of state and sound speed of the fluid can improve

on the fit to cosmological data given in a canonical case. Our variations to the sound

speed differ in that the final equation of state is held fixed at wϕ = 1, and the sound

speed is allowed to vary independently from the background evolution of the fluid. In

this way, we explicitly probe changes to the perturbative sector, decoupled from the

background fluid dynamics.

The background dynamics of our fluid give wϕ, and c2ϕ is a free parameter that

can vary as described above, leaving the anisotropic shear as the only variable left to

define. Standard EDE has no shear, so we must look to other components for realistic

models. We consider two different shear models, described below.

Shear models. For our first shear model, we follow the approach suggested in

Ref. [81] to model dark sector stress in terms of a gauge invariant equation of state

and define

(1 + wϕ)σϕ = Aσ

[
δϕ + 3H(1 + wϕ)θϕ/k

2
]
, (3.9)

where Aσ is a free scaling parameter. Depending on the sign of Aσ this shear is built

to damp or enhance the growth of the velocity perturbation at late times, resulting

in changes to the evolution of the EDE density perturbation at the same scales. We

will henceforth refer to this equation-of-state shear model, Eq. (3.9), as shear model

I.

The second shear model we consider is derived from the density and velocity

perturbations of our generalized fluid component and defines an equation of motion

for the shear

σ′
ϕ + 3H(c2ϕ − c2a)σϕ + Aσ(θϕ + αk2) = 0, (3.10)
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3.1 Phenomenological Fluid Model (PFM)

where α = (h′ + 6η′)/2k2, and Aσ is again a free scaling parameter, just like in

our previous shear model. Similarly to the generalized dark matter (GDM) stress

presented in Ref. [82], we choose the shear to be sourced by the velocity perturbation

θϕ, with the metric perturbation term included for gauge invariance. In the limit that

c2ϕ = 1 and wϕ = 0, this equation exactly matches the GDM stress of Ref. [82]. By

setting c2ϕ = wϕ = 1/3, we recover the equation of motion for the stress given by a

Boltzmann hierarchy for radiation truncated at the quadrupole [91]. This equation

of motion formalism of the shear, Eq. (3.10), will henceforth be referred to as shear

model II. Details on the specific form of both shear models considered can be found

in Appendix 3.A.

Generalized shear behavior. To better understand the physical meaning of our

microphysics parameters c2ϕ and Aσ, it is instructive to think about the anisotropic

shear within the context of the stress energy of our fluid. By perturbing the stress-

energy tensor it is simple to show that shear is only nonzero when the pressure

response to some scalar perturbation is anisotropic, with δp = (δpx + δpy + δpz)/3

and (ρ + p)σ = −(k̂ik̂j − 1
3
δij)δT

i
j . Let us now consider a mode travelling in the

ẑ direction, and rotate our system such that δpx = δpy = δp⊥ making δpz = δp∥.

Combining this framework with our two shear models we find that we can write c2ϕ

and Aσ in terms of the perpendicular and parallel sound speeds of the fluid, such that

c2ϕ =
1

3

(
2
δp⊥
δρ

+
δp∥
δρ

)
=

1

3
(2c2⊥ + c2∥), (3.11)

and

Aσ =
2

3

(
δp⊥
δρ

− δp∥
δρ

)
=

2

3
(c2⊥ − c2∥), (3.12)

in both shear models we consider. As expected, c2ϕ is just the spatially averaged sound

speed of our fluid. The amount of shear in our fluid, parametrized by Aσ, is controlled
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by the difference in the directional sound speeds. For an isotropic pressure pertur-

bation, Aσ = 0, and there is no shear contribution. When the pressure perturbation

becomes anisotropic, Aσ ̸= 0 and we have a nonzero shear contribution. This frame-

work also gives us physical bounds on our model parameters c2ϕ and Aσ. For stability

and causality, 0 ≤ c2⊥, c
2
∥ ≤ 1, which restricts 0 ≤ c2ϕ ≤ 1 and −2/3 ≤ Aσ ≤ 2/3.

The equations of motion given in Eq. (3.6) and Eq. (3.7), coupled with either

stress model constitute a full description of the perturbative sector dynamics. Besides

the three background parameters n, Ω0, and at, there are now two additional free

parameters describing the microphysics of our phenomenological EDE fluid, c2ϕ and

Aσ.

Section 3.2

Data and Methodology

We derive cosmological parameter constraints by running a complete Markov Chain

Monte Carlo (MCMC) using the public code CosmoMC (see https://cosmologist.

info/cosmomc/) [94] with modified versions of the Boltzmann solver CAMB to solve

the different linearized perturbations in each of our microphysics scenarios [95]. We

model neutrinos as two massless and one massive species with mν = 0.06 eV and

Neff = 3.046. Our dataset includes different combinations of early and late time data

described below:

• P18: Planck 2018 CMB measurements via the TTTEEE plik lite high-ℓ, TT

and EE low-ℓ, and lensing likelihoods [96].

• BAO: We use data from the BOSS survey (data release 12) at z =0.38, 0.51,

and 0.61 [5], low redshift measurements from the 6dF survey at z = 0.106 [97],

and the BOSS main galaxy sample at z = 0.15 [98].
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• R19: Local Hubble constant measurement by the SH0ES collaboration giving

H0 = 74.03± 1.42 km/s/Mpc [7].

• SN: Pantheon supernovae dataset consisting of the luminosity distances of 1048

SNe Ia in the redshift range of 0.01 < z < 2.3 [99].

Note that the plik lite likelihood is a foreground and nuisance marginalized version

of the full plik likelihood [96]. We have found that the two likelihoods return nearly

identical posterior distributions with statistically equivalent ∆χ2 values for cases of

standard EDE as a phenomenological fluid, as well as cases with altered sound speed

and nonzero anisotropic stress. Therefore, we use the plik lite likelihood in place

of the full likelihood for speed in analysis.

We start our analysis of the full phenomenological fluid model by setting our mi-

crophysics to match a canonical scalar field model with c2ϕ = 1 and Aσ = 0 and obtain

constraints on our background model parameters, as well as the six standard ΛCDM

parameters {ωb, ωc, θs, τ, ln(10
10As), ns}. This serves as a proof of concept that this

phenomenological EDE fluid model can resolve the Hubble tension in an equivalent

manner to scalar field EDE models. We then fix the background model parameters,

and vary the standard model parameters along with only our added microphysics pa-

rameters to directly test the impact of the altered microphysics scenarios. We first set

Aσ = 0 and consider four variations to the gauge-invariant sound speed c2ϕ, outlined

in Table 3.1.1. We then incorporate the two shear models presented in Sec. 3.1.2 and

parametrize our microphysics via Eqs. (3.11)-(3.12) to derive constraints on our mi-

crophysics parameters c2ϕ and Aσ. When considering models with anisotropic shear,

we assume the sound speed of the fluid is constant, but allowed to vary from the

canonical value of c2ϕ = 1. The dynamical c2ϕ(a) model given by Eq. (3.8) is only used

in models with no anisotropic shear (i.e. Aσ = 0). We perform our analysis with

a Metropolis-Hasting algorithm with flat priors on all parameters. Our results were
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obtained by running eight chains and monitoring convergence via the Gelman-Rubin

criterion, with R−1 < 0.05 for all parameters considered complete convergence [100].

Section 3.3

Results

In the following section we explore the implications of this phenomenological EDE

fluid model on CMB-derived cosmological parameters. We start by holding the micro-

physics parameters fixed to their canonical values, and show that our fluid model gives

a comparable resolution to the Hubble tension at the background level to standard

EDE [72, 73]. Next, we vary only the effective sound speed of the fluid and show that

altering c2ϕ alone does not improve the standard EDE solution. We then evaluate our

two shear models presented in Sec. 3.1.2 and find that shear model II with c2ϕ ∼ 0.55

and Aσ ∼ −0.2 not only improves the resolution to the Hubble tension provided by

standard EDE, but also softens the S8 tension in comparison to the standard EDE

solution, all while providing as comparable a fit to Planck 2018 data as the ΛCDM

model. Finally, we use Fisher forecasting to determine the power of CMB-S4 [101] to

distinguish altered microphysics from the standard EDE case. Extended results can

be found in Appendix 3.B.

3.3.1. Resolution to the Hubble tension
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P18 only P18+BAO+R19+SN
Parameter ΛCDM PFM ΛCDM PFM

100ωb 2.235(2.237)± 0.015 2.241(2.248)+0.017
−0.022 2.252(2.250)± 0.013 2.287(2.291)± 0.022

ωc 0.1202(0.1199)± 0.0013 0.1227(0.1224)+0.0017
−0.0029 0.11830(0.11843)± 0.00091 0.1269(0.1283)+0.0031

−0.0034

100θs 1.04089(1.04105)± 0.00032 1.04071(1.04081)± 0.00034 1.04115(1.04106)± 0.00028 1.04063(1.04061)± 0.00035
τ 0.0553(0.0551)± 0.0076 0.0541(0.0573)+0.0070

−0.0079 0.0608(0.0584)+0.0072
−0.0081 0.0575(0.0541)± 0.0074

ln(1010As) 3.046(3.045)± 0.015 3.049(3.056)± 0.015 3.055(3.051)+0.014
−0.016 3.065(3.063)± 0.015

ns 0.9645(0.9644)± 0.0043 0.9668(0.9714)+0.0046
−0.0061 0.9693(0.9685)± 0.0038 0.9809(0.9844)± 0.0065

1/n - < 0.525(0.136) - < 0.249(0.159)
rϕ - < 0.0222(0.0242) - 0.071(0.090)+0.027

−0.030

at × 104 - 4.02(2.78)+0.17
−1.50 - 3.07(3.12)+0.22

−0.44

H0 [km/s/Mpc] 67.27(67.45)± 0.56 67.90(68.07)+0.63
−0.91 68.16(68.07)± 0.41 70.32(70.82)± 0.89

S8 0.834(0.829)± 0.013 0.840(0.841)± 0.014 0.816(0.817)± 0.010 0.840(0.841)± 0.013
Total χ2

min 1014.09 1012.72 2073.37 2063.33
∆χ2

min - -1.37 - -10.04

Table 3.3.1: The mean (best-fit) ±1σ error of the cosmological parameters for ΛCDM and the PFM with c2ϕ = 1 and Aσ = 0
for the P18 dataset and a combined P18+BAO+R19+SN dataset. For the PFM the microphysics parameters are held fixed
and constraints are derived on the background model parameters only.
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We begin our analysis by confirming that our phenomenological fluid model can

resolve the Hubble tension in the same way as standard EDE. We set the microphysics

of our fluid such that it behaves like a canonical scalar field with c2ϕ = 1 and Aσ = 0. In

order to facilitate convergence of the MCMC chains, we reparametrize our background

model and derive constraints on rϕ ≡ ρϕ(at)/ρΛCDM(at), where ρΛCDM(at) represents

the contribution to the energy density of the standard model components at the tran-

sition scale factor at. Furthermore, instead of varying the sharpness parameter n, we

derive constraints on 1/n for computational ease. This background parametrization

in terms of rϕ is distinct from, but analogous to, the effective-fluid approximation

given in Ref. [72] where the fractional density is set via fede(zc) ≡ Ωϕ(zc)/Ωtot(zc)

with zc defining the time at which the fluid becomes dynamical. We assume flat

priors on all parameters, with 0.1 < 1/n < 1, 0 < rϕ < 1, and 2.49 < at × 104 < 9.21,

to keep the transition before recombination. We show parameter constraints for the

background model and standard model parameters in Table 3.3.1 for the PFM with a

combination of different datasets. The best-fit ΛCDM model is shown for comparison.

Posterior distributions for all relevant parameters are shown in Figs. 3.3.1 and 3.3.2.

As can be seen in Table 3.3.1, our phenomenological fluid provides a similar reso-

lution to the Hubble tension as the standard EDE model of Refs. [72, 73], when con-

sidering the same datasets. For a combined analysis using the P18+BAO+R19+SN

datasets outlined in Sec. 3.2, this fluid model of EDE yields a best-fit value of H0 =

70.82 km/s/Mpc, reducing the Hubble tension with late-universe measurements to

∼ 2σ, while fitting the full suite of data better than ΛCDM with ∆χ2
min = −10.4. We

find a preference for a nonzero amount of this EDE fluid at 2σ with rϕ = 0.071+0.027
−0.030,

peaking at at = 3.07+0.22
−0.44 × 10−4. As expected, the S8 tension is exacerbated with

S8 = 0.840±0.013. Similarly to scalar field EDE, this appreciable increase in H0 only

occurs when a late-universe prior on the Hubble constant is used in analysis. Consid-
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ering Planck 2018 data alone yields H0 = 68.07 km/s/Mpc, in statistical agreement

with the best-fit ΛCDM value. Putting this all together, this phenomenological fluid

model proves to behave just like a standard EDE model at the background level.

Furthermore, these results show good agreement with the ADE model presented

in Ref. [69]. While there is no direct parameter mapping between our two models,

our phenomenological fluid EDE model is comparable to the canonical ADE model of

Ref. [69], as we consider the same microphysics model with different parametrizations

of a phenomenological standard EDE fluid. Our constraints on the full dataset shown

in Table 3.3.1 are in good agreement with the cADE constraints given in Table I of

Ref. [69]. The variations between our constraints can be explained by slight differences

in our models and analysis. Our analysis of our phenomenological fluid EDE model

considers an extra parameter, n, when compared to Ref. [69], however we still achieve

similar results. Furthermore, we base our analysis on the updated Planck 2018 data

[4] as opposed to the Planck 2015 data [103]. Despite these differences, our results

are still statistically comparable to the cADE parametrization, suggesting consistency

between our two models.

With these results we have shown that we can mimic the solution to the Hubble

tension that scalar field EDE provides without specifying a particular physical model.

In order to directly compare the impact of altering the microphysics in this model, we

define a baseline case for which the background model parameters are fixed to n = 6,

log(1010Ω0) = −3.95, and at = 3.1 × 10−4. For this baseline case, the microphysics

parameters are also held fixed at their canonical values of c2ϕ = 1 and Aσ = 0.

This baseline model gives a 5.7% spike in the energy density right around matter-

radiation equality, matching the background evolution of the best-fit nstd = ∞ model

of Ref. [72]. Parameter constraints for this baseline model are given in Table 3.3.2.

We can now use this phenomenological fluid model to assess the viability of non-
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Parameter PFM - baseline case

100ωb 2.263(2.263)± 0.015
ωc 0.1261(0.1259)± 0.0011

100θs 1.04059(1.04065)± 0.00029
τ 0.0542(0.0564)± 0.0072

ln(1010As) 3.057(3.061)± 0.014
ns 0.9747(0.9760)± 0.0042
n 6 (fixed)

log(1010Ω0) -3.95 (fixed)
at 0.00031 (fixed)

H0 [km/s/Mpc] 69.04(69.11)± 0.58
S8 0.849(0.849)± 0.013

Total χ2
min 1013.39

∆χ2
min -0.70

Table 3.3.2: The mean (best-fit) ±1σ error of the cosmological parameters for
baseline PFM with c2ϕ = 1 and Aσ = 0. Constraints are based on the P18 dataset.

scalar field EDE via altered microphysics. Specifically, the presence of anisotropic

shear can be used as a diagnostic of any EDE models that arise from anisotropic

media, like cosmic strings or cosmic lattice models [84, 87] or coherent vector fields

[90], where isotropy is preserved at the background level, but broken in the evolution

of linear perturbations. These deviations from the baseline case manifest as changes

to the microphysics of our phenomenological fluid, which we discuss in the following

sections.

3.3.2. Varying the sound speed
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Figure 3.3.1: Top: Posterior distributions of the standard model parameters for the
ΛCDM model (red) and the PFM with c2ϕ = 1 and Aσ = 0 (blue). Bottom: Posterior
distributions of the standard model parameters vs. the background PFM parameters
for the PFM with c2ϕ = 1 and Aσ = 0. The darker inner (lighter outer) regions
correspond to 1σ(2σ) confidence intervals. The SH0ES collaboration measurement of
H0 = 73.04± 1.04 km/s/Mpc and the KiDS-1000 weak lensing survey measurement
of S8 = 0.759+0.024

−0.021 are shown in the orange and purple bands, respectively [8, 102].
Distributions are generated with the P18+BAO+R19+SN datasets.
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Figure 3.3.2: Posterior distributions of the background PFM parameters for the PFM
with c2ϕ = 1 and Aσ = 0. The darker inner (lighter outer) regions correspond to 1σ(2σ)
confidence intervals. Distributions are generated with the P18+BAO+R19+SN
datasets.
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Parameter PFM - case 1 PFM - case 2 PFM - case 3 PFM - case 4

100ωb 2.185(2.176)± 0.014 2.274(2.280)± 0.015 2.184(2.182)± 0.014 2.263(2.266)± 0.015
ωc 0.1111(0.1117)± 0.0014 0.1163(0.1160)± 0.0013 0.1112(0.1114)± 0.0014 0.1261(0.1264)± 0.0012

100θs 1.03974(1.03966)± 0.00030 1.04081(1.04082)± 0.00031 1.03975(1.03966)± 0.00030 1.04059(1.04063)± 0.00030
τ 0.0642(0.0622)+0.0072

−0.0093 0.0641(0.0650)+0.0074
−0.0091 0.0636(0.0619)± 0.0082 0.0541(0.0528)± 0.0077

ln(1010As) 3.053(3.049)+0.014
−0.018 3.070(3.071)+0.014

−0.017 3.051(3.047)± 0.016 3.057(3.056)± 0.015
ns 0.9617(0.9602)± 0.0042 0.9707(0.9713)± 0.0044 0.9615(0.9613)± 0.0041 0.9746(0.9733)± 0.0043

acϕ × 104 - 3.1 (fixed) 0.3 (fixed) 30 (fixed)
H0 [km/s/Mpc] 74.39(73.97)± 0.79 73.27(73.45)± 0.73 74.34(74.13)± 0.80 69.02(68.96)± 0.60

S8 0.743(0.749)± 0.014 0.752(0.749)± 0.013 0.742(0.744)± 0.015 0.849(0.850)± 0.013
Total χ2

min 1326.47 1087.30 1323.68 1013.28
∆χ2

min +312.38 +73.21 +309.59 -0.81

Table 3.3.3: The mean (best-fit) ±1σ error of the cosmological parameters for cases 1-4 of our PFM model with varied
sound speeds, outlined in Table 3.3.5. The background model is fixed for all cases to n = 6, log(1010Ω0) = −3.95, and
at = 3.1×10−4 for direct comparison to the baseline case. All cases considered have no added anisotropic shear. Constraints
are based on the P18 dataset.
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We have shown that a phenomenological fluid model can solve the Hubble tension

in the most minimal microphysics scenario with a canonical sound speed of c2ϕ = 1

and no anisotropic shear. Before including anisotropic shear in our microphysics

scenario, we investigate how changing only the effective sound speed of the fluid

alters cosmological parameter estimation, while holding Aσ = 0. The background

model parameters are fixed to n = 6, log(1010Ω0) = −3.95, and at = 3.1 × 10−4

for ease in comparison to the baseline case. We then vary the sound speed from its

baseline value of c2ϕ = 1, considering the four alternative cases, each with no added

anisotropic shear, outlined in Table 3.1.1. We consider two cases for comparison. The

first is ΛCDM, used as a control. The second is the baseline model, used for direct

comparison of the altered microphysics.

The results of the MCMC analysis, consisting of constraints on cosmological pa-

rameters for cases 1-4 are presented in Table 3.3.3. We show the posterior distribu-

tions for the relevant parameters in these models in Fig. 3.3.3. We restrict our dataset

to only include Planck 2018 data to focus on the CMB inference of H0 within this

phenomenological fluid. We present results for extended datasets in Appendix 3.B.

We can see from Table 3.3.3 that setting c2ϕ = 0 in case 1 gives values of H0 and

S8 that are in better agreement with local measurements than the baseline model.

For case 1, the Hubble tension is reduced even further from the baseline model to

< 1σ, with a best-fit value of H0 = 73.97 km/s/Mpc, compared with the SH0ES

Collaboration measurement of H0 = 73.2 ± 1.3 km/s/Mpc, shown by the orange

bands in Fig. 3.3.3 [7]. Case 1 also offers a complete resolution to the S8 tension,

with a best-fit value of S8 = 0.749, compared to the measurement from the KiDS-1000

weak lensing survey of S8 = 0.759+0.024
−0.021, shown by the purple bands in Fig. 3.3.3 [102].

While the cosmological parameter estimation may be favorable in case 1, the fit to

the data is significantly degraded, with a ∆χ2
min = 312.38 compared to the ΛCDM
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model.

To better understand the effect of setting c2ϕ = 0 in case 1, we take a closer

look at the fluid perturbations equations of motion. Whenever c2ϕ = 0, the pressure

perturbation simplifies to

δpϕ = −3H(ρϕ + pϕ)

[
wϕ −

w′
ϕ

3H(1 + wϕ)

]
θϕ/k

2. (3.13)

Using this to simplify Eq. (3.7) we can see that

θ′ϕ = −Hθϕ, (3.14)

meaning that with adiabatic initial conditions, where θinit = 0, the velocity divergence

of our fluid is always zero. With θϕ = 0, we can see from Eq. (3.13) that δpϕ = 0,

meaning that this fluid clusters. By the same logic, Eq. (3.6) simplifies to

δ′ϕ = −(1 + wϕ)
h′

2
+ 3Hwϕδϕ, (3.15)

where we see that when c2ϕ = 0, there is nothing to damp the growth of density

perturbations of our phenomenological fluid. This can be seen in Fig. 3.3.4, where

we show the evolution of the density perturbations of all relevant components as a

function of scale factor. Compared to the baseline model shown in gray, the density

perturbation of the EDE fluid in case 1, shown in black, is non-negligible at late

times, dominating over the radiation components at late times, and over the baryonic

contribution for a brief period when the background fluid density first spikes.

This addition of a clustering fluid component deepens the gravitational potentials

and decreases power over the first acoustic peak. The cold dark matter (CDM)

and baryon densities in this model must be lowered to account for this additional
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clustering component as seen in Fig. 3.3.3. The change in Ωch
2 is also why we see a

slightly higher H0 in case 1 than in the baseline model; a lower CDM density shifts

the acoustic peaks towards low ℓ, so to maintain the correct angular scales in the

CMB anisotropy pattern, H0 must be raised even more, as seen in Table 3.3.3. It is

important to note that the decrease we see in the S8 parameter in case 1 is mostly

driven by the change in the matter density since S8 = σ8
√

Ωm/0.3, where σ8 gives

the amplitude of matter fluctuations. With a lower matter density, the structure

growth parameter S8 is decreased while keeping the actual amplitude of fluctuations

σ8 effectively fixed. Case 1 gives σ8 = 0.8284+0.0062
−0.0072, in good agreement with the

baseline constraint of σ8 = 0.8305± 0.0060.

This description of the c2ϕ = 0 model offers insight on the dynamical sound speed

model as well. From the constraints presented in Table 3.3.3, we can see that the

baseline case with c2ϕ = 1 and case 4 are virtually indistinguishable. In case 4, the

sound speed speed does not begin the transition from c2ϕ = 1 to c2ϕ = 0 until after

the equation of state has transitioned to wϕ = 1. With virtually no change in the

fit to the data from the baseline case, this suggests that once the background fluid

density begins to redshift away, the sound speed has little impact. Alternatively, in

case 3, c2ϕ = 0 well before the fluid becomes dynamical and relevant. As such, the

parameter constraints and fit to the data are similar to those for case 1, where c2ϕ = 0

always. Case 2 lies in the middle with the transition in the sound speed and equation

of state happening simultaneously. In this case, we see the fit to the data begins to

degrade and the best-fit parameters shift towards their case 1 values. Looking at the

evolution of the density perturbations in each of these cases makes these parameter

constraints clear. In Fig. 3.3.4, we see that δρϕ in cases 2 and 3 both dominate over

the contribution from baryons and radiation for a brief period, resulting in the same

changes to the gravitational potentials that cause the poor fit to the data in case 1.
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However, δρϕ in case 4 only begins to grow once the background density of the fluid

is negligible so we do not see the same domination at late times.

These constraints tell a simple story: the earlier that c2ϕ = 0, the longer the fluid

clusters and the growth of density perturbations are left unchecked, resulting in a

worse fit to the data. After the fluid starts redshifting away, the low background

density keeps the sound speed from leaving too strong an imprint. Hence, dynamical

cϕ(a) models with acϕ > at are effectively the same as the baseline model, and models

with acϕ < at are effectively the same as the c2ϕ = 0 model. As the sound speed can

only take values of 0 ≤ c2ϕ ≤ 1, setting c2ϕ = 0 represents the maximally different case

of those we consider here.

Putting all of these constraints together, it seems that altering the sound speed

of EDE from its canonical value of c2ϕ = 1 without jointly altering the background

dynamics of the fluid, as suggested in Refs. [69, 72], is not preferred by Planck 2018

data, despite providing preferable constraints on the Hubble constant and structure

growth parameter.

3.3.3. Shear model I

We have shown that only changing the sound speed of our phenomenological EDE

fluid cannot improve the solution to the Hubble tension. We now move on to including

anisotropic shear in our model, starting with shear model I, given by Eq. (3.9). We

hold the background model fixed at n = 6, log(1010Ω0) = −3.95, and at = 3.1× 10−4

to facilitate direct comparison to the baseline case, and vary c2⊥ and c2∥ alongside our

six ΛCDM parameters to derive constraints on c2ϕ and Aσ. Parameter constraints

for this shear model are presented in Table 3.3.4. Posterior distributions for relevant

parameters in this model, along with shear model II, are presented in Fig. 3.3.5-3.3.6,

with ΛCDM and baseline posteriors included for comparison.

As we can see from Table 3.3.4, the best-fit microphysics parameters for this shear
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Parameter PFM w/ shear I

100ωb 2.256(2.225)± 0.016
ωc 0.1261(0.1262)± 0.0013

100θs 1.04062(1.04043)± 0.00033
τ 0.0541(0.0531)± 0.0073

ln(1010As) 3.058(3.056)± 0.014
ns 0.9737(0.9727)± 0.0044
c2ϕ 0.770(0.848)+0.150

−0.097

Aσ −0.068(−0.031)+0.063
−0.070

H0 [km/s/Mpc] 68.97(68.83)± 0.62
S8 0.850(0.850)± 0.013

Total χ2
min 1013.31

∆χ2
min -0.78

Table 3.3.4: The mean (best-fit) ±1σ error of the cosmological parameters for
phenomenological fluid model with shear model I. The background model parameters
are held fixed at n = 6, log(1010Ω0) = −3.95, and at = 3.1 × 10−4. Constraints are
derived from the P18 dataset and ∆χ2

min is calculated with respect to the best-fit
ΛCDM model presented in Table 3.3.1.

model make it virtually indistinguishable from the baseline case with c2ϕ = 0.848 and

Aσ = −0.031. To get a clear picture as to why this model of anisotropic shear is

so disfavored by data, it is useful to take a closer look at how the addition of this

shear changes the CMB angular power spectrum via its interactions with the other

perturbative quantities of the EDE fluid.

The magnitude and sign of the EDE shear is controlled via Aσ. The total shear

in the cosmic fluid πtot, is given by the sum of all nonzero shear components πtot =

Σi(1 + wi)σi. Besides our EDE component, the only other shear contributions come

from radiation for which σγ, σν < 0. This means that for a model with Aσ = 0,

πtot < 0. When (1+wϕ)σϕ > 0, due to a positive Aσ, the EDE shear adds destructively

to the total shear in the system, lowering the magnitude of πtot. Conversely, when

(1 + wϕ)σϕ < 0, due to a negative Aσ, the EDE shear enhances the total shear

in the system, increasing the magnitude of πtot. These changes to the total shear

contribution compared to the baseline model have a significant impact on the Weyl
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potential Φ, given by

Φ = −8πG

2k2
a2
∑
i

ρi

[
δi + 3H(1 + wi)θi/k

2 +
3

2
(1 + wi)σi

]
, (3.16)

where i sums over all components of the total energy density. Hence, when we increase

or decrease the magnitude of the total shear contribution, the gravitational potentials

get deeper or shallower, respectively.

In addition to the inherent impact of adding a new component to the total shear,

σϕ influences the evolution of the velocity perturbation of the EDE via Eq. (3.7),

which in turn alters the evolution of the density perturbation. At large scales, we can

analytically solve for the scaling behavior of these perturbations which we parametrize

via an effective equation of state such that δϕ ∝ a−3(1+wδ) and θϕ ∝ a−3(1+wθ). During

matter domination we find that

wδ = −1

4

(
5− 2Aσ +

√
9 + 4Aσ(Aσ − 1)− 8c2ϕ

)
, (3.17)

wθ = − 1

12

(
17− 6Aσ + 3

√
9 + 4Aσ(Aσ − 1)− 8c2ϕ

)
, (3.18)

which tell us that as you increase Aσ, both δϕ and θϕ decay more rapidly, regardless

of the background equation of state of the fluid.

For very positive Aσ, the density and velocity perturbations decay quicker than

the baseline Aσ = 0 case, causing the overall magnitude of the Weyl potential to be

decreased, and vice versa for negative Aσ cases. The overall changes to the Weyl

potential due to the inherent impact of σϕ and the subsequent impact on δϕ and θϕ

can be seen in Fig. 3.3.7 where we plot the evolution of the Weyl potential at low-k for

different manifestations of shear model I. We can see that for very positive Aσ, shown

in blue, the gravitational potentials are shallower than the baseline model, shown

in black, for the brief period following the transition in the background equation of
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state when the EDE fluid has a non-negligible background abundance. Due to the

rapid scaling of the perturbations and the background behavior of the fluid density,

this suppression of the Weyl potential is short lived, and the gravitational potentials

return to their baseline trajectory at late times. When Aσ < 0, we see the opposite

behavior. The Weyl potential is deepened, and because δϕ and θϕ do not decay as

quickly as they do in the baseline model, their effect lasts longer. When Aσ ≲ −0.6,

the fluid perturbations dominate over the standard model components, causing the

Weyl potential to diverge from its baseline trajectory as seen through the green curve

in Fig. 3.3.7.

For fixed c2ϕ and Aσ, this behavior at large scales leads to large changes at ℓ ≲ 1000

in the CMB angular power spectrum as seen in Fig. 3.3.8 where we plot the residuals

between the best-fit ΛCDM model and shear model I, for choices of positive and

negative Aσ. We can see that for Aσ = −0.6, shown in red, the divergence of the

Weyl potential suppresses power over the first acoustic peak and enhances power at

ℓ ≲ 100, when compared to the baseline model. These large changes to the power

spectrum for non-negligible amounts of shear explain the best-fit parameters for shear

model I presented in Table 3.3.4. Planck 2018 data constrains the amount of shear

allowed in this model to be very close to zero with Aσ = −0.068+0.063
−0.070, suggesting that

the large-scale influence of this equation-of-state formulation of shear on gravitational

potentials is too large an obstacle to overcome. Putting this all together, if EDE has

some anisotropic shear component, the data suggests it should not be introduced in

the form of Eq. (3.9) due to the large-scale influence of the shear on the evolution of

gravitational potentials.

3.3.4. Shear model II
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Figure 3.3.3: Posterior distributions for the standard model parameters in the PFM
with noncanonical sound speeds. For all PFM cases, the background model param-
eters are set to n = 6, log(1010Ω0) = −3.95, and at = 3.1 × 10−4, and there is no
anisotropic shear (Aσ = 0). In red we show case 1 for which there is a constant
sound speed set to c2ϕ = 0. In blue we show case 2 for which the sound speed is
dynamical, given by Eq. (3.8), and acϕ = at. Posteriors for the ΛCDM and baseline
PFM are shown in green and gray, respectively, for comparison. The darker inner
(lighter outer) regions correspond to 1σ(2σ) confidence intervals. The SH0ES Col-
laboration measurement of H0 = 73.04 ± 1.04 km/s/Mpc and the KiDS-1000 weak
lensing survey measurement of S8 = 0.759+0.024

−0.021 are shown in the orange and purple
bands, respectively [8, 102]. Distributions are generated with the P18 dataset.
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Figure 3.3.4: The evolution of the density perturbation of all relevant components as a
function of scale factor for the k = 0.1 Mpc−1 wave mode. These curves are generated
from a shear-less model with n = 6, log(1010Ω0) = −3.95, and at = 3.1 × 10−4

with the standard model parameters set to their ΛCDM best-fit values. The density
perturbation of our phenomenological fluid δρϕ is shown in case 1 (black) and the
baseline model (gray) for comparison. Setting c2ϕ = 0 results in the unhindered
growth of density fluctuations at later times as seen by the black curve.
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Figure 3.3.5: Top: Posterior distributions of the standard model parameters
for the PFM with shear model I (red) and shear model II (blue) with n = 6,
log(1010Ω0) = −3.95, and at = 3.1 × 10−4. Posteriors for the ΛCDM model (green)
and the baseline PFM (gray) are shown for comparison. Bottom: Posterior distribu-
tions of the standard model parameters vs the microphysics parameters for the PFM
with shear model I (red) and shear model II (blue) with n = 6, log(1010Ω0) = −3.95,
and at = 3.1 × 10−4. The darker inner (lighter outer) regions correspond to 1σ(2σ)
confidence intervals. The SH0ES Collaboration measurement of H0 = 73.04 ± 1.04
km/s/Mpc and the KiDS-1000 weak lensing survey measurement of S8 = 0.759+0.024

−0.021

are shown in the orange and purple bands, respectively [8, 102]. Distributions are
generated with the P18 dataset. Both shear models converged to a negligible amount
of added shear, with c2ϕ very nearly equal to unity, making them virtually indistin-
guishable from the baseline model.
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Figure 3.3.6: Posterior distributions for the microphysics parameters c2ϕ and Aσ in
the PFM model with shear model I (red) and shear model II (blue) with n = 6,
log(1010Ω0) = −3.95, and at = 3.1 × 10−4. The darker inner (lighter outer) regions
correspond to 1σ(2σ) confidence intervals. In both cases, the posterior distributions
favor Aσ = 0, with a slight preference for negative Aσ, particularly in shear model II.
Distributions are generated with the P18 dataset.
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Figure 3.3.7: Evolution of the Weyl gravitational potential as a function of scale
factor for the k = 7 × 10−6 Mpc−1 wave mode in shear model I. The black curve
shows the baseline model with no added shear. The blue (orange) curves show that a
case with positive (negative) Aσ makes the potential wells shallower (deeper) for the
brief period of time that the background density of the EDE fluid is relevant. The
green curve shows that for a very anisotropic fluid (Aσ < −0.6), the Weyl potential
diverges from its baseline evolution. The black-dashed line shows the transition scale
factor at, at which the fluid becomes dynamical.
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Figure 3.3.8: Temperature and polarization power spectrum residuals between the
best-fit ΛCDM model and the best-fit fluid model with shear model I with positive
(orange) and negative (red) Aσ. The best-fit baseline model is shown in blue for
comparison. Residuals from Planck 2018 data are shown in gray. Left (right) vertical
axis scaling is for multipoles less (greater) than ℓ = 30.
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Figure 3.3.9: Temperature power spectrum for shear model II. All curves are gener-
ated with the standard model parameters set to their best-fit ΛCDM values from Table
3.3.1. For the PFM models we set n = 6, at = 3.1× 10−4, and log(1010Ω0) = −3.95.
The blue curves shows the baseline model with c2ϕ = 1, and Aσ = 0, the orange curve
shows shear model II with a fixed positive Aσ, and the green curve shows shear model
II with a fixed negative Aσ.
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Figure 3.3.10: Temperature and polarization power spectrum residuals between the
best-fit ΛCDM model and the best-fit fluid model with shear model II with positive
(orange) and negative (red) Aσ. The best-fit baseline model is shown in blue for
comparison. Residuals from Planck 2018 data are shown in gray. Left (right) vertical
axis scaling is for multipoles less (greater) than ℓ = 30.
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Parameter PFM w/ shear II shear II - Aσ = 0.6 shear II - Aσ = −0.6 shear II - Aσ = −0.2

100ωb 2.256(2.257)± 0.016 2.069(2.070)± 0.012 2.275(2.269)± 0.016 2.250(2.250)± 0.015
ωc 0.1255(0.1257)± 0.0013 0.1260(0.1259)± 0.0011 0.1245(0.1247)± 0.0012 0.1245(0.1248)± 0.0012

100θs 1.04067(1.04059)± 0.00031 1.04007(1.04009)± 0.00032 1.04026(1.04032)± 0.00030 1.04067(1.04065)± 0.00030
τ 0.0541(0.0569)± 0.0078 0.0391(0.0419)+0.0089

−0.0072 0.0546(0.0528)± 0.0075 0.0550(0.0562)± 0.0074
ln(1010As) 3.058(3.060)± 0.015 3.035(3.039)+0.017

−0.014 3.063(3.062)± 0.014 3.060(3.063)± 0.014
ns 0.9740(0.9772)± 0.0047 0.9591(0.9603)± 0.0038 0.9618(0.9602)± 0.0041 0.9723(0.9715)± 0.0042
c2ϕ 0.778(0.951)+0.170

−0.087 0.7 (fixed) 0.3 (fixed) 0.55 (fixed)

Aσ −0.08(0.08)+0.15
−0.10 0.6 (fixed) -0.6 (fixed) -0.2 (fixed)

H0 [km/s/Mpc] 69.24(69.11)± 0.62 67.07(67.13)± 0.53 69.64(69.52)± 0.61 69.56(69.41)± 0.60
S8 0.843(0.847)± 0.014 0.863(0.864)± 0.012 0.830(0.8311)± 0.013 0.833(0.838)± 0.013

Total χ2
min 1013.48 1355.69 1031.73 1016.50

∆χ2
min -0.61 341.60 17.64 2.41

Table 3.3.5: The mean (best-fit) ±1σ error of the cosmological parameters for phenomenological fluid model with shear
model shear model II with n = 6, log(1010Ω0) = −3.95, at = 3.1× 10−4, and different choices of c2ϕ and Aσ. Constraints are
derived from the P18 dataset and ∆χ2

min is calculated with respect to the best-fit ΛCDM model presented in Table 3.3.1.
The best-fit values for the Aσ = 0.6 and Aσ = −0.6 cases were used to generate the orange and red curves in Fig. 3.3.8,
respectively.
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Our second shear model is defined via a physically motivated [82], gauge-invariant

equation of motion given by Eq. (3.10). Similarly to shear model I, the best-fit pa-

rameters for shear model II with free c2ϕ and Aσ, given in Table 3.3.5, are statistically

indistinguishable from the best-fit baseline model, given in Table 3.3.2. However, as

can be seen by the blue curve in Fig. 3.3.6, the 1σ constraints on the microphysics

parameters are much looser in shear model II than they are in shear model I. Specif-

ically, a degeneracy between c2ϕ and Aσ exists allowing a non-negligible amount of

negative shear coupled with a lower effective sound speed.

These constraints are made clearer by looking at the effect of positive and negative

Aσ values on the CMB angular power spectrum. Figure 3.3.9 shows the temperature

power spectrum for cases with very positive Aσ = 0.6 (orange) and very negative

Aσ = −0.6 (green), with the baseline case and the best-fit ΛCDM model shown in

blue, and black, respectively, for comparison. We show parameter constraints for

shear model II with the same positive and negative Aσ in Table 3.3.5.

In the baseline case, which mimics standard EDE, power is enhanced over the

first acoustic peak and all peaks are shifted towards large scales. These changes to

the power spectrum result in the parameter shifts seen in the best-fit baseline model

shown in Table 3.3.2, most notably, increased ωc andH0 values. On top of the changes

to the power spectrum we see in the baseline case, when Aσ is positive, we see an

added suppression of power over the second acoustic peak. This suppression requires

a higher value of ωb as seen in Table 3.3.5, restoring the heights of the first and

second acoustic peaks into agreement with Planck 2018 data, in conjunction with

changes to the CDM density. The key difference between this model and the baseline

case is that the requirement of a higher baryon density also shifts the acoustic peaks

towards larger scales, relinquishing the need for a higher value of the Hubble constant,

resulting in a best-fit value of H0 = 67.13 km/s/Mpc, virtually unchanged from the
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best-fit ΛCDM value. Overall, these parameter changes lead to a poor fit to the

data seen through the residuals between this positive Aσ case and the best-fit ΛCDM

model shown by the orange curve in Fig. 3.3.10.

Turning to a negative shear case, we get a different story. From Fig. 3.3.6 we know

that Planck 2018 data allows for a non-negligible, but not large, amount of negative

shear. For explanatory purposes we focus on an extremal case with Aσ = −0.6 and

c2ϕ = 0.3 to show the full effect of a negative shear in this model. From Fig. 3.3.9,

we can see that when we add in this negative shear, leaving all ΛCDM parameters

unchanged from their best-fit values, the enhancement over the first acoustic peak that

comes in the baseline model is avoided, giving a temperature power spectrum whose

main difference from the ΛCDM model is a shift in all acoustic peaks towards small

scales. As can be seen in Table 3.3.5, this leads to an even higher Hubble constant

than the baseline case with H0 = 69.64 ± 0.61 km/s/Mpc. Similarly to the baseline

case, the CDM density must be increased from its ΛCDM value, but in this model

the added shear counteracts the deepening of the gravitational potentials caused by

the increase in the matter density, leaving the S8 value in statistical agreement with

ΛCDM giving S8 = 0.830±0.013. So, in addition to strengthening the solution to the

H0 tension, this model does not exacerbate the S8 tension like standard EDE models.

As can be seen in Fig. 3.3.10, the best-fit model with Aσ = −0.6 results in a slightly

poorer fit to Planck 2018 data than the baseline case with a ∆χ2
min = 17.64, as is to

be expected for this extremal case.

For a more reasonable choice of c2ϕ = 0.55 and Aσ = −0.2, which lies within

the 2σ contours in Fig. 3.3.6, we see the same shifts in H0 and S8 as we do in the

extremal case, shown in Fig. 3.4.1, but with a comparable fit to the data as ΛCDM.

From these results we see that the addition of a negative shear that evolves according

to the equation of motion given in Eq. (3.10) strengthens EDE as a solution to the
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Hubble tension. In this case, the S8 tension is not exacerbated by the inclusion of

our new component while preserving the solution to the Hubble tension.

This can be seen more clearly in comparison with local measurements of S8 and

H0. Comparing our S8 constraints to the combined DES-Y3 constraint of S8 =

0.776 ± 0.017 [6], we find that our baseline EDE model with a best-fit S8 = 0.849

gives a χ2
DES = 18.44, whereas shear model II with Aσ = −0.2 gives χ2

DES = 13.30

with its best-fit value of S8 = 0.838. Compared with the ΛCDM model best-fit

value of S8 = 0.829 and χ2
DES = 9.72, our negative shear model offers a significant

improvement over standard EDE.

Similarly, as a resolution to the Hubble tension, we see a slightly better fit with our

negative shear model to the SH0ES Collaboration measurement of H0 = 73.04± 1.04

km/s/Mpc [8] which for ΛCDM leads to a χ2
SH0ES = 28.89. The baseline EDE model

softens this tension with a best-fit H0 = 69.11 km/s/Mpc leading to a χ2
SH0ES =

14.28. Shear model II with Aσ = −0.2 improves on this slightly with H0 = 69.41

km/s/Mpc giving χ2
SH0ES = 12.18, a slight, but statistically irrelevant, improvement

to the resolution given by the baseline EDE model.

We have also considered the case where the background parameters, rϕ, at, and

n, are allowed to vary. We fix the microphysics parameters to c2ϕ = 0.55 and Aσ =

−0.2 to explore the broader impact of this negative shear model. This method has

the advantage of providing constraints that consider the full range of background

evolution possible with this microphysics scenario. However, as with the standard

EDE fluid model discussed in Sec. 3.3.1, one must use the full dataset, in particular

a late-universe prior on H0, in order to find preference for a nonzero density of EDE.

While the constraints on S8 and H0 in this extended case are similar to the case with

a fixed background evolution run on only Planck data, the ΛCDM constraint on S8

from the full dataset, shown in Table 3.3.1, is lower than the ΛCDM constraint from
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Parameter Fiducial CMB-S4

100ωb 2.250 ±0.006
ωc 0.1248 ±0.0025
H0 69.41 ±0.93

109As 2.140 ±0.014
ns 0.9715 ±0.0039
τ 0.0562 ±0.0027
n 6 ±0.09

at × 104 3.1 ±0.6
log(1010Ω0) -3.95 ±1.08

c2ϕ 0.55 ±0.104
Aσ -0.2 ±0.103

Table 3.3.6: Forecasted 1σ parameter constraints for the PFM model with shear
model II assuming a CMB-S4 experiment.

Planck data alone. This results in a weaker softening of the S8 tension when the

background parameters are sampled over, but one that is still statistically relevant.

For a more extended discussion of this scenario see Appendix 3.B. Any solution to the

cosmological tensions will preferably exist in Planck data alone. For this reason, we

fix the background evolution in our main analysis. With a fixed background evolution

we focus on the effects of EDE microphysics on cosmological parameter constraints

from Planck data specifically.

This anisotropic microphysics scenario may be a sign of nonscalar field EDE.

However, this region of parameter space is indistinguishable from standard scalar field

EDE when considering Planck data alone, so we must look to future experiments to

provide meaningful constraints on the microphysics of EDE.

3.3.5. Future constraints

We forecast constraints on this model using a Fisher information matrix formalism

assuming a CMB-S4 experiment that covers 40% of the sky, following the prescription
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laid out in Ref. [101]. We model our Gaussian noise according to

Nαα
ℓ = ∆2 exp

(
ℓ(ℓ+ 1)

θ2FWHM

8 ln 2

)
(3.19)

where α ∈ {T,E}, ∆ is the white noise level in µK-arcmin, and θFWHM is the beam

width. We consider a telescope beam with θFWHM = 1′ and a white noise level of

∆T = 1 µK’ for temperature and ∆E =
√
2∆T for polarization. We compute the

covariance matrix as

Cℓ(C
αβ
ℓ , Cγδ

ℓ ) =
1

(2ℓ+ 1)fsky
[(Cαγ

ℓ +Nαγ
ℓ )(Cβδ

ℓ +Nβδ
ℓ ) + (Cαδ

ℓ +Nαδ
ℓ )(Cβγ

ℓ +Nβγ
ℓ )],

(3.20)

where α, β, γ, δ ∈ {T,E}, and fsky is the fractional sky coverage of the CMB-S4

experiment considered. Finally the Fisher matrix is calculated using

Fij =
∑
ℓ

∂C⊤
ℓ

∂θi
C−1

ℓ

∂Cℓ

∂θj
, (3.21)

where θi runs over the six ΛCDM parameters, as well as our five model parameters n,

at, log(10
10Ω0), c

2
⊥, and c

2
∥, making Fij an 11x11 matrix. Table 3.3.6 gives the fiducial

model used in our Fisher analysis, as well as the forecasted 1σ constraints on all

parameters. Figure 3.4.2, shows the forecasted posterior distributions for c2ϕ and Aσ

assuming the fiducial model. From Fig. 3.4.2 we can see that CMB-S4 should be able

to distinguish the case with c2ϕ = 0.55 and Aσ = −0.2 from the standard EDE model

where c2ϕ = 1 and Aσ = 0. It is important to note that a Fisher matrix formalism

assumes Gaussian errors for all parameters. As suggested by the constraints on c2ϕ

and Aσ presented in Fig. 3.3.6 and Fig. 3.4.2, the underlying probability distribution

for individual parameters in our model may not be Gaussian. Hence the 1σ error

predictions from our Fisher forecast given in Table 3.3.6 should not be thought of as
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restrictive constraints. Nevertheless, they serve as useful references on the ability of

CMB-S4 to constrain new physics. Assuming the fiducial model and errors presented

in Table 3.3.6, CMB-S4 may be able to distinguish the underlying microphysics at

the 4σ level. If future constraints do favor Aσ ̸= 0, this would be evidence of a richer

microphysics sector than that implied by scalar field EDE.

In short, EDE with an anisotropic shear in the form of Eq. (3.10), with c2ϕ ∼ 0.55

and Aσ ∼ −0.2, can reduce the Hubble tension to < 3σ, while not exacerbating the

S8 tension like standard EDE models. The region of microphysics parameter space

that accomplishes this solution is indistinguishable from a shear-less case with current

data, but the CMB-S4 experiment will increase precision, allowing us to concretely

assess the viability of altering the microphysics of EDE.

Section 3.4

Discussion

Early dark energy has emerged as one of the most promising classes of solutions

to the Hubble tension, however the microphysics of the canonical scalar fields used

in these models preclude fully satisfactory solutions mainly by exacerbating the S8

tension even further. In this paper we investigate the ability of noncanonical micro-

physics to strengthen EDE as a solution to the Hubble tension. We describe EDE as

a phenomenological fluid component whose background evolution mimics standard

EDE, and alter the perturbative dynamics of the fluid by allowing the effective sound

speed of the fluid to differ from its canonical value of c2ϕ = 1, and by introducing

an anisotropic shear perturbation via an equation of state formalism (shear model

I) or an equation of motion (shear model II). In total this phenomenological model

constitutes a five parameter extension to ΛCDM, with three parameters to describe

the background evolution n, at, and log(1010Ω0), and two parameters to describe the
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microphysics c2ϕ, and Aσ.

We find that for models with no added anisotropic shear, the H0 and S8 tensions

can be jointly ameliorated by making the phenomenological fluid cluster through

setting c2ϕ = 0 before the transition in the background equation of state. However,

only altering the sound speed leads to a significantly worse fit to Planck 2018 data,

making this an unfavorable solution to the tensions. This poor fit comes in response

to the deepening of gravitational potentials caused by the addition of a new clustering

component. Models that transition from a nonclustering to clustering fluid, thereby

limiting the time that the clustering can effect the gravitational potentials, suffer the

same problem, unless the transition in the sound speed happens well after the fluid

density begins to redshift away with wϕ = 1.

Furthermore, we find that the inclusion of anisotropic shear can help or hinder

EDE as a solution to the Hubble tension, depending on the way it is introduced. For

shear model I, defined by the gauge-invariant equation of state given in Eq. (3.9),

the addition of a new shear component to the total stress energy of the system leads

to significant changes to the evolution of the density and velocity perturbations of

the fluid, and of the evolution of the Weyl potential at large scales. These large-

scale changes to the perturbative evolution lead to significant alterations to the CMB

angular power spectrum at ℓ < 1000, which in turn constrain the amount of shear

allowed in this model to be negligible.

Alternatively, when anisotropic shear is introduced via the equation of motion

given in Eq. (3.10), we find significantly different results. For a non-negligible region

of parameter space, the inclusion of this shear in a generic EDE model not only

slightly improves upon the resolution to the Hubble tension provided by EDE, but

simultaneously softens the S8 tension with H0 = 69.56 ± 0.60 km/s/Mpc and S8 =

0.833±0.013, when compared to the standard EDE case which givesH0 = 69.11±0.58
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km/s/Mpc and S8 = 0.849± 0.013. This favorable region of parameter space loosely

given by c2ϕ > 0.6 and Aσ < −0.2, is indistinguishable from the standard EDE

model using Planck 2018 data alone. Using a Fisher information matrix analysis,

we found that future observations from CMB-S4 will be able to distinguish between

these different microphysical scenarios.

A clear preference for a non-negligible amount of EDE shear would imply that if

EDE is at play, it need not be the result of a canonical scalar field. Rather, strongly

anisotropic microphysics may be indicative of a novel component that is isotropic at

the background level, but breaks isotropy perturbatively. Examples range from free-

streaming neutrinos to more speculative models such as a cosmic lattice or coherent

vector fields. Our approach has been to study the impact of the equation of state,

sound speed, and anisotropic shear more generally.

While our focus has been on the scalar sector, it is reasonable to expect that any

microphysical model that gives rise to scalar anisotropic stress will also contribute

vector and tensor stress. The latter is of great interest, for the potential to affect a B-

mode polarization signal of primordial gravitational waves. A wide range of behavior

may be expected, considering free-streaming neutrinos [83], topological defects [104],

and coherent vector fields [90]. We leave this subject for later investigation.

Future probes of LSS and the CMB will be essential to verifying if anisotropic EDE

was present in the early universe, and will offer further clues into the microphysics of

EDE.
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Figure 3.4.1: Posterior distributions for the PFM model with shear model II (blue)
with n = 6, log(1010Ω0) = −3.95, at = 3.1 × 10−4, c2ϕ = 0.55, and Aσ = −0.2.
The ΛCDM (gray) and baseline models (red) are shown for comparison. The darker
inner (lighter outer) regions correspond to 1σ(2σ) confidence intervals. The SH0ES
collaboration measurement of H0 = 73.04±1.04 km/s/Mpc and the KiDS-1000 weak
lensing survey measurement of S8 = 0.759+0.024

−0.021 are shown in the orange and purple
bands, respectively [8, 102]. Distributions are generated with the P18 dataset. A
small, but non-negligible amount of negative shear added to a generic EDE model
can simultaneously soften the H0 and S8 tensions in comparison to standard EDE
[73].
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Figure 3.4.2: Forecasts for c2ϕ and Aσ for the CMB-S4 experiment (red) and its
combination with Planck (black). The blue contour shows current constraints using
Planck 2018 data alone (same as Fig. 3.3.6). With or without the inclusion of the P18
dataset, CMB-S4 will be able to distinguish a case with a small, but non-negligible
amount of shear from the baseline, shear-less case.
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Appendix

Section 3.A

Shear Model Derivation

In this Appendix we give extended derivations of the shear models presented in

Sec. 3.1.2.

3.A.1. Shear model I

Following [91], the velocity divergence of a single uncoupled fluid, like our phenomeno-

logical EDE fluid, can be written most generally as

θ′ = −H(1− 3w)θ − w′

1 + w
θ +

k2

1 + w

δp

ρ
− k2σ, (3.22)

where the pressure is given by Eq. (3.4). From this equation we can see that the

pressure perturbation δp and anisotropic shear σ act as positive and negative source

terms respectively. We specifically design our shear equation of state in shear model

I to counteract the growth of the pressure source term in Eq. (3.22). We define the

shear to be

(ρ+ p)σ = c2σ(δp− c2t δρ− 3H(c2t − c2a)(ρ+ p)θ/k2), (3.23)

where c2σ and c2t are new parameters. For c2σ = 1 and c2t = 0, the pressure perturbation

source term in Eq. (3.22) is completely canceled, however we choose to leave them
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as free parameters for completeness. The second and third terms in Eq. (3.23) are

included to keep the stress equation of state gauge invariant. Plugging Eq. (3.4) into

Eq. (3.23) we find

(ρ+ p)σ = c2σ(c
2
ϕ − c2t )(δρ+ 3H(ρ+ p)θ/k2). (3.24)

By setting Aσ = c2σ(c
2
ϕ − c2t ), we recover Eq. (3.9) which we use to define shear model

I.

If we directly substitute shear model I into the equation of motion for the velocity

perturbation we find

θ′ = −H
[
1− 3(c2ϕ − Aσ)

]
θ +

k2

1 + w
(c2ϕ − Aσ)δ, (3.25)

where it becomes clear that for c2ϕ = Aσ, we get complete cancellation of the source

term for the velocity perturbation making θ = 0 at all times with adiabatic initial

conditions.

3.A.2. Shear model II

Our second model of shear is derived directly from the density and velocity per-

turbations whose evolution equations are given by Eqs. (3.6) and (3.7). We start by

differentiating Eq. (3.7) with respect to conformal time to get a second order equation

giving

θ′′ = −H′(1− 3c2ϕ)θ −H(1− 3c2ϕ)θ
′ +

c2ϕ
1 + w

k2δ′

− 3H(w − c2a)
c2ϕ

1 + w
k2δ − k2σ′ (3.26)

85



3.A Shear Model Derivation

where we have assumed a time-varying equation of state and used Eq. (3.5) to simplify.

Using Eqs. (3.6) and (3.7) we can write this second order equation as a function

exclusively of θ and σ,

θ′′ = −k2c2ϕ
h′

2
[−H(1− 3c2ϕ)− 3H(c2ϕ − c2a)]θ

′

− [k2c2ϕ +H′(1− 3c2ϕ) + 3H2(c2ϕ − c2a)]θ

− k2[σ′ + 3H(c2ϕ − c2a)σ]. (3.27)

At small scales, this simplifies to

θ′′ = −k2c2ϕ(θ +
h′

2
)− k2[σ′ + 3H(c2ϕ − c2a)σ]. (3.28)

Now we suppose that

σ′ + 3H(c2ϕ − c2a)σ = Bσ(θ + αk2) (3.29)

where α = (h′+6η′)/2k2 with h and η being the synchronous gauge metric potentials.

The right-hand side of this equation is directly taken from the shear terms in the

second order differential we derived for the velocity perturbation. At small scales,

this implies

θ′′ = −k2(c2ϕ +Bσ)θ − k2[(c2ϕ +Bσ)
h′

2
+ 3Bση

′]. (3.30)

For a wave travelling in the ẑ direction, θ = ∂zv
z, which coupled with the above equa-

tion implies c2∥ = c2ϕ +Bσ. For cohesion between our shear models, we reparametrize

and define Bσ = −Aσ such that c2∥ = c2ϕ − Aσ, just like in shear model I, which gives

us our definition of shear model II presented in Eq. (3.10).
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Parameter Aσ = 0.6 Aσ = −0.6

100ωb 2.047(2.050)± 0.011 2.129(2.123)± 0.012
ωc 0.1209(0.1210)± 0.0012 0.1455(0.1457)± 0.0010

100θs 1.03956(1.03951)± 0.00029 1.03775(1.03773)± 0.00030
τ 0.0424(0.0429)+0.0075

−0.0067 < 0.0125(0.0102)
ln(1010As) 3.031(3.033)± 0.015 2.9958(2.9931)+0.0058

−0.0071

ns 0.9512(0.9507)± 0.0037 0.9548(0.9536)± 0.0038
c2ϕ 0.7 (fixed) 0.3 (fixed)
Aσ 0.6 (fixed) -0.6 (fixed)

H0 [km/s/Mpc] 68.73(68.67)± 0.58 60.02(59.91)± 0.40
S8 0.813(0.816)± 0.013 1.056(1.057)± 0.012

Total χ2
min 1472.76 1719.88

∆χ2
min +458.67 +705.79

Table 3.B.1: The mean (best-fit) ±1σ error of the cosmological parameters for
phenomenological fluid model with shear model I, n = 6, log(1010Ω0) = −3.95, at =
3.1× 10−4, and different choices of c2ϕ and Aσ, generated from the P18 dataset. The
best-fit values were used to generate the orange and red curves in Fig. 3.3.8.

Section 3.B

Extended Results

In this Appendix we present extended MCMC results from our analysis of the phe-

nomenological EDE fluid model with varied microphysics. In Table 3.B.1 we give the

parameter constraints for the positive and negative Aσ cases run on the P18 dataset

used to produce the residuals seen in Fig. 3.3.8 for shear model I. As explained in

Sec. 3.3, the large scale impact of the anisotropic shear in this model causes the poor

fits we see in Table 3.B.1, and constrains the amount of shear allowed to be negligible.

In Table 3.B.2, we show constraints on the cosmological parameters in the baseline

PFM, the PFM w/ shear model I and the PFM w/ shear model II run using the

P18+BAO+R19+SN datasets. Posterior distributions for the relevant parameters in

these models are shown in Figs. 3.B.1 and 3.B.2, with ΛCDM shown for comparison.

Comparing to Tables 3.3.4 and 3.3.5, we can see that the inclusion of additional

87



3.B Extended Results

datasets does allow for slightly more anisotropic shear with a higher H0, but does not

significantly change the results for either model of shear.
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Parameter PFM - baseline PFM w/ shear I PFM w/ shear II

100ωb 2.278(2.280)± 0.013 2.268(2.273)± 0.016 2.267(2.272)± 0.015
ωc 0.12466(0.12464)± 0.00083 0.12449(0.12462)± 0.00087 0.12418(0.12435)± 0.00088

100θs 1.04079(1.04076)± 0.00028 1.04083(1.04082)+0.00027
−0.00030 1.04081(1.04101)± 0.00030

τ 0.0584(0.0582)± 0.0071 0.0578(0.0598)± 0.0076 0.0583(0.05711)+0.0068
−0.0077

ln(1010As) 3.064(3.065)± 0.014 3.063(3.067)± 0.015 3.064(3.062)+0.014
−0.015

ns 0.9786(0.9775)± 0.0036 0.9782(0.9783)± 0.0037 0.9768(0.9786)+0.0046
−0.0042

c2ϕ - 0.799(0.787)+0.140
−0.085 0.748(0.812)+0.180

−0.096

Aσ - −0.036(−0.058)± 0.058 −0.11(−0.06)+0.15
−0.11

H0 [km/s/Mpc] 69.80(69.81)± 0.42 69.79(69.78)± 0.43 69.89(69.95)± 0.43
S8 0.8344(0.8342)± 0.0098 0.833(0.836)± 0.010 0.830(0.830)± 0.011

Total χ2
min 2063.81 2063.59 2064.02

∆χ2
min -9.56 -9.78 -9.35

Table 3.B.2: The mean (best-fit) ±1σ error of the cosmological parameters in the baseline model, the PFM with shear I,
and the PFM with shear II, generated from the P18+BAO+R19+SN datasets.
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Parameter PFM w/ shear II - Aσ = −0.2

100ωb 2.259(2.256)± 0.014
ωc 0.12362(0.12379)± 0.00087

100θs 1.04079(1.04080)± 0.00029
τ 0.0579(0.0540)+0.0069

−0.0078

ln(1010As) 3.064(3.058)+0.014
−0.016

ns 0.9746(0.9751)± 0.0036
c2ϕ 0.55 (fixed)
Aσ -0.2 (fixed)

H0 [km/s/Mpc] 70.03(69.94)± 0.45
S8 0.825(0.824)± 0.010

Total χ2
min 2065.55

∆χ2
min -7.82

Table 3.B.3: The mean (best-fit) ±1σ error of the cosmological parameters for
phenomenological fluid model with shear model II, n = 6, log(1010Ω0) = −3.95,
at = 3.1× 10−4, c2ϕ = 0.55, and Aσ = −0.2, generated from the P18+BAO+R19+SN
datasets.

Next, we give the results of an MCMC analysis, consisting of constraints on cosmo-

logical parameters in Table 3.B.3 and posterior distributions for those parameters in

Fig. 3.B.3 , for the phenomenological EDE fluid with shear model II. We show the case

of c2ϕ = 0.55 and Aσ = −0.2, discussed in Sec. 3.3, run on the P18+BAO+R19+SN

datasets. Similarly to the previous cases, the inclusion of more datasets does not

drastically alter the results of the analysis. The main differences are slight upwards

and downwards shifts in the posteriors for H0 and S8, respectively when compared to

the run with only Planck 2018 data. However, in comparison to the best-fit ΛCDM

model run on the same extended dataset, the resolutions to the H0 and S8 tensions

are less pronounced.

Finally, to see the broader impact of this negative shear model we re-run our

analysis to include sampling over the background model parameters rϕ, at, and n. We

hold the microphysics fixed with c2ϕ = 0.55 and Aσ = −0.2 and explore the effect of

this microphysics scenario on the background EDE solution. Parameter constraints on

this case are given in Table 3.B.4 with their posterior distributions shown in Fig. 3.B.4
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for the P18 dataset, and Fig. 3.B.5 for the combined P18+BAO+R19+SN datasets.

As can be seen by comparing Tables 3.3.1 and 3.B.4, the constraints on the model

parameters follow a similar trajectory for a standard EDE model and for this negative

shear case. As with the standard EDE fluid model presented in Table 3.3.1, Planck

data alone shows no preference for EDE with a best-fit EDE density fraction of

rϕ = 0.005. Hence, there is no solution to the Hubble tension with a best-fit H0 =

67.52 km/s/Mpc, and the constraint on S8 is unchanged from ΛCDM with S8 =

0.837(0.834)± 0.013.

As discussed in Sec. 3.3.1, for a nonzero amount of EDE to be preferred, we

must include a late-universe prior on H0. Any solution to the cosmological tensions

would preferably exist in Planck data alone, without the need for external datasets

to enforce parameter changes. This is why in our main analysis of these models we

fix the background evolution and investigate the effect of EDE microphysics under

the assumption of a non-negligible EDE density around matter-radiation equality,

allowing us to exclusively use Planck data in our analysis.

Considering the full dataset in this extended parameter space we find S8 =

0.834(0.836) ± 0.012 for this negative shear model shown in Table 3.B.4. Compared

to the standard EDE fluid model constraint of S8 = 0.840(8.41)± 0.013 on this same

dataset, we still see preference for a lower value of S8. Comparing these values to

the cases with fixed background evolution (shear model II with Aσ = −0.2 and the

baseline EDE case, respectively) discussed in the main text, we see good agreement

between models in both cases. However, for the full dataset considered here, the

ΛCDM constraint is lowered to S8 = 0.816(0.817) ± 0.010, making the softening of

the S8 tension weaker, but still statistically relevant as the standard EDE constraint

lies outside the ΛCDM 1-σ error bars.
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Parameter P18 only P18+BAO+R19+SN

100ωb 2.237(2.239)+0.016
−0.018 2.274(2.228)± 0.018

ωc 0.1224(0.1206)+0.0014
−0.0026 0.1278(0.1292)± 0.0036

100θs 1.04073(1.04080)± 0.00033 1.04046(1.04044)± 0.00038
τ 0.0540(0.0569)± 0.0073 0.562(0.0547)± 0.0073

ln(1010As) 3.049(3.049)+0.014
−0.015 3.067(3.070)± 0.015

ns 0.9656(0.9657)+0.0046
−0.0054 0.9768(0.9791)± 0.0054

1/n < 0.600(0.331) 0.397(0.377)+0.098
−0.180

rϕ < 0.0196(0.0052) 0.072(0.083)± 0.026
at × 104 < 4.35(2.59) < 2.98(2.70)

H0 [km/s/Mpc] 67.97(67.52)+0.61
−1.10 71.0(71.50)± 1.1

S8 0.837(0.834)± 0.013 0.834(0.836)± 0.012
Total χ2

min 1013.77 2061.43
∆χ2

min -0.32 -11.94

Table 3.B.4: The mean(best-fit) ±1σ error on the cosmological parameters for the
PFM w/ shear model II for the case of c2ϕ = 0.55 and Aσ = −0.2, with sampling over
the background PFM parameters.
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3.B Extended Results

Figure 3.B.1: Same as Fig. 3.3.5 but for the P18+BAO+R19+SN datasets.
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Figure 3.B.2: Same as Fig. 3.3.6 but for the P18+BAO+R19+SN datasets.
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Figure 3.B.3: Same as Fig. 3.4.1 but for the P18+BAO+R19+SN datasets.
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3.B Extended Results

Figure 3.B.4: Top: Posterior distributions of the standard model parameters for
the ΛCDM model (gray), the PFM with c2ϕ = 1 and Aσ = 0 (red), and shear model
II with c2ϕ = 0.55 and Aσ = −0.2 (blue). Bottom: Posterior distributions of the
standard model parameters vs the background PFM parameters. The darker inner
(lighter outer) regions correspond to 1σ(2σ) confidence intervals. The SH0ES Col-
laboration measurement of H0 = 73.04 ± 1.04 km/s/Mpc and the KiDS-1000 weak
lensing survey measurement of S8 = 0.759+0.024

−0.021 are shown in the orange and purple
bands, respectively [8, 102]. Distributions are generated with the P18 dataset.
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Figure 3.B.5: Top: Posterior distributions of the standard model parameters for the
ΛCDM model (gray), the PFM with c2ϕ = 1 and Aσ = 0 (red), and shear model II with
c2ϕ = 0.55 and Aσ = −0.2 (blue). Bottom: Posterior distributions of the standard
model parameters vs the background PFM parameters. The darker inner (lighter
outer) regions correspond to 1σ(2σ) confidence intervals. The SH0ES Collaboration
measurement of H0 = 73.04±1.04 km/s/Mpc and the KiDS-1000 weak lensing survey
measurement of S8 = 0.759+0.024

−0.021 are shown in the orange and purple bands, respec-
tively [8, 102]. Distributions are generated with the P18+BAO+R19+SN datasets.
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Chapter 4

Joint LIM power spectrum and

VID constraints on BSM

cosmologies

With changes, this chapter is adapted from Sabla, V.I., Sato-Polito, G.,

Bernal, J.L., & Kamionkowski, M. “Joint LIM power spectrum and voxel

intensity distribution constraints on beyond-ΛCDM cosmologies.” to be

submitted to Phys. Rev. D (2023).

Line-intensity mapping (LIM) has recently emerged as a promising technique to

bridge the gap between early- and late-universe cosmological observations, providing

direct observations of cosmic dawn and reionization [105–107]. Convential galaxy sur-

veys measure the positions and redshifts of individual galaxies, whereas LIM measures

the integrated emission along the line-of-sight from bright spectral lines originating

from all galaxies, including individually unresolved sources, as well as from the diffuse

intergalactic medium [108]. Both galaxy surveys and LIM serve as biased tracers of

the underlying matter distribution, giving measurements of the large-scale structure
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of the Universe. By probing vast cosmological volumes, with relatively low spatial

resolution, at redshifts beyond the reach of galaxy surveys and other cosmological ob-

servations, intensity maps can efficiently track the makeup and growth of large-scale

structure and the distribution of dark matter as well as astrophysical phenomena

including the formation and evolution of galaxies and properties of the intergalactic

medium. First developed as a technique to probe the 21-cm hyperfine transition in

neutral hydrogen [109–111], LIM has blossomed in recent years, with many experi-

ments currently underway [112–120], and under construction [121–127], each targeting

atomic and molecular spectral lines sourced at redshifts ranging from the present day

to cosmic dawn.

As the experimental landscape opens, accurate theoretical modelling of intensity-

mapping signals, degeneracies, and contaminants is of the utmost importance in order

to derive accurate astrophysical and cosmological constraints. The challenge for using

LIM to constrain cosmology comes from the inherent dependence of the astrophysical

and cosmological signals. Uncertainties in the astrophysics of line-emission serve

as effective nuisance parameters in deriving constraints on cosmological parameters.

A number of techniques have been proposed for extracting cosmological information

from line-intensity maps. The primary statistic used is the LIM power-spectrum which

to linear order depends only on the first two moments of the line luminosity function.

Since line emission originates in halos, the intensity of the chosen spectral line traces

the underlying matter distribution. However, line emission is inherently entangled

with the astrophysical processes that take place in these halos during reionization and

galaxy evolution, making the power spectrum limited due to degeneracies between

the cosmology and the astrophysics of line-emission [108, 128, 129]. At both large

and small scales, the power spectrum is also limited by foregrounds, survey-volumes,

and resolution.
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Complementary statistics, such as the voxel intensity distribution (VID), have

been proposed to break these degeneracies with astrophysical parameters [130], and

provide information on a wider range of scales. The VID estimates the one-point

probability distribution function of the temperatures or intensities measured within a

voxel [131], and depends directly on the luminosity function of the spectral line of in-

terest, making it particularly useful for constraining the astrophysics of line-emission.

A joint analysis using both the power-spectrum and VID, which requires a covariance

matrix to account for the shared information content between the two observables,

has been shown to break precision limiting degeneracies and significantly improve the

inference of the line-luminosity function [132–134]. Previous joint analyses empiri-

cally estimate the covariance from simulations [132], however Ref. [130] derived an

analytic expression for the covariance which depends on the integrated bispectrum

of one power of the emitter overdensity and two of the intensity (or temperature)

fluctuations.

In this work, we take advantage of the analytic covariance between the LIM power

spectrum and VID, and explore how the combination of statistics influences LIM

parameter constraints on beyond the standard model cosmologies. While the ΛCDM

model, consisting of a cosmological constant Λ, and cold dark matter (CDM), provides

extraordinarily good descriptions of many cosmological observations, its predictions

at small (sub-galactic) scales are in tension with observations [15], particularly, too

much dark matter is predicted in the inner-most regions of galaxies, giving rise to

what is known as the “cusp-core” problem [16]. One possible solution is to go beyond

the standard CDM description such that a suppression of gravitational clustering at

small-scales is induced, with respect to ΛCDM. Many such “non-cold” dark matter

(nCDM) candidates exist (see e.g. [135] for a review), each leading to different shapes

in the suppression of the power spectrum. Previous work has shown that stage-3 IM
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experiments can be used to constrain primordial power-suppression at small-scales via

the VID [136]. In this work we consider a phenomenological model which encapsulates

the small-scale supression of power due to non-cold dark matter (nCDM), as well as

a fully physical case of axion dark matter [137–145], where we can follow the full

evolution of perturbations, giving tighter constraints. We focus on these non-cold

dark matter models as they alter the halo-mass function at low-masses, where the

inclusion of the VID in our analysis will boost sensitivity considerably.

While nCDM models we consider alter physics at small scales, we also show the

capability of our analytic joint analysis at constraining large-scale deviations from

the standard model. An early period of inflationary expansion is the most accepted

paradigm for explaining the observed Universe, however the specific model which

gives rise to such an epoch is weakly constrained by current cosmological data. The

Planck satellite has confirmed that the field which sources the observed structure

of the Universe must be very close to Gaussian [146]. However, small deviations

from a primordially Gaussian field are allowed and, in fact, generically predicted

in the standard perturbation generating mechanisms provided by many inflationary

models, each providing different degrees of non-Gaussianity. As such, in this work we

also consider the effect of local non-Gaussianity on both the halo bias and halo-mass

function at large scales and masses, and investigate the change in constraining power

at large scales that comes in our joint analysis.

Although the methods we present in this study can be generically applied to any

spectral line, we focus on the Hα line of neutral hydrogen, which will be measured in

the upcoming SPHEREx deep survey at redshifts 0.1 < z < 5 [125], as an example of

near-term observational capabilities. Hα is one of the brightest lines emitted in young

star-forming galaxies, making it a fairly direct probe of star-forming galaxy’s number

density, star formation rate, and large scale structure at high redshifts [147–149].

101
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This chapter is organized as follows. In Sec. 4.1, we review the formalism needed to

compute the LIM power spectrum and VID, including survey limitations and instru-

mental noise, as well as the covariance between the two observables. We present the

model of Hα emission we consider in Sec. 4.2. Next, we describe the beyond-ΛCDM

cosmological scenarios considered, and discuss their impact on the LIM observables

in Sec. 4.3. In Sec. 4.4, we present the survey specifications we use to derive con-

straints, give details on our Fisher forecasting method and present our constraints

on each cosmological model considered. We end in Sec. 4.5 with a discussion of our

results.

Section 4.1

LIM Observables

In this section we review the modelling of the power spectrum and voxel intensity

distribution, as well as their variance and the covariance between the two signals. We

include an explanation of our modelling of noise and survey specifications that limit

the intrinsic signals.

The specific intensity of a given radiation source at a redshift z with a rest-frame

frequency ν is related to the local luminosity density ρL(z) via

I(z) =
c

4πνH(z)
ρL(z) ≡ XLIρL(z), (4.1)

where c is the speed of light, H(z) is the Hubble parameter at the target redshift,

and we define XLI in our second equality to simplify the expression. The average

luminosity density can be computed using the halo mass function dn/dM , assuming

a relationship between the luminosity of the spectral line and the mass M of the host
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halo:

⟨ρL⟩ (z) =
∫
dML(M, z). (4.2)

Using these expressions, we can derive the one- and two-point summary statistics,

described below, which we use to extract astrophysical and cosmological information

from line-intensity maps.

4.1.1. Power Spectrum

The primary statistic used in evaluating intensity maps is the power spectrum P (k),

given by the Fourier transform of the two-point correlation function of perturbations

of the intensity δI ≡ I−⟨I⟩. Since spectral lines are sourced in dark matter halos, δI

can be used as a biased tracer of the underlying matter density perturbations, con-

tributing a clustering component to the overall LIM power spectrum. Due to the dis-

crete distribution of dark matter halos, there will be an additional scale-independent

shot-noise contribution giving P (k, µ, z) = Pclust(k, µ, z) + Pshot(z), where k is the

magnitude of the Fourier mode, and µ is the cosine of the angle between the wave

mode vector k and the line-of-sight component k∥ .

To first order, the matter density and intensity perturbations are related by an

effective linear bias given by

b(z) =
1

⟨ρL⟩ (z)

∫
dMLbh

dn

dM
, (4.3)

where all quantities inside the integral depend on the halo-mass M and redshift, and

bh denotes the halo bias. Thus, the power spectrum can be written as

P (k, µ, z) = ⟨I(z)⟩2
(
b(z) + f(z)µ2

)2
Pm(k, z) + ⟨I2⟩ , (4.4)

where f(z) is the linear growth rate, Pm is the linear power spectrum of cold dark
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matter and baryons, and we have assumed a Poisson shot noise. The f(z)µ2 term is

included to model the boost in the power spectrum due to the peculiar velocities of

galaxies, known as the Kaiser effect [150].

4.1.2. Voxel Intensity Distribution

The VID is an estimator for the probability distribution function (PDF) of the line-

intensity in an observed voxel P(I). The observed intensity in a given voxel is simply

the sum of the intensities emitted by each source contained in a voxel. Thus we can

write the PDF of astrophysical sources as

P(I) =
∞∑

N=0

PN(I)P(N), (4.5)

where we sum the conditional probabilities of having N emitters in a voxel P(N),

and the PDF of their total intensity PN(I), over all possible values of N .

A voxel containing no sources will contribute zero intensity such that P0(I) =

δD(I), where δD is the Dirac delta function. A voxel containing a single source will

have a PDF directly related to the luminosity function dn/dL of the target emission

line:

P1(I) =
Vvox
n̄XLI

dn

dL

∣∣∣∣
L=ρL(I)Vvox

, (4.6)

where n̄ is the average comoving number density of sources and dn/dL is computed

from the halo-mass function and the assumed L(M) relation for the target line. Since

intensity is additive, the intensity PDF for an arbitrary number of emitters in a voxel

is simply P1 convoluted with intself N times PN(I) = (PN−1 ∗ P1)(I)
1.

The number of emitters in a voxel obeys a Poisson distribution with the mean

1Ref. [134] improved the formalism of the VID during the development of this project. Since
this is a proof-of-concept study that focuses on the differences in the signal due to physics beyond
ΛCDM rather than in the signal itself, we consider our conclusions to be unaffected by this change
in the formalism.
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number of sources N̄ = n̄Vvox, where n̄ is the average comoving number density of

sources, and Vvox is the volume of a voxel. Following Ref. [131], we assume that

the halo number count follows that of the underlying dark matter, which can be

approximated using a lognormal distribution [151].

Finally, as there are no perfect experiments, there will be a thermal noise con-

tribution to the total observed intensity per voxel which we model as a Gaussian

distribution with standard deviation given by the effective instrumental noise per

voxel, making the final total intensity PDF

Ptot(I) = (Pnoise ∗ P)(I). (4.7)

In practice, Ptot is not directly measurable from intensity maps. However it can

be estimated via the computation of histograms of the number of voxels Bi for which

the measured intensity is within a given intensity bin with width ∆Ii. The relation

between the observable Bi and Ptot(I) is

Bi = Nvox

∫
∆Ii

dIPtot(I), (4.8)

where Nvox = Ωfield∆ν/θ
2
FWHMδν is the total number of voxels in the observed volume.

4.1.3. Noise & Survey Specifications

Due to the limited resolution and finite observed volume of LIM experiments, the

observed power spectrum will differ from the one predicted by Eqn. (4.4), mainly

by limiting the minimum and maximum accessible scales, respectively. Following

Ref. [130], we model these experimental limitations by applying window functions to
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our predicted power spectrum:

P̃ (k, µ) =

∫
d3q

(2π)3
W 2

res(k)W
2
vol(q− k)P (q− k), (4.9)

where Wvol and Wres model the limited survey volume and voxel resolution, respec-

tively, and the tilde denotes an observed quantity. As Wres captures the loss of

information on scales smaller than the size of the voxel, it is applied as a convolution

in real space, and a product in Fourier space. Conversely, Wvol cuts off certain spatial

positions, thus it is applied as a product in real space, and a convolution in Fourier

space.

The spectral and angular resolutions of the telescope define the resolution limits

in the radial and transverse directions, respectively,

σ∥ =
cδν(1 + z)

H(z)νobs
, σ⊥ = DM(z)θFWHM, (4.10)

where δν is the spectral resolution, νobs is the observed frequency of a given line,

H(z) is the Hubble parameter, DM(z) is the co-moving angular diameter distance,

and θFWHM is the full-width half maximum of the beam. As in Ref. [152], we assume

a Gaussian function in Fourier space to model the resolution window as

Wres(k, µ) = exp

{
− k2

[
σ2
∥µ

2 + σ2
⊥(1− µ2)

]}
. (4.11)

We assume a cylindrical volume along the line of sight, with side length L∥ =

c∆ν(1+z)/H(z)νobs and radius R⊥ = DM(z)
√

Ωfield/π, where ∆ν is the instrumental

frequency bandwidth, and Ωfield is solid angle observed. Assuming that all spatial

positions in the survey are observed with the same efficiency we model the volume

window as a top hat in configuration space with values of 1 and 0 for points within
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and outside this volume respectively. In cylindrical coordinates this becomes,

Wvol(k∥, k⊥) =
1

Vfield

2πR⊥L∥
k⊥

J1(k⊥R⊥)sinc

(
k∥L∥
2

)
, (4.12)

where Vfield = L∥L2
⊥ is the comoving volume of the observed field, k∥ = kµ, k⊥ =

k
√
1− µ2, and J1 is the Bessel function of the first kind.

On top of the clustering and shot noise components, the total observed LIM

power spectrum will also include a component due to instrumental noise giving a

final expression

P̃tot(k, µ) = P̃clust(k, µ, z) + P̃shot(k, µ, z) + PN(z), (4.13)

where P̃clust and P̃shot represent the volume and resolution limited power spectrum

computed from Eq. (4.4) and (4.9). Assuming a Gaussian instrumental noise, the

noise power spectrum PN is given by

PN = Vvoxσ
2
N , (4.14)

where Vvox is the volume of the voxel, and σN is the standard deviation of the instru-

mental noise per voxel. Values for σN are presented in Sec. 4.4.1.

Lastly, in our analysis we consider only the monopole of the power spectrum,

which can be simply computed from Eq. (4.13) as

P̃0(k) =
1

2

∫
dµP̃tot(k, µ). (4.15)

The inclusion of higher-order multipoles would lead to a minimal increase in precision

compared with the precision gained from the combination of the monopole and VID,

hence for simplicity we consider only the monopole in this work.
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4.1.4. Variance & Covariance

The variance of the power spectrum monopole can be written as

σ2
0 =

1

2

∫
dµ
P̃tot(k, µ)

2

Nmodes

, (4.16)

where Nmodes denotes the number of modes per bin in k and µ in the observed field:

Nmodes(k, µ) =
k2∆k∆µ

8π2
Vfield, (4.17)

with ∆k and ∆µ corresponding to the widths of the k and µ bins respectively.

The variance of the VID has contributions due to the temperature binning of the

observed signal, and cosmic variance. Assuming the temperature bins are mutually

exclusive, the expected value for each bin ⟨Bi⟩ = Bi, and its variance is σ2
bin,i =

Bi(1−Bi/Nvox). Due to the dependence of the VID on the cosmic density field, there

is an additional contribution from cosmic variance which, following Ref. [130], takes

the form σ2
cv,i = Υ2

iσ
2
vol/V

2
vox, where σ

2
vol is the variance of the halo density field on

the survey volume defined by

σ2
vol =

∫
d3k

(2π)3
W 2

vol(k)W
2
vox(−k)Ph(k), (4.18)

and we have defined

Υi =

∫
∆Ti

dTPnoise ∗
( ∞∑

N=0

(N − N̄h)PN(T )PPoiss(N, N̄h)

)
. (4.19)

As such, the total variance for the VID is just the sum of these components with

σ2
i = σ2

bin,i + σ2
cv,i.

The covariance between the power spectrum monopole and the VID can be under-
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stood as the response of the measured power spectrum to the mean density perturba-

tion. Since the VID depends on the perturbation in the number density of emitters

δh and the power spectrum depends on two powers of the intensity fluctuation δI,

the resulting covariance is proportional to the integrated bispectrum ⟨δhδIδI⟩. As

derived in Ref. [130], it is given as

σBi,P0 =
Nvox

V 2
field

Υi

∫
d2Ωk̂

4π

∫
d3q1

(2π)3

∫
d3q2

(2π)3

∫
d3q3

(2π)3
Wvol(q1)Wvol(q2)Wvol(q3)×

Wvox(−q1)Wvox(k− q2)Wvox(−k− q3) ⟨δh(−q1)δI(k− q2)δI(−k− q3)⟩ . (4.20)

We refer the reader to Ref. [130] for the full derivation and expression for the bispec-

trum used in the calculation of the covariance.

Section 4.2

Line Emission Model

The formalism for computing the LIM power spectrum and VID described in the

previous section can be applied to a wide variety of different target lines and models.

In order to show its effectiveness we apply it to a model of an Hα intensity map [153].

The Hα luminosity is related to the star formation rate (SFR) via

L(M) = KHα · 10−Aext/2.5 mag · SFR(M), (4.21)

where Aext = 1 mag corrects for dust extinction [154], and KHα = 1041 erg/s is just a

proportionality constant [147]. The SFR at different redshifts is given by the formula

SFR(M) = 10α
(
M

M1

)β (
1 +

M

M2

)γ

, (4.22)
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Parameter z = 0.55 z = 1.90 z = 3.20 z = 4.52

log10(L0) 8.39 8.41 8.83 9.08
log10(Ma/M⊙) 11.74 11.51 11.57 11.53
log10(Mb/M⊙) 12.66 10.76 10.41 8.53

a -1.15 -1.12 -1.03 -1.02
c -2.18 -2.21 -2.20 -2.20

Table 4.2.1: Parameters of the L(M) function given in Eq. 4.23
used in this analysis. These parameters reproduce the L(M, z) functions of

Ref. [153] for Hα emission.

where α, β, γ, M1, and M2 are free parameters [153]. Combining Eqs. (4.21) and

(4.22), and redefining constants for generality, we model the relationship between line

luminosity and halo mass as a power law formula

LHα

L⊙
(M) = L0

[(
M

Ma

)a

+

(
M

Mb

)a+1
]c
, (4.23)

where L0, a, c, Ma, and Mb are free parameters. We determined the fiducial values of

these parameters at different redshifts by fitting this model to the L(M, z) relations

from Ref. [153]. The best-fit values we use in our analysis are presented in 4.2.1.

We also introduce a high-mass flattening of L(M, z) to mimic the flattening in the

SFR found in Ref. [153] for Hα. For z ≤ 4 the SFR, and hence L(M), become flat

for M > 1013M⊙. For all other redshifts, this flattening occurs for M > 1012M⊙

. We do this by simply imposing L(M > 1013M⊙) = L(M = 1013M⊙) for z ≤ 4,

and L(M > 1012M⊙) = L(M = 1012M⊙) for z > 4. By parameterizing the mass-

luminosity relation in this way, we are able to account for uncertainties in the SFR in

our Fisher analysis, and model degeneracies between the astrophysics of line-emission

and the cosmological parameters we consider. Finally, we assume the Tinker form

for the halo mass function and halo bias [155, 156]. We emphasize that our choice of

Hα model is only an example and this formalism can be easily applied to a variety of

models, lines, or experiments.
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Figure 4.3.1: The Tinker halo-mass function (right) for different choices of cut-
off scale kcut and slope n for Hα observed at z = 0.55 assuming a SPHEREx like
experiment.

Section 4.3

Cosmological Models

In this section we describe the deviations from the standard ΛCDM model that we

consider in this work. We choose models which alter either the large or small scale

physics, where the power spectrum alone is limited, to show the capability of our joint

analysis across cosmic scales. Throughout this work, we assume the standard cosmo-

logical parameters to be given by the Planck 2018 results with {ωb, ωc, ns, log(10
10As), h} =

{0.02242, 0.11933, 0.9665, 0.6766} [4].

4.3.1. Phenomenological non-cold dark matter

We model the small scale suppression of clustering by introducing a transfer function

which cuts off the matter power spectrum at some specified scale kcut. Our transfer

function is given by

T 2(k) ≡ PnCDM(k)

PCDM(k)
=


1 if k ≤ kcut,(

k
kcut

)−n

if k > kcut,

(4.24)
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Figure 4.3.2: Monopole of the power spectrum (left), and the voxel intensity distri-
bution (right) of the Hα line observed at a redshift of z = 0.55 with an experiment
like SPHEREx, as a function of cut-off scale kcut and slope n. Instrumental noise is
not included in either observable.

where n gives the slope or rate at which power is suppressed at small scales. We show

the resulting halo-mass function in Fig. 4.3.1 and LIM observables in Fig. 4.3.2 as

a function of cut-off scale and slope for an example Hα spectral line observed at a

redshift of z = 0.55.

From Fig. 4.3.1, we can see that the suppression in matter power at small scales

decreases the number density of low-mass halos, but high-mass halo densities are

unaffected (orange curve). As you begin the suppression of matter power at larger

scales (green and blue curves), higher mass halos are similarly restricted. Increasing

the slope of the nCDM transfer function n, intuitively decreases the overall number

of halos formed, with a larger effect at lower mass.

From the left hand side of Fig. 4.3.2, where we plot the IM power spectrum

monopole, we can see that introducing a small-scale suppression of power has two

main effects. First off, the total signal has an overall suppression relative to CDM,

due to the overall suppression in the number density of halos. Secondly, at scales

smaller then kcut, power is sharply suppressed. This second effect is short lived, and

on very small scales we see the power trend back upwards. This is because at very
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Figure 4.3.3: The ratio of the linear matter power spectrum at z = 0 (left) and
the ratio of Tinker halo mass function (right) to those in a ΛCDM model [155] for
different choices of axion mass and density fraction Ωa/Ωd with a fixed total dark
matter density fraction Ωd.

small scales the IM power spectrum monopole is dominated by scale-invariant shot

noise, and the small-scale changes to power spectrum monopole are drowned out.

Hence, for the cases with kcut = 1 or 5 Mpc−1, this effect is washed out. As the cutoff

scale kcut is pushed to higher scales (orange, green, to blue curves), i.e. suppression

occurs for a larger range of k, the overall suppression in the signal is exacerbated. As

the slope of the nCDM transfer function is increased (dashed, solid, to dotted curves),

i.e. the matter power spectrum is suppressed more rapidly, the overall suppression of

P0 is similarly exacerbated. We show the probability distribution function (PDF) of

the measured intensity on the right hand side of Fig. 4.3.2. Similarly to the power

spectrum monopole, the main effect of introducing small scale suppression in the

matter power spectrum is the introduce an overall suppression factor in the intensity

PDF which roughly correlates with the suppression and enhancement seen in the

HMF.
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Figure 4.3.4: The power spectrum monopole P0(k) and the VID intensity PDF P(I)
for varying axion mass and density fraction Ωa/Ωd for a fixed total dark matter
density fraction Ωd for an Hα line at z = 0.55. The ΛCDM model is shown in gray
for comparison. Instrumental noise is not considered for either observable.

4.3.2. Axionic Dark Matter

The phenomenological model described above is a good general approximation for

a wide range of nCDM scenarios. However it only captures one aspect of a nCDM

scenario. Physical models inherently alter the matter-power spectrum in more subtle

ways. To show the ability of our method to constrain such physics, we consider the

specific case of axionic dark matter.

Here we briefly review the relevant physics of axions included in axionCAMB2,

which we use to generate the matter power spectra used for our calculations of the

LIM observables. For a full description of the theory behind ultralight axions see

Ref. [157]. Ultralight axions (ULAs) are described by a pseudo-scalar field ϕ, which

obeys the Kelin-Gordon equation given in natural units by

ϕ′′ + 2Hϕ′ +m2
aa

2ϕ = 0, (4.25)

where ma is the axion mass in units of energy, a is the cosmological scale factor,

2Publicly available at: https://github.com/dgrin1/axionCAMB
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H = a′/a = aH is the conformal Hubble parameter, and primes denote derivatives

with respect to conformal time. The background energy density and pressure are

then given by

ρa =
1

2

(
ϕ′

a

)2

+
1

2
m2

aϕ
2, (4.26)

pa =
1

2

(
ϕ′

a

)2

− 1

2
m2

aϕ
2. (4.27)

At early times when ma ≪ H, the axion field is overdamped and evolves like a

cosmological constant with equation-of-state w = −1. As the universe cools, the axion

field begins to oscillate about the minimum of its potential defining an oscillation scale

factor aosc when ma ≈ 3H(aosc). From aosc onwards, the number of axions is roughly

conserved and the axion energy density redshifts like matter with ρa ∼ a−3. The

relic axion density is thus Ωa = ρa(aosc)a
3
osc/ρcrit where ρcrit is the present day critical

density.

When the axion field is in its oscillatory phase one finds that the axion has a

non-negligible sound speed arising from the large de Broglie wavelength of the axion:

c2s =

k2

4m2
aa

2

1 + k2

4m2
aa

2

. (4.28)

From this equation we see that at large scales c2s → 0, and the axions behave like

pressureless CDM. However, at small scales there is an induced pressure leading to a

suppression of structure in the ratio of the matter-power spectrum when compared

with CDM as shown in Fig. 4.3.3 where we plot the matter power spectrum for differ-

ent configurations of the axion mass and density fraction. We parameterize the axion

abundance in relation to the total dark matter density with Ωa/Ωd and Ωd = Ωc+Ωa.

Lighter mass axions (ma ≲ 10−27 eV) thaw from the Hubble friction and begin os-

cillating during the matter or Λ-dominated eras at late times, and thus behave like
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dark energy at matter-radiation equality. We call these low mass axions “DE-like”.

Alternatively, heavier axions (ma ≳ 10−27 eV) begin their evolution during radiation-

domination, behaving like DM much earlier on and suppress clustering below their

Jeans scale. We call these axions “DM-like”. The effects of these axions are frozen

into the matter-power spectrum at matter-radiation equality, leading to significantly

different signatures in the LIM observables depending on the axion mass considered.

As can be expected, higher values of Ωa/Ωd cause more severe suppression in the

matter power spectrum. For low mass axions with ma ∼ 10−32 eV, the matter power

spectrum is enhanced at very large scales, due to their dark energy like behavior

(orange curve). Alternatively, high-mass axions (blue curve) behave similarly to our

nCDM model with high kcut, and only suppress power on very small scales. We show

the resulting changes to the Tinker halo-mass function in the right plot of Fig. 4.3.3.

Heavier axions withma ∼ 10−22 eV, suppress the formation of halos below their Jeans

mass, thus only change the low-mass end of the HMF. Conversely, the lighter axions

have a similar effect as neutrinos, providing an added radiation pressure that shifts

the halo-mass function towards lighter halo masses, introducing an enhancement at

low-mass, and suppression at high-mass compared to ΛCDM.

The effect of these changes to the LIM observables can be seen in Fig. 4.3.4 where

we plot the LIM power spectrum monopole and VID statistic for the same variations

in axion mass and density fraction. The heavier axion (blue curve), leaves the power

spectrum monopole virtually unchanged as the axion DM behaves like CDM on the

accessible scales. However, because of the intensity PDF’s dependence on the full

luminosity function, very small scale information, which is inaccessible in the power

spectrum, is made available. As such, we see percent level changes to the PDF of

observed intensity at low intensities for the ma = 10−22 eV axion. As you shift the

HMF towards lower masses, i.e. decrease the axion mass, more Hα must reside in
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Figure 4.3.5: Tinker halo mass function dn/dM for different choices of positive fNL.

Figure 4.3.6: Power spectrum monopole (left) and the VID intensity PDF for the Hα
line observed at z = 3.20 as a function of fNL. Instrumental noise is not considered
for either observable.

each halo, increasing the average halo bias, leading to the scale-dependent imprints

on both observables seen in Fig. 4.3.4. Intuitively, as you increase the axion fraction

Ωa/Ωd, these effects become more pronounced.
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4.3.3. Non-Gaussianity

In the local limit, primordial non-Gaussianity can be modelled in terms of the gauge-

invariant Bardeen gravitational potential

Φ = ϕ+ fNL(ϕ
2 − ⟨ϕ2⟩) (4.29)

where ϕ is our Gaussian random field, and fNL quantifies the amount of non-Gaussianity.

Note that in our notation Φ = −Ψ where Ψ is the usual Newtonian potential. With

this convention, positive fNL corresponds to a positive skewness of the density proba-

bility distribution S3(M) ≡ ⟨δ3M⟩, and hence an increased number of massive objects.

As such, any deviations from Gaussianity will modify both the halo bias and the halo

mass function (HMF).

To model the effect of non-Gaussianity on the HMF, we follow Ref. [158] and use

the Press-Schecter formalism [159], which we outline here. For full details of this

derivation refer to Ref. [158]. In this framework, the non-Gaussian HMF in the local

limit is simply the Gaussian HMF plus some non-Gaussian correction:

(
dn

dM

)
NG

=

(
dn

dM

)
G

(1 + ∆HMF ). (4.30)

This non-Gaussian correction can be written as

∆HMF =
κ3H3(νc)

6
− H2(νc)

6

κ′3
ν ′c
, (4.31)

where primes denote derivatives with respect to halo mass M , νc =
√
0.707δec/σM =

1.42/σM is a rescaling of the critical matter density for ellipsoidal collapse δec = 1.686,
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and Hn(ν) are the Hermite polynomials given by

Hn(ν) = (−1)n exp(ν2/2)
dn

dνn
exp(−ν2/2), (4.32)

with ν ≡ δM/σM . We define a normalized skewness κ3 ≡ ⟨δ3M⟩ /σ3
M , where

σ2
M =

∫
d3k

(2π3)
WM(k)T 2(k, z)PΦ(k), (4.33)

is the variance of the linear density field with PΦ(k) being the primordial power

spectrum of Φ(k). The density perturbation δM smoothed over a mass scaleM ≡Mh

is written as

δM(z) =

∫
d3k

(2π)3
WM(k)T (k, z)Φ(k), (4.34)

where T (k, z) is the linear matter transfer function and

WM(k) =
3 sin(kR)

(kR)3
− 3 cos(kR)

(kR)2
(4.35)

is a top-hat window function with comoving radius R(M) = (3M/(4πρm))
1/3. In the

local non-Gaussian limit, the skewness of the density probability distribution becomes

⟨δ3M⟩ = 6fNL

∫
d3k1
(2π)3

∫
d3k2
(2π)3

WM(|k1|)WM(|k2|)WM(|k1 + k2|)×

T (|k1|)T (|k2|)T (|k1 + k2|)PΦ(|k1|)PΦ(|k2|), (4.36)

which can be calculated numerically. We have only kept terms to first order in fNL,

making the correction to the HMF given in Eq. (4.31) also linear in fNL. While

higher-order terms exist, we neglect them following the arguments of Ref. [158]. We

note that Ref. [158] introduces a cut-off scale in their calculation of the bispectrum,

below which the bispectrum vanishes, in order to limit their analysis to the small-
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scales which affect the formation of the low-mass galaxies they probe. To leave our

work as general as possible, we do not introduce such a cut-off in our analysis.

The effects of this generalized non-Gaussian correction on the HMF can be seen

in Fig. 4.3.5 where its clear that as you positively increase fNL, i.e. increase the

skewness, you increase the number of high mass halos. Conversely, a negative value

of fNL would have the opposite effect, suppressing the formation of high-mass halos.

Following Ref. [129], the total halo bias appearing in Eq. (4.3) can be written as

bh = bGh +∆bh where non-Gaussianity is introduced as a correction on the Gaussian

halo bias bGh . In the local limit, the skewness introduced in the density probability

distribution introduces a scale dependence on the halo bias giving a correction of the

form

∆bh = (bGh − 1)fNLδec
3ΩmH

2
0

c2k2Tm(k)D(z)
, (4.37)

where Ωm is the matter density at z = 0, Tm(k) is the matter transfer function, and

D(z) is the linear growth factor.

Introducing the corrections to the HMF given in Eq. (4.31), and the bias given

in Eq. (4.37), we find that the non-Gaussian initial conditions lead to large scale

enhancement in the Hα power spectrum and high-temperature enhancement in the

VID, as shown in Fig. 4.3.6. As you increase the number of high-mass halos, more Hα

is contained at larger scales, leading to the enhancement in power spectrum monopole.

Similarly, more Hα in higher mass halos leads to higher intensity Hα distributions.

Section 4.4

IM Forecasting

In this section, we forecast the constraining power of the SPHEREx experiment for

the BSM cosmologies presented in the previous section. We begin with a description
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of the relevant specifications of the SPHEREx deep Hα survey which we use to derive

constraints. We then introduce the Fisher matrix formalism used in our joint fore-

casts, and present the results of these forecasts through constraints on all the beyond

the standard model cosmological parameters we introduced in Sec. 4.3. To compute

the LIM observables and all related quantities, we modify lim3 to account for the

changes to the matter-power spectrum, halo bias, and halo mass function for each

BSM cosmology we consider.

4.4.1. Experiment

To estimate the potential of a combined power spectrum and VID analysis, we forecast

measurements assuming a SPHEREx mission which will measure the Hα line with

ν = 456805.72 GHz [125]. The SPHEREx deep survey will cover 200 deg2 of the

sky with a single detector which has an angular resolution of θFWHM = 6.2 arcsec,

and spectral resolution δν = νobs/41.4. For Hα we consider bandwidths of ∆ν =

{20.95, 6.54, 3.19, 2.01} × 104 GHz with noise given by σN = {78.9, 72.6, 57.2, 56.2}

Jy/sr corresponding to emission lines with νobs = {29.5, 15.7, 10.9, 8.3} × 104 GHz,

respectively. Hence, our results are split into four redshift bins centered on redhsifts

of z = {0.55, 1.90, 3.20, 4.52}.

4.4.2. Fisher Matrix Forecasts

In order to study the constraining power of our Hα emission model with the SPHEREx

experiment we apply a Fisher matrix formalism. This assumes a Guassian distribution

for the parameter likelihoods centered on some chosen fiducial values. We compute

the Fisher matrices for both the power spectrum monopole and voxel intensity distri-

bution, and for a combination of these two statistics using the analytic form of their

covariance described in Sec. 4.1.4.

3Available for a base ΛCDM model at: https://github.com/jl-bernal/lim
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To obtain the joint forecast from the power spectrum and VID, we construct a

vector of our observables Θ = [P̃0(k),Bi]. Then, the total Fisher matrix element

corresponding to parameters pα and pβ is:

Fαβ =
∂ΘT

∂pα
ξ−1 ∂Θ

∂pβ
, (4.38)

where ξ is a block matrix diagonal elements corresponding to the variance of the

power spectrum monopole and the VID, and off-diagonal elements corresponding to

their covariance:

ξ =

 σ2
0 σP0,Bi

σBi,P0 σ2
i

 (4.39)

where all elements have been defined in Sec. 4.1.4. Effectively, this results in a simple

addition of the individual Fisher matrices for each observable, with an additional

term for their covariance.

In our Fisher analyses we vary the parameters of our line emission model, p =

{L0,Ma,Mb, a, c}, along with the different BSM parameters for each case. We com-

pute the Fisher matrix for the power spectrum monopole, VID, and their combination

for all four redshift bins of the SPHEREx deep Hα survey. For all forecasts we assume

a k-range of kmin = 2π/L∥, representing the minimum k-accessible in the observed

field, and kmax = 10 Mpc−1, and an intensity range with Imax = 104 Jy/sr.

4.4.3. Phenomenological non-CDM

Here we present the results of our Fisher analysis on the phenomenological nCDM

model presented in Sec. 4.3. We choose fiducial values of kcut = 0.1 Mpc−1 and n =

0.1, giving a model which gives similar small-scale suppression to an axion-DM model

with ma ∼ 10−26 eV, and Ωa/Ωd ∼ 0.03. As the cosmological parameters are the only

common parameters across redshift, we marginalize over the parameters of our mass-
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Figure 4.4.1: Marginal error on cut-off scale kcut and the slope n obtained from the
Fisher matrix for the power spectrum monopole P0 and VID Bi, and their combination
in the phenomenological nCDM model assuming fiducial values of kcut = 0.1 Mpc−1

and n = 0.1.

luminosity relationship and present constraints on kcut and n for each redshift bin, as

well as their combination in Fig. 4.4.1. The blue points show constraints from only

the power spectrum, and red points show constraints from the combination of the

power spectrum and VID. The dashed lines give the combined redshift constraints,

representing our final result. Including the VID in the analysis improves the constraint

on kcut by a factor of 2-3 with σP0(kcut) = 0.0044 Mpc−1 and σP0+Bi
(kcut) = 0.0017

Mpc−1. The sensitivity to n is increased even more, improving the precision by a

factor of 7, with σP0(n) = 0.007 an σP0+Bi
(n) = 0.001.

The increase in sensitivity to these cosmological parameters is explained in Fig. 4.4.2,

where we show the marginalized forecasted constraints to the kcut-n plane for the

power spectrum monopole, VID statistic Bi, and their combination, for the z = 0.55

redshift bin. As we can see, the power spectrum alone is extremely sensitive to kcut

giving σP0(kcut) = 0.016 Mpc−1 for z = 0.55, a ∼16% error on its fiducial value.

Whereas, the VID finds a ∼74% error of σBi
(kcut) = 0.074 for the z = 0.55 redshift

bin. On the other hand, the power spectrum and VID show similar sensitivity to n

with σP0(n) = 0.028 and σBi
(n) = 0.025, 28% and 25% error on their fiducial values,
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Figure 4.4.2: 68% and 95% confidence level marginalized constraints from the Fisher
matrices for the power spectrum monopole P0 and VID Bi, and their combination,
on cut-off scale kcut and the slope n in the phenomenological nCDM model assuming
fiducial values of kcut = 0.1 Mpc−1 and n = 0.1. These constraints are based on the
SPHEREx deep Hα survey at a redshift bin centered at z = 0.55 and marginalize
over the L(M) astrophysical parameters.

respectively. These differing degeneracy directions can be clearly seen in the contours

in the kcut-n plane, where the power of a joint analysis becomes abundantly clear.

Individually, the power spectrum and VID exhibit different sensitivies to the cosmo-

logical parameters, as such when they are combined, the degeneracies between kcut

and n in either case are broken leading to tighter constraints on both parameters.

4.4.4. Axion Dark Matter

For the axion DM model, we choose to include only the axion density fraction Ωa/Ωd

alongside the astrophysical parameters in our Fisher analysis. We follow Refs. [145,

160–162] by forecasting constraints on the axion fraction for fixed values of ma ∈

[10−32, 10−22] eV, since a highly non-trivial degeneracy exists in the ma-Ωa plane. We

choose three exemplary cases: first, we assume a very light axion with ma = 10−32 eV

as an example of “DE-like” axions; second, we choose a heavier axion withma = 10−22

eV as an example of “DM-like” axions; and finally, we choose an intermediate value
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Figure 4.4.3: Marginal error on the axion fraction Ωa/Ωd obtained from the Fisher
matrix for the power spectrum monopole P0 and its combination with the VID Bi,
for axion masses of ma = 10−32 eV (left), 10−27 eV (center), and 10−22 eV (right)
assuming a fiducial value of Ωa/Ωd = 0.04.

of ma = 10−27 eV, to show the behavior in between these two extremes. We do

not consider cases outside of this range as lighter axions are indistinguishable from a

cosmological constant, and heavier axions are indistinguishable from cold dark matter

on the scales we probe. We consider a fiducial value of Ωa/Ωd = 0.04, well within

current bounds, and hold Ωd fixed across all cases.

As we did in our phenomenological nCDM model, we calculate the Fisher matrices

for the power spectrum monopole, VID, and their combination, and marginalize over

the parameters of our mass-luminosity relationship, allowing us to combine constraints

accross redshift. These marginalized constraints on Ωa/Ωd for the three different

axion masses we consider are shown in Fig. 4.4.3 for each redshift bin, as well as their

combination, which represents our final result. As expected, in each case the inclusion

of the VID significantly boosts sensitivity to the axion fraction. For our “DE-like”’

axion with ma = 10−32 eV, the power spectrum alone gives σP0(Ωa/Ωd) = 0.0086 as

a combined constraint across redshift, an error of 21.6% of its fiducial value. The

joint analysis including the VID brings this down to σP0+Bi
(Ωa/Ωd) = 0.0006, an

improvement by a factor of over 14. Similarly for the intermediate mass axion with

ma = 10−27 eV, the power spectrum alone gives σP0(Ωa/Ωd) = 0.0019, whereas the

joint analysis yields σP0+Bi
(Ωa/Ωd) = 0.0002, representing a 9-10 times improvement
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in precision. The largest change is seen in the high-mass “DM-like” axion where

σP0(Ωa/Ωd) = 0.8746 and σP0+Bi
(Ωa/Ωd) = 0.0042, improving on the power spectrum

constraint by a factor of 200.

Looking across our different axion mass examples, we see that both IM observables

are most sensitive to the intermediate mass axion. This follows from the behavior we

see in Fig. 4.3.4, where the intermediate mass axion has the largest effects on both

the IM power spectrum monopole and intensity PDF. For the scales accessible by the

power spectrum, the heavy axion behaves just like CDM, and as such the constraints

on Ωa/Ωd are very weak and driven by the < 5% change to the P(I) at low intensities.

Similarly to the case of the heavy axion, the lightest axion we consider changes the

PDF of intensity by < 5% across the range of intensity considered. However, unlike

the heavy axion, the IM power spectrum monopole shows some sensitivity to axions

with ma = 10−32 eV. Hence, we get much better constraints than the case with

ma = 10−22 eV. For our axion which behaves like something in between CDM and

DE with ma = 10−27 eV, we see the most dramatic changes to the power spectrum

and intensity PDF across scale and intensity, thus we obtain the tightest constraints.

4.4.5. Non-Gaussianity

Finally, we present the results of our Fisher analysis on fNL, assuming a fiducial

value of fNL = 0. As before, the only common parameter across redshift is fNL, so

we compute the Fisher matrices for the power spectrum monopole, VID, and their

combination, and then marginalize over the L(M) parameters. We show our results

for each redshift bin, and their combination in Fig. 4.4.4. After combining constraints

at each redshift, the power spectrum alone gives σP0(fNL) = 9.1. The inclusion of

the VID increases precision by a factor of 2.5, giving σP0+Bi
(fNL) = 3.7. Looking at

the constraints from individual redshift bins, we see that these tight constraints are

mainly driven by the z = 4.52 redshift bin. The non-Gaussian correction to the HMF
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Figure 4.4.4: Marginal error on fNL obtained from our joint Fisher forecast using
the IM power spectrum monopole P0 and the VID statistic Bi at each redshift bin of
the SPHEREx deep Hα survey. The blue points represent the constraints assuming
only the power spectrum is available. The red points show the improvement when
the VID is included in analysis. The dashed lines represent the total constraint when
all redshift bins are combined.

we employ alters the abundance of galaxies more dramatically at high-redshifts. As

such, our sensitivity to fNL at low redshift is very weak with the power spectrum

giving σP0(fNL) = 898 in the z = 0.55 bin. When the VID is included, the constraint

at z = 0.55 is improved by a factor of over 25 with σP0+Bi
= 34.7. Looking at this

individual redshift bin it becomes clear just how powerful a joint analysis including

the VID can be for individual measurements.

Section 4.5

Discussion

Line-intensity mapping proposes a novel observational technique, capable of measur-

ing large cosmological volumes at redshifts beyond the reach of conventional galaxy

surveys. The fluctuations in an observed intensity map depend on the spatial distri-

bution of galaxies and the luminosity function of the spectral line of interest. The

spatial distribution of galaxies traces the underlying dark matter field, which is de-
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pendent on the underlying cosmological scenario. Whereas, the luminosity function

depends more heavily on the astrophysical conditions of the source. The IM power

spectrum carries the bulk of cosmological information available in intensity maps, but

only provides information on the shape of the line luminosity function, and is limited

at large and small scales by foregrounds and survey volumes, and resolution, respec-

tively. On the other hand, the VID which depends directly on the full luminosity

function, carries non-Gaussian information, and supports a larger range of scale than

the power spectrum. As such, analyses which combine these two summary statistics

should significantly improve constraints on the line-luminosity function, thus breaking

degeneracies between astrophysical uncertainties and cosmological features.

To combine these two summary statistics, the covariance between them is needed

to properly account for their shared information content. Previous combined analyses

rely on empirical estimations of the covariance from simulations, which means a joint

analysis using these two statistics is only possible when simulations are available, or

practical to obtain. Recent work has shown the covariance between the IM power

spectrum and VID can be calculated analytically [130], opening up the possibility of

combining these two statistics to evaluate the constraining power of IM experiments

on a much wider range of astrophysical and cosmological models.

In this work, we use the analytic form of the covariance to forecast joint IM

parameter constraints on a range of beyond the standard model cosmologies. We

focus on models which alter the halo-mass function at light and heavy masses, where

the inclusion of the VID has the largest impact in comparison to an analysis using only

the power spectrum. Specifically, we consider local-type non-Gaussianity, which alters

the HMF large scales and two cases of non-cold dark matter, which introduce a small-

scale suppression of matter-power. Our DMmodels include a phenomenological model

which generalizes the small-scale suppression of clustering with respect to CDM, and
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a specific case of axion DM where we can follow its full evolution over cosmic history,

giving access to tomographic information, which slightly increases our constraining

power. We forecast constraints assuming a SPHEREx mission which will measure

the Hα line in its deep survey at redshifts 0.1 < z < 5, as an example of near-term

observational capabilities.

Our phenomenological non-CDM model, which models small-scale suppression of

clustering through a transfer function applied to the matter-power spectrum, intro-

duces two new cosmological parameters, the scale at which clustering begins to be

suppressed kcut, and the slope of the suppression n. We find that a joint Fisher

analysis using the IM power spectrum monopole and VID can lead to an increase in

precision on estimation of kcut by a factor of 2-3, and an increase by a factor of 7 for

n. The increased sensitivity is a direct result of the different kcut-n degeneracy direc-

tions in the power spectrum monopole and VID, making their combination break the

degeneracy and yield much tighter constraints. As can be expected, we see a greater

improvement in the estimation of n, as the power spectrum alone is weakly sensitive

to it.

We consider three specific cases of axion dark matter with varying masses of the

axion. First, we consider a “DE-like” axion withma = 10−32 eV which thaws from the

Hubble friction after matter-radiation equality, making its effect on the matter-power

spectrum, similar to that of dark energy or massive neutrinos. In this case we find

that a joint analysis increases precision on the estimation of the axion density fraction

Ωa/Ωd by a factor of 14 with respect to an analysis using only the power spectrum.

Secondly, we consider a heavy “DM-like” axion with ma = 10−22 eV, which becomes

dynamical during the radiation era. As such, its effect on the matter power spectrum

is similar to CDM, and we only see changes at very small scales which are out of reach

of the IM power spectrum. For this reason, the inclusion of the VID, which is more
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sensitive to these small scale changes, increases precision on Ωa/Ωd by a factor of 200,

when compared with constraints from the power spectrum alone. The final axion we

consider exists somewhere in between DE and DM with ma = 10−27 eV. This case

is overall the most constrained of the three we consider as it has the greatest effect

on both the power spectrum and VID affecting all accessible scales and intensities.

Here the inclusion of the VID results in 9-10 times greater sensitivity to the the axion

density.

Finally, we consider deviations to Gaussianity by introducing first order non-

Gaussian corrections to the halo-mass function and halo bias. For positive (negative)

fNL the abundance of high-mass halos in increased (decreased) compared to a Gaus-

sian universe. Hence, for positive (negative) fNL, these corrections enhance (suppress)

the power spectrum monopole and PDF of observed intensities at large scales and

high intensities, respectively. These changes to the IM observables are more pro-

nounced at high-redshift, leading to our derived constraints on fNL being driven by

the highest redshift bin of the SPHEREx survey. Combining redshift bins we find

that our joint analysis increases sensitivity to fNL by a factor of 2-3.

While we focus our forecast on a single experiment and spectral line, it can be

easily generalized for others. With accurate models of the correlation between dif-

ferent emission lines, multiple lines could be added together to boost sensitivity to

cosmological parameters even more. Furthermore, while we introduce new cosmolog-

ical parameters, our analysis assumes the standard model parameters are given by

the Planck best-fit ΛCDM cosmology. For accurate parameter estimation in BSM

cosmologies, we would need to include these parameters in our Fisher forecast. The

purpose of this work was to show the increased precision obtained in a joint analysis,

not an accurate estimation of parameter values. Hence, we leave a full forecast with

varied astrophysics and cosmology to future work.
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In summary, we demonstrate how a the combination of the IM power spectrum

monopole and voxel intensity distribution can increase sensitivity in IM experiments

to beyond the standard model physics through the VID’s control of the luminos-

ity function of the chosen spectral line. Intensity mapping analyses using only the

power spectrum of fluctuations are limited by foregrounds, survey-volumes, resolu-

tion and degeneracies between the cosmological parameters and the astrophysics of

line-emission. Hence, constraints from these analyses on beyond the standard model

physics are weak. The VID’s sensitivity to a larger range of scale and the full-

luminosity function, means that including it in analyses of BSM physics can boost

the precision of parameter estimation by orders of magnitude in some cases, estab-

lishing intensity mapping as a powerful probe of new physics.

In the near future, many LIM experiments will come online, targeting a variety

of emission lines sourced at redshifts reaching back to cosmic dawn. We hope this

work provides a useful framework to exploit these experiments for probing beyond

the standard model cosmologies.
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Chapter 5

Cosmological Perturbation Theory

with a Coupled Scalar-U(1) Model

of Dark Energy

In this chapter, we derive all the necessary equations to describe the evolution of

cosmological perturbations in a model of a cosmic acceleration consisting of a scalar

field coupled to a trio of classical U(1) gauge fields. This model was first proposed in

Ref. [163], where they found analytic solutions for the background evolution in this

model.

Section 5.1

Background Model

Follwing Ref. [163], the proposed scenario consists of the standard cosmological model,

with the cosmological constant replaced by a scalar field χ coupled to a classical trio

of U(1) gauge fields AI
µ via a Chern-Simons interaction, where I = 1, 2, 3 indexes the
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5.1 Background Model

different gauge fields. The Lagrangian density is given by

L =
1

2
M2

PR− 1

2
(δχ)2 − V (χ)− 1

4
F I
µνF

Iµν +
α

8π

χ

f
F I
µνF̃

Iµν + Lrm (5.1)

where the index I is summed over, we define the Planck mass as MP = 1/
√
8πG,

and Lrm represents the Lagrangian density for standard model radiation and matter.

The field strength tensor and its dual for each gauge field is F I
µν = ∂µA

I
ν − ∂νA

I
µ,

and F̃ Iµν = ϵµναβF I
αβ/2

√
g, respectively. Here, g = det[gµν ] is the determinant of

the spacetime metric, and ϵµναβ is the anti-symmetric Levi-Civita symbol with the

convention ϵ0123 = 1, meaning all even permutations are +1, and all odd permutations

are −1. Another parity odd term which could be included in our Lagrangian density

couples the scalar field to the gravitational Chern-Simons scalar [164]. However, this

term has no effect on the background evolution or scalar perturbations so we leave

its consideration to future work.

We consider a homogenous and isotropic FLRW background spacetime, with the

metric gµν = a(τ)2diag(−1, 1, 1, 1), where τ is conformal time, and the scale factor

today is a0 = 1. At the background level, the equations of motion for the scalar and

U(1) fields are

−□χ+ V,χ =
1

4M
F I
µνF̃

Iµν , (5.2)

∇µ

(
F Iµν − χ

M
F̃ Iµν

)
= 0, (5.3)

where we have defined M ≡ 2πf/α. In order to preserve homogeneity and isotropy

at the background level, we assume χ = χ(τ), and require the U(1) fields to be set

up in a flavor-space locked configuration with

F I
i0 = E(τ)δIi , F I

jk = B(τ)ϵIjk, (5.4)
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where E(τ) and B(τ) are vacuum-expectation-values (vevs) of the gauge fields, and

latin indices i, j, and k, refer only to spatial coordinates. In this configuration, each

gauge field is associated with a spatial direction such that I = x, y, z, and carry

associated ‘electric’ and ‘magnetic’ field components that are parallel or anti-parallel

to each other to avoid generating a Poynting flux which would break homogeneity.

Similarly, to preserve isotropy, E(τ) and B(τ) must be equal in amplitude for each

flavor.

Plugging in (5.4) into the equation of motion, and using the Bianchi identity

∇[αFµν] = 0, we find that

E ′ =
B

M
χ′, B′ = 0, (5.5)

where primes denote derivatives with respect to conformal time ′ = d/dτ . Similarly,

the scalar field equation of motion becomes

χ′′ + 2Hχ′ + a2(V,χ + 3EB/Ma4) = 0, (5.6)

where H = a′/a is the conformal Hubble parameter and we have used F I
µνF̃

Iµν =

−12EB/a4. The equations of motion for the electric and magnetic components tell

us that

E = Ei +
B

M
(χ− χi), B = Bi (5.7)

where Ei, Bi and χi are integration constants corresponding to initial values of the

fields at some time τi. For the rest of this work we assume Ei = 0 for simplicity,

though the consequences of nonzero Ei are discussed in Ref. [163].

The energy density and pressure in the U(1) fields in this scenario are thus

ρU(1) = ρE + ρB =
3

2a4
(E2 +B2) = 3pU(1), (5.8)
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and the scalar field energy density has the standard form

ρχ =
1

2

(
χ′

a

)2

+ V (χ). (5.9)

Given that B′ = 0, we can immediately see that the magnetic vev behaves just

like an extra component of radiation ρB = ρB,0a
−4, with the present day density

ρB,0 = 3B2
i /2.

For acceleration to occur, we need solutions for which the scalar field is potential

dominated as a consequence of the gauge field interaction [163]. We define the critical

solution to be the value of χ at which the potential and gauge terms cancel in the

scalar field equation of motion. When χ rests at its critical solution χ = χc, it is

trapped from its potential minimum, allowing for the potential dominated evolution

which drives acceleration. Assuming a quadratic potential such that V = 1
2
m2χ2,

where m represents the mass of the scalar χ, the critical solution is defined by

χc =
χi

1 + u
, (5.10)

where we have defined

u =
m2M2

3B2
i

a4 = u0 a
4. (5.11)

Under this critical solution, where the kinetic energy is subdominant, the energy

densities in the χ field and electric vev can be combined and written as

ρχE ≡ ρχ + ρE =
m2χ2

i

2

1

1 + u
, (5.12)

with a joint equation of state

wχE = −1 +
4u

3(1 + u)
. (5.13)
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It is this combined ρχE component that acts as dark energy in this scenario. We can

see from the above equation that when u≪ 1, wχE will yield an equation of state very

close to −1, and behave like a cosmological constant. As u→ 1, wχE → −1
3
, marking

the end of acceleration. Note that wχE is not simply an addition of a radiation-like

component with w = 1/3 and a scalar component with w = −4/3(1 + u), but the

equation of state for the coupled χ-E fluid, which together acts as dark energy.

We can enforce the kinetic energy of the scalar field to be subdominant when

Rχ ≪ 1, where

Rχ =
χ′
c/2a

2

m2χ2
c/2

=

(
−4H
am

u

1 + u

)2

= Rχ,0

(
1 + u0
H0

Ha3
1 + u

)2

(5.14)

is the ratio of the scalar field kinetic and potential energies, and where in the last

equality we have defined this ratio at the present day Rχ,0, which is a free parameter

in this model. With reasonable assumptions about the background expansion history,

Ref. [163] uses this to place a lower bound on m≫
√
12H0 when u = 1. This bound

ensures that the kinetic contribution to both the energy density and equation of state

are subdominant to those of the E vev. We can also use the kinetic to potential

energy ratio to separate out the equation of state evolution of the χ-E fluid, where

it is simple to show that

wχ =
1−Rχ

1 +Rχ

, (5.15)

and we know from (5.8) that wE = 1/3.

To set the various parameters of this model, it is useful to redefine our parameters

in terms of well understood phenomenological parameters. We begin by redefining the

energy density in the B vev as a fraction of the density of standard model radiation
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Figure 5.1.1: Left: the evolution of the equation of state of the scalar field (orange)
and dark energy (blue). The dashed line shows a w0-wa model with w0 = −0.9 and
wa = 0.1 for comparison. Right: the evolution of energy densities for all components
of the cosmic fluid. Both plots are generated with ΩχE,0 = 0.7, wχE,0 = −0.9,
RB,0 = 0.01, and Rχ,0 = 0.003.

such that ρB = RB,0ρr. Next, using (5.11)-(5.14), we find

u0 =
3(1 + wχE,0)

1− 3wχE,0

, (5.16)

m

H0

=
3(1 + wχE,0)√

Rχ,0

, (5.17)

(
χi

MP

)2

=
8Rχ,0ΩχE,0

(1− 3wχE,0)(1 + wχE,0)2
, (5.18)

(
M

MP

)2

=
2RB,0Ωr,0Rχ,0

(1− 3wχE,0)(1 + wχE,0)
, (5.19)

where wχE,0, and ΩχE,0 are the present day dark-energy equation of state, and frac-

tional density, respectively. In Figure 5.1.1 we show the background evolution of the

dark energy, scalar field equation of state, and the energy densities of all components

in this model for a sample case in which the χ-E fluid acts as dark energy.

137



5.2 Scalar Perturbations

Section 5.2

Scalar Perturbations

Dark energy described by a cosmological constant has no scalar perturbations to keep

track of. However, for the multi-field model we consider, including the evolution of

scalar perturbations will be key to accessing its viability against cosmological datasets.

To derive the scalar perturbations in this model we begin by perturbing the spacetime

in the flat-slicing gauge such that

gµν = a2



−1 + 2ΦF (τ, z) 0 0 ∂zb(τ, z)

0 1 0 0

0 0 1 0

∂zb(τ, z) 0 0 1


, (5.20)

where we preform a coordinate rotation such that the Fourier vector points along

the +z axis, i.e. k⃗ = kẑ, so perturbations to the spacetime metric and gauge fields

will be functions of τ and z only. Throughout this section, ΦF and b represent the

perturbations to the spacetime metric in the flat-slicing gauge. The scalar field is

perturbed such that χ(τ) → χ(τ)+δχ(τ, z) and we write the most general gauge field

perturbations constructed using only scalar degrees of freedom:

δAI
0 = δIi∂iY

′, δAI
i = δIiQ+ δIj∂i∂jδM + ϵI i

j
∂jP, (5.21)

where Y , Q, δM , and P are unknown scalars. Note that at the background level,

AI
0 = 0, but there is still gauge freedom for a nonzero component at the perturbative

level. Using these definitions the perturbations to the field strength tensor are

δF I
0i = δIiQ

′+ δIj∂i∂j(δM
′−Y ′)− ϵIji∂jP ′, δF I

ij = 2δI[j∂i]Q+2ϵIk [i∂j]∂kP. (5.22)
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Plugging these perturbed fields into the equations of motion defined in (5.3), we find:

P ′′ + k2P = BΦF −Bb′ − E

M
δχ− χ′

M
Q (5.23)

Q′′ + k2Q = EΦ′
F + Ek2b+

B

M
χ′ΦF − B

M
δχ′ − k2

χ′

M
P (5.24)

k2(δM ′ − Y ′) = Q′ − EΦF +
B

M
δχ, (5.25)

and similarly for the scalar field we find:

δχ′′ + 2Hδχ′ + k2δχ+ a2V,χχδχ = −χ′Φ′
F − k2χ′b+ 2a2V,χΦF − 2

E

a2M
k2P

+
B

a2M
(3Q′ − k2(δM ′ − Y ′)) + 3

EB

a2M
ΦF , (5.26)

where in both cases we have Fourier transformed such that ∇2 → k2.

To linear order in perturbations, the stress-energy tensor is given by

T 0
0 = −(ρ+ δρ), (5.27)

ikiT 0
i = −(ρ+ p)θ, (5.28)

T i
j = −(p+ δp)δi j + Σi

j, (5.29)

where δρ is the density perturbation, δp is the pressure perturbation, and θ = ikjvj

is the divergence of the fluid velocity. In the final equation, Σi
j ≡ T i

j − δi jT
k
k/3

denotes the traceless component of T i
j and is related to the anisotropic shear pertur-

bation via (ρ+ p)σ ≡ −(k̂ik̂j − 1
3
δij)Σ

i
j [91]. Using these definitions, and calculating

the stress-energy tensor for our added field components allows us to recast (5.23)-

(5.26) in terms of fluid variables for the electric and magnetic vevs and our scalar

field. The total fluid perturbations are divided up among the three components giv-
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ing:

δρ =
1

a4
(2E2ΦF − 2EQ′ + 2k2BP +

EB

M
δχ) + V,χδχ+

1

a2
(χ′δχ′ + χ′2ΦF )

δρE =
1

a4
(2E2ΦF − 2EQ′) +

EB

a4M
δχ

δρB =
1

a4
2k2BP

δρχ = V,χδχ+
1

a2
(χ′δχ′ + χ′2ΦF ),

(5.30)

for the total density perturbation δρ, and

δp =
1

3a4
(2E2ΦF − 2EQ′ + 2k2BP +

EB

M
δχ)− V,χδχ+

1

a2
(χ′δχ′ + χ′2ΦF )

δpE =
1

3
δρE

δpB =
1

3
δρB

δpχ = −V,χδχ+
1

a2
(χ′δχ′ + χ′2ΦF ),

(5.31)

for the total pressure perturbation δp. Similarly, the velocity divergence or momentum

density perturbation is

(ρ+ p)θ = −2
k2

a4
(EQ+BP ′ +B2b) +

k2

a2
χ′δχ

(ρ+ p)θE = −2
k2

a4
EQ

(ρ+ p)θB = −2
k2

a4
(BP ′ +B2b)

(ρ+ p)θχ =
k2

a2
χ′δχ.

(5.32)
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And finally, the anisotropic shear is

(ρ+ p)σ = − 2

3a4
(2E2ΦF − 2EQ′ + 2k2BP ) +

4

3

EB

a4M
δχ

(ρ+ p)σE = −2

3
δρE +

2EB

k2a2Mχ′ (ρ+ p)θχ

(ρ+ p)σB = −2

3
δρB

(ρ+ p)σχ = 0.

(5.33)

Using these equalities we can now recast the equations of motion in terms of these

phenomenological fluid variables. It will be useful to define

ΓE ≡ E ′

E
=

4H
1 + u

(5.34)

as an inverse time scale that characterizes the flow of energy between the E and χ

fluids. First off, we find that the shear components obey the following equations of

state:

σB = −1

2
δB, σE = −1

2
δE +

ΓE

k2
θχ, (5.35)

where δi = δρi/ρi is the density contrast in each fluid. The scalar field pressure

perturbation obeys a gauge-invariant equation of state given by

δpχ = δρχ +
p′χ − ρ′χ
k2

θχ (5.36)

where

ρ′χ+3H(ρχ+pχ)+2ΓEρE = 0,
p′χ − ρ′χ
ρχ

= w′
χ+(1−wχ)

(
3H(1 + wχ) + 2ΓE

ρE
ρχ

)
.

(5.37)
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The B equations of motion are

δ′B +
4

3
(θB + k2b) = 0, θ′B = k2(

1

4
δB − ΦF − σB) + ΓE

ρE
ρB

(θχ − θE). (5.38)

The E equations are

δ′E+
4

3
(θE+k

2b)+ΓE(δE−δB−δRχ+2ΦF ) = 0, θ′E = k2(
1

4
δE−ΦF−σE)−ΓE(θE−

1

2
θχ),

(5.39)

where δRχ = (δρχ + δpχ)/(ρχ + pχ). Finally, the equations of motion for the scalar

field become,

θ′χ = 2Hθχ +
k2

1 + wχ

δχ − k2ΦF + 2ΓE
ρE
ρχ

1

1 + wχ

θχ (5.40)

and

δ′χ + (1 + wχ)(θχ + k2b) + 3H
(
δpχ
δρχ

− wχ

)
δχ

+ ΓE
ρE
ρχ

{[
1

1 + wχ

(
δpχ
δρχ

− wχ

)
− 1

]
δχ + δE + δB − 2ΦF

}
= 0. (5.41)

The equations of motion outlined in (5.34)-(5.41) constitute a full description of

the perturbative sector dynamics in the flat-slicing gauge in this dark energy model

built from a scalar field coupled to a trio of classical U(1) gauge fields.

5.2.1. Gauge Transformations

In order to access the viability of this proposed model against cosmological datasets,

the background and perturbative evolution of all new fluid components must be

evolved alongside the standard model components. We choose to do this evolution in

the Boltzmann solver CAMB 1 [95], which evolves the linearized perturbations in the

1Publicly available at: https://camb.info
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synchronous gauge. As such, we must transform all the equations of motion derived

in the previous section to the synchronous gauge to be compatible with the rest of

the code. We do this in a two step process. First, we transform from the flat-slicing

gauge with metric perturbations ΦF and b, to the conformal-Newtonian gauge with

metric perturbations ϕ and ψ. Second, we transform from the conformal-Newtonian

to the synchronous gauge with metric perturbations h and η, as laid out in Ref. [91].

Linear Perturbations in the Conformal Newtonian Gauge. The line-element

in the conformal-Newtonian gauge is

ds2 = a2(t)
[
−(1 + 2ψ)dt2 + (1− 2ϕ)dx⃗2

]
. (5.42)

The flat-slicing and conformal-Newtonian gauge metric potentials are related as fol-

lows:

ϕ = −Hb, ψ = b′ +Hb− ΦF , (5.43)

which make the fluid variables transform as

δF = δCN − ρ′

ρ
b, θF = θCN − k2b, δpF = δpCN − p′b, σF = σCN , (5.44)

where we use the subscripts F and CN to refer to quantities in the flat-slicing and

conformal-Newtonian gauges, respectively.

Completing these transformations, the scalar field fluid equations of motion in the

conformal-Newtonian gauge can be written as

δ′χ = −(1 + wχ)θχ − 3H
(
δpχ
δρχ

− wχ

)
δχ + 3(1 + wχ)ϕ

′

− ΓE
ρE
ρχ

{[
1

1 + wχ

(
δpχ
δρχ

− wχ

)
− 1

]
δχ + δE + δB + 2ψ

}
(5.45)
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θ′χ = 2Hθχ +
k2

1 + wχ

δχ + 2ΓE
ρE
ρχ

1

1 + wχ

θχ + k2ψ, (5.46)

σχ = 0. (5.47)

The scalar field pressure perturbation is gauge-invariant and thus unchanged during

the transformation. The fluid equations for the E-component become

δ′E = −4

3
θE − ΓE (δE − δB − δRχ − 2ψ) + 4ϕ′, (5.48)

θ′E = k2
(
1

4
δE + ψ − σE

)
− ΓE

(
θE − 1

2
θχ

)
, (5.49)

σE = −1

2
δE +

ΓE

k2
θχ + 2ϕ. (5.50)

And finally, the fluid equations for the B-component in the conformal-Newtonian

gauge are

δ′B = −4

3
θB + 4ϕ′, (5.51)

θ′B = k2
(
1

4
δB + ψ − σB

)
+ ΓE

ρE
ρB

(θχ − θE), (5.52)

σB = −1

2
δB + 2ϕ (5.53)

Linear Perturbations in the Synchronous Gauge. Following Ref. [91], the

synchronous gauge is defined via the spacetime metric

gµν = diag[−a2, a2(1− 2η), a2(1− 2η), a2(1 + h+ 4η)], (5.54)

and the conformal-Newtonian and synchronous gauge metric potentials are related as

follows:

ϕCN = η − αH, ψCN = α′ + αH, (5.55)
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5.2 Scalar Perturbations

where α = (h′ + 6η′)/2k2. The fluid variables transform as

δCN = δS + α
ρ′

ρ
, θCN = θS + αk2, δpCN = δpS + αp′, and σCN = σS,

(5.56)

where the subscript S denotes quantities in the synchronous gauge.

Completing the transformation from the conformal-Newtonian to synchronous

gauge result in the scalar field equations of motion becoming

δ′χ = −(1 + wχ)

(
θχ +

h′

2

)
− 3H

(
δpχ
δρχ

− wχ

)
δχ

− ΓE
ρE
ρχ

{[
1

1 + wχ

(
δpχ
δρχ

− wχ

)
− 1

]
δχ + δE + δB

}
, (5.57)

θ′χ = 2Hθχ +
k2

1 + wχ

δχ + 2ΓE
ρE
ρχ

1

1 + wχ

θχ, (5.58)

σχ = 0. (5.59)

As before, the scalar field pressure perturbation is gauge-invariant and unchanged.

The E-component equations in the synchronous gauge are:

δ′E = −4

3

(
θE +

h′

2

)
− ΓE(δE − δB − δRχ), (5.60)

θ′E = k2
(
1

4
δE − σE

)
− ΓE

(
θE − 1

2
θχ

)
, (5.61)

σE = −1

2
δE +

ΓE

k2
θχ + 2η. (5.62)
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And finally, the B-component equations of motion transform into:

δ′B = −4

3

(
θB +

h′

2

)
, (5.63)

θ′B = k2
(
1

4
δB − σB

)
+ ΓE

ρE
ρB

(θχ − θE), (5.64)

σB = −1

2
δB + 2η. (5.65)

To determine the impact of this model of dark energy on cosmological observables,

like the cosmic microwave background, one must numerically solve this coupled system

of linear perturbations alongside the standard model components.

Section 5.3

Initial Conditions

Solving the coupled set of first-order differential equations derived in the previous

section requires specifying initial conditions for the metric potentials and fluid com-

ponents. Following the derivation of initial conditions in Ref. [91], we begin evolution

deep in the radiation era and consider only the behavior in the synchronous gauge,

though we note that the behavior of fluctuations on scales larger than the horizon

is gauge-dependent. During radiation domination, massive neutrinos are relativistic

and behave as radiation, alongside the new B-component coming from our three U(1)

fields, and of course photons. The cold dark matter (CDM), baryons, scalar field χ,

and E-component make a negligible contribution to the total energy density of the

Universe such that ρtot = ργ + ρν + ρB. Note that throughout this section we will

use the subscript B to refer to our added B-field component, and the subscript b to

refer to baryons. The expansion rate during radiation domination is H = a′/a = τ−1.

Furthermore, large Thompson damping drives ℓ ≥ 2 moments of the Boltzmann hier-

archy for photons, and ℓ ≥ 3 moments for neutrinos to zero. Under these assumptions
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5.3 Initial Conditions

Einstein’s equations2 give us

k2η − 1

2
Hh′ = 3

2
H2 δρtot

ρtot
, (5.66)

k2η′ =
3

2
H2 [(ρ+ p)θ]tot

ρtot
, (5.67)

h′′ + 2Hh′ − 2k2η = −3H2 δρtot
ρtot

, (5.68)

h′′ + 6η′′ + 2H(h′ + 6η′)− 2k2η = −9H2 [(ρ+ p)σ]tot
ρtot

(5.69)

where δρtot = δργ + δρν + δρB. Combining the first and third of these equations and

simplifying gives a second-order differential equation for the metric perturbation h:

τ 2h′′ + τh′ + 6[(1−Rν −RB)δγ +Rνδν +RBδB] = 0, (5.70)

where we have defined Ri = ρi/ρtot. The equations of motion for the fluid perturba-

tions relevant in the radiation era simplify to

δ′γ +
4

3
θγ +

2

3
h′ = 0, θ′γ −

1

4
k2δγ = 0, (5.71)

δ′ν +
4

3
θν +

2

3
h′ = 0, θ′ν −

1

4
k2(δν − 4σν) = 0, σ′

ν =
2

15
(2θν + h′ +6η′), (5.72)

δ′B+
4

3
θB+

2

3
h′ = 0, θ′B− 1

4
k2(δB−4σB) = 0, σ′

B =
1

3
(2θB+h′+6η′), (5.73)

where we have used the fact that ρB ≫ ρE early on. To lowest order in kτ , all

k2 terms in these equations can be dropped. Under those assumptions, taking two

derivatives with respect to conformal time of (5.70)-(5.73), gives

τ 2h′′′′ + 5τh′′′ = 0, (5.74)

2In Ref. [91], these are equations (21a)-(21d) adjusted for radiation domination.

147
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This equation has power law solutions with powers n = 0, 1, 2,−2, giving

h = A+B(kτ)−2 + C(kτ)2 +D(kτ). (5.75)

Plugging this solution into (5.70) tells us that

δ ≡ (1−Rν −RB)δγ +Rνδν +RBδB = −2

3
B(kτ)−2 − 2

3
C(kτ)2 − 1

6
D(kτ). (5.76)

We now choose initial conditions where only the fastest growing mode is present

giving us:

h = C(kτ)2, δ = −2

3
C(kτ)2. (5.77)

Using our solutions for δ and h to simplify (5.66), gives a solution for our other metric

perturbation η:

η = 2C +D(kτ)−1. (5.78)

Assuming adiabatic initial conditions, δγ/(1 + wγ) = δi/(1 + wi) meaning that

δγ = δν = δB = δE = −2

3
C(kτ)2, (5.79)

δb = δc =
3

4
δγ, (5.80)

δχ =
3

4
(1 + wχ)δγ. (5.81)

The equation of motion for θγ tells us that

θγ = − 1

18
Ck4τ 3. (5.82)

From (5.67), we see that η′ must scale as θγ/τ
2, so we need to take up to second order
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in kτ in our definition of η, i.e. D → H(kτ)3, giving

η = 2C +H(kτ)2. (5.83)

Let us now assume that all θ perturbations scale in the same way such that θν = R1θγ

and θB = R2θγ. Plugging these into (5.67) then gives

H = − 1

18
C(1−Rν −RB +RνR1 +RBR2). (5.84)

The equations of motion for the neutrinos, E-, and B-components anisotropic shear

tell us that σν ∝ σB ∝ σE ∝ (kτ)2. So let us define σν = S1(kτ)
2, and σB = S2(kτ)

2.

Using these definitions and the shear equations of motion we find that

S1 =
2

15
(C + 6H), S2 =

1

3
(C + 6H). (5.85)

The equations of motion for θν and θB similarly give us

− 3

18
R1C =

1

4
(−2

3
C − 4S1), − 3

18
R2C =

1

4
(−2

3
C − 4S2). (5.86)

We now have a system of five equations with five unknowns H, R1, R2, S1, and S2.
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5.3 Initial Conditions

Solving this system gives

η = 2C − 5 + 4Rν + 10RB

6(15 + 4Rν + 10RB)
C(kτ)2 (5.87)

θν =
23 + 4Rν + 10RB

15 + 4Rν + 10RB

θγ (5.88)

θB =
35 + 4Rν + 10RB

15 + 4Rν + 10RB

θγ (5.89)

σν =
4

3(15 + 4Rν + 10RB)
C(kτ)2 (5.90)

σB =
10

3(15 + 4Rν + 10RB)
C(kτ)2 =

5

2
σν . (5.91)

Next, we need to find the initial conditions for θE, θχ, and σE. Let us assume as

we did for the other components that θE = R3k
4τ 3, θχ = R4k

4τ 3, and σE = S3(kτ)
2.

Early on, ΓE = 4H = 4/τ , and ρE ≪ ρχ, so the equations of motion for θE, θχ, and

σE form a system of three differential equations with three unknowns R3, R4, and S3.

Solving as we did for the radiative components we find:

θE = −3(35 + 4Rν + 10RB)

7(15 + 4Rν + 10RB)
θγ = −3

7
θB (5.92)

θχ = 9θγ (5.93)

σE = −
(
4

3
+

10

3(15 + 4Rν + 10RB)

)
C(kτ 2) = −

(
5

2
+ 15 + 4Rν + 10RB

)
σν

(5.94)

Lastly, we need to determine the value of the only unknown constant left, C.

To derive this, we transform our equations for the metric perturbations into the

conformal-Newtonian gauge where the CNG metric potentials are written as

ψ = 2C

(
1− 6

5 + 4Rν + 10RB

6(15 + 4Rν + 10RB)

)
, (5.95)
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ϕ = C

(
1 + 6

5 + 4Rν + 10RB

6(15 + 4Rν + 10RB)

)
. (5.96)

We choose the initial conditions to be set by the amplitude of X, the comoving

curvature perturbation which is conserved on super-Hubble scales for adiabatic modes,

and is given by

X = ϕ+
2

3

H−1ϕ′ + ψ

1 + w
. (5.97)

We set X = 1 as is done for CAMB. Plugging in our metric potentials into our definition

of X gives us C = 1
2
.

5.3.1. Initial Conditions in Pure Radiation Domination

Here we compile the initial conditions derived in the previous section. In these equa-

tions, the subscript b refers to baryons, and the subscript B refers to the B-field like

component.
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h = C(kτ)2 (5.98)

η = 2C − 5 + 4Rν + 10RB

6(15 + 4Rν + 10RB)
C(kτ)2 (5.99)

δγ = δν = δE = δB = −2

3
C(kτ)2 (5.100)

δb = δc =
3

4
δγ (5.101)

δχ =
3

4
(1 + wχ)δγ (5.102)

θγ = θb = − 1

18
Ck4τ 3 =

1

12
k2τδγ (5.103)

θc = 0 (5.104)

θν =
23 + 4Rν + 10RB

15 + 4Rν + 10RB

θγ (5.105)

θB =
35 + 4Rν + 10RB

15 + 4Rν + 10RB

θγ (5.106)

θE = −3(35 + 4Rν + 10RB)

7(15 + 4Rν + 10RB)
θγ = −3

7
θB (5.107)

θχ = 9θγ (5.108)

σγ = 0 (5.109)

σν =
4

3(15 + 4Rν + 10RB)
C(kτ)2 (5.110)

σB =
10

3(15 + 4Rν + 10RB)
C(kτ)2 =

5

2
σν (5.111)

σE = −
(
4

3
+

10

3(15 + 4Rν + 10RB)

)
C(kτ 2) (5.112)

= −
(
5

2
+ 15 + 4Rν + 10RB

)
σν , (5.113)

where C = 1
2
, and we have defined

Rν =
ρν

ργ + ρν + ρB
, and RB =

ρB
ργ + ρν + ρB

. (5.114)
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The synchronous gauge is defined as being co-moving with the CDM giving us θc = 0,

and the tight-coupling between photons and baryons gives us θb = θγ.

Note that these equations differ from the initial conditions derived for the ΛCDM

model in Ref. [91] since our proposed scenario includes a non-negligible component of

radiation, the B-field, to the cosmic fluid. In the limit that RB → 0, these equations

match those in Ref. [91].

5.3.2. Correcting for the Presence of Matter

In solving for the initial conditions in the previous section, we assumed complete

radiation domination. However, CAMB accounts for corrections to these conditions

assuming a non-negligible presence of matter. These corrections will all be one higher

order in τ . In this section, we amend our previous derivation to include these O(τ)3

matter-corrections. The corrected perturbations in this scenario can now be written

as

h = C(kτ)2[1 + Aτ ], (5.115)

η = 2C −R1C(kτ)
2[1 +Bτ ], R1 =

5 + 4Rν + 10RB

6(15 + 4Rν + 10RB)
(5.116)

δγ = −2

3
C(kτ)2[1 +Dτ ], (5.117)

θγ = − 1

18
Ck4τ 3, (5.118)

θν = R2θγ, R2 =
23 + 4Rν + 10RB

15 + 4Rν + 10RB

(5.119)

σν = R3C(kτ)
2[1 + Fτ ], R3 =

4

3(15 + 4Rν + 10RB)
(5.120)

θB = R4θγ, R4 =
35 + 4Rν + 10RB

15 + 4Rν + 10RB

(5.121)

σB = R5C(kτ)
2[1 +Hτ ], R5 =

10

3(15 + 4Rν + 10RB)
, (5.122)
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where δν = δγ, δb = δc = 3
4
δγ, as before, and the θ equations are not corrected as

they are already O(τ)3, leaving θc = 0 and θb = θγ. Our goal is to solve for these

correction coefficients A, B, D, F , and H.

Expanding the Friedmann equation to higher order and assuming ρm ≪ ρr in the

radiation era we find

H =
1

τ
+

1

4
ω, (5.123)

and

ρm
ρr

= ωτ +
1

4
ω2τ 2, (5.124)

where ω = Ωm,0H0/
√
Ωr,0, and Ωm,0 and Ωr,0 are the fractional densities of matter

and radiation in the present day. Assuming non-negligible amounts of matter,

δ ≡ δρtot
ρtot

=

(
1− 1

4

ρm
ρr

)
δγ, (5.125)

where δρtot and ρtot, now sum up the contributions from both radiation and matter.

Similarly, we define a new variable Θ ≡ [(ρ+p)θ]tot
ρtot

, which sums up all contributions to

the velocity dispersion, and find

Θ =
4

3

(
1− ρm

ρr

)(
1−Rν −RB +R2Rν +R4RB +

3

4
Rb
ρm
ρr

)
θγ, (5.126)

where Rb = ρb/ρm.

We now see that we have five unknown variables for which we need to solve: A,

B, D, F , and H. We thus need five equations to determine their values. We choose

the δγ equation of motion, the neutrino and B-component shear equations of motion,

and the first and fourth Einstein’s equations given in the previous section by (5.66),
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and (5.69). Solving this system of equations we find that

A = D = −1

5
ω, (5.127)

F =
1

4

10RB + 4Rν − 5

15 + 2Rν + 5RB

ω, (5.128)

B = − 1

10

65 + 4Rν + 10RB

15 + 2Rν + 5RB

ω, (5.129)

H =
1

4

10RB + 4Rν − 5

15 + 2Rν + 5RB

ω. (5.130)

We note that CAMB does not include a correction term on η in the code. However,

in the limit that RB → 0, these equations match those implemented in CAMB3, and

deriving these equations without adding a correction on η gives results inconsistent

with the code.

Section 5.4

Future Work

With the linear perturbation equations and initial conditions determined, this dark

energy model can now be implemented in CAMB. At the time of submission of this

thesis, implementation is underway and bugs are being worked out. Once our modified

version of CAMB is fully functioning, we will investigate its phenomenology through

its effects on the CMB angular power, and matter-power spectra, and through the

evolution of perturbations. We plan to interface our modified Boltzmann code with

an MCMC code such as CosmoMC in order to constrain the parameters of this model

using cosmological datasets, as has been done with the models discussed in previous

chapters.

3The CAMB initial conditions are derived in https://cosmologist.info/notes/CAMB.pdf
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Chapter 6

Summary and Future Directions

Over many years, the ΛCDM model of cosmology became the concordance model

due to its remarkable success in explaining a wide range of cosmological observa-

tions, from the cosmic microwave background to large-scale structure. ΛCDM fits

cosmological data with high accuracy and precision, but despite its success, there are

still outstanding questions and challenges, such as the nature of the dark sector, the

details of cosmic inflation, and the newfound H0 and S8 parameter tensions. The

problems facing the concordance model may be solved by applying new physics to

current datasets, but new observational methods and techniques may also be needed

to distinguish between different underlying cosmological scenarios. In this thesis, we

address both the theoretical and observational sides of this argument. On the the-

oretical side, we explore multiple alternatives or extensions to ΛCDM that aim to

explain these ambiguities and tensions. From the observational side we establish a

general technique which allows line-intensity mapping to be used as a powerful probe

of new physics.

In Chapter 2, we develop an assisted quintessence (AQ) model of early dark energy

(EDE), linking the early and late epochs of cosmic acceleration. In the AQ framework,

a spectrum of scalar fields is introduced, each with an exponential scaling potential.
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As each field thaws from the Hubble friction, they evolve as a constant fraction of the

background energy density until the effective potential is sufficiently flat and the fields

inflate, dominate, and drive accelerated expansion. In this scenario, early and late

dark energy are inevitable and generated through a single mechanism: EDE is just

the thaw and activation of a scaling field; dark energy is the cumulative effect of the

series of EDE fields. We tested this AQ-EDE model as a potential solution to both

the Hubble tension, and the well-known coincidence problems of both early- and late-

time dark energy. Using the most recent CMB, baryon-acoustic oscillation (BAO),

galaxy survey, and supernovae data, we found that while the AQ-EDE model serves

as a solid solution to the Hubble tension and coincidence problems at the background

level, the full evolution of cosmological perturbations for any EDE model with a

scaling potential alters the gravitational potential profiles too much to be viable with

those implied by CMB temperature fluctuations. Put more succinctly, the evolution

of cosmological perturbations can make or break a potential resolution to the Hubble

tension, despite the background behavior of the dark-sector component.

Building off these results, in Chapter 3 we propose an improved parameterization

for the perturbative dynamics of a new cosmic fluid component, where it becomes

clear that anisotropic shear is just the result of an anisotropic sound speed in the

fluid. Using this parameterization and a phenomenological fluid EDE model, we

show that if you relax the assumption that EDE is fully isotropic, a requirement of

EDE built from a single scalar field, the CMB fit to S8 in a generic EDE model can

be improved, indicating a potentially better fit to LSS data. EDE with an anisotropic

shear is a clear indication of EDE built from more complicated physics than a scalar

field, and can provide the same resolution to the H0 tension as standard EDE, with

a comparable fit to current CMB data, but without exacerbating the S8 tension.

Current CMB data cannot distinguish between standard EDE and anisotropic EDE,
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suggesting that other datasets should be used to determine the underlying structure

of EDE.

We have begun preliminary analysis of this model using CMB data from the

WMAP satellite [165] and ground-based Atacama Cosmology Telescope (ACT) [166],

which when combined act as an independent CMB dataset comparable to Planck.

Similarly to a standard EDE model [20–22], we find significant preference for non-

zero amounts of EDE, but unexpectedly we also find a stronger preference for a larger

amount of shear. In this model with strongly anisotropic EDE, the resolution to the

Hubble tension goes away, though the S8 tension is still relaxed. I look forward

to exploring these results in more detail, as well as incorporating other datasets in

this analysis. In particular, the different clustering behavior in this anisotropic EDE

model suggests looking at it with the next generation of LSS experiments which will

dramatically increase the volume of LSS data across a range of redshifts and scales.

Chapter 4, explores the ability of line-intensity mapping (LIM) experiments to

constrain beyond the standard model cosmologies by performing a joint analysis of

the two LIM observables: the power spectrum and voxel intensity distribution (VID).

The information contained in these two statistics is highly complementary, and their

combination allows for a major increase in precision. Until recently, such an analysis

required the use of simulations to empirically estimate the covariance between these

two statistics. We show how to do such an analysis analytically, and we apply this

technique to forecast constraints on a range of non-cold dark matter models, as well

as non-Gaussianity. We find that the combination of these statistics breaks precision-

limiting degeneracies between astrophysical and cosmological parameters, allowing

for first-generation LIM experiments, such as the SPHEREx satellite [125], to be

able to provide competitive constraints on a range of physical and phenomenological

extensions to the standard cosmological model. Over the next decade, more than
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a dozen experiments are expected to produce line-intensity maps spanning from the

present day to the end of reionization [106, 107]. I look forward to continuing work in

building new techniques and improving the data analysis pipeline necessary to extract

useful cosmological information from these experiments.

Finally, in Chapter 5 we derive the cosmological linear perturbations and initial

conditions needed to fully describe a dark energy model built from a triplet of classical

U(1) gauge fields coupled to a scalar field via a Chern-Simons coupling. Such a model

has a few interesting features for the Hubble tension: the gauge fields act as an extra

component of dark radiation, which would aid in raising the CMB-inferred value

of the Hubble constant, while not facing the same restrictions as purely scalar-field

EDE; the coupling between the scalar and gauge fields introduce an anisotropic shear

reminiscent of the shear investigated in Chapter 3. With all the necessary perturbative

evolution laid out in this chapter, I look forward to exploring the phenomenology of

this model and its viability with cosmological datasets in the near future.

In summary, the results presented in this thesis offer valuable insight into the

search for new physics beyond the standard model in the era of precision cosmology.

In the near future, data from experiments targeting all epochs of the Universe will

become available, providing new ways to build and test beyond the standard model

cosmologies. I am excited to continue to contribute to both the theory and analysis

preparation needed to accurately and efficiently test cosmological models with this

data.
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