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Abstract 

This dissertation examines mentalizing abilities, causal reasoning, and the interactions thereof.  

Minds are so much more than false beliefs, yet much of the existing research on mentalizing has placed a 

disproportionately large emphasis on this one aspect of mental life. The first aim of this dissertation is to 

examine whether representing others’ knowledge states relies on more fundamentally basic cognitive 

processes than representations of their mere beliefs. Using a mixture of behavioral and brain measures 

across five experiments, I find evidence that we can represent others knowledge quicker and using less 

neural resources than when representing others’ beliefs. To be considered a representation of knowledge 

rather than belief, both mentalizer and mentalizee must accept the propositional content being represented 

as factive (Kiparsky & Kiparsky, 2014; Williamson, 2002). As such, my results suggest that representing 

the mental states of others may be cognitively easier when the content of which does not need to be 

decoupled from one’s own existing view of reality.  

Our perception of other minds can influence how we attribute causality for certain events. The 

second aim of this dissertation is to explore how perceptions of agency and prescriptive social norms 

influence our intuitions of how agents and objects cause events in the world. Using physics simulations 

and 3D anthropomorphic stimuli, the results of three experiments show that agency, itself, does not make 

agents more causal to an outcome than objects. Instead, causal judgments about agents and objects differ 

as a function of the counterfactuals they respectively afford. Furthermore, I show that what distinguishes 

the counterfactuals we use to make causal attributions to agents and objects are the prescriptions we hold 

for how they should behave. 

Why do we say a fire occurred because of a lightning strike, rather than the necessary presence of 

oxygen? The answer involves our normative expectations of the probability of lightning strikes and the 

relative ubiquity of oxygen (Icard et al., 2017). The third aim of this dissertation explores the gradation of 

causal judgements across multiple contributing events that each vary in their statistical probability. I 
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contribute to ongoing theoretical debates about how humans select causes in experimental philosophy and 

cognitive science by introducing a publicly available dataset containing 47,970 causal attribution ratings 

collected from 1,599 adult participants and structured around four novel configurations of causal 

relationships. By quantitatively manipulating the influence of normality, I systematically explore the 

continuous space of a causal event’s probability from unlikely to certain. It is my hope that this 

benchmark dataset may serve as a growing testbed for diverging theoretical models proposing to 

characterize how humans answer the question: Why?  
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Chapter 1.  

“Be patient toward all that is unsolved in your heart and try to love the questions themselves, 

 like locked rooms and like books that are now written in a very foreign tongue.  

Do not now seek the answers, which cannot be given you  

because you would not be able to live them.  

 

And the point is, to live everything. Live the questions now.  

Perhaps you will then gradually, without noticing it,  

live along some distant day into the answer.”   

- Rainer Maria Rilke 

 

1.1 Overview 

Our mental representations of another person involve a unique configuration of causal 

relationships we can use to explain, influence, and predict their behavior. These cause-effect relationships 

are part of a network of associations that includes links between another person’s internal mental state and 

externally observable behavior. Despite this division between internal and external worlds, these links 

allow us to mentally reverse-engineer others’ behavior to deduce the hidden mental states from which 

they arise.  

The projects in this dissertation sit at the intersection of theory-of-mind reasoning (chapter 2) and 

causal reasoning (chapter 4) and explore the interaction between them (chapter 3). More specifically, the 

second chapter of this dissertation addresses the existing debate in the mentalizing literature about 

whether the ability to represent what other agents know relies on more fundamentally basic cognitive 

processes than the ability to represent what other agents believe. The third chapter of this dissertation 

considers the role of theory-of-mind in the causal reasoning process and specifically asks how inferences 

about an agent’s mental state might alter our causal ascriptions by influencing the counterfactuals that 
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could be considered for outcomes caused by intentional or unintentional agents as compared to inanimate 

objects. Finally, the fourth chapter of this dissertation contributes directly to the study of causal reasoning, 

focusing specifically on the way in which statistical information about events affects judgments of causal 

selection.   

1.2 Knowledge without Belief 

The capacity to form theories of other minds has been said to rely on commonsense intuitions of 

how the environment causes mental states and how those mental states further cause behaviors 

(Carruthers & Smith, 1996; David Lewis, 1972). We traverse these causal paths when inferring mental 

cause from behavioral effect or, moving in the opposite direction, using the inferred mental state of 

another person to predict the behaviors that follow. This ability to perceive the hidden mental causes of 

overt behavior has endowed our species with the remarkable ability to cooperate and compete (Adolphs, 

2009; R. Dunbar, 2003; R. I. M. Dunbar, 1998). However, we are still far from fully understanding how 

this ‘mind reading’ ability develops and operates. A stringent test for the capacity to mentalize has been 

proposed by philosophers for the presence of mentalizing abilities, requiring the prediction of another 

person’s behavior on the basis of that person’s false beliefs (Bennett, 1978; Dennett, 1978). Proponents of 

this criteria argue that predicting behavior caused by true beliefs would be insufficient evidence of a 

capacity for mentalizing since it would be impossible to discern whether the prediction is in accordance 

with reality, or in accordance with another person’s inferred beliefs about reality. Thus, the study of 

mentalizing became the study of predicting behavior from false beliefs (Baron-Cohen, 1997; Call & 

Tomasello, 2008; C. D. Frith & Frith, 2012; Wimmer & Perner, 1983). Although valuable insight has 

been gleaned from classic false-belief tasks, a paradigm shift is needed in which mentalizing is studied in 

ways that better reflect how we typically use these abilities in daily life. That is, not in the representation 

of others’ uncertain beliefs, but in the representation of others as sources of genuine knowledge.  
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1.2.1 The difference between knowledge and belief 
Multiple features of knowledge distinguish it from mere beliefs. The representation of another 

person's knowledge state, for instance, is constrained by what one takes to be true (Kiparsky & Kiparsky, 

2014; Williamson, 2002) (e.g. the mentalizer cannot represent another person as knowing that Santa 

Clause actually delivers gifts; unless the mentalizer accepts the proposition, Santa Clause actually 

delivers gifts,  as true.).  On the other hand, representations of others’ beliefs are unconstrained by the 

facts and free to contain anything imaginable (e.g. little Suzy believes a man named Santa Clause uses 

flying reindeer to deliver gifts). This condition of factivity in knowledge, does not, however, preclude the 

representation of others as possessing knowledge that a mentalizer, themselves, lacks (Karttunen, 1977; 

Phillips & George, 2018). We can represent John as knowing the directions to the wedding venue without 

knowing, ourselves, how to get there. This egocentric ignorance highlights the way knowledge and 

beliefs also differ in their propositional logic. For instance, when an agent does not know some 

proposition, p, they are agnostic as to whether p is true or false. On the other hand, when an agent does 

not believe some proposition, p, they take p as decidedly false (e.g. Billy does not know if Santa is real vs. 

Billy does not believe that Santa is real) (Laurence R. Horn, 1989; R. T. Lakoff, 1968). Importantly, many 

instances of even true beliefs fail to meet the criteria for knowledge. Examples of this come from “Gettier 

cases”, in which a person forms a belief on the basis of evidence that falls short of certainty, but happens 

to be true by coincidence (Chisholm, 1966; Gettier, 1963; Machery et al., 2017; Starmans & Friedman, 

2012). For instance, Billy sees what looks exactly like a sheep in the hills. From this, he is justified in his 

belief of the proposition, there is a sheep in the hills.  Now consider that what Billy sees is actually a dog 

disguised as a sheep. Also consider that there is, in fact, a genuine sheep in the hills that Billy cannot see. 

In this case, Billy’s belief that there is a sheep in the hills is true, but one would not intuitively represent 

Billy as knowing this fact (Chisholm, 1966).   

1.2.2 Comparative and developmental evidence   



 

4 

A more complete understanding of human cognition can be achieved by first defining which of its 

fundamentally basic capacities are recruited in service of more sophisticated abilities. Comparative 

studies of non-human primates, as well as developmental research using children, provide useful ways of 

disentangling the core aspects of mentalizing from its emergent complexity in more sophisticated forms.  

 In studying the development of human mentalizing abilities across evolutionary history, we can 

track which cognitive abilities are preserved backward in time along human phylogeny. It stands to reason 

that more basic cognitive processes will be present in species more distal to humans along the 

evolutionary continuum. Research on the presence of false-belief representations in our close phylogenic 

relatives, the great apes, remains ambiguous. In a looking paradigm that manipulated knowledge and false 

beliefs, Kano and colleagues found that chimpanzees could predict where human actors behind and 

occlusion will search for an object on the basis of their false belief about its location (Kano et al., 2019; 

Martin, 2019). Although compelling, other groups have found conflicting results. In a decision-making 

context, Kaminski et. al. report that chimpanzees failed to capitalize on a dominant competitor chimp’s 

false belief about the location of a food reward (Kaminski et al., 2008). Taken together, the controversy of 

whether great apes can represent a conspecific’s beliefs remains theoretically unsolved.  

Despite these mixed results, great apes demonstrate unequivocal evidence for an ability to 

mentally represent what another agent knows. In an earlier version of the competitive social decision-

making task used by Kaminski et al., Hare and colleagues found that subordinate chimpanzee behavior 

was, in fact, sensitive to the information known by a dominant competitor. In this paradigm, if a 

subordinate chimp could see that its dominant competitor knew the location of a hidden food item, it 

showed no signs of reaching for it (Hare et al., 2000). Remarkably, if the knowledgeable dominant chimp 

was replaced with another dominant chimp that was instead ignorant to the food’s location, the 

subordinate subject preferentially approached and more often retrieved the hidden food reward (Hare et 

al., 2001). Overall,  prior work investigating mentalizing abilities in great apes has demonstrated their 

genuine ability to represent what other agents know but has reached far less certain conclusions about 

their ability to attribute beliefs (Bräuer et al., 2007; Karg et al., 2015; Krachun et al., 2009).  
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Traveling further down the evolutionary tree, research on more phylogenetically distant monkey 

species paints a clearer picture of the limits of their mind-reading abilities. This work has shown monkeys 

to possess the distinct capacity to represent what others know, but not what others categorically believe 

(Drayton & Santos, 2018; Flombaum & Santos, 2005; Martin & Santos, 2016).  

We have learned a great deal about the sophisticated mentalizing abilities of adults from 

research investigating its precursors in developing children. Classic work on the representation of false 

beliefs in children using the famous Sally-Anne task, which meets the aforementioned criteria of 

predicting an agent’s behavior based on their false beliefs, has established unequivocal benchmarks for 

the age in which more complex mentalizing abilities develop from simpler ones. This work demonstrates 

that children do not possess the ability to represent another agent’s false belief before the age of four 

(Baron-Cohen et al., 1985). Interestingly, there is evidence to suggest that, between the ages of four to 

six, children further fail at representing justified true beliefs like the ones described in the Gettier case 

above (Oktay-Gür & Rakoczy, 2017). 

In comparison to the late emergence of belief attributions, work on knowledge attribution in 

younger populations indicates that these abilities exist much earlier in human development. Infants as 

young as six months old have demonstrated a sensitivity to whether or not others agents have perceptual 

access to preferred objects (Luo & Johnson, 2009). Even in the development of language, children learn 

the meaning of verbs used to ascribe knowledge (“knows”, “understands”) earlier than those used to 

attribute beliefs (“thinks”, “assumes”) (Moore et al., 1989). 

1.2.3 Evidence from clinical populations. 
Studies of people with clinical diagnoses can also reveal which processes serve as fundamentally 

core aspects of cognition as we would expect these processes to be preserved in these populations while 

more sophisticated abilities are disrupted. People living with Autism Spectrum Disorder (ASD) have been 

of particular interest in research on mentalizing because they show a relatively consistent pattern of 

symptomology in specific aspects of social cognition. Foundational work has found that a hallmark of 
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ASD is a delay in the ability to pass false-belief tasks (Baron-Cohen, 1997; Baron-Cohen et al., 1985; U. 

Frith, 2001; Moran et al., 2011; Senju et al., 2009). Despite these challenges, other findings reveal an 

ability comparable to neurotypicals in attributing factive mental states to others given their perceptual 

access (Hobson, 1984), and desires (Baron ‐ Cohen, 1989).  

Evidence for the ability of individuals with autism to attribute factive mental states to others is 

not limited to contexts involving an agent’s mere line of vision, although these instances do provide 

sufficient justification for perceptual access to constitute knowledge (Lyons, 2017). Linguistic approaches 

have also shown that autistic individuals can intuit a speaker’s knowledge from certain kinds of 

implicatures. Consider the statement “some of the students passed the exam”. According to popular 

accounts of communication, the understanding from this statement that not all students passed requires 

the assumption that the speaker would have uttered a stronger/more informative alternative if they knew it 

to be true (Gazdar, 1979; Grice, 1969; Laurence Robert Horn, 1972). As such, these implicatures require 

epistemic reasoning about others (Sauerland, 2004). Hochstein and colleagues found that adolescents with 

ASD did not differ from typically developing participants in comprehension of these kinds of 

conversational implicatures (2018).  

1.2.4 The current investigation 
The purpose of experiments reported in chapter 2 of this dissertation is to determine whether the 

mental representation of another agent’s knowledge requires the additional representation of their beliefs, 

incurring the cognitive costs thereof. A simple way of determining whether people can make evaluations 

of knowledge in the absence of evaluations of belief is to investigate the speed with which these 

evaluations are made. I begin with a simple task that investigated the response times for evaluations of 

knowledge and belief ascriptions. Participants read about various people in a variety of different scenarios 

and then made truth value judgments of knowledge and belief ascriptions to those agents. If participants’ 

evaluations of knowledge require or involve evaluations of belief, we would expect evaluations of 

knowledge ascriptions to be slower than evaluations of similar belief ascriptions.  
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One potential concern with this initial study is that it involves cases in which some of the 

ascriptions of belief may be pragmatically odd or infelicitous. Specifically, it may sound unnatural to 

describe an agent as believing some proposition in cases where the agent meets all of the criteria for 

knowledge. Our design does just this for methodological consistency. In a second experiment, I test for 

the impact of pragmatic infelicity while also asking whether differences in response times for evaluations 

of others’ knowledge and belief generalize to participants with ASD who vary in understanding linguistic 

pragmatics that require reasoning about others' beliefs. I measured the extent to which the mental state 

ascriptions participants evaluated were perceived as pragmatically odd. If pragmatic differences in 

language are responsible for a comparative delay in evaluations of others’ knowledge or belief, we should 

expect these differences to be reflected in the response time patterns of the ASD group more than the 

neurotypical control group. Alternatively, if a response time discrepancy instead resulted from knowledge 

assessments being made in the absence of calculations of others' beliefs, we expect participants with 

autism to demonstrate the same, or more extreme, differences in response times between knowledge and 

belief ascriptions. 

I next ask whether a response time difference between evaluations of knowledge and belief exists 

in languages other than English by conducting a highly similar experiment in French. French provides a 

particularly strong test because, unlike English, the French term used for belief ascriptions is used roughly 

1.49 times more frequently than the French term used for knowledge ascriptions. Thus, if differences in 

response times merely reflect lexical frequency, we should expect evaluations of beliefs to be faster than 

evaluations of knowledge in French. 

In a fourth experiment, I consider the broader class of factive and non-factive mental state 

attitudes. Factive mental states include those of ‘observing’, ‘understanding’, and ‘recognizing’. On the 

other hand, non-factive mental states include those of ‘assuming’, ‘imagining’, and ‘predicting’. I conduct 

a similar experiment, but replace the words ‘know’ and ‘think’ with counterparts from their respective 

factive and non-factive class of verbs.  A plausible reason to predict this general difference is that factive 

mental state representations may be simpler because the content represented is necessarily consistent with 
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one’s own understanding, and thus does not have to be represented separately (Phillips & Norby, 2019). If 

this prediction proves true, it could point toward a more general explanation of why people are faster to 

evaluate knowledge ascriptions than belief ascriptions. 

In the final experiment of chapter 2, I ask a similar question to the general one tested across the 

previous four experiments but use a very different methodology. Specifically, I use functional magnetic 

resonance imaging (fMRI) to examine the neural responses exhibited during the formation of knowledge 

and belief representations and ask whether these neural patterns provide evidence about the relationship 

between knowledge and belief that converged with my prior findings.  

1.3 Causal Cognition for Agents & Objects 

Research on causal cognition for physical and social events has, thus far, been pursued as distinct 

endeavors. In what follows, I review previous work on the mechanisms of causal reasoning for objects 

and agents. I then describe how this dissertation will demonstrate a more cohesive view of causal 

cognition across animate agents and inanimate objects.  

1.3.1 Philosophical perspectives 
Much of the philosophical work on causality has attempted to define the conditions that qualify 

things or events as causes. The numerous proposals to describe the properties that constitute causality 

have fallen into two broad classes. Process theories of causality require that causes be linked to their 

effects by virtue of a spatiotemporally continuous process in which some quantity, such as physical force, 

is transferred from cause to effect (Aronson, 1971; P. Dowe, 2000; Fair, 1979; Machamer et al., 2000; 

Salmon, 1984, 1994; Waskan, 2011). For example, a person who throws a rock is said to cause a window 

to shatter by virtue of the spatiotemporally continuous process in which the force generated by the 

thrower is transferred to the resting glass window. On the other hand, dependence theories of causation 

claim that a candidate event is causal if an outcome event’s occurrence is dependent on the candidate in 
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some way. This dependence can be demonstrated by appealing to counterfactuals such that some 

candidate, c, is the cause of an outcome, e, if e would not have occurred in the counterfactual where c is 

absent (David Lewis, 1974; Mackie, 1980).  Returning to the broken window example, the person who 

threw the rock qualifies as a cause of the window breaking according to dependence theories since the 

same outcome would not occur in a counterfactual that omits the event of the person throwing a rock.  

While both process and dependence frameworks make similar causal attributions in this simple 

case involving one candidate cause and one outcome, more complicated cases can call each theory into 

question. In cases of overdetermination, two events occur that are both sufficient to independently cause 

an outcome.  Consider that person A and person B both throw rocks that hit the same window at precisely 

the same time. In this case, both candidates demonstrate causality according to process accounts (they 

both transfer a force to the window), but neither candidate demonstrate counterfactual dependence (i.e. in 

the counterfactual where person A is omitted, the window still breaks due to person B). An alternative 

causal structure in which process and dependence accounts make different conclusions is known as 

double prevention. To illustrate, consider a scenario in which person A fires a gun to assassinate a target. 

A bodyguard rushes to intercept the bullet, but a bystander accidentally trips him, preventing him from 

preventing the target’s death. Process theories would argue that the gunman caused the target's death 

since their action transferred a quantity of force to the target in a spatiotemporally continuous way. 

Dependence theories, however, would claim that the bystander was also a cause of the target’s death since 

the target would have lived in a counterfactual in which the bystander had not tripped the bodyguard. 

Scenarios involving overdetermination demonstrate causality by satisfying process, but not dependence, 

theories. While scenarios involving double prevention demonstrate causality from dependence without 

meeting the criteria of process theories (Hall, 2004). The discrepancy in these hypothetical cases 

highlights the complexity of causal reasoning that exists in the real world in fields such as medicine and 

law. 

1.3.2 Causal cognition for objects 



 

10 

Humans possess a natural understanding of the physical world and the fundamental principles 

that govern the behavior of physical systems. This understanding is acquired through everyday 

experiences and does not require explicit instruction or formal training in physics. (Kubricht et al., 2017; 

McCloskey, 1983; Ullman et al., 2018). Our intuitive sense of physics allows us to make predictions 

about how objects will behave based on their properties and the forces acting on them. For example, we 

can intuitively understand that a ball will roll downhill and that heavier objects fall faster than lighter 

ones.  

Our sense of physics plays a crucial role in our understanding of causality. Causal attribution for 

physical events has often been studied using stimuli depicting collisions between rigid bodies. In the 

classic work of Albert Michotte, a moving agent appears to collide with a static patient, exerting a force 

onto and subsequently “launching” the patient into motion. In these simple contexts, people 

overwhelmingly agree that the agent causes the patient’s motion (Michotte, 1946).  

In recent work, Gerstenberg and colleagues asked participants to make causal and counterfactual 

judgments of moving shapes presented in scenes depicting various configurations of agent causes and 

patient outcomes. Their proposed Counterfactual Simulation Model (CSM) provides a computational 

framework for causal judgments that brings together aspects of both dependence and process theories of 

causation. The CSM begins by determining which candidates in a scene make a difference in the 

outcome. It does this using a programmable physics engine injected with small amounts of noise to mimic 

the way humans rely on an intuitive sense of physics to simulate possibilities (Ullman et al., 2017). By 

removing a candidate object under consideration from a scene and playing the simulation engine forward, 

the model can observe if the outcome counterfactually depended on the presence of the candidate object 

(Hiddleston, 2005; Pearl, 2000; Woodward, 2003). After determining which objects make a categorical 

difference in the outcome, The CSM moves on to measures for determining the causal strength of each 

candidate cause. Appealing to dependence theories, “whether-causation” captures the extent to which a 

candidate made a difference in the outcome. For the CSM and humans possessing imperfect physics 

simulations, whether-causation is influenced by the ambiguity of counterfactual outcomes. Additionally, 
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“how-causation” measures the effect of a perturbance to a candidate object on how the outcome obtains, 

revealing whether a transfer of force exists between the object and the outcome. Along with additional 

measures of sufficiency and robustness, the CSM provides estimates of causal strength that closely 

approximate the causal and counterfactual judgments made by participants (Gerstenberg et al., 2021).  

 

1.3.3 Causal cognition for agents 
Intentions can serve as one way to separate agents from objects.  Consistent results have 

demonstrated that agents who bring about outcomes deliberately are judged as more causal than those 

who cause the same outcome unintentionally (Fincham & Jaspers, 1980; Lagnado & Channon, 2008; 

Malle et al., 2014; McClure et al., 2007). However, the methodological considerations of isolating 

judgments of causal from moral responsibility can be a challenge when interpreting these findings 

(Kominsky & Phillips, 2019). Existing evidence suggests that when asked to evaluate the morality of 

actions, people care about an agent’s mental state, whereas considerations of blame are more sensitive to 

an agent’s causal role in an outcome (Cushman et al., 2008; Langenhoff et al., 2021; Malle, 2021). Using 

anthropomorphized agents who caused harmful outcomes to others, Sosa et al. found that the physical 

causal contributions of an agent computed using the Counterfactual Simulation Model did not 

significantly improve predictions of moral judgments above those made by a simpler model using only 

measures of the agent’s inferred desire to cause harm (2021).  

Unlike objects, the events caused by agents possess a property of equifinality, wherein variation 

in the means can still lead to the same outcome (e.g. there’s more than one way to skin a cat). This 

property may suggest that the counterfactuals we consider when attributing causality to goal-directed 

agents are not of variations in their behaviors (as in “how-causation” for objects above) but instead over 

counterfactual intentions or goals an agent could pursue.  

1.3.4 The current investigation 
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The purpose of the experiments reported in chapter 3 of this dissertation is to examine the 

common underpinnings of causal cognition across animate agents and inanimate objects.  Previous work 

studying causal attribution in the context of inanimate objects has benefitted from the computational 

tractability of physical possibilities. The laws of physics according to Newtonian mechanics serve to 

constrain counterfactuals in ways that allow programmable tests of dependence and causal strength.  The 

success of accounts for causal objects like the Counterfactual Simulation Model, however, cannot 

generalize to the mental causes of human behavior. This is because a mapping from mental states to 

behavior is rarely one-to-one. Many distinct mental states can result in the same behavioral effects (e.g. 

tears of joy vs tears of sadness). Additionally, equifinality tells us that many distinct behaviors can result 

from the same mental state. To narrow the gap between the conceptualization of causal agents and 

objects, my approach is to study human judgments in contexts where I minimally vary the agentive status 

of a potential cause while controlling the fine-grain kinematics of other physical dynamics contributing to 

an outcome.  

First, I explore whether causal attributions are impacted by the animacy of a candidate cause. 

I use realistic video stimuli of collisions in a billiards context consisting of an agent and patient ball in the 

classic sense such that the agent always collides with the patient ball, launching the patient into, or 

diverting the patient from the corner pocket of a billiards table. However, I manipulate the animacy of the 

agent ball as appearing either animate and goal-directed, or inanimate and moving in accordance with 

classic laws of physics. Participants make causal judgments with respect to the outcome of the inanimate 

patient that either lands in or misses a corner pocket of the table. I further manipulate patient 

counterfactual outcomes. Thus, I use a 2 (animate vs inanimate agent ball) x 2 (patient outcome: in vs out) 

x 2 (patient counterfactual: in vs out) crossed design. Crucially, fine-grain physical parameters of the 

collisions, patient outcomes, and patient counterfactuals are held fixed across animacy conditions, 

allowing us to observe any effect of animacy, in isolation, on causal judgments.  

Since agency instills equifinality in the outcomes caused by goal-directed behavior, 

manipulations of animacy should promote consideration of counterfactuals in which agents possess 
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different intentions rather than counterfactuals in which they execute different behaviors. Experiment 2 of 

this chapter explores this mediating influence of counterfactuals on causal judgments of agents and 

objects. I  explore causal judgments in a new setting, in which two balls are each individually sufficient to 

bring about the outcome. This time, I manipulate only the perception of animacy between subjects 

through a priming video and present all participants with the same outcome, rendered from a physics 

simulation in a subsequent test video. I hypothesized that subjects who viewed the collision as one 

between two objects would view the outcome as inevitable, thereby lacking counterfactuals for either ball 

that lead to a different outcome. However, for subjects who viewed the collision as one between an 

intentional agent and an inanimate object, a relevant counterfactual would exist in which an agent with a 

different intention could make a difference in the outcome. I test for differences in casual attribution to 

seemingly goal-directed agents and inanimate objects for the same outcome and ask if any differences 

result from the influence of counterfactuals.  

One variable known to influence judgments of both animate and inanimate causes is normativity 

(Halpern & Hitchcock, 2013; Hitchcock & Knobe, 2009; Icard et al., 2017; Kominsky & Phillips, 2019; 

Morris et al., 2019). Consistent evidence has demonstrated that people have a tendency to attribute 

increased causality to agents that violate social or moral norms as compared to agents who do not (Henne 

et al., 2019; Kirfel & Lagnado, 2018; Knobe, 2009; Kominsky et al., 2015). In the final experiment of 

chapter 3, I manipulate both animacy and normativity between participants. I asked whether or not moral 

norms are special cases for causal cognition by presenting subjects with a moral norm violation as well as 

a rational norm violation in which an animate agent behaves inconsistently with their expressed interests.  

Taken together, this work attempts to bridge the mechanisms of causal cognition across animate 

agents and inanimate objects. In both of these domains, causal judgments are strongly influenced by the 

counterfactuals we consider. In turn, the alternative possibilities that come to mind are dictated by the 

normative expectations we hold from our intuitive sense of physics or our commonsense folk 

psychology.     
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1.4 A Benchmark Dataset of Token Causal 

Selection                                                       

 Most events in real life occur through the confluence or consequence of many distinct causal 

conditions. Consider the extensive chain of cognitive and neural events required to coordinate muscle 

contractions for even the simplest of behaviors. Yet we do not say that a person smiles because efferents 

from the ponto-medulliary junction carry neural signals through the seventh cranial nerve…etc. Every 

event in this chain constitutes a cause according to the philosophical theories described above (“the 

problem of isomorphism” (Halpern & Hitchcock, 2013, p. 415)).  However, we might simply explain that 

a person smiles from the “actual cause” of satisfaction. Causal selection is the process by which humans 

decide on which of multiple candidate events constitutes the definitive actual cause of an outcome. While 

we may select satisfaction to be the cause of a smile, we would not deny that the numerous elements 

within the neural pathways involved are also causal to smiling. This is because causal responsibility for 

outcomes can be distributed across events in a graded fashion.  

When considering what events might be causes, the various links within and across causal 

conditions to their effects define the structure of a causal system. In conjunctive causal structures, the 

occurrence of two or more distinct events, jointly, causes an outcome such that each event is necessary, 

but no event is, alone, sufficient for the outcome to obtain. In disjunctive causal structures, the occurrence 

of at least one of multiple events can cause an outcome such that each event is sufficient but not 

individually necessary for the outcome to obtain.   

In chapter 4 of this dissertation, I explore how humans rank and select causal events. More 

specifically, I focus on judgments of specific token events (e.g. ‘this smile is caused by that joke’ ) rather 

than more general causal relationships between properties or kinds (e.g. ‘jokes cause smiles’). A 

benchmark dataset of causal judgments is introduced that can serve to arbitrate competing theories of how 

we select causes.  
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1.4.1 The pervasive influence of norms 
Our normative expectations play an important role in how we attribute responsibility across 

multiple causal events (Hall, 2007; Halpern & Hitchcock, 2013, p. 415; Hitchcock & Knobe, 2009; Icard 

et al., 2017; Knobe & Fraser, 2008; Kominsky & Phillips, 2019; Kominsky et al., 2015; Menzies, 2004). 

In conjunctive causal systems, people consistently attribute more responsibility for an outcome to causal 

events that are considered rare. This effect is referred to as abnormal inflation: the responsibility 

attributed to one cause in a conjunctive causal system increases as a function of its abnormality relative to 

other necessary causes (Hart & Honoré, 1985; Hilton & Slugoski, 1986; Icard et al., 2017; Kahneman & 

Miller, 1986; Kahneman et al., 1982).  In contrast, people tend to attribute less responsibility to causal 

events that seen are relatively more probable than the other necessary antecedents. This pattern is known 

as supersession, wherein the responsibility attributed to one cause in a conjunctive system decreases as a 

function of its normality relative to other necessary causes (Kominsky et al., 2015).  

 A different pattern in causal selection emerges when considering disjunctive structures. 

That is, people consistently attribute less responsibility to causal events that are considered rare. This 

effect is referred to as abnormal deflation: the responsibility attributed to one cause in a disjunctive causal 

system decreases as a function of its abnormality relative to other sufficient causes (Icard et al., 2017). 

Additionally, past work on causal selection in disjunctive systems has revealed an absence or reversal of 

supersession,  wherein the responsibility attributed to one cause in a disjunctive causal system is 

unchanged or increases as a function of its normality relative to other causes (Kominsky et al., 2015).  

1.4.2 Innovating research on causal cognition 
In what follows, I outline the ways in which the benchmark augments existing research on causal 

selection and provide a brief overview of the methodology used to collect this rich source of data.  

As described above, the precise structure of a causal system has major implications for the things 

we select as actual causes. Whether using vignettes about people and their intentions or simulated 

interactions of objects under the constraints of physics, prior research has typically operationalized 
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conjunctive and disjunctive causal structures as existing between just two distinct events leading to a 

single outcome. These designs have been extremely fruitful to our understanding of causal cognition. 

More useful insight may be gained, however, by augmenting these structures with more nodes so that 

they better reflect the causal relationships we encounter in the real world. While it is unlikely that we 

entertain each and every necessary contribution to an event (McGrath, 2005). Little is known about the 

factors that influence precisely how many candidates people consider in causal selection judgments from 

conjunctive and disjunctive structures. Furthermore, it remains to be seen whether the claims made by 

existing computational accounts of causal selection such as those proposed by Quillien (2020) or Morris 

et al. (2019) will generalize to structures involving more than simply two causal variables. The 

benchmark dataset provides a solution by including a third causal variable to these systems. This addition 

will allow us to explore the graded nature of responsibility attributions over a larger set of necessary or 

sufficient causal events.  

The antecedent conditions for events in the real world are often far more complex than purely 

conjunctive or purely disjunctive systems can represent. Instead, many outcomes result from an intricate  

mosaic of these causal relationships (Gerstenberg et al., 2015). The benchmark dataset addresses this 

issue by probing responsibility judgments in contexts that combine different causal structures together in 

novel ways. More specifically, I characterize a mixed conjunctive system, in which a disjunctive causal 

structure is embedded within a conjunctive one such that two events must still both occur to bring about 

the token outcome, one of which, however, can occur through the disjunction of two distinct events. For 

example, consider a job opening, where applicants are required to have an advanced degree and coding 

proficiency in one language or another (e.g. Python or Javascript). The dataset also includes causal 

judgments in mixed disjunctive structures. In this case, a conjunctive causal structure is embedded within 

a disjunctive one such that two events are individually sufficient to bring about the token outcome, one of 

which, however, occurs through the conjunction of two distinct events. For example, consider a different 

job opening, where applicants are required to have an advanced degree or coding proficiency in two 
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programming languages (e.g. Python and Javascript). These novel composite structures allow for the 

generation of entirely new hypotheses for how causal selection unfolds in more complex environments.  

As described above, our normative expectations interact with variable causal structures in 

interesting ways. Evidence for these effects has thus far come from work manipulating normality in 

broad, qualitative ways by describing events as either normal or abnormal. However, I believe normality 

can and should be construed in less binary ways. For the benchmark dataset, I parametrically modulate 

the influence of normality of causal events across a broad range of quantitative values. Covering such a 

vast space of possibilities will allow researchers to explore how causal judgments change in proportion to 

systematic changes in the normality of an event.  

1.4.3 The current contribution 
The purpose of the work reported in Chapter 4 of this dissertation is to discuss the impetus for a 

unified account of causal selection and introduce a large, benchmark dataset of human causal selection 

judgments I hope fosters new opportunities for researchers interested in the mechanisms of causal 

cognition.  

The data in this benchmark are organized across four participant groups that differed in the causal 

structure they observed: i.) “Pure” 3-variable conjunction; ii.) “Pure” 3-variable disjunction; iii.) “Mixed” 

conjunction; iv.) “Mixed” disjunction. Importantly, the only difference in the stimuli presented to each 

group came from task instructions, which manipulated the causal structure through the description of 

which conditions were necessary and sufficient for the token outcome.  

Participants made judgments about the causal contribution of three token events to a winning 

lottery outcome. More specifically, participants observed the token event of a red ball drawn from each of 

three jars containing red and blue balls. Across all groups, participants were made aware of the winning 

lottery outcome and the proportion of red and blue balls contained in each jar. The three token events that 

resulted in the winning lottery outcomes were held fixed such that,  in the disjunctive case where at least 

one red ball was sufficient, participants observed a winning outcome resulting from three red balls being 
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drawn. This was done to match the causal events across conditions and observe only the effect of my 

manipulations of the causal structure and normality on causal selection. Finally, I varied the normativity 

of each causal event such that the probability of drawing a red ball from a given jar came from the set [.2, 

.4, .6, .8, 1], allowing us to systematically explore points across the continuous space of an event’s 

probability from unlikely to certain. This large sample of human judgments contains 47,970 causal 

attribution ratings collected from 1,599 adult participants. It is my hope that this dataset may serve as a 

growing testbed for diverging theoretical models proposing to characterize how humans answer the 

question: Why? 
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Chapter 2.  

2.1 Introduction 

This paper asks whether there can be knowledge without belief. Or, more precisely, it asks 

whether people can represent someone else as knowing something without representing them as believing 

that thing. There are theoretical and empirical reasons to favor both a positive and negative answer to this 

question. We make progress on this question across five studies that offer a remarkably consistent answer 

using a combination of response time and fMRI data. Before turning to these results, it is worth 

explaining the motivation behind both the reasons for thinking there could not be knowledge without 

belief and the reasons for thinking there in fact could be. 

2.1.1 Knowledge with belief 
A standard way of thinking about the relationship between knowledge and belief across the 

cognitive sciences holds that knowledge is a relatively complicated mental state that may recruit or rely 

on more conceptually basic representations, like that of mere belief. It is not difficult to motivate such a 

perspective. For any case in which someone knows something, it seems intuitive enough that they must 

also at least believe that thing, since if they didn’t even believe it, how could they know it? Perhaps then, 

attributing knowledge of something to others requires, at a minimum, representing them as believing that 

thing, and then additionally representing them as satisfying some additional criteria that are more specific 

to knowledge (e.g., that their belief  is true, justified, formed through a reliable process, or what-have-

you). 

One sees aspects of this way understanding of the relationship between knowledge and belief 

both in standard philosophical analyses of knowledge (Ichikawa & Steup, 2016), and in recent 
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philosophically informed empirical work on knowledge attribution (Buckwalter et al., 2015; Dudley, 

2018; Dudley et al., 2015; Rose & Schaffer, 2013). 

Additionally, this understanding of the relationship between knowledge and belief sits well with 

the work in developmental and comparative psychology that has argued for a ‘core’ or ‘innate’ capacity 

for theory of mind that essentially involves an ability for belief representation (Kovács et al., 2010; Leslie 

et al., 2004; Onishi & Baillargeon, 2005; Stich, 2013). Researchers arguing for such a capacity have 

sought to offer evidence for an ability for false belief representation in non-human primates (Hayashi et 

al., 2020; Krupenye et al., 2016) and in human infants as young as 7 months (Buttelmann et al., 2009; 

Kovács et al., 2010; Onishi & Baillargeon, 2005). If this picture of the core capacity for theory of mind is 

correct, and essentially involves the ability to represent others’ beliefs, then it would not be surprising if 

later-developing and more conceptually complicated mental state representations, e.g., ‘imagining’, 

‘being sure’, or ‘knowing’ were built on top of conceptually primitive mental state representations, like 

mere belief, which are essential to the core capacity. 

In short, this body of work collectively provides ample motivation for the view that ascriptions of 

knowledge may depend on or involve prior representations of belief. 

2.1.2 Knowledge without belief 
Against this view, an alternative picture that has gained attention across the cognitive sciences is 

that the capacity to represent knowledge is more basic than the capacity to represent belief, and thus 

representations of knowledge do not depend on representations of belief (Phillips et al., 2020). Once 

again, it is not particularly difficult to see how such a view might have intuitive merit: many mundane 

cases of reasoning about someone’s mind seem to concern others’ knowledge without concerning their 

beliefs. For example, if you missed the outcome of the last election and ask someone else if they know 

who won, you simply want to know what they know if they do know who won (and you do not care about 

their beliefs one way or the other). 
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More direct evidence for this second view comes from comparative research that has found that 

non-human primates often pass theory of mind tasks when they only involve representations of 

knowledge, but fail similar tests when they require belief representations (Horschler et al., 2020, 2019; 

Martin & Santos, 2014, 2016). Similarly, human infants are able to robustly pass theory of mind tasks that 

only require reasoning about others’ knowledge long before they are able to pass tests that require belief 

representations (Luo & Johnson, 2009; Vouloumanos et al., 2014). Moreover, these findings concerning 

early-emerging knowledge representation have proven to be largely replicable, unlike the findings for 

early-emerging belief or implicit representations of belief (Holland & Phillips, 2020). Collectively, this 

research provides evidence for cases in which there is an ability to represent knowledge but no 

corresponding ability to represent belief. Obviously, in such cases, knowledge representation cannot 

depend on belief representation. 

While these experimental tasks were designed to test for an underlying capacity for knowledge 

and belief representation, they do not explicitly employ the concepts of knowledge and belief. 

Importantly, however, other lines of research do explicitly employ these concepts and find a remarkably 

similar pattern. For example, across languages, young children begin demonstrating a linguistic 

competence for communicating about knowledge (and related factive mental states, such as ‘seeing’) 

before they demonstrate a linguistic competence for communicating about belief (or related non-factive 

mental states, e.g., what others ‘think’) (Bartsch & Wellman, 1995; Harris et al., 2017; Wellman et al., 

2001). Additionally, research in experimental philosophy on the ordinary concept of knowledge has 

provided clear cross-cultural evidence that there are cases in which people are willing to attribute 

knowledge but unwilling to attribute belief (Myers-Schulz & Schwitzgebel, 2013; Yuan & Kim, 2021). 

And finally, recent work using EEG has revealed that answering questions about what someone believes 

requires greater cognitive resources than answering matched questions about what someone knows, as 

measured in terms of P3b amplitude (Bricker, 2020). Clearly, these cases of explicit representations of 

knowledge are unlikely to depend on prior (or simultaneous) representations of belief. 
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2.1.3 A core difference between knowledge and belief 
Perhaps the most fundamental way in which knowledge and belief differ is that knowledge is 

factive while belief is not. That is, knowledge is an attitude that one can only represent others as having 

toward truths (R. Lakoff et al., 1973; Williamson, 2002), while one can believe both things that are true 

and things that are not (Nagel, 2017; Phillips & Norby, 2019). This difference in knowledge and belief is 

not hard to see: If you don’t think it’s true that Al Gore invented the internet, then you can’t represent 

someone else as knowing that he invented the internet; you can, of course, represent them as believing it. 

And you can also represent them as believing any other arbitrary proposition, e.g., that Reagan killed all 

the birds in 1986 and replaced them with spies who work for the bourgeoisie. Representations of belief 

are not constrained by the truth; representations of knowledge are. Thus, an important difference between 

factive and non-factive attitudes, in general, is that factive attitude representations may be simpler 

because the content represented is necessarily consistent with your own, and thus does not have to be 

represented separately from your own understanding of the content (Phillips & Norby, 2019). Given that 

this difference holds for factive and non-factive attitudes in general, it would obviously hold for 

knowledge and belief in particular. We take advantage of this broader difference in trying to understand 

the relationship between knowledge and belief. 

2.1.4 Present studies 
Given the prior research, there is reason to think that it is possible that online knowledge 

ascriptions in human adults either may or may not depend on prior or simultaneous belief ascriptions. We 

contribute to this debate using a mix of response time studies and an analysis of fMRI data while human 

adults are making ascriptions of both knowledge and belief. In Experiment 1, we find that people can 

accurately evaluate others’ knowledge before they evaluate their beliefs. In Experiment 2, we rule out the 

possibility that this response-time pattern is explained by pragmatic differences, both by measuring the 

felicity of knowledge and belief ascriptions and by collecting data from high-functioning individuals with 

Autism Spectrum Disorder, who are known to differ in their pragmatic inferences. We find that, similar to 
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neurotypicals, this cohort also attributed knowledge to agents faster than they attributed beliefs, and that 

response-time differences are unlikely to be explained by pragmatics.  In Experiment 3, we demonstrate 

that the relative speed advantage of knowledge over belief ascriptions occurs cross-linguistically and is 

not accounted for by differences in word frequency. In Experiment 4, we find that this response-time 

difference generalizes to a larger class of factive and non-factive attitudes (to which knowledge and belief 

respectively belong). And in Experiment 5, we show that the neural response pattern that occurs when 

making evaluations of others’ beliefs is absent when making similar evaluations of knowledge. Together, 

these studies demonstrate that human adults can attribute or deny knowledge states without prior or 

simultaneous evaluations of belief states. These findings collectively support the view that knowledge 

representations are a basic and distinct way in which we understand others’ minds. 

 

2.2 Experiment 1a-b: Knowledge before Belief 

A simple way of determining whether people can make evaluations of knowledge in the absence 

of evaluations of belief is to investigate the speed with which these evaluations are made. If participants’ 

evaluations of knowledge require or involve evaluations of belief, we would expect evaluations of 

knowledge ascriptions to be slower than evaluations of similar belief ascriptions. We began with a simple 

task that investigated the response times for evaluations of knowledge and belief ascriptions. Participants 

read about various people in a variety of different scenarios and then made truth value judgments of 

knowledge and belief ascriptions to those agents. In some cases, the knowledge and belief ascriptions 

were true, in others, they were false. We then compared the speed with which participants were able to 

correctly evaluate these mental state ascriptions. 

2.2.1 Analysis approach 
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In Experiments 1-4, response times for trials on which participants correctly assessed the truth of 

the knowledge and belief statements were analyzed with linear mixed-effects models using the lme4 

package in R (Bates et al. 2014), with both participants and scenarios included as random factors. 

Participants were excluded from the analysis if they answered less than 67% of the questions correctly or 

if their mean response time was less than 1000ms or greater than 4000ms. We additionally excluded all 

trials on which the response was given in less than 1000ms or longer than 4500ms. We applied these same 

criteria to all of the response-time analyses in all of the experiments reported. 

2.2.2 Participants 
Two hundred participants (Mage = 32.76, SDage = 12.67; 108 females) were recruited through a 

psychology-based website (http://www.moralsensetest.com). Experiment 1b was an exact replication with 

501 participants recruited through Amazon Mechanical Turk. 

2.2.3 Stimuli and procedure 
Participants began by completing a demographic questionnaire, and two practice trials in which 

they were familiarized with the task they would be completing. Participants then completed twenty-four 

trials which involved reading a short vignette about an agent and then deciding whether a sentence about 

the story was true or false. Participants were instructed to indicate their responses as quickly as possible 

by pressing one of two keys on their keyboard. Twelve of these trials were ‘distractor’ trials in which 

participants were asked simple comprehension questions that did not mention the agent’s mental states. 

These were included to prevent participants from anticipating the sentences they would be evaluating. In 

the remaining twelve trials, participants read a vignette that described the agent as either having true 

information about some proposition p (as in True Information), simply being ignorant of p (as in No 

Information), or believing some proposition q that was both false and inconsistent with p (as in False 

Information). 
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True information: Mira looks at the night sky with her telescope. She owns the most accurate 

books on the locations of the different planets throughout the year. Mira reads in her astronomy 

books that she can see Neptune through her telescope, and she waits until it’s dark enough 

outside. She points her telescope toward the coordinates that her books specify for Neptune, and 

sees a bright dot in the middle of the sky. That bright dot is Neptune. She is excited that she found 

the planet she was looking for so easily. 

 

No Information: Mira likes looking at the night sky with her telescope. She owns the most 

accurate books on the locations of the different planets throughout the year. It is night and Mira 

decides not to read her astronomy books and instead just look through her telescope. Ignoring her 

book, she sets up her telescope and points it toward a group of dots that catch her attention. She 

looks into the telescope and she sees a bright dot in the middle of the sky. That bright dot is 

actually Neptune. 

 

False information: Mira likes looking at the night sky with her telescope. She owns the most 

accurate books on the locations of the different planets throughout the year. It is night and Mira 

reads in her astronomy books that she can see Mercury through her telescope. Misreading her 

book, she sets up her telescope and points it toward the coordinates that her books specify for 

Neptune, which also happens to be in the sky. She looks into the telescope and she sees a bright 

dot in the middle of the sky. That bright dot is actually Neptune. 

On each of the twelve test trials, participants were asked to evaluate the truth or falsity of a 

sentence about either the agent’s knowledge, as in Know, or belief, as in Think. Critically, these 

sentences always concerned the proposition that was true: 
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Know: Mira knows she is looking at Neptune. 

Think: Mira thinks she is looking at Neptune.1 

Scenarios in all three conditions were constructed in such a way that the answer to both questions 

was true (i.e., True Information) or the answer to both questions was false (i.e., No Information and False 

Information), which allows us to directly compare response times across the two ascription types (Know 

vs. Think). We used Latin-square randomization to ensure that each participant saw all 12 distractor 

scenarios and all 12 test scenarios in random order, and judged two ‘knows’ ascriptions and two ‘thinks’ 

ascriptions for each of the three Information Conditions (‘True Information’ vs. ‘No Information’ vs. 

‘False Information’). 

2.2.4 Experiment 1a-b Results 

Experiment 1a Results 

The overall analysis of participants’ response times revealed no main effect of Information 

Condition, χ2(2) = 1.565, p = 0.457, and no Information Condition × Ascription Type interaction, χ2(2) = 

1.602, p = 0.4492. However, there was a significant main effect of Ascription Type, χ2(1) = 20.057, p < 

0.001), such that participants were faster to correctly assess the truth of statements about whether the 

agent knows something (Mrt = 2550.46ms, SDrt = 739.06) than statements about whether the agent thinks 

something (Mrt = 2655.43ms, SDrt = 751.27). 

 

1 We used ‘thinks’ instead of ‘believes’ in these studies to better equate for word frequency and length. 

2 The fixed and random effects structure for the full model was specified as: response.time ∼ info.condition ∗ 

ascription.type + (1|scenario) + (info.condition ∗ ascription.type|subj). We were not able to include random slopes 

for the scenario because the crossed nature of the random effects in our experiment prevented convergence. We 

employ a similar analysis approach throughout, except where explicitly noted. 
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Experiment 1b Results 

Experiment 1b was a direct well-powered replication of Experiment 1a, with the only difference 

being that participant recruitment was through Amazon’s Mechanical Turk. The analysis of participants’ 

response times again revealed no main effect of Information Condition, χ2(2) = 4.126, p = 0.127, but did 

reveal a main effect of Ascription Type, (χ2(1) = 27.112, p < 0.001), such that participants were faster to 

correctly assess the truth of statements about whether the agent knows something (Mrt = 2459.37ms, SDrt = 

739.02) than statements about whether the agent thinks something (Mrt = 2517.93ms, SDrt = 731.17). 

Additionally, there was a significant Information Condition × Ascription Type interaction, χ2(2) = 12.851, 

p = 0.002. Given the identical methods of Study 1a and 1b, we next combined the data from both 

experiments to ask whether the interaction was significant across all of the data, and to provide the best 

estimate of the other effects. 

 

Combined Analyses 

The combined analysis continued to reveal no main effect of Information Condition, χ2(2) = 2.68, 

p = 0.262, but did reveal a main effect of Ascription Type, (χ2(1) = 47.013, p < 0.001), such that 

participants were faster to correctly assess the truth of statements about whether the agent knows 

something (Mrt = 2485.33ms, SDrt = 740.05) than statements about whether the agent thinks something (Mrt 

= 2556.11ms, SDrt = 740.05). Moreover, we continued to observe a significant Information Condition × 

Ascription Type interaction, χ2(2) = 12.385, p = 0.002. 

Planned pairwise comparisons were carried out using the Estimated Marginal Means package in 

R (Lenth et al., 2022). These analyses revealed that the largest difference in response times was found in 

the No Information conditions, t(477) = -6.839 p < 0.0001, followed by a somewhat smaller difference in  

the True Information conditions, t(473) = -3.421 p = 0.009. The smallest response time difference was 

found in the False Information conditions, t(476) = -2.287, p = 0.201. Response time differences in each 
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information condition showed the same pattern such that participants were faster to evaluate knowledge 

ascriptions than belief ascriptions (see Figure 2.1). 

 

Figure 2.1, Response times for correct evaluations of knowledge and belief ascriptions (dark plots) as a function of Information 

Condition. Error bars depict +/- 1 SEM. 

 

2.2.5 Discussion 
If evaluations of others’ knowledge involve or require evaluations of belief, then we would 

expect that correctly determining whether someone knows something would take at least as long as 

determining whether someone believes that thing. We tested this prediction but found clear evidence that 

the opposite is true: correct evaluations of knowledge are made before correct evaluations of belief. In 

other words, the evidence suggests that participants are both attributing knowledge (in the True 

Information condition) and denying knowledge (in the No Information conditions) before they have been 
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able to determine whether the agent believes the relevant claim. A further question is why we observed an 

interaction effect, such that the difference in response times in assessing knowledge and belief ascriptions 

differed in the various information conditions. Before making much of this unpredicted interaction effect, 

we first want to ask whether it replicates, and ensure that the observed effects are not arising from some 

simpler, alternative explanation.  

One potential concern with this initial study is that it involves cases in which some of the belief 

ascriptions may be pragmatically odd. Specifically, in cases where an agent meets all of the criteria for 

knowledge (as in the True Information example), it may sound unnatural to describe the agent as 

believing some proposition (as in Think) rather than describing the agent as knowing that proposition (as 

in Know)3. After all, the agent does not merely think the proposition in question, but also knows it. In 

such cases, while belief ascriptions will, of course, be strictly true, they may also be pragmatically odd or 

infelicitous. We next investigate whether this kind of pragmatic effect can explain the pattern of response 

times we observed. 

 

2.3 Experiment 2: Linguistic Pragmatics & ASD 

In this Experiment, we aimed to test for the impact of pragmatic infelicity while also asking 

whether the observed effect generalizes to participants with Autism Spectrum Disorder (ASD). To ask 

whether differences in the pragmatic understanding of the sentences participants evaluated might explain 

the observed response time difference between knowledge and belief ascriptions, we measured the extent 

to which the sentences participants evaluated were perceived as pragmatically odd by participants. While 

pragmatic theories do not strictly predict a difference in the felicity of knowledge and belief ascriptions 

 

3 This kind of pragmatic effect would be predicted on a number of different theories, e.g., (Heim, 1991; 

Hirschberg, 1985). 
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when the agent is ignorant or has a false belief (as both ascriptions in these cases are simply false), we 

decided to collect felicity judgments for all of the sentences used in the previous experiment. 

Additionally, we also investigated whether the previously observed response time effect 

generalizes to a sample of participants with ASD.  Prior research has demonstrated that individuals with 

autism present impairments in understanding pragmatic implicatures, especially when they involve 

reasoning about others’ mental states (Kissine, 2012). Additionally, a separate well-established line of 

research on autism has demonstrated impaired mentalizing abilities as assessed through classic false-

belief paradigms (Baron-Cohen et al., 1985). Accordingly, participants with ASD make an ideal 

population for exploring the previously observed response time difference: If pragmatic differences are 

responsible for the comparative delay observed in correctly evaluating belief ascriptions, we should 

expect differences in pragmatic understanding to be reflected in the response time patterns between the 

ASD group and the neurotypical control group. Alternatively, if the pattern of response times found in 

Experiment 1 instead resulted from knowledge assessments being made in the absence of calculations of 

others beliefs, we expect participants with autism to demonstrate the same, or more extreme differences in 

response times between knowledge and belief ascriptions, as they may specifically have difficulty with 

belief representation but not knowledge representations (Deschrijver & Palmer, 2020; Phillips et al., 

2020). 

2.3.1 Participants 
Inclusion criteria required participants to be adults, fluent in English, and complete the 

experiment on a personal computer or laptop with a standard keyboard. The 611 participants included in 

subsequent analyses each had of a mean accuracy ≥ 67% and a mean response time > 1000ms and < 

4000ms. 389 Participants were recruited from Prolific (app.prolific.co) to the neurotypical group, (Mage = 

37.57, SDage = 13.12, 50.9% female, 45% male, 3.34% other, 0.77% not disclosed). 

Crowdsourcing marketplaces such as Amazon’s Mechanical Turk or Prolific do not provide 

stratified participant pools based on an autism diagnosis. Therefore, recruitment of participants in this 
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group came from study advertisements posted in various online forums and websites of organizations 

dedicated to the autism community during the period from August-October 2022. Given this open 

recruitment strategy, advanced security measures were taken to ensure that data collected from this group 

were provided by earnest participants4 (Dennis et al., 2019). A short screener required participants to 

endorse eligibility criteria, including fluency in English, being at least 18 years of age, a computer or 

laptop to complete the experiment (no phones/tablets, etc.), and self-report of a clinical autism diagnosis. 

Overall, 222 participants recruited to the autism group met the same accuracy and mean response time 

criteria described above for neurotypicals, (Mage = 28.12, SDage = 5.15, 43.24% female, 51% male, 4.95% 

other, 0.45% not disclosed). Importantly, participants in the autism group scored significantly higher on 

the 10-item Autism Quotient scale (MAQ-10 = 5.74, SDAQ-10 =  2.7) than participants in the neurotypical group 

(MAQ-10 = 3.72, SDAQ-10 =  2.26), t(397.7) = -9.43, p < 0.0001. 

2.3.2 Stimuli and procedure 
The experiment was conducted in two blocks. The first consisted of the same stimuli and 

procedures as Experiment 1a-b, in which the 3 (Information Condition: No Information, True 

Information, False Information) x 2 (Ascription Type: Know, Think) design conditions were randomized 

and counterbalanced across 12 unique vignette contexts. 12 distractor trials, in which participants were 

asked to evaluate the veracity of simple facts about a vignette, were also presented, but excluded from all 

analyses. Response times were recorded while participants evaluated mental state ascriptions as true or 

 

4 After screening, eligible participants received an automated email invitation to participate containing a unique 

study access link that could only be used once. The experiment was served to eligible participants from a custom-

built encrypted server (https://www.linode.com/), secured with a firewall and other security precautions. 

Connections to the experiment server were tested to ensure that the experiment was not accessed through a virtual 

privacy network, proxy, relay network, or tor node. Experiment access was also restricted to connections from 

English-speaking countries according to ISO-639 standards. Finally, two unrelated open-ended free text response 

questions were required items in the experiment and manually screened for nonsensical or suspicious responses. 
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false. The second block consisted of the same conditions, such that the 12 vignettes and mental state 

ascriptions in the first block were presented a second time in randomized order. Each participant 

completed a training session in which the felicity judgment task was thoroughly explained. In addition, 

they completed two practice trials using statements that were clearly felicitous or clearly infelicitous, and 

were given feedback on their responses. On the test trials, participants were asked to judge how much the 

target statement ascribing a mental state to the agent in the vignette seemed infelicitous, and responded on 

a Likert scale from 1(“sounds very normal”) to 7 (“sounds very weird”). Following completion of the first 

two blocks, participants completed a 10-item Autism Quotient scale, provided demographic information, 

and were debriefed. 

2.3.3 Results 
 

Infelicity ratings 

Focusing first on our measure of the pragmatic oddness of the sentences used, we tested for a 

three way interaction between Participant Group, Information Condition, and Ascription Type. We found 

no significant three-way interaction χ2(2) = 0.0591, p = .970. However, there were clear differences in 

infelicity judgments between autism and neurotypical groups. Neurotypical participants seem to better 

grasp that false statements may still be felicitous, whereas participants in the autism group judged false 

mental state ascriptions of both knowledge and beliefs as relatively infelicitous (Figure 2, A). This pattern 

is evidenced by a significant group by agent state interaction effect on infelicity judgments χ2(2) = 175.55, 

p < 0.0001. When agents are described as having no information (Figure 2.2A-B, center plots), 

participants in the autism group rated mental state ascriptions (of both knowledge and beliefs) more 

infelicitous (Minfelicity = 4.52, SDinfelicity = 2.62) than participants in the neurotypical group (Minfelicity = 2.41, SDinfelicity 

= 2.03), t(620.38) = 14.33, p < 0.0001. Similarly, when agents are described as having false information 

(Figure 2.2A-B, right-most plots), participants in the autism group, again, judged mental state ascriptions 

more infelicitous (Minfelicity = 4.86, SDinfelicity = 2.64) than neurotypical participants (Minfelicity = 2.32, SDinfelicity = 2), 
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t(620.02) = 16.4, p < 0.0001. There was no group difference, however, in infelicity judgments for agents 

described as having true information, t(623.42) = -1.22, p = 0.83.  

While, we found no Participant Group by Ascription Type interaction effect on infelicity 

judgments, χ2(2) = 0.266, p = 0.606, we did observe  a significant interaction of Information Condition x 

Ascription Type on infelicity judgements, χ2(2) = 25.398, p < 0.0001, which was in line with the 

predictions of pragmatic theories (Heim, 1991; Hirschberg, 1985). Across both autism and neurotypical 

groups, belief ascriptions (Minfelicity = 1.88, SDinfelicity = 1.62) were judged significantly more infelicitous than 

knowledge ascriptions (Minfelicity = 1.58, SDinfelicity = 1.36) for contexts in which agents have true information, 

t(65.7) = -4.29 p < 0.0001. This pattern disappears when agents are described as having false information, 

t(71.15) = 1.86, p  = .432, or no information, t(81.14) =  1.32, p = .774.  There was no overall main effect 

of ascription type on infelicity judgments, χ2(2) = 0.576, p = 0.448. Critically, we can also use these 

infelicity judgments to control for possible effects of infelicity in subsequent response time analyses 

because we collected these data for each mental state ascription within subjects. 

 

 

Figure 2.2, Mean infelicity ratings from A. autism group, B. neurotypical group for knowledge ascriptions (light bars) and belief 

ascriptions (dark bars) as a function of Information Condition. Error bars depict +/- 1 SEM. 
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Response Times 

Controlling for perceived infelicity, we observed a marginally significant three-way interaction of 

Participant Group, Information Condition, and Ascription Type on response times, χ2(2) = 5.719, p = 

0.057 (Figure 2.3 A-B). This three-way interaction can be explained by examining Information Condition 

x Ascription Type interactions within each participant group separately. Participants in the autism group 

did not show an Information Condition x Ascription Type interaction effect, χ2(2) = 0.234, p = 0.89.  In 

the neurotypical group, however, we found a significant interaction effect of Information Condition x 

Ascription Type on response times,  χ2(2) = 28.742, p < .001. Pairwise tests demonstrated that this was 

driven by the No Information condition, where knowledge ascriptions (Mrt = 2242.87ms, SDrt = 716.41) 

were evaluated significantly faster than belief ascriptions (Mrt = 2511.42ms, SDrt = 762.56), t(35.83) = -

7.29, p < 0.0001 (Figure 3B, middle). Similar comparisons did not reveal a significant difference in 

response times between knowledge and belief ascriptions in the True Information (t(31.57) =  -2.17, p = 

.278) or False Information (t(32.43) = - 2.51, p = .15) conditions, though the effect was always in the 

same direction. 

There was also a significant Participant Group x Information Condition interaction effect on 

response times, χ2(2) = 9.804, p = 0.007. Post hoc tests of this interaction were computed using the 

Estimated Marginal Means package in R, and revealed that participants in the autism group (Mrt = 

2213.21, SDrt = 785.51) were significantly faster than neurotypicals (Mrt = 2386.87, SDrt = 717.5) at 

ascribing either type of mental state to agents with true information, t(623.08) = -4.36, p = 0.0001 (Figure 

2.3A, left vs 2.3B, left). The same pairwise comparisons did not reveal  group differences in overall 

response time in the False Information (t(682.56) =  -1.73, p = .509) and No Information (t(657.31) =  -

1.69, p = .537) conditions, though here too ASD participants were still somewhat faster in responding. 

Critically, there was no interaction between Participant Group and Ascription Type on response 

time, χ2(2) = 0.135, p = 0.713, indicating that the significant main effect of Ascription Type on response 

times exists for both neurotypicals and autistic participants equally. Replicating the prior experiments, 

participants in the neurotypical group were significantly faster at evaluating the truth of knowledge 
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ascriptions (Mrt = 2295.04ms, SDrt = 693.78) than they were at evaluating the truth of belief ascriptions (Mrt 

= 2429.38ms, SDrt = 724.65), t(17.07) = -5.79, p < 0.0001 (Figure 2.3B, light vs. dark). Similarly, we 

found that participants in the autism group were also significantly faster at evaluating the truth of 

knowledge ascriptions (Mrt = 2174.51ms, SDrt = 771.54) than they were at evaluating the truth of belief 

ascriptions (Mrt = 2321.68ms, SDrt = 823.27), t(39.62) = -4.36, p < 0.0001 (Figure 3A, light vs. dark). 

To further test whether the differences we found in response times for evaluations of belief and 

knowledge ascriptions could be explained by pragmatic infelicity, we examined the relationship between 

response times and infelicity judgments directly. We found a significant correlation between infelicity 

judgments and response times in the neurotypical group such that mental state ascriptions judged as more 

infelicitous took longer to evaluate, r = .056, p = .0004 (Figure 2.3D). This relationship was not found in 

the autism group r = -.04, p = .101 (Figure 2.3C).  
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Figure 2.3, A-B. Response times of autism (A) and neurotypical (B) groups for correct evaluations of knowledge ascriptions 

(light plots) and belief ascriptions (dark plots) as a function of Information Condition. Error bars depict +/- 1 SEM. C-D. 

Response times by ascription infelicity judgments for autism (C) and neurotypical (D) 

 

Autism Quotient questionnaire and response times 

Both groups of participants completed the 10-item psychometric Autism Quotient scale (AQ-10) 

to assess traits associated with the autism spectrum. Persons scoring 6 or above on the AQ-10 are 

recommended for a more comprehensive assessment for autism (Allison et al., 2012).  
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To examine a more continuous relationship between autism symptomatology and response times 

in correctly assessing mental state ascriptions, we computed the difference between each subject’s 

average response time for belief and knowledge ascriptions, such that more positive values indicate that 

knowledge ascriptions were faster than belief ascriptions while more negative values indicate that belief 

ascriptions were faster. We then asked whether self-reported autism symptoms, as measured by the AQ-

10,  predict the difference in speed with which knowledge and belief ascriptions are correctly evaluated. 

We did not find a significant relationship, though to the extent there is a systematic pattern, higher AQ-10 

scores are associated with a bigger difference in response times, F(1, 609) = 1.12, p = 0.29 (Figure 4). 

 

Figure 2.4, Difference in participant mean response time between belief and knowledge attribution trials as a function of 

participants’ score on the Autism Quotient - 10 scale across all participants 

 



 

38 

2.3.4 Discussion 

In order to rule out the possibility that response time differences between knowledge and belief 

ascriptions did not result from differences in the pragmatics of the two kinds of ascriptions, we asked a 

new group of participants to evaluate how felicitous these sentences were after first quickly judging the 

truth of the sentences. We also explored whether or not the observed pattern of response time differences 

extends to high-functioning individuals with autism, despite observed differences in tendency and ability 

in attributing mental states to others. We found that mental state ascriptions to agents with no information 

and agents with false information were judged more infelicitous by autistic participants, suggesting that 

autistic subjects seem to find false statements pragmatically odd. Moreover, as predicted by theories of 

pragmatics, belief ascriptions to agents meeting the criteria for knowledge were judged significantly more 

infelicitous than knowledge ascriptions for both the neurotypical participants and participants with ASD. 

Controlling for any perceived infelicity, we replicated the key response time patterns observed in 

Experiment 1. Most importantly, we found that both autistic and neurotypical participants were able to 

correctly evaluate knowledge ascriptions before they were able to correctly evaluate belief ascriptions. 

Furthermore, the difference in response times between knowledge and belief ascriptions was also not 

significantly modulated by autism symptoms, as assessed by the AQ-10. Taken together, these results 

suggest that the response time patterns found in Experiments 1 and 2 do not arise from pragmatic 

differences in knowledge vs. belief ascriptions, and are similarly robust across samples from neurotypical 

populations and populations with ASD. 

 

2.4 Experiment 3: Lexical Frequency & French 

Language 
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We next asked whether the observed response time difference between ‘know’ and ‘think’ 

generalized to languages other than English. To do this, a highly similar experiment was conducted in 

French using the mental state verbs ‘savoir’ and ‘penser’ instead of ‘know’ and ‘think’ (respectively). In 

addition to providing a general test of whether the observed effect could have arisen from idiosyncratic 

features of the English used in the prior experiment, French provides a particularly strong test because, 

unlike English, the French term used for belief ascriptions ‘penser que’ is ≈ 1.49 times more frequent than 

French term used for knowledge ascriptions ‘savoir que.’5 Thus, if the difference in response times 

merely reflected lexical frequency, we should expect evaluations of beliefs to be faster than evaluations of 

knowledge in French, which is the opposite of the prediction of our more general theory of mind based 

account. 

2.4.1 Participants 
150 participants (Mage = 37.7, SDage = 12.16; 83 females) were recruited and paid €0.75 through 

Foule Factory (https://www.foulef actory.com/). 

2.4.2 Stimuli and procedure 
The methods and procedures in this experiment were similar to that of Experiment 1a-b, except 

that the study was translated into French, and the English names were replaced with more standard French 

names. Thus, for example, rather than the Know and Think example sentences in Experiment 1, 

participants evaluated Savoir and Penser as below. 

 

5 Lexical frequency was computed using Google NGram using data from 2007-2008, which was the most recent 

year available at the time of calculation. For both French and English, we summed the frequency of the following 

forms of ‘Savior’ and ‘Penser’ or ‘Know’ and ‘Think’: infinitival, first person singular, second person singular, third 

person masculine, third person feminine, first person plural, second-person plural (French only), third-person plural 

(English), and masuline and feminine third person plural (French). We then divided the summed frequency of 

‘know’ or ‘savoir’ by the summed frequency of ‘think’ or ‘penser’ respectively. 
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Savoir: Nora sait qu’elle regarde Neptune.  

Penser: Nora pense qu’elle regarde Neptune. 

2.4.3 Results 
As in Experiment 1 and 2, data were excluded at the participant- and trial-level, and then 

analyzed using linear mixed-effects models. We found no main effect of Information Condition, χ2(2) = 

4.022, p = 0.134. However, there was again a highly significant main effect of Ascription Type, χ2(2) = 

22.246, p < 0.001, such that participants were faster to correctly assess the truth of statements about what 

the agent knows (Mrt = 2546.8ms, SDrt = 719.03) than statements about what the agent thinks (Mrt = 

2701.13ms, SDrt = 716.9). Once again, there was also a significant Information Condition × Ascription 

Type interaction, χ2(2) = 7.434, p = 0.024 (see Figure 5).  

Planned pairwise comparisons revealed that participants’ response times only differed 

significantly in No Information, t(89) = 5.091, p < 0.001, d = 0.567 and True Information, t(95) = 1.981, p 

= 0.05, d = 0.198, conditions, but no significant effect was found in the False Information condition, t(89) 

= 1, p = 0.32, d = 0.114. 
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Figure 2.5, Response times for correct evaluations of knowledge (“Savoir”) ascriptions (light plots) and belief (“Penser”) 

ascriptions (dark plots) as a function of Information Condition. Error bars depict +/- 1 SEM. 

 

2.4.4 Discussion 
This third experiment provides cross-linguistic evidence that evaluations of knowledge 

ascriptions occur prior to equivalent belief ascriptions, and thus that evaluations of others’ knowledge are 

made in the absence of similar evaluations of their beliefs. In addition, it provides clear evidence against 

an explanation of this pattern in terms of lexical frequency. 

An important remaining question is whether the observed difference is specific to knowledge and 

belief or whether it reflects a more general difference between different categories of mental state verbs of 

which knowledge and belief are a part. We pursue this possibility in Experiment 4. 



 

42 

2.5 Experiment 4: Factive & Non-Factive States 

Knowledge and belief are just two representative examples of the broader classes of factive and 

non-factive mental state attitudes. Similar to knowledge, you cannot represent someone as ‘seeing’ or 

‘hearing’ something that is false, because these attitudes are factive. And similar to belief, you can 

represent someone as ‘assuming’ or ‘guessing’ things that are false, because these attitudes are non-

factive. Accordingly, one possibility is that people will be generally faster to evaluate factive attitude 

ascriptions than non-factive attitude ascriptions. A plausible reason to predict this general difference is 

that factive mental state representations may be simpler because the content represented is necessarily 

consistent with one’s own understanding, and thus does not have to be represented separately (Phillips & 

Norby, 2019). If this prediction proves true, it could point toward a more general explanation of why 

people are faster to evaluate knowledge ascriptions than belief ascriptions. 

To clarify, our prediction is not that every factive attitude will be evaluated faster than every non-

factive attitude; after all, there are many factors that will jointly determine evaluation time. Our prediction 

is instead that–other things being equal–it will take longer to evaluate the truth of a given non-factive 

attitude than an otherwise similar factive attitude. We next investigate this possibility by considering the 

speed with which participants evaluate a larger range of factive and non-factive mental state ascriptions. 

2.5.1 Participants 
250 participants (Mage = 33.43, SDage = 9.32; 126 females) were recruited and paid through Amazon 

Mechanical Turk. 

2.5.2 Stimuli and procedure 
The methods and procedures in this experiment were similar to the preceding studies except that 

the term ‘know’ in the mental state ascription was replaced by one of a set of factive attitude verbs 

(“realize”, “is aware”, “understand”, “recognize”), and the term “think” was replaced by a set of non-
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factive attitude verbs (“believe”, “guess”, “assume”, “imagine”). Thus, for example, instead of evaluating 

the truth or falsity of knows or thinks as Experiment 1-2, participants may have evaluated the truth or 

falsity of factive or non-factive, respectively. 

Factive: Mira recognizes that she is looking at Neptune. 

Non-factive: Mira believes that she is looking at Neptune. 

Critically, these factive and non-factive terms were chosen such that the non-factive terms were 

both shorter in length and more frequent in use than the factive terms (Table 2.1), so that the predicted 

difference in response times (factive < non-factive) could not arise from differences in word length or 

lexical frequency. Because each specific factive and non-factive verb has unique features of their 

meaning, ascriptions with each mental state verb did not always make sense in the context of the twelve 

different scenarios. Accordingly, for each scenario, we chose a pair of factive and non-factive terms that 

each made clear conceptual sense in the context described. Each factive and non-factive term was used in 

three scenarios. 
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Mental State Factivity Length  Frequency 

“realize” factive 7 .00338 

“recognize” factive 9 .00395 

“understand” factive 9 .01518 

“is aware” factive 8 .00610 

“believe” non-factive 7 .01716 

“guess” non-factive 5 .00339 

“imagine” non-factive 7 .00393 

“assume” non-factive 6 .00414 

 

Table 2.1,  Mental state verbs, their factive or non-factive status, word length and lexical frequency used in mental state attitude 

ascription statements for Experiment 4. 

 

2.5.3 Results 
As in the previous experiments, data were excluded at the participant- and trial-level, and then 

analyzed using an identical set of linear mixed-effects models, only now the effects calculated for 

Ascription Type reflect whether a verb is factive vs non-factive rather than the verb being ‘know’ vs. 

‘think’6. This revealed a small main effect of Information Condition, χ2(2) = 7.143, p = 0.028, but no 

 

6  The fixed and random effects structure for the full model was specified as: response.time ∼ info.condition ∗ 

factivity.type + (1|scenario) + (info.condition ∗ factivity.type|subj). We were not able to include random slopes for 

the scenario because the crossed nature of the random effects in our experiment prevented convergence. 
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Information Condition × Ascription Type interaction, χ2(2) = 0.686, p = 0.709. More importantly, we 

again observed a significant main effect of Ascription Type, χ2(2) = 6.39, p =  0.011, such that participants 

were faster to correctly assess the truth of ascriptions involving factive attitudes (Mrt = 2361.18ms, SDrt = 

694.73) than ascriptions involving non-factive attitudes (Mrt = 2420.31ms, SDrt = 709.58) (see Figure 6). 

 

Figure 2.6, Response times for correct evaluations of factive mental state ascriptions (light plots) and non-factive mental state 

ascriptions (dark plots) as a function of Information Condition. Error bars depict +/- 1 SEM. 

 

2.5.4 Discussion 
These results provide evidence that the response time difference observed for evaluations of 

knowledge and belief may generalize to the broader classes of factive and non-factive mental state verbs 

to which they respectively belong. This finding supports a more general pattern according to which 
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factive mental state representations may be simpler because the content represented is necessarily 

consistent with one’s own understanding (Phillips & Norby, 2019). Accordingly, these data also point 

toward a potential explanation of why evaluations of knowledge occur more quickly than evaluations of 

belief. However, regardless of whether or not this turns out to be the correct explanation for why 

evaluations of knowledge are faster than evaluations of belief, the previous four experiments collectively 

provide ample evidence that people do in fact make evaluations of knowledge without yet having made 

similar evaluations of belief. 

 

2.6 Experiment 5: Neuroimaging Evidence 

In the previous four studies, we investigated the relationship between knowledge and belief by 

examining the speed with which people were able to evaluate claims about others’ mental states. We 

argued that the fact that people can correctly decide what others know faster than they can correctly 

decide what others think, provides evidence that they are not consulting their judgments of belief when 

forming their judgments about knowledge. Here, we ask a similar question but use a very different 

methodology. Specifically, we use functional magnetic resonance imaging (fMRI) to examine the neural 

responses exhibited during the formation of knowledge and belief representations and ask whether these 

neural patterns provide convergent evidence about the relationship between knowledge and belief. 

To do this, we took advantage of an existing dataset from an experiment that examined the role of 

mental state representations in moral judgments for both neurotypical participants and participants with 

Autism Spectrum Disorder (ASD) (Chakroff et al., 2016). In the original study, participants read short 

stories involving different kinds of moral violations while undergoing functional magnetic resonance 

imaging. Critically for our purposes, these short stories manipulated the description of the agent’s mental 

states. In some cases, the agent was described as having knowledge of some fact in the scenario (e.g., 

“knew the brakes were still broken”); in other cases, the agent was instead described as having a belief 
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(e.g., “thought the detector just needed new batteries”); and in other cases, the agent was instead 

described as having some other factive mental state (e.g., “heard that he was in a relationship”; “realized 

the pond was unsafe”). 

While the original research focused on the neural processes underlying moral judgment, we can 

take advantage of the design used in this study by comparing the patterns of neural activation when 

participants learned about the agents’ knowledge, belief, and other factive attitudes. Following the 

literature, we will focus on the neural response within the right temporo-parietal junction (RTPJ), which 

is well-known to play a highly selective and critical role in the neural computations underlying the 

representations of others’ mental states ((Gobbini et al., 2007); (Koster-Hale & Saxe, 2013); (Saxe et al., 

2004). This area has even been shown, for example, to carry information about the specific kind of 

mental state being represented; allowing for one to decode whether the agent is represented as having 

auditory or visual evidence about some fact, among other things (Koster-Hale et al., 2014; Zaitchik et al., 

2010). 

Our novel reanalysis of these data allows us to test two opposing predictions about the neural 

activity that knowledge and belief representations will elicit in RTPJ. On the one hand, if representing 

others’ knowledge requires representing their beliefs, then we would expect the activity within RTPJ to 

reflect this structure. That is, while knowledge representations may require a number of different or 

additional neural processes, representations of knowledge should certainly not elicit less of a response in 

RTPJ than representations of belief, since they are meant to recruit precisely those representations. 

On the other hand, the results of the previous five experiments suggest that representations of 

knowledge may not require representations of belief, and in fact may involve simpler or more basic 

processes (Phillips, et al., 2020). Previous work has demonstrated that complex or effortful inferences 

typically elicit greater neural activity in RTPJ than simpler or less effortful inferences ((Cohen et al., 

1997); (Meyer et al., 2015)). In line with this, an alternative prediction is that representations of 

knowledge may elicit a similar amount, or even less, neural activity in RTPJ. 
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2.6.1 Participants 
Participants included 23 neurotypical adults (NT; Mage = 27.130; SDage = 11.71; 7 females) and 15 

adults with high-functioning autism or Asperger’s syndrome (ASD; Mage = 31.125; SDage = 8.21; 2 females) 

recruited from the Greater Boston Area. All ASD participants received their diagnosis based on the 

Autism Diagnostic Observation Schedule, Second Edition (criterion ≥ 7; M = 9.60), as well as an 

impression by a trained clinician based on the diagnostic criteria of the DSM-IV. 

2.6.2 Stimuli and procedure 
As described in Chakroff et al. (Chakroff et al., 2016), participants read 60 stories depicting 

moral violations while undergoing fMRI. The stories were presented in cumulative segments. The last 

segment depicted the agent’s mental state and was presented for 4 seconds. The agent’s mental state was 

described using three different verb categories: knowledge, belief, or other factive attitude verbs. Word 

count was matched across conditions. Stories were presented in a pseudorandom order, divided into six 

5.5 minute runs. To identify the RTPJ, all participants also completed a theory of mind functional 

localizer task (Dodell-Feder et al., 2011). This task consists of 10 stories about mental states (false-belief 

condition) and 10 stories about physical representations (false-photograph condition). (See 

http://saxelab.mit.edu/superloc.php for the task files). The task was presented in two 4.5 min runs, 

interleaved with the main experimental runs. Complete details of stimuli and procedure can be found in 

Chakroff et al. (Chakroff et al., 2016). 

2.6.3 Results 
As in Dodell-Feder et al. (2011), a whole-brain random effects analysis contrasting neural 

response in false- belief vs. false-photograph conditions (p < 0.001, uncorrected, k > 16) revealed activity 

in the RTPJ (peak voxel MNI coordinates: x = 58, y = −50, z = 28). We identified the RTPJ in all 38 

participants individually, defined as contiguous voxels within a 9 mm radius of the peak voxel that passed 

the contrast threshold. 
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We averaged the blood oxygen level dependent (BOLD) response across voxels in RTPJ from 

each subject during the 4 second segment in which the agent’s mental state information was presented, 

and asked if this varied as a function of verb category. For each verb category, we calculated the average 

percent signal change (PSC) from baseline in RTPJ [PSC = 100*raw BOLD response for (condition – 

baseline) / raw BOLD response for baseline]. Baseline was defined as the average RTPJ response across 

all fixation time points between stimuli, adjusted for hemodynamic lag. Complete details of how the 

fMRI data were processed and analyzed can be found in Chakroff et al. (2016). 

We then performed a linear mixed effects analysis of the relationship between verb category 

(knowledge, belief, other factive attitudes) and RTPJ response using the lme4 package in R (Bates et al., 

2015). The full model included random intercepts for subject and item. Including random slopes for the 

effect of verb category across subjects did not improve the model (χ2(5) = 7.422, p = .191). Furthermore, 

there was no verb category × group interaction (χ2(3) = 1.209, p = .751), indicating that neurotypical 

participants and participants with ASD demonstrated similar activity across verb categories. 

More importantly, the analysis revealed a main effect of verb category on RTPJ activity (χ2(2) = 

9.154, p = .010). Specifically, belief elicited more activity in RTPJ than both knowledge (t(1784) = 3.043, 

p = .002) and other factive attitudes (t(242) = 2.127, p = .034; degrees of freedom calculated using 

Satterthwaite’s approximation) (Figure 2.7). 
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Figure 2.7, Percent signal change in RTPJ for each mental state category: belief (think), knowledge (know) and other factive 

verbs (e.g., saw, realized). Error bars indicate standard error. 

 

2.6.4 Discussion 
Our reanalysis of the fMRI data from Chakroff and colleagues (Chakroff et al., 2016) revealed 

that RTPJ exhibited a higher level of activity when participants read about others’ beliefs than when 

participants read about others’ knowledge (or factive attitudes more generally). This pattern clearly 

suggests that when participants were representing agents as knowing some proposition, they were not 

recruiting the set of processes that they employed when representing agents’ beliefs. If they had been, 

then we should have observed at least a roughly similar level of activation in RTPJ. This result is also 

broadly in line with the findings by Zaitchik and colleagues ((Koster-Hale et al., 2014; Zaitchik et al., 
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2010))7, who found greater activation across the theory of mind network when participants read sentences 

involving ascriptions of representational mental states (about an agent ‘believing’ or ‘thinking’ 

something) than when they read sentences involving perceptual or emotional states (e.g., that the agent 

‘saw’ something, or what the agent was ‘furious’ about something). Critically, for our purposes, the 

perceptual and emotion mental states used were largely factive, while the representational mental states 

used were largely non-factive ((Koster-Hale et al., 2014; Zaitchik et al., 2010)). Our finding of lower 

BOLD responses in the RTPJ when representing an agent as knowing as compared to believing is also 

consistent with the EEG results of Bricker ((2020)), who found reduced inhibition of the P3b amplitude 

when participants attributed beliefs to another agent as compared to knowledge. Finally, in line with the 

findings in our Experiment 2, we also do not find differences in the overall pattern observed between 

neurotypical participants and participants with ASD. 

This pattern of results substantially strengthens the case for the conclusions we’ve drawn across 

the previous studies. Despite the highly different methodologies used, both approaches yielded 

surprisingly consistent evidence, which showed that knowledge representations do not rely on belief 

representations and that knowledge representations may actually be simpler than belief representations. 

Moreover, the differences between these two approaches complement each other in another way: while 

alternative proposals may be offered to explain either one of these sets of results, it is very unlikely that 

any proposal aside from ours can easily explain and predict the pattern of results we observed across both 

studies (i.e., that representations of knowledge are computed more quickly and require less neural activity 

in classic theory of mind brain regions). 

 

  

 

7 Zaitchik and colleagues lumped the term ‘know’ with the representational mental states and did not directly 

compare knowledge ascriptions to other kinds of representational mental states, as we do here. 
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2.7 General Discussion 

Across five experiments, we found consistent evidence that the representation of others’ 

knowledge occurs in the absence of representations of corresponding beliefs. Experiment 1 demonstrated 

that accurate evaluations of knowledge ascriptions happen significantly faster than accurate evaluations of 

otherwise identical belief ascriptions. Experiment 2 further found that this effect cannot be explained by 

pragmatic differences and that it extends to participants with ASD. Experiment 3 demonstrated this 

finding cross-linguistically, establishing that people also accurately evaluate others’ knowledge faster 

than their beliefs in French. Experiment 4 provided evidence that this response time difference 

generalizes to the larger classes of factive and non-factive attitudes to which knowledge and belief 

respectively belong. Finally, Experiment 5 revealed that forming representations of an agents’ knowledge 

(or other factive mental states) elicits less activity in classic theory of mind brain regions than forming 

representations of that agent’s beliefs. Taken together, these results demonstrate that humans can assess 

another agent’s knowledge without representing their beliefs, and provides support for the more general 

claim that knowledge representations may be a comparatively more basic form of theory of mind.  

2.7.1 Why is knowledge faster than belief? 
We take the evidence we’ve reported to provide support for the claim that the capacity to 

represent others’ knowledge is more basic than the capacity to represent others’ beliefs. An important 

further question concerns what sense in which knowledge is more basic than belief. Given our 

experimental results, we want to focus on one particularly relevant version of this question, which 

concerns why people can make accurate assessments of knowledge faster than accurate assessments of 

belief. What is it about knowledge that explains this difference? 

One prominent approach in the developmental and comparative literature on mindreading is to 

propose that knowledge representations can be approximated by some very minimal understanding of 

others as being connected to particular parts of the world, see, e.g., Butterfill and Apperly’s notion of 
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‘registration’ (Butterfill & Apperly, 2013). However, such ‘minimal’ forms of mindreading are not 

typically thought to allow for representations of propositional knowledge of the kind tested here, and thus 

are unlikely to explain why people are faster to correctly evaluate ascriptions of propositional knowledge 

than ascriptions of propositional belief.  

An alternative approach would be to point to the difference in factivity between knowledge and 

belief. For factive attitudes like knowledge, one can only represent someone as having knowledge when 

the content of the attitude is consistent with one’s own understanding (Kiparsky & Kiparsky, 2014; 

Phillips & Norby, 2019). Representations of belief have no such constraint. Accordingly, an intriguing 

possibility is that this difference in factivity may help to explain why we found that participants could 

correctly evaluate what others know faster than they could correctly evaluate what others think. One more 

specific way of spelling out this account, offered by Evan Westra, argues that knowledge representations 

are coupled to the attributor’s own primary representation of reality (Westra, 2021). In Westra and 

Nagel’s words, “Factive mental state attributions are transparent, in the sense that the attributor looks 

through them to the world.” (2021, p. 3). In contrast, belief representations are decoupled from the 

attributor’s own understanding, and that maintaining a decoupled representation incurs additional working 

memory and inhibitory control costs (Fizke et al., 2014), which may explain the slower response times in 

correct evaluations of belief ascriptions (Westra, 2021). This topic remains an important area for future 

research. 

 

2.7.2 Interactions between Ascription Type and Information 

Condition 
Across a number of studies (Experiments 1-3), we also found an interaction effect such that the 

greatest difference in response time in evaluating knowledge and belief ascriptions was in the No 

Information condition, while a somewhat smaller difference was observed in the True Information 
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condition, and the smallest difference was consistently observed in the False Information condition. 

While any proposed explanation of this pattern will necessarily be speculative until further research is 

done, offering some way of understanding this pattern may still be desirable, given that we observe it 

relatively consistently. 

Thus far, we’ve argued that correct knowledge evaluations may be faster than correct belief 

evaluations because evaluations of knowledge may involve simpler or more basic processes. What we 

now need to explain is why this response time difference is moderated in some cases. One potentially 

helpful place to start is to recall that knowledge typically entails belief, and so in any case where you 

recognize someone as knowing something, you should be able to use that fact to infer that they must also 

believe that thing (Ichikawa & Steup, 2016; Rose & Schaffer, 2013), though see (Myers-Schulz & 

Schwitzgebel, 2013)). Accordingly, in the True Information condition, where the agent does in fact have 

knowledge, participants should be able to relatively easily infer that the agent also has the corresponding 

belief. In contrast, in the No Information condition, when the agent does not have knowledge, participants 

cannot use this strategy, and they have to independently evaluate whether the agent has the relevant 

belief. This explanation makes the more precise prediction that the smaller difference in the True 

Information condition occurs in part because participants are faster to correctly evaluate what the agent 

thinks, in the True Information condition than in the No Information condition. Our data are consistent 

with this prediction: combining the data from Experiments 1-3, we found that correct evaluations of belief 

ascriptions were made faster in the True Information than in the No Information condition, t(1032) = -

3.83, p < .001.  

What remains to be explained is why we observe a yet smaller difference in the False Information 

condition. Importantly, the vignettes used in these conditions explicitly required participants to represent 

the agent as believing some incorrect proposition, q. Recall, however, that we actually asked participants 

to evaluate whether or not the agent thinks or knows a true proposition p (ensuring that the correct answer 

was the same for both types of ascriptions, as they neither believe, nor do they know, p). Thus, the 

background vignettes used in these conditions require participants to engage in reasoning about what the 
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agent (falsely) believes, and having previously represented the agent as believing q, participants may find 

it particularly easy to infer that the agent does not believe p (as p and q are always inconsistent). 

Moreover, determining that the agent does not know p may be particularly effortful in this case, as p is 

true, but the agent doesn’t know p because the agent falsely believes q instead of p.  

While we think this series of explanations is a plausible way of explaining the observed 

interaction effects, future work should further pursue the potential interaction between the information 

state of an agent and representations of knowledge and belief.  

2.7.3 A difference in kind or magnitude 
Our results support the interpretation that the factive mental states of others are relatively easier 

to represent than non-factive belief states. We proposed that this facility is enabled by the consistency of 

propositional content between self and other, avoiding the redundancy that may come from decoupling 

another’s view of the world from one’s one. However, this explanation may fall short of solving the more 

complex question of whether the representation of others’ knowledge and beliefs constitute categorically 

different cognitive processes altogether, or if, instead, they result from a single cognitive process carried 

out to differing extents or magnitudes. 

Representations of knowledge and belief exhibit categorically different limitations for the reasons 

discussed in the general introduction of this chapter. Propositions about the world that are factual, such as 

historical events, can be both known and believed. While propositions that are false can be believed, but 

not known. What distinguishes the category of fact from fiction is a philosophical question beyond the 

scope of this dissertation. Furthermore, there is ongoing debate philosophy concerning whether the state 

of ‘knowing’ constitutes a mental state at all (Brueckner, 2002; Williamson, 2002). We take the position 

here, that knowledge is indeed a mental state whose constituent representations verifiably match the 

world as it is (Nagel, 2017) . 

Butterfill and Apperly have proposed a two-system characterization of mentalizing ability in 

which an automatic and efficiently fixed system is complimented by a, categorically distinct, deliberative, 
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and flexible one (2009). If factive and non-factive mental state attributions map onto these distinct 

systems, then evidence for a difference of kind can come from experimental designs that probe an effect 

on one system that preserves the second. Additionally, a distinct effect that modulates the second system 

while preserving the first would, when taken together, provide a double dissociation of factive and non-

factive mental state attributions as categorically distinct cognitive processes. 

More specifically, identifying a feature of knowledge attribution that is not shared with belief 

attribution can be used to distinguish the former from the latter. To distinguish the process of belief 

attribution from that of knowledge attribution would, in turn, require identifying a feature of the former 

that is not shared by the latter. A candidate feature of knowledge attribution that could distinguish it from 

belief attribution is automaticity. If task-irrelevant information about another agent’s knowledge, but not 

information about their (even true) beliefs has an interfering or facilitating effect on task performance, for 

instance on response time measures, this feature would be a sufficient first step to distinguish one process 

from the other. To achieve the double dissociation needed as evidence for categorically distinct systems, a 

feature of belief attribution must also be identified that has no effect on the ability to represent others’ 

knowledge. A candidate feature of belief attribution that could distinguish it from knowledge attribution 

could be the disruptive influence of cognitive load. There is existing evidence that performance on belief 

reasoning tasks is correlated with tests of general processing speed and executive functioning (German & 

Hehman, 2006). Suggesting that belief reasoning may be constrained by the speed with which the mind 

can perform tasks in general. Belief reasoning may also be disrupted when performing simultaneous tasks 

that interfere with working memory and language (Dungan & Saxe, 2012; McKinnon & Moscovitch, 

2007; Newton & de Villiers, 2007). It remains to be seen whether stresses on these more deliberative and 

effortful moderators of belief reasoning have a similar influence on participants’ ability to reason about 

others’ knowledge states. Identifying the features of a double dissociation between mentalizing processes 

involving knowledge and belief states is an important topic for future research. 

2.7.4 Conclusion 
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This paper set out to ask whether people can represent someone else as knowing something 

without representing them as believing that thing. Across a series of five studies using a variety of 

manipulations and methods, we found strong evidence for an affirmative answer to this question: 

representations of what others do or don’t know cans occur in the absence of representations of what they 

believe. This series of findings provides further support for the growing consensus that the capacity for 

knowledge representation is more basic than the capacity for belief representation. 

  



 

58 

Chapter 3.  

3.1 Introduction 

An open question in research on causal cognition concerns the relationship between causal 

reasoning about ordinary physical events and causal reasoning about agents. For example, do we use the 

same cognitive processes when deciding that a falling tree caused damage to the car as we do when 

deciding that a CEO’s poor decisions caused damage to the company stock? On one side, there is a long 

history of work focused on how humans reason about outcomes brought about by physical objects 

(Michotte, 1946). A strength of these designs comes from the computational tractability of the laws 

constraining the operation of physical objects. Humans possess internal models capable of simulating the 

mechanics of rigid bodies in space. When considering what physical objects caused an outcome, this 

intuition constrains the list of culpable candidates to only those objects that could be causal in accordance 

with the laws of physics. For instance, we are unlikely to consider objects that do not make physical 

contact with a balloon as possible causes of the balloon bursting since that is not how the physics of 

balloon bursting events typically operate. In humans, infants as young as six months old demonstrate 

clear evidence of an appreciation for concepts in physics (Liu & Spelke, 2017; Liu et al., 2017; Ullman et 

al., 2017). The intuition for physical causality among objects has even been documented at the sensory 

level, where past work has revealed that photoreceptors of the retina show an adaptation effect to causal 

events that makes subsequent ambiguous events more likely to be seen as non-causal (Kominsky & 

Scholl, 2020; Rolfs et al., 2013). In machines, the laws of physics can be represented abstractly through 

mathematical formulations programmed into simulation engines and applied in a range of contexts from 

civil engineering to virtual reality gaming. This mechanistic understanding of events has aided cognitive 

scientists studying causal reasoning in purely physical contexts and has begun to offer compelling 
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accounts of causal judgments in these cases.  However, an important question is how such causal 

reasoning about relatively simple physical events is related to causal reasoning about more complicated 

events that involve animate agents who choose which actions to perform.  

Another, relatively separate, approach to studying causal cognition has focused on these more 

complicated cases and includes variables more like those we observe in real-life situations. These designs 

often include verbal descriptions of scenarios involving humans intentionally bringing about outcomes in 

various ways and ask participants for explicit judgments of causality, often in complex moral contexts 

(Alicke, 1992; Driver, 2008; Samland & Waldmann, 2016). A strength of these approaches comes from 

their ecological validity. In this sense, the insights they yield have direct applicability to the problems in 

the real world that hinge on the ability to assign responsibility. However, the ecological validity enjoyed 

by vignette approaches to studying how humans attribute causality to others may come at the expense of 

construct validity. As such, methods to study causal attribution to agents remain difficult to characterize 

mechanistically. This is because, unlike rigid body physics, the factors influencing human behavior are 

far too vast and, currently, mysterious to be programmed or learned with much fidelity by machines  

(Bishop, 2020; Fjelland, 2020).   

Although researchers have typically used distinct methodologies to study the cognitive processes 

recruited when reasoning about physical objects and intentional agents, there is little compelling evidence 

to suggest these processes rely on distinct cognitive mechanisms. The approach taken in the following 

studies attempts to bridge these separate literatures to contribute towards a more unified view of causal 

cognition. We do this by exploring causal judgments in experiments that vary the agentic status of a 

candidate cause while keeping other physical dynamics in accordance with the physical laws.  

In Experiment 1, we manipulate the animacy of a candidate cause as either goal-directed or 

objectively inanimate. By holding the fine-grain kinematics of the actual and counterfactual outcomes 

fixed across animate and inanimate conditions, we can isolate the effect of perceived animacy on causal 

attribution judgments. One important feature distinguishing agents from objects is referred to as 

equifinality, wherein the same outcome can obtain, despite variation in the means. In contrast, inanimate 
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objects exhibit multifinality such that a variation in the means produces variation in the outcome. Both of 

these properties point to a difference in the counterfactual outcomes that are possible for agents and 

objects. Despite this potentially important difference in causal reasoning about agents and objects, we find 

nearly identical patterns of causal judgments about both entities in the first experiment. In Experiment 2 

we sought to explore whether causal judgments of the two entities may come apart when we vary the 

relevance of counterfactuals involving agents and objects. We collected causal and counterfactual 

judgments for a physically overdetermined outcome, in which either of two candidate causes, alone, 

would be sufficient to cause the outcome. We test if any differences in causality assigned between agents 

and objects for an overdetermined outcome might be mediated by the counterfactuals we consider in each 

case. While the brain can detect animacy virtually automatically (Schultz et al., 2005), what is often less 

certain are the underlying intentions that cause agentic behavior. Consistent evidence has accrued to show 

that descriptive and prescriptive norm violations have a strong influence on causal judgments (Hitchcock 

& Knobe, 2009; Icard et al., 2017; Morris et al., 2019). Furthermore, deliberate human actions tend to be 

judged as more causal of outcomes than unintentional human mistakes (Fincham & Jaspers, 1980; 

Lagnado & Channon, 2008; McClure et al., 2007), leading to challenges in disentangling judgments of 

causality from judgments of moral responsibility (Kominsky & Phillips, 2019; Sytsma et al., 2012). In 

Experiment 3 we parse these variables apart by looking at the role played by intentional or unintentional 

prescriptive norm violations on causal judgments of anthropomorphized agents. Taken together, we hope 

that this work narrows the divide between the way causal attribution to humans and non-human causes is 

commonly conceptualized.  

 

3.2 Experiment 1: The influence of animacy on causal 

attribution. 
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3.2.1 Background 
This experiment investigates whether intuitive knowledge of causal relationships generalizes 

from objects to animate agents. Prior work provides some reason to think that causal cognition may 

operate differently for animate agents vs inanimate objects. For example, people who cause outcomes 

deliberately are seen as more causal than people who cause outcomes unintentionally (Hilton et al., 2016; 

Hilton & Slugoski, 1986; Lombrozo, 2010; Malle et al., 2014; Samland & Waldmann, 2016). 

Accordingly, since inanimate objects always lack intentionality in their movement, it is possible that they 

may be considered less causal than a goal-directed agent for bringing about the same outcome.  

Alternatively, the claim that causal judgments for goal-directed agents and inanimate objects 

operate under the same cognitive mechanisms is supported by accounts of counterfactual relevance 

(Gerstenberg et al., 2021; Kominsky & Phillips, 2019) and broader dependence theories of causality 

(David Lewis, 1973, 1974). According to counterfactual accounts, attributions of causality to some 

candidate, either a physical object or mental agent, crucially rely on evaluations of whether or not the 

outcome would obtain in counterfactuals in which the candidate was altered or removed (Danks, 2017; 

Lipe, 1991).   

In the current study, we investigate whether the “behavior” of animate, goal-directed agents are 

judged as causes to the same extent as the movement of inanimate objects for the same outcome.  

Crucially, we isolate the influence of perceived animacy on causal judgments by holding the physical 

parameters of the causal events and outcome fixed. If causal cognition operates differently for goal-

directed agents vs inanimate objects, we expect to see differences in causal attribution judgments between 

animacy conditions within participants. Alternatively, if the cognitive mechanisms underlying these 

judgments are instead isomorphic, animated agents and inanimate objects will be judged as equally 

causally responsible for the same outcomes. Furthermore, we investigate whether the relationship 

between counterfactuals and causal judgments will hold in the same way with respect to agents and 

objects.  
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3.2.2 Methods 

Participants 

105 adults were recruited from Prolific (app.prolific.co) to participate in Experiment 1 (71 males). 

All participants were at least 18 years old, (Mage = 24.99, SDage = 8.227), endorsed fluency in English, and 

had a ratio of successful task submission above 94%. All participants were required to complete the task 

on a personal desktop computer or laptop. 

 

Stimuli and Procedure 

Before discussing our investigation further, it is important to note how we use specific 

terminology, as this may be a source of confusion for readers. The classic empirical research on causal 

cognition focused on the perception of “launching” events in which one object appears to collide with 

another static object, thereby “causing” its subsequent motion (Michotte, 1946). In these cases, and in the 

experiments to follow the object that launches is referred to as the agent, whereas the object that is 

launched is referred to as the patient. In what follows, we use these terms accordingly, i.e. ‘The agent 

exerts a force on the patient’. Where appropriate, however, we will refer to agents as being either animate 

or inanimate. 

Stimuli depicted a billiard ball table in which a red ball (“Ball A”) collides with a blue patient ball 

(“Ball B”) resulting in the patient landing in or missing one of two corner pockets. Along with the 

animacy of the agent, we manipulated whether the patient ball would have landed in or missed the corner 

pocket in the counterfactual where the agent ball is removed from the scene.  We used a 2 (animacy of 

agent: animate vs inanimate) x 2 (patient outcome: in vs out of corner pocket)  x 2 (patient counterfactual: 

in vs out of corner pocket) design. We created six unique patient trajectories for each combination of 

patient outcome, and patient counterfactual outcome (qualitatively varying the degree to which the 

patient’s counterfactual outcome differs from its actual outcome) resulting in 24 unique patient 

trajectories. Each patient trajectory was tested with an animate and inanimate agent for a total of 48 video 
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clips presented to each subject. Four (two animate and two inanimate) of these video clips were included 

as catch trials, in which the agent does not make contact with the patient.  All stimulus videos in this and 

subsequent experiments were created using Blender 3D computer graphics software v2.9, which uses the 

Bullet physics engine to simulate ball trajectories and collisions. Crucially, the trajectory and fine-grain 

kinematics of the patient ball were cached by the physics engine so that they could be saved and matched 

across animacy conditions. In videos containing animate agents, agent trajectories were manually 

specified along a bezier curve roughly simulating the movement of an animate, goal-directed agent and 

culminating at the location, angle, and with an instantaneous velocity equivalent to the complimentary 

inanimate agent for the same patient trajectories (Figure 3.1, A-D).   
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A.  

 
B. 

 
C. 

 
D. 

 

Figure 3.1, Examples of stimulus conditions. Scatterplots depict the xy-location of the agent (red) and patient (blue) ball in each 

frame of the given video clips (closer dots indicate slower movement). The left and center columns of each row depict scenarios 

with inanimate and animate agents respectively. The right column of each row depicts the relevant patient counterfactual physics 

simulation in which the agent ball is removed (not viewed by participants). Rows represent each combination of actual and 

counterfactual patient outcomes of landing in or out of a corner pocket. A. Agent makes a difference in patient outcome, causing 

the patient to land out, which would have counterfactually landed in. B. Agent makes a difference in patient outcome, causing the 

patient to land in, which would have counterfactually landed out. C. Agent collision does not make a difference in patient 
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outcome, the patient landed in after collision, but would have counterfactually landed in without agent intervention. D. Agent 

collision does not make a difference in patient outcome, the patient landed out after collision, but would have counterfactually 

landed out without agent intervention. 

 

The stimulus used in this, and all other experiments reported here, was delivered through a 

custom web application built using the Flask python microframework and hosted on custom-built 

encrypted servers (www.linode.com). We modified plugins from the jsPsych toolbox to suit the needs of 

the current study (de Leeuw, 2015). After consent, participants were instructed to use slider bars on the 

screen to make judgments about a series of billiard ball events based on a short video clip.  

In each trial, an eight-second video clip was presented depicting a billiard ball table in which a 

red ball (“Ball A”) collides with a blue patient ball (“Ball B”) resulting in the patient landing in or 

missing one of two corner pockets. The video controls were removed and the video played on a loop for 

the duration of the trial. After the clip was played at least once in full, a slider bar appeared and 

participants were asked to rate the extent to which they agreed with the prompt shown below the video. 

Depending on the outcome of the patient, the prompt asked participants to indicate their agreement with 

the statement “Ball A caused Ball B to land in [miss] the pocket”. Ratings were made on an integer scale 

from 0 (“Disagree”) to 100 (“Agree”)(Figure 3.2A). Note that the agent, which collides with the patient 

can be animate or inanimate. Across all trials, the patient ball (“Ball B”) was always inanimate. After 

indicating their agreement with the causal statement, participants indicated the extent to which they 

perceived the agent ball (“Ball A”) as animate (Figure 3.2B).  

 

http://www.linode.com/
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A.  

B.  

Figure 3.2, Example trial A. Causal statement for the agent ball endorsed by participants. B. Animacy judgment of the agent 

ball. 
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All participants observed and made causal and animacy judgments for all 48 stimulus clips, 

before being debriefed on the nature of the study and compensated. 

3.2.3 Results 
Participants were excluded from analyses if they endorsed an agreement rating of ≥ 60 with the 

causal statement in catch trials in which the agent and patient do not make contact. For all remaining 

participants, these trials were excluded from further analysis. 

Before conducting the main analysis, we found that our manipulation of animacy was indeed 

successful across participants. The results of a likelihood ratio test reveal a large difference in animacy 

rating between trials in which agents' movements were manually manipulated to appear goal-directed 

(Manimate = 86.27, SDanimate = 27.85), and trials in which the agent’s movement was rendered from a physics 

simulation (Minanimate = 33.80, SDinanimate = 37.85), ꭓ2(1) = 103.76, p < .0001 (Figure 3.3A-B). 

 

A. B.  

Figure 3.3, Animacy manipulation, A. Distribution of judgment ratings for agent ball’s animacy by animacy condition. B. 

Change in mean animacy rating for the agent within each unique patient trajectory (i.e. difference in animacy judgment between 

agent balls represented in the left and center columns with each row of Figure 3.2). 
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First, we tested for a three-way interaction effect of patient outcome x patient counterfactual x 

agent animacy on participants’ causal attribution rating for the agent using random effects for subject and 

patient trajectory. This did not reveal a significant three-way interaction effect on causal ratings, ꭓ2(1) = 

.2539, p = .6144. Next, we tested for the two-way interaction effect of patient outcome and patient 

counterfactual outcome on causal ratings for the agent across animacy conditions. Consistent with 

existing theories (Woodward, 2003), we found the interaction of patient outcome and patient 

counterfactual significantly influence causal ratings for the agent, ꭓ2(2) = 11.322, p = .0007. Planned 

pairwise comparisons of the six possible outcome/counterfactual combinations were carried out using the 

Estimated Marginal Means package in R (Lenth et al., 2022). These tests reveal that the interaction we 

observed was driven by causal judgments on trials in which a patient’s outcome is changed from 

counterfactually in to actually out by an agent across both animacy conditions. More specifically, 

participants rated both animate and inanimate agents as more causal when it diverts the patient from 

landing in the corner pocket, changing the patient outcome from counterfactually in to out  (Min → out = 

80.73, SDin → out = 31.33), than when the patient outcome is unaffected by the agent and lands out  (Mout → out = 

44.46, SDout → out = 43.86), t(27.28) = 2.94, p < .05, or lands in (Min → in = 45.64, SDin → in = 41.2), although this 

difference only approached significance, t(26.81) = -2.43, p = .09 (Figure 3.4). In other words, 

participants found agents that make a difference in the patient’s outcome more causal, regardless of 

whether the agent was animate or inanimate. This effect was greater when patients ultimately missed the 

corner pocket, than when patients ultimately land in.   

Finally, we tested for the main effect of agent animacy on causal ratings. We found no effect of 

agent animacy on causal ratings across all outcome and counterfactual conditions  ꭓ2(1) = 0.0228, p = .88, 

(Figure 3.4, blue vs. orange).  
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Figure 3.4,  Causal ratings for inanimate and animate agents across counterfactual and outcome combinations. Error bars 

depict ± 1 SEM. 

 

3.2.4 Discussion 
The purpose of this experiment was to test whether goal-directed agents are judged as more 

responsible than inanimate objects for causing the same outcomes. Although there is evidence to suggest 

that people use distinct forms of causal reasoning for deliberate and unintentional causal factors, we 



 

70 

reasoned, instead, that similar processes could be employed with respect to inanimate objects and goal-

directed agents when holding other variables fixed. We created stimuli to test whether causal cognition 

for intentional agents and inanimate objects operate under unified or distinct mechanisms. In a classic 

collision context, we manipulated the animacy of the agent, as well as the patient’s actual and 

counterfactual outcomes, and asked participants the extent to which they believed the agent (either 

animate or inanimate) caused the patient’s outcome. Importantly, everything about the fine-grain 

kinematics of the outcomes and counterfactuals were matched, such that the only difference between 

animacy conditions was the agent’s movements prior to the frame in which the collision occurred.  We 

found that, despite clear differences in the perceived animacy of the cause, participants made roughly 

equal attributions of causality. As expected, we found that the interaction of the patient’s actual and 

counterfactual outcome had a significant effect on causal ratings for the agent ball. Furthermore, this 

interaction was most clearly driven by the condition in which the patient’s outcome was changed from 

counterfactually landing in the pocket to missing it post-collision. This result was somewhat surprising. 

Because there are far fewer ways of hitting the patient into the corner pocket than diverting it away from 

the corner pocket, we expected the highest causal ratings to occur for animate or inanimate agents that 

changed the patient outcome from a miss to landing in. This would capture the fact that the agent was 

more clearly a difference maker when the ball went in rather than missed. Instead, we found the opposite: 

the agent was judged as more causal when it caused a ball to miss that would have counterfactually gone 

in. A potential reason for finding this pattern could be an artifact of the billiard game context we used. 

Typically, the goal of the game is to hit balls into the table pockets. Therefore, an agent that changes a 

patient’s outcome from a positive one in the context of the game to a negative one, or unexpected one 

may influence causal judgments. Prior work has demonstrated that value and expectations have strong 

effects on causal cognition (Icard et al., 2017; Knobe & Fraser, 2008).  

The main variable under investigation in this experiment was the effect of animacy. Despite our 

clear ability to manipulate perceived animacy, we did not find that this had an influence on causal 

attribution ratings. This is consistent with previous studies demonstrating that causal cognition for 
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intentional agents and inanimate artifacts may be underpinned by the same mechanistic accounts 

(Kominsky & Phillips, 2019). We extend this finding here and provide an even more compelling case that 

includes objects animated to appear intentional. In the current experiment, patient counterfactuals were 

held constant to explore the effect of agency in isolation. We show that animacy, itself, does not impact 

causal judgments directly. In Experiment 2, we consider if outcomes are viewed as inevitable (i.e. lacking 

alternative counterfactuals) if caused by inanimate objects, or intentional agents.  

 

3.3 Experiment 2: The influence of animacy on causal 

attribution via counterfactuals 

3.3.1 Background  

In Experiment 1, we show that animacy, in isolation, does not make a candidate more causal of an 

outcome according to adult participants. One possible reason we did not observe a difference in causal 

judgment is that patient counterfactuals were matched across animate and inanimate conditions. In 

Experiment 2, we indirectly manipulate the contrast of actual and counterfactual outcomes through the 

perception of animacy. Keeping outcomes matched across conditions, we examine if animacy influences 

whether or not an outcome is viewed as inevitable. We expect that viewing an agent’s intention vs. an 

object’s physical trajectory as the cause of an outcome will change the possible counterfactuals that may 

be considered such that the outcome could be different given a different intention. We focus on the case 

of overdetermination, in which an outcome’s occurrence depends on any of multiple, individually 

sufficient causal events. A conceptually similar paradigm was used by Walsh and Sloman, who presented 

participants with vignette scenarios in which two agents simultaneously throw rocks at a bottle. The 

authors establish a causal structure known as late preemption, in which one rock is described as reaching 

the bottle before the other. In these cases, participants will judge it more causal to the outcome (Walsh & 
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Sloman, 2011). However, when the scenario is described such that both rocks hit the bottle 

simultaneously, causal strength is shared equally (Chang, 2009). These overdetermined outcomes are 

interesting case studies because they can disentangle processes theories of causality, which require that 

some quantity is physically transferred from cause to effect, from dependence theories, which require 

different outcomes in counterfactual contrasts (Paul, 1998). Both rocks transfer some quantity to the 

bottle, however, the bottle breaking does not depend on either rock individually. Gerstenberg et al.’s 

Counterfactual Simulation Model provides compelling evidence that causal attribution judgments involve 

online simulations of counterfactual possibilities (2021). For overdetermined outcomes of physical 

causes, it is easy to imagine, in accordance with process accounts of causation, two causes having equal 

strength when occurring simultaneously and the earlier cause judged as more causal in the case of late 

preemption. Here, we investigate cases in which the sufficient causes of an outcome include an inanimate 

object or a goal-directed agent. When an outcome occurs via the intentions of an agent or the force of an 

object, only the agent holds the potential to change the result. Thus, we expect that any effect of 

perceived animacy on causal judgment will be mediated by the difference in counterfactual outcomes 

considered for the animated agents and inanimate object agents. As such, in a disjunctive structure where 

an animate or inanimate agent ball is individually sufficient for the outcome, the inanimate agent will be 

judged less causal for the same outcome than an animate one, who is capable of changing the outcome if 

they intended. The mechanism for this relies on the counterfactuals that come to mind such that 1.) The 

outcome will be viewed as overdetermined in the case of two objects; defined by the lack of possible 

counterfactuals in which either candidate can make a difference in the outcome; 2.) The outcome will not 

be viewed as necessarily overdetermined in the case when an agent ball is perceived as animate. In the 

latter scenario, the agent’s intentions play a role in the final outcome, and therefore a relevant 

counterfactual exists in which the intention is removed, and the animate agent moves in order to change 

the outcome.  

In this experiment, the outcome event judged by participants is held fixed across animacy 

conditions once again. It depicts a scenario in which two causes bring about an overdetermined outcome. 
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However, the perceived animacy is manipulated via a brief priming clip between participants, thus 

changing the counterfactual possibilities.  

3.3.2 Methods 

Participants 

210 adults were recruited through Prolific for participation (Mage = 38.23, SDage = 14.40, 107 

females). 106 participants were randomly assigned to the animate agent group, the other 104 participants 

were randomly assigned to the inanimate agent group. All participants endorsed fluency in English and 

had a ratio of successful task submissions above 94%.  

Stimuli and Procedure 

As in Experiment 1, the stimulus was delivered through a custom web application hosted on an 

encrypted remote server. After consenting, participants were instructed that they would be watching two 

short video clips of different events and that we would be asking them to make judgments afterward.  

 To manipulate the perception of animacy, a priming clip was displayed before the test clip. For 

participants randomly assigned to the inanimate agent condition, the priming clip depicted two balls 

rolling into view on a platform that also contained an assembled tower of cubes. The balls were shown 

colliding with each other and bouncing off different edges of the platform (Figure 3.5A). Movements of 

both balls in the inanimate agent condition and one ball in the animate agent condition were simulated 

using the Bullet physics simulation engine. For participants randomly assigned to the animate agent 

condition, the priming clip depicted a static patient ball and an animated agent ball that appeared to be 

“playing” with the inanimate patient, repeatedly knocking it around the platform, chasing it, and colliding 

with it again, avoiding the assembled tower of cubes also present on the platform (Figure 3.5B). 

Movement of the agent ball in the animate condition was manually specified along a bezier curve 

approximately simulating the movement of an animate, goal-directed agent, while movements of the 

patient ball were rendered using the Bullet physics simulation engine.   
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Following the priming clip, participants in both animacy conditions viewed a test clip containing 

the same platform and an assembled tower of cubes. This time, the inanimate patient ball rolls into view 

headed straight for the tower of cubes. Shortly after, the agent ball rolls into the frame along the same 

trajectory and collides with the patient ball, which proceeds to crash into the tower of cubes, bringing it 

all crashing down. Importantly, both balls in the test clip were rendered according to a physics simulation, 

such that the test clips were identical across the animate and inanimate conditions. (Figure 3.5C). The 

video controls were removed and the video played on a loop while participants made causal and 

counterfactual judgments. 

Participants were asked to indicate their agreement using a slider scale ranging from 0 (“totally 

disagree”) to 100 (“totally agree”) with two causal and two counterfactual statements, counterbalanced 

across participants. For causal items, participants endorsed the statement “The [agent color / patient 

color] ball caused the tower to fall.” For counterfactual items, participants endorsed the statement “If the 

[agent color / patient color] ball had not been there, the tower would have remained standing.” After 

making their ratings, all subjects completed a short comprehension check where they indicated whether or 

not one of the balls appeared animate, as well as which of the two balls made first contact with the tower 

before being debriefed. 
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Figure 3.5, Frames of the video stimuli used in experiment 2. Star shapes indicate a collision between balls. Dotted lines 

illustrate the trajectory of each ball. A. The priming clip shown to participants in the Inanimate agent group. Movements of both 

balls were rendered from a physics simulation engine. B. The priming clip shown to participants in the Animate agent group. 

Movements of the pink ball were manually specified along a bezier curve roughly simulating the movement of an animate agent 

“playing” with a ball. The movement of the yellow ball was rendered from the physics simulation engine and was responsive to 

the force generated by the animate agent. C. The test clip viewed by participants in both agent groups. First, the yellow patient 

ball rolls into view headed straight for the tower of cubes. Shortly after, the pink agent ball rolls into the frame along the same 

trajectory and collides with the yellow patient ball, which proceeds to crash into the tower of cubes, bringing it all crashing 

down. Movements of the pink agent, yellow patient ball, and cube tower were rendered from the physics simulation engine. 

Participants were asked to endorse causal and counterfactual claims about each ball for the tower collapsing. 
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3.3.3 Results  
As we anticipated, there was a strong effect of counterfactual dependence judgments on causal 

rating, when controlling for animacy F(1, 208) = 72.55, p < .0001. However, participants in the Inanimate 

Agent group provided low counterfactual dependence ratings for both agent (Minanimate = 30.38, SDinanimate = 

31.42) and patient (Minanimate = 28.71, SDinanimate = 30.83) balls. Given the criteria for causality according to 

process and dependence theories, this result is consistent with the predictions described above for cases 

involving overdetermined outcomes. Interestingly, we find the highest counterfactual dependence ratings 

for the agent ball in the Animate Agent group (Figure 3.6A). This influence of agent animacy on 

counterfactual dependence ratings was highly significant such that the outcome was judged more 

counterfactually dependent on animate agents (Manimate = 51.00, SDanimate = 33.19) than inanimate agents 

(Minanimate = 30.38, SDinanimate = 31.42), despite both causes following identical trajectories in the test clip, F(1, 

208) = 21.39, p < .0001 (Figure 3.6A, light plots). 

We hypothesized that there would be a difference in participants’ causal judgments of animate vs. 

inanimate agent balls for the same outcome. Using a one-way analysis of variance to test for the total 

effect of animacy on agent causal ratings, we found that perceived animate agents indeed were rated 

significantly more causal (Manimate = 57.61, SDanimate = 33.54) than inanimate agents  (Minanimate = 42.19, SDinanimate = 

35.27) for the same outcome event, F(1, 208) = 10.54, p = .00136 (Figure 3.6B, light plots). Interestingly, 

causal ratings were highest for the patient ball in the Inanimate Agent condition (Mpatient = 74.88, SDpatient = 

26.45), suggesting that something other than counterfactual dependence may be driving causal judgments 

when both balls are inanimate and the outcome is overdetermined. 
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A.

B  

Figure 3.6, (A)Counterfactual and (B) causal ratings for agent and patient balls in the Animate Agent and Inanimate Agent 

between-subjects conditions. Error bars depict ± 1 SEM. 
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Using the mediation package in R, we found that the indirect (average causal mediation) effect of 

animacy on causal ratings was (𝛽animacy = 20.64)*(𝛽counterfactual = .542) = 11.19. We tested the significance of this 

indirect effect using nonparametric bootstrapping procedures. The 95% confidence interval of the 

bootstrapped unstandardized indirect effect ranged from 6.077 to 16.58. Thus, the indirect effect of 

animacy via counterfactual dependence judgments on the agent ball’s causal ratings was statistically 

significant, p < .001 (Figure 3.7).  In contrast, this indirect effect did not explain causal judgments made 

for the patient ball, 95% CI: [- .816, 2.07], p = .560. 

 

 

Figure 3.7, Mediation relationship of the direct and indirect effect of animacy on causal attribution ratings for the agent ball. 

 

3.3.4 Discussion 
Here, we examined the prediction that an effect of perceived animacy on causal judgments could 

be explained by the mediating influence of counterfactuals. We reasoned that the perception of animate 

agency makes counterfactuals in which an agent makes a difference in the outcome (i.e. by having a 

different intention) relevant for consideration in the causal attribution process. By contrast, we expected 

that an outcome caused by either of two inanimate objects in the overdetermined scenario we tested 

would be interpreted as inevitable by participants such that there are no counterfactuals in which the 

outcome could be different. To test this, we presented two participant groups with the same test clip in 

which a patient ball rolls into view headed straight for the tower of cubes. Shortly after, the agent ball 
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rolls into the frame along the same trajectory and collides with the patient ball, which proceeds to crash 

into the tower of cubes, bringing it all crashing Participants in the Animate Agent group were primed with 

an anthropomorphic stimulus, while those in the Inanimate Agent group were primed using a purely 

physical stimulus. We asked participants to make causal judgments for each candidate ball. We also asked 

participants the extent to which the outcome counterfactually depended on either ball.  

We found that, when the agent ball was viewed as inanimate, judgments of counterfactual 

dependence for both causes were low. This result makes sense given that the outcome under consideration 

was overdetermined and therefore would still obtain in either counterfactual in which one of the objects 

was removed. When the agent ball was viewed as animate, however, judgments of counterfactual 

dependence for the agent ball were significantly higher, despite participants viewing identical outcomes in 

the test clip across groups. Although the test clip was rendered from a physics simulation, this could 

suggest that participants did not interpret the outcome as inevitable when the agent ball was perceived as 

animate. Furthermore, the pattern was mirrored in participants’ causal attributions. Distal agent balls were 

judged as more causal to the outcome when perceived as animate rather than inanimate.  

 We found the expected pattern of results in which counterfactual judgments of difference-

making were strongly related to causal attribution judgments across animacy groups. Finally, the effect of 

perceived agent animacy on causal strength judgments was mediated by counterfactual judgments of 

whether the outcome would obtain in the absence of the agent.  

In study 3, we look closer at the role of mental states and the perception of animacy in 

considerations of causal judgments by exploring the role of prescriptive norms on counterfactuals.  
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3.4 Experiment 3: Dissociating animacy from 

prescriptive norms in causal attribution. 

3.4.1 Background  
In Experiment 1, we show that goal-directed animacy alone does not impact causal judgments. 

Next, in Experiment 2, we found that animacy does impact causal judgments, but only to the extent that it 

arbitrates which counterfactual possibilities might be considered. Here, we examine how the relationship 

between prescriptive norms and counterfactual considerations influences causal judgment. 

Counterfactuals are challenging to investigate in animate agents because, along with their observable 

actions, an agent’s goals, desires, and beliefs may also be considered causal to events and are free to be 

virtually anything. Using norm violations to study causal cognition partially overcomes the combinatorial 

explosion of possible counterfactuals and the variables therein  ( “the variable selection problem” 

(Beebee, 2004; Bernstein, 2015; Hesslow, 1988)) by making salient the counterfactual in which the norm 

is instead followed (Petrocelli et al., 2011). Here, we manipulated both animacy and normativity to 

examine how prescriptive expectations are at the core of determining counterfactual relevance for animate 

agents.  

Consistent evidence has demonstrated that people have a tendency to attribute increased causality 

to agents that violate social or moral norms as compared to agents who do not (Henne et al., 2019; Kirfel 

& Lagnado, 2018; Knobe, 2009; Kominsky et al., 2015). However, differences in judgments of causal 

strength have also been reported between agents acting deliberately and those who unintentionally cause a 

negative outcome (Hilton et al., 2016; Hilton & Slugoski, 1986; Lombrozo, 2010; Malle et al., 2014; 

Samland & Waldmann, 2016).  

In Experiment 2, animacy was used to cue participants to the possibility of alternative outcomes 

given a counterfactual intention of an animated agent. We found that perceived animacy affects causal 

judgments indirectly through the counterfactuals relevant to goal-directed agents. In the current 
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experiment, we take advantage of prescriptive norm violations to manipulate precisely which 

counterfactuals participants are likely to consider. More specifically, we manipulate the perception of 

animacy in participants with a priming clip again. However, this time we vary participants’ normative 

expectations of the animate agent such that, in bringing about a destructive outcome, the agent is viewed 

as violating one of two kinds of prescriptive norms, moral or rational. We use a similar outcome event to 

that of Experiment 2, only now, the agent and patient are both perceived as animate by some groups of 

participants. We predict that anthropomorphized agents will be considered more causal to an outcome 

when violating participants' normative expectations. 

3.4.2 Methods 

Participants 

All participants were recruited through Prolific. The eligibility criteria for this experiment 

matched those of Experiments 1 & 2, with the additional filter to exclude Prolific users who had 

participated in either of the above experiments. 587 Participants were recruited in two cohorts. 293 adults 

(Mage = 32.65,  SDage = 12.48,  148 females) were recruited to participate in the causal judgment cohort, and 

294 adults (Mage = 32.41,  SDage = 11.93,  146 females) were recruited to the counterfactual judgment cohort. 

Both cohorts were split among the same stimulus conditions and differed only in the judgment data we 

elicited.  

Stimuli and Procedure 

As in Experiments 1 and 2, the stimulus for this experiment was delivered through a custom web 

application hosted on an encrypted remote server. After consenting, participants were instructed to watch 

two short video clips of different events and were asked to make judgments afterward. Participants 

assigned to either of two animate conditions viewed a priming clip involving two animated agents.  In the 

animate priming clip, participants observed a platform containing two different colored balls, one pink 

and one green (“the builder”) as well as several cubes partially assembled into a tower, and individual 

cubes at various locations on the platform. Both balls were animated to appear self-guided and goal 
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directed. In the video, the green “builder” ball is shown moving to different cubes and assembling the 

tower one cube at a time, while the pink ball moved interactively as if observing the green ball build the 

tower (Figure 3.8A & C). Importantly, a description providing context for the priming clip was varied by 

condition. Participants in the Animate Immoral condition viewed a message above the priming clip 

informing them that “It is Pink’s job to protect Green’s tower” (Figure 3.8A). Participants in the Animate 

Irrational condition viewed a message above the priming clip informing them that “Green wants to protect 

its own tower” (Figure 3.8C).  

 Participants assigned to the inanimate condition viewed a different priming clip containing an 

inanimate green ball and an inanimate pink ball for consistency with the animate conditions. Each ball in 

the inanimate priming clip rolled into view on a platform that also contained an assembled tower of cubes. 

The balls were shown colliding with each other and bouncing off different edges of the platform (Figure 

3.8E). Movements of both balls in the inanimate agent condition were simulated using the Bullet physics 

simulation engine. Participants in the Inanimate condition were simply asked to familiarize themselves 

with the video, as they would be asked about a similar one on the subsequent screen.  

After the priming clip, participants in all conditions viewed a similar test clip. The test clip was 

similar to the test clip of Experiment 2 in terms of the underlying physics. It contained the same platform 

and an assembled tower of cubes. It depicted the patient ball rolling into view headed straight for the 

tower of cubes. Shortly after, another ball rolls into the frame along the same trajectory and collides with 

the patient ball, which proceeds to crash into the tower of cubes, bringing it all crashing down. 

Importantly, both balls in the test clip were rendered according to a physics simulation, such that the ball 

movements and the tower outcome in the test clips were identical across conditions. (Figure 3.8B, D, & 

F). The video controls were removed, and the video played on a loop while participants made causal or 

counterfactual judgments. Critically, we manipulated the color of the agent and patient balls in the test 

clip between conditions in order to violate the norm established in the prime clip. Participants in the 

Animate Immoral condition watched the pink “guard” collide with the green “builder” patient, violating 

the moral prescription established in the prime clip for the pink “guard” to protect the tower (Figure 
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3.8B). Participants in the Animate Irrational condition observed the green “builder” collide with the pink 

patient ball, violating the rational prescription established in the prime clip of the green “builder” wanting 

to protect its own tower  (Figure 3.8D). In the inanimate condition, the color of either ball was set 

randomly (Figure 3.8F).  
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Prime Clip Test Clip 

A. 

 

B. 

 

C. 

 

D. 

 

E. 

 

F. 

 

 

Figure 3.8, Frames from the prime and test stimulus videos. A. Animate Immoral condition: The green agent assembles the tower 

while the pink agent observes interactively. A prescriptive is established from the text. B.  The moral prescription is violated by 

the pink agent in the test clip. C.  Animate Irrational condition: the prime clip is the same as in A, but a rational prescriptive is 

established. D. The rational prescriptive is violated by the green agent in the test clip. E. Inanimate condition: Two inanimate 

balls roll into view colliding with each other and bouncing off edges, not making contact with the tower. F. The test clip in this 

condition matches the animate condition with the color of the agent and patient balls chosen randomly. 
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Causal & counterfactual judgments 

Participants in the first cohort made causal attribution judgments to both balls for the tower’s 

outcome by rating the extent to which they agreed with the statements “[Agent  / Patient] caused the 

tower to fall” using a slider with values ranging from 0 (“Disagree”) to 100 (“Agree”). Participants in the 

second cohort made counterfactual judgments for both balls for the tower’s outcome by rating the extent 

to which they agreed with the statement “If [Agent / Patient] had not been there, the tower would have 

remained standing” using a slider with values ranging from 0 (“Disagree”) to 100 (“Agree”). 

Additionally, participants in the counterfactual cohort also indicated their agreement with the statements 

“I expected [Agent] to move in a different way than it did in the video.”, and “If [Agent] had moved in a 

different way, the tower would have remained standing.”.  

3.4.3 Results 

Causal judgments 

We began by analyzing the effect of each condition on causal judgments of the agent ball. We 

found that, despite having the same underlying physics across conditions, causal attributions to the agent 

ball significantly differed between conditions, F(2, 289) = 20.1, p < .0001 (Figure 3.9, light plots). 

Pairwise comparisons carried out using the Estimated Marginal Means package in R (Lenth et al., 2022) 

revealed that the agent ball in the Animate Moral condition was judged as more causal (Mimmoral = 66.21, 

SDimmoral = 29.31) than the agent ball in the Animate Irrational condition (Mirrational = 41.57, SDirrational = 32.78) for 

the same outcome, t(289) = 5.36, p < .0001. The agent in the Animate Moral condition was also judged 

more causal to the outcome than the agent in the Inanimate condition (Minanimate = 40.41, SDinanimate = 34.13),  

t(289) = 5.61, p < .0001. Interestingly, causal judgments of the agent ball in the Animate Irrational 

condition were not significantly different from the Inanimate condition, t(289) = 0.250, p = .97.  

Recall that the tower outcome was physically overdetermined in all conditions such that the tower 

collapsing did not counterfactually depend on either agent or patient in the physics simulation. 

Nonetheless, causal attribution to agents and patients differed from each other in each condition. As 
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expected, the patient, which actually makes first contact with the tower, was judged more of a cause (Mpatient 

= 72.97, SDpatient =  25.23)  than the agent (Minanimate = 40.41, SDinanimate = 34.13), in the Inanimate condition t(96) 

= 6.03, p < .0001, paired (Figure 3.9, right). Surprisingly, this was also true for the patient (Mpatient = 71.65, 

SDpatient =  28.48) in the Animate Irrational condition, t(96) = 5.25, p < .0001, paired (Figure 3.9, center). 

As we hypothesized, this pattern reverses in the Animate Immoral condition, where the agent (Mimmoral = 

66.21, SDimmoral = 29.31) is judged more causal than the patient (Mpatient = 55.96, SDpatient =  32.22) (Figure 3.9, 

left). However, this difference only approached significance  t(96) = -1.83, p = .06, paired.  

 

Figure 3.9,  Causal attribution judgments for agent (light) and patient(dark) balls across conditions. 
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Counterfactual judgments 

We found a significant interaction effect of condition x ball (agent /patient) on counterfactual 

dependence judgments ꭓ2(2) = 54.31, p < .0001. This interaction was driven by the Animate Irrational 

condition, in which participants judged the tower collapsing as more dependent on the patient (Mpatient = 

69.37, SDpatient =  34.82) than the agent (Magent = 34.03, SDagent =  34.37), t(297) = -7.56, p < .0001 (Figure 

3.10A, middle). We speculate on why this occurred, and its implications in the discussion section for this 

experiment. We did not find a significant difference in counterfactual dependency judgments between the 

agent and patient for the Animate Immoral (t(297) = 1.552, p = .63) or Inanimate (t(297) = 1.73, p = .52) 

conditions.  

We also asked participants to judge the extent to which the agent violated their expectations. For 

this item, Animate agents  (Mimmoral = 78.32, SDimmoral = 26.72; Mirrational = 71.22, SDirrational = 28.86)  were found 

more surprising than inanimate ones(Minanimate = 30.19, SDinanimate = 29.42), F(1, 292) = 160.31, p < .0001.  

There was no difference in the extent to which agent “behavior” violated participant expectations between 

immoral and irrational agents t(291) = 1.75, p  = .190 (Figure 3.10B). 

Finally, to test if participants believed the outcome counterfactually depended on the agent’s 

surprising movement, we asked the extent to which they agreed that the tower’s outcome would be 

different if the agent moved differently. Results for this item mirrored those of the preceding surprise 

judgments. Participants agreed more that the outcome would be different if Animate agents  (Mimmoral = 

70.54, SDimmoral = 29.27; Mirrational = 63.07, SDirrational = 28.75)  moved differently than if the inanimate agent had 

(Minanimate = 35.37, SDinanimate = 31.93), F(1, 292) = 73.65, p < .0001.  There was no difference in this judgment 

between immoral and irrational agents t(291) = 1.51, p  = .288 (Figure 3.10C). 
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Figure 3.10, A. Participants' judgments of the extent to which the outcome counterfactually depended on the agent (light) and 

patient (dark) balls respectively.  B. The extent to which the movement of the agent violated participant expectations. C. 

Participants’ beliefs that the outcome would be different if the agent had moved in a different way.  

 

3.4.4 Discussion 
Norm violations are known to influence causal judgments in a variety of interesting ways 

(Hitchcock & Knobe, 2009; Icard et al., 2017). One reason norm violations provide such rich testbeds for 

researchers is because of the known importance of counterfactuals for causal cognition (David Lewis, 

1973). In the context of humans who cause outcomes, prescriptive norm violations have often been 

operationalized in terms of morality (Alicke et al., 2011; Leslie et al., 2006; Samland & Waldmann, 

2016). By contrast, prescriptive norm violations when studied with respect to causal objects are often 
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described as norms of proper functioning (Hitchcock & Knobe, 2009; Kominsky & Phillips, 2019; 

Lombrozo, 2010). In this experiment, we were interested in the effect of prescriptive norm violation on 

causal judgments of anthropomorphized agents. We manipulated the perceived animacy as well the 

normativity of a causal agent and found that animated “immoral objects” were judged as more causal to a 

destructive outcome than their inanimate counterparts.  

We also asked whether or not moral norms are special cases for causal cognition by also 

presenting subjects with a rational norm violation in which an agent behaved inconsistently with their 

expressed interests. In both immoral and irrational conditions, we expected the animated agents to be 

judged as more causal of the outcome than their inanimate counterpart given the results in Experiment 2, 

where this was the case for a similar outcome event. Interestingly, causal attribution ratings for these 

irrational agents were significantly lower than those of immoral agents (Figure 3.9). To understand this 

surprising result, we turned to the counterfactual judgements made by the second participant cohort. For 

both irrational and immoral between-subjects conditions, participants agreed that the agent’s movements 

violated a norm, and that the outcome depended on this norm violation. However, there were larger 

differences between immoral and irrational conditions in agreement with the counterfactual statement 

about whether the outcome would obtain in the absence of the agent or patient. More specifically, there 

were unexpectedly higher agreement ratings that the outcome was more counterfactually dependent on 

the presence of the patient than the “irrational” agent (Figure 3.10A, middle). In other words, participants 

did not believe that our irrational “builder” agent, alone, would have harmed the tower it had just 

completed. We speculate that this likely came from a fortuitous error of errors, so to speak. It is likely 

that, due to the aspects of our stimuli, participants did not perceive the animated “builder” as acting with 

the intention of making the tower collapse. Although the outcome in the test clip was confirmed as 

overdetermined in the physics simulation engine such that the agent alone would, in fact, have caused the 

tower to fall, these data suggest that participants viewed our “irrational” agent as simply causing the 

outcome by mistake--perhaps even in the process of trying to prevent the other ball from hitting the tower. 
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Our unconvincing stimulus was fortuitous in the sense that it provided a more interesting dissociation 

between deliberate and unintentional prescriptive norm violations for agentic objects.   

A common criticism of work on causal attribution in contexts where prescriptive norms are 

violated is that participants may conflate questions of causality with questions of moral responsibility or 

blameworthiness.  Phillips and Kominsky point out that when actions that violate prescriptive norms are 

made unintentionally, for example, by agents who are ignorant of the prescriptive norm, they may not be 

considered moral violations since there is no normative expectation that an agent would abide by 

prescriptions if, e.g. they lack critical knowledge of them (2019). In the current experiment, participants 

likely viewed our “irrational” agent as causing the tower’s destruction accidentally, roughly embedding a 

condition of intentionality within our condition of norm violations by animate agents.  

We take up the recent definition of intentionality offered by Quillien and German: 

“For the human mind, an agent did X intentionality if the agent’s attitude toward X caused X, and 

caused X according to the typical causal model implicit in our commonsense psychology” (2021). 

 

An agent’s attitude in this definition refers to the value they place on some outcome, X,  

obtaining and includes the agent’s tolerance for the costs associated with bringing about X. Quillien and 

German underscore that simply having a desire for X is insufficient for the claim that an agent causes X 

intentionally if X comes about through a means that does not comport with our commonsense 

understanding of the general way in which X is caused (e.g. Despite having the desire to score a point, a 

basketball player who closes their eyes and takes a shot would not be judged as intentionally scoring a 

point if their shot lands in the basket by coincidence). Consistent with this idea, Sosa et al provide 

compelling evidence for a distinction between moral and causal reasoning. Participants in their study 

viewed a display in which an anthropomorphized agent exerts varying amounts of effort to cause harmful 

outcomes for others. The authors found that a model including parameters for the agent’s physical causal 

contribution to the outcome did not improve predictions of participants’ moral judgments above a simpler 

account that modeled the morality of the agent as a function of its perceived desire to cause harm (Sosa et 
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al., 2021). Other recent work has shown that the epistemic state of an agent matters more than the 

abnormality of their actions when considering an agent’s causal contribution to an outcome. For example, 

if two agents must both perform an action in order to jointly cause a single outcome, whether or not one 

agent knows of the other’s behavior make a difference in causal attribution judgments (Kirfel & Lagnado, 

2021). 

Overall, the general pattern of causal attribution results fits well with the pattern of results found 

for counterfactual dependence judgments in a separate cohort. Taken together, this experiment provides 

support to the claim that the underlying mechanism by which prescriptive violations, both deliberate and 

unintentional, affect causal cognition likely stems from a more domain-general effect of normativity.   

 

3.5 General Discussion 

In Experiment 1, we asked whether the property of being ‘alive’ and causing an outcome 

‘intentionally’ was sufficient, in itself, to impact participants' causal judgments. We found that, when 

holding both realized and counterfactual outcomes fixed, goal-directed animacy, alone, had no effect on 

causal judgments. Instead, we replicate prior work demonstrating the causal strength attributed to agents 

and objects alike is a function of counterfactual difference-making (Danks, 2017; Woodward, 2003). In 

Experiment 2 we reasoned that outcomes need not be considered inevitable if an agent possesses the 

ability to intervene in a way that objects cannot. This allows the counterfactual possibilities for agents to 

differ from those of objects. We show that this difference in counterfactuals mediated the differences in 

causal strength attributed to agents and objects for an outcome with the same underlying physics. Finally, 

we examined the relationship between perceived animacy and counterfactual relevance more closely in 

Experiment 3. Although we cannot reverse-engineer the behaviors of goal-directed agents to compute 

which mental states are hypothetically possible, observing norm violations highlights those 

counterfactuals which are more probable. This gives us the most relevant counterfactual contrasts for free. 
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We found higher causal attributions to perceived “immoral objects” who violated prescriptive norms. 

Incidentally, we replicated prior work demonstrating that causal attributions are higher for deliberate 

norm violations than unintentional ones. This is because we failed to elicit the perception of irrationality 

in participants, who instead, may have viewed an animate agent’s actions as unintentional and therefore 

less causal. While the perception of animacy allows for the possibility of different outcomes given 

different intentions, our data suggest that the counterfactual contrast participants considered did not 

involve an alternative intention (to protect its tower in accordance with rationality), but instead involved 

an alternative behavioral process by which the rational intention could be carried out successfully. What 

this suggests is that the influence of intentionality on causal attributions to agents may be better explained 

by an observer's normative expectations.  

A gap has emerged in the research on causal cognition between the questions concerning our 

understanding of causal objects and agents. This rift parallels that between philosophical schools of 

thought concerning how to define causation. For decades, collision events between inanimate agents have 

been used to bolster processes theories, which promote the notion that causation is strictly defined by the 

physical transference of some quantity between cause and effect (Aronson, 1971; P. Dowe, 2000; Salmon, 

1994; Wolff, 2007). On the other side, some have argued that what separates cause from correlation is the 

effects of interventions on causal, but not correlative relationships (Pearl, 2000; Woodward, 2003). As 

such, human agency to cause outcomes places an emphasis on our mental states in ways described by 

dependence theories, that promote a requirement of counterfactual dependence between cause and effect 

(e.g. letters appearing on this page are caused by my desire to type them here; since without the 

intervention of my desires, these letters would not be here). We believe distinct accounts of causal 

cognition for agents and objects would be just as superfluous as the rift between process and dependence 

theories of causality more broadly.  

Exciting new work is bridging this philosophical divide by incorporating aspects of process and 

dependence to characterize causal judgments for purely physical events (Gerstenberg et al., 2021) with 

compelling evidence from human psychophysics (Gerstenberg et al., 2017). The success of Gerstenberg et 
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al.’s counterfactual simulation model stems, in part, from the fact that human intuition of what is 

physically possible in realized or counterfactual worlds is constrained by a programmable set of laws. The 

mental states that cause our behaviors are far less understood; and much less so, programmable. In this set 

of experiments, we sought to unify various accounts of causal cognition by imbuing objects with 

animacy. By comparing anthropomorphized agents to objects in this way, we could control the physical 

contributions to an outcome, while observing the effects of perceived mental agency on causal attribution.   
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Chapter 4.  

4.1 Introduction: Causal Selection 

An understanding of causal relationships gives humans the amazing power to intervene on their 

environment; changing it to suit their needs. Knowledge of causal relationships is learned from the 

experience of a continuous stream of temporally ordered events and allows us to explain the past and 

predict the future. It also plays a pervasive role in our society, for instance in legal or medical contexts. 

However, investigation of the mechanisms involved in causal reasoning has mostly been studied using 

coarse manipulations. Existing work in experimental philosophy using simple vignette-based experiments 

has only just begun to scratch the surface of this complex topic. Norms, both statistical and prescriptive, 

have consistently been shown to influence how humans attribute causality. Evidence for the effect of 

normality has come mostly from work manipulating this variable in broad, qualitative ways by describing 

events as either normal or abnormal. (Halpern & Hitchcock, 2013; Hitchcock & Knobe, 2009; Icard et al., 

2017). However, we believe normality can and should be construed in less binary ways. In fact, recent 

work has already demonstrated that the effects described above persist along more continuous, 

quantitative manipulations of normality in simple two-variable conjunctive and disjunctive structures 

(Morris et al., 2019). The purpose of the causal selection benchmark dataset is to provide researchers with 

a comprehensive set of human causal judgment data to test the predictions of various computational and 

theoretical models that propose to explain the influence of normality on how humans reason about the 

causes of events.  

4.1.1 Causal selection: What we are studying, and what we are not 
Knowledge of causal relata can be represented in various forms. Token causality forms links 

between specific events that occur only once (c caused e). On the other hand, type causation refers to non-
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specific causal relationships between properties or kinds  (C causes E) (Hausman, 2005). The key 

differences between type and token relationships can be seen in probabilistic contexts in which a token 

event, c, may be known as having a tendency to cause a token outcome event, e, by raising its probability, 

which would establish type causality between the class C and E. In this way, type causation refers to 

generalizations of actual or possible relationships, whereas token causation occurs only if both cause and 

effect occur. The benchmark we introduce here concerns reasoning about token causality.  

Numerous accounts have been proposed to explain the conditions under which one thing is 

considered the cause of another. A view of causality aimed at describing how events become causal was 

bolstered in the 40s by Albert Michotte; whose experiments involved visual stimuli depicting what 

appeared to be one shape moving towards and making contact with a previously static shape, which is 

then “launched” into motion along the same direction as the first (Michotte, 1946). These simple 

launching effects remain a powerful abstraction for studying the perception of causality and laid the 

groundwork for process theories of causation. According to process accounts, some candidate, c, may be 

considered a cause of an outcome, e, if they are connected via the physical transfer of some quantity or 

amount that moves from c to e (Phil Dowe, 1992; Salmon, 1994; Wolff, 2007).  

An alternative approach was motivated by the desire to give a satisfying account of the semantics 

of statements involving causal claims. It argued that causality is conditional on the co-occurrence of 

events such that c is deemed a cause of e if the occurrence of e depends on the occurrence of c. This 

dependence can be established if the occurrence of c raises the probability of e, or through counterfactual 

dependence where e does not occur in any possible counterfactual in which c does not occur (D. Lewis, 

1979; Suppes, 1968). More recent models to describe human causal reasoning have combined the 

strengths of process and dependence theories together and include criteria for both physical force transfer 

as well as counterfactual dependence (Gerstenberg et al., 2021). 

Although early proposals to define causality, such as those offered by process and dependence 

theories, provide a useful theoretical foundation, the dataset described below focuses, instead, on 

exploring how people intuitively reason about the causes of events.  Reaching a unified account of human 
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causal judgments is complicated, in part, because a mapping from cause to effect is rarely, if ever, one-to-

one. Causal selection is the process by which humans decide on the definitive single cause of an event 

with multiple necessary or sufficient antecedent conditions. Most events in real life occur through the 

confluence or consequence of many distinct causal conditions. Accordingly,  humans can attribute causal 

strength across a set of candidate events in a graded fashion (Danks, 2017; Halpern & Hitchcock, 2013). 

When considering which events might be causes, the various links within and across causal conditions to 

their effects define the structure of a causal system. The causal selection benchmark dataset focuses on 

causal attribution judgments for singular token outcome events in causal systems across various structural 

configurations (Figure 4.1). In particular, we focus on the influence of normality on causal selection 

because there exists a clear opportunity to systematically fill in the gaps between a binary construction of 

normality as categorically rare or common. In what follows, we describe the effect of normality on human 

causal judgments as it has been studied thus far and outline the methods and manipulations we used to 

more systematically demonstrate these effects in the benchmark dataset.  

 

A. B.  

Figure 4.1, Directed acyclical graphs depicting the structure causal relationships. A. Conjunctive structure. B. Disjunctive 

structure 
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4.1.2 The influence of normality on causal attribution 

Effect of normality on causal attribution in conjunctive systems 

A common structure used to study causal selection involves token outcomes that result from the 

conjunction of two antecedent causal events. In these structures, neither antecedent causal event, alone, is 

sufficient to bring about the outcome. However, the conjunction of both events, together, is necessary. 

One instantiation of conjunctive causal structure comes from Icard, et al (2017): 

 

Prof Smith works at a large university. At this university, in order to get new computers from the 

university, faculty, like Professor Smith, must send an application to two administrative 

committees for approval, the IT committee, and the department budget committee. Professor 

Smith will be able to get her new computers if the IT committee approves her application AND 

the department budget committee approves her application. Both committees must approve the 

application for her to get the new computers.  

 

Prof Smith sends in her applications. Each committee meets independently and they decide 

without talking to each other, but their meetings are scheduled for the exact same time. The IT 

committee approves her application and the department budget committee approves her 

application. So Prof Smith got her new computers.  

 

The outcome in the example above counterfactually depends on the conjunction of both candidate 

causes occurring (i.e. if one committee approved the request, but the other committee did not, Professor 

Smith would not have received new computers). Therefore people may attribute responsibility for 

Professor Smith’s new computers equally to both committees (Zultan et al., 2012). But consider the 

following information about the normality of each necessary cause: 
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The IT committee almost always approves these applications. The department budget committee 

almost never approves these applications. The budget committee is notorious for turning down 

almost every application they receive.  

 

 Given this information about the relative normality of both necessary causal conditions 

occurring, if the outcome remains that Professor Smith received new computers, people consistently 

attribute more responsibility to the budget committee’s surprising approval. This effect is referred to as 

abnormal inflation: the responsibility attributed to one cause in a conjunctive causal system increases as a 

function of its abnormality relative to other necessary causes (Hart & Honoré, 1985; Hilton & Slugoski, 

1986; Icard et al., 2017; Kahneman & Miller, 1986; Kahneman et al., 1982). Now consider how 

responsible the IT committee is for Professor Smith receiving new computers. People tend to attribute 

less responsibility to the IT committee in this case since it is seen are relatively more probable than the 

other necessary antecedents. This pattern is known as supersession, wherein the responsibility attributed 

to one cause in a conjunctive system decreases as a function of its normality relative to other necessary 

causes (Kominsky et al., 2015).  

 

Effect of normality on causal attribution in disjunctive systems 

Another common structure used to study causal selection involves token outcomes that result 

from the disjunction of two antecedent causal events. In these structures, either antecedent causal event, 

alone, is sufficient to bring about the outcome. Therefore, one or the other antecedent event could, 

individually, cause an outcome. Returning to the example from Icard, et al (2017) in a disjunctive 

scenario: 

Prof Smith works at a large university. At this university, in order to get new computers from the 

university, faculty, like Professor Smith  must send an application to two administrative 

committees for approval, the IT committee, and the department budget committee. Prof Smith 

will be able to get her new computers if the IT committee approves her application OR the 
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department budget committee approves her application. Only one of the committees needs to 

approve her application for her to get new computers.  

 

Prof Smith sends in her applications. Each committee meets independently and they decide 

without talking to each other, but their meetings are scheduled for the exact same time. The IT 

committee approves her application and the department budget committee approves her 

application. So Prof Smith got her new computers. 

 

The outcome in the example above now counterfactually depends on only one of the two causal 

events occurring (i.e. if one committee approved the request, but the other committee did not, Professor 

Smith would still have received new computers). Therefore people may attribute responsibility for 

Professor Smith’s new computers equally to both committees. But consider, again, the following 

information about the normality of each sufficient cause: 

 

The IT committee almost always approves these applications. The department budget committee 

almost never approves these applications. The budget committee is notorious for turning down 

almost every application they receive.  

 

 Given this information about the relative normality of both sufficient causal conditions 

occurring, if the outcome remains that Professor Smith received new computers, people consistently 

attribute less responsibility to the budget committee’s surprising approval. This effect is referred to as 

abnormal deflation: the responsibility attributed to one cause in a disjunctive causal system decreases as a 

function of its abnormality relative to other sufficient causes (Icard et al., 2017). Now consider how 

responsible the IT committee is for Professor Smith receiving new computers. The responsibility people 

assign to the IT committee, in this case, remains unchanged, despite it being relatively more normal than 

another individually sufficient antecedent, the budget committee’s approval. This reverse supersession is 
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observed, wherein the responsibility attributed to one cause in a disjunctive causal system may stay the 

same or increase as a function of its normality relative to other causes (Kominsky et al., 2015).  

4.1.3 Mixed Causal Structures 
 Pure two-variable conjunctive and disjunctive structures describe simplifications of, 

otherwise, extremely high-dimensional systems. However, very little work has investigated more complex 

structures that combine conjunctive and disjunctive causal conditions for a single outcome. Our 

benchmark dataset creates opportunities for researchers to test existing models in novel contexts as well 

as develop new theoretical accounts of causal attribution in mixed causal structures described below.  

Mixed conjunctive systems 

 In a mixed conjunctive system, a disjunctive causal structure is embedded within a 

conjunctive one such that two events must still occur to bring about the token outcome, one of which, 

however, occurs through the disjunction of two distinct events. For example, imagine a budding 

technology company looking to hire a new senior data scientist for their team. The job listing describes 

the requirements needed for consideration by the hiring manager. In order to be qualified for the job, the 

listing states that applicants must have a PhD and pass a coding assessment test in either one of two 

programming languages, Python or Javascript. Considering why a particular applicant was offered the 

position requires causal selection in a mixed conjunctive system. An applicant was offered a job, e, 

because they have a PhD, c1, and they’ve passed the coding assessment in Python or Javascript, c2. In 

other words,  e can only occur by the conjunction of c1 and c2, where c2  results from a disjunction of two 

individually sufficient events (Figure 4.2A). We test causal attribution ratings in this mixed conjunction 

causal structure.  

Mixed disjunctive systems 

The causal selection benchmark dataset also contains causal judgments in mixed disjunctive 

structures. More specifically, in a mixed disjunctive system, a conjunctive causal structure is embedded 

within a disjunctive one such that two events are individually sufficient to bring about the token outcome, 
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one of which, however, occurs through the conjunction of two distinct events. Consider that the same 

company is hiring for a different role, that of User Experience Researcher. The job posting for this 

position describes the requirements needed for consideration by the hiring manager. In order to be 

qualified for the role, the job listing states that applicants must have a PhD or pass a coding assessment 

test in two programming languages, Python and Javascript. Considering why a particular applicant was 

offered the position requires causal selection in a mixed disjunctive system. An applicant was offered a 

job, e, because they have a PhD, c1, or they pass the coding assessment for Python and Javascript, c2. In 

other words, e can occur by the disjunction of c1 or c2, where c2 is the result of a conjunction of two events 

(Figure 4.2B). We also test causal attribution ratings in this mixed disjunctive causal structure.  

 

A B.  

Figure 4.2, Directed acyclical graphs depicting the mixed structure causal relationships. A. Mixed conjunctive structure where 

the conjunction of c2 with c1 or c3 is necessary for the outcome. B. Mixed Disjunctive structure where the conjunction of c1 and 

c2 or the occurrence of c3, would both be sufficient to cause the outcome. 
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4.1.4 The current contribution 
The causal selection benchmark dataset improves upon existing work in three major ways. First, 

we extend the causal structures mentioned above to include up to three conjunctive or disjunctive causes 

of a single outcome event. These augmented causal systems provide an opportunity to explore the 

gradation of causal attribution when more variables are considered in the reasoning process. Second, we 

parametrically modulate the influence of normality for all three causal events across a broad range of 

quantitative values. Covering such a vast space of possibilities will allow researchers to explore how 

causal judgments change in proportion to systematic changes in the normality of an event. Finally, we 

examine causal attribution in more complicated mixed causal structures that come closer to the 

complexity of the causal judgments in the real world. These mixed structures provide novel contexts to 

test existing proposals or develop entirely new computational models of causal selection.  

 

4.2 Benchmark Data Collection Methods 

4.2.1 Participants 
All participants included in the benchmark dataset were recruited from Prolific (www.prolific.co) 

in the period from November-December 2022. Inclusion criteria consisted of English fluency and an 

approval rating for data submissions on Prolific of > 90%. Participant demographic data are  provided by 

Prolific in comma-separated value format. Basic demographic descriptives are provided in Table 4.1.  
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Group N Age Sex 

Pure conjunctive 399 M = 32.63, SD = 11.77 139 females 

Pure disjunctive 410 M = 30.06. SD = 12.09 205 females 

Mixed conjunctive 393 M = 28.17, SD = 9.92 195 females 

Mixed disjunctive 397 M = 31.13, SD = 11.97 195 females 

 

Table 4.1, Sample sizes and participant demographics in each group included in the causal selection benchmark 
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4.2.2 Causal System Manipulation 

The structure of the causal system being observed by each participant was manipulated between 

groups through the instructions of the task. Participants were informed about the rules for winning a 

lottery, which varied according to the participant group. The instructions presented to participants across 

the four causal structures probed in the dataset can be found in Table 2.  

Group  Task instructions 

 
“In this study, you will observe a series of winning players' lottery outcomes.  

The rules of the lottery are as follows:  

A player draws one ball from each of three different jars, A, B, & C. In order to win the 

lottery…" 

Pure 

conjunctive 

“...a player must draw three red balls - one from each of the three jars. So if they draw 

three red balls, they will win.” 

Pure 

disjunctive 

“...a player must draw at least one red ball from the three jars. So if they draw one or 

more red balls, they will win.” 

Mixed 

conjunctive 

“...a player must draw a red ball from jar A and must also draw at least one red ball from 

jar B or C. So if they draw a red ball from jar A, and one or more red balls from jar B 

and C, they will win.” 

Mixed 

disjunctive 

“... a player must draw a red ball from jar A or must draw a red ball from both jar B and 

C. So if they draw a red from jar A or red balls from both jar B and C, they will win. ” 

 

Table 4.2, Task instructions in each of the four different causal systems presented between participants in the causal selection 

benchmark dataset 
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4.2.3 Stimuli and Procedure 
The stimulus for all experiments was presented through a custom web application built using the 

Flask python micro-framework. The application was hosted on a custom-built, encrypted server  

(https://www.linode.com/), secured with a firewall and other security precautions. Connections to the 

experiment server were screened to ensure that the experiment was not accessed through a virtual privacy 

network, proxy, relay network, or tor node. Before beginning the experiment, authenticity validation was 

required using Google’s reCAPTCHA v2. All participants were assigned a unique 16-character, study-

specific ID, and data was written to an encrypted SQLite relational database.  

After providing informed consent, subjects were instructed that they would be observing a series 

of winning lottery outcomes. We explained that to play the lottery, players needed to draw a ball from 

three different jars, which each contained some amount of red and blue balls. Participants were informed 

about the rules for winning the lottery, which varied according to the participant group as described above 

and presented in Table 2. After providing instructions that manipulate the causal structure being observed, 

we showed participants examples of both winning and losing draws, according to the causal structure 

being observed.  Importantly, all other aspects of the experiment remained unchanged between groups. 

We then explained that after observing the lottery outcome, they would be presented with the percentages 

of red and blue balls contained in each jar, signifying the player’s chances of drawing either color. At the 

same time, the actual draw that occurred from each jar is also presented (always a red ball). Participants 

were instructed to use sliders on the screen to indicate the extent to which they judged each jar causally 

responsible for the lottery outcome. Participants completed a brief comprehension check to ensure they 

fully understood the task instructions and the lottery’s causal structure. The comprehension check asked 

participants to select possible draw scenarios that would lead to a win given the rules of the lottery. 

Participants were redirected back to the instructions if they did not answer the comprehension check 

correctly. As part of the comprehension check, we also asked participants a free text-response question, 

“What information is shown about each jar?”. The answer to the free text-response question was not 



 

106 

checked for accuracy online during the experiment, but in the vast majority of cases, participants correctly 

entered some version of the response “The chances of drawing a red or blue ball.” 

All participants completed ten trials. On each trial, subjects first saw an image of cash with the 

word “Win!” written, signifying that the lottery outcome they were observing came from a player who 

met the necessary and sufficient conditions to cause the outcome event of winning the lottery. Next, the 

percentages of red and blue balls contained in each jar were displayed, as well as a gif depicting a red ball 

drawn from each glass jar containing red and blue balls in proportion to the percentages displayed (each 

gif looped once and remained static on the final frame depicting a red ball above the jar). All images and 

gifs presented to participants were made using Blender v2.9 3D computer graphics software. Importantly, 

the color drawn from each jar was the same across jars within a trial and across each causal structure such 

that the only difference between each causal structure group condition was the instructions given to 

participants outlining the conditions that were necessary and sufficient for a person to win the lottery 

(Table 2). Finally, three slider bars appeared next to each jar where participants indicated the extent to 

which they agreed with the statement, “This player won the lottery because they drew a red ball from jar 

[A/B/C].” Slider values were initialized halfway between the range from 0 (“Completely disagree”) to 

100 (“Completely Agree”). The numeric value of the slider was displayed and updated as participants 

selected their answers (Figure 3.2). After each trial, participants were asked to indicate which of the two 

colored balls was more likely to be drawn from one of the three jars, randomly selected from the 

preceding trial.  After submitting their answer, subjects were given feedback on whether they answered 

correctly before moving to the next trial.  
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Figure 4.3, Trial display viewed by participants in all conditions. First, the outcome event was shown, followed by the percentage 

of red and blue balls and the ball drawn from each jar (always red). Finally, subjects moved a slider to indicate how causal each 

jar was for the winning outcome 

 

4.2.4 Normality Manipulation  
The probability of drawing a red ball from each jar, P(ci = 1), on a given trial was drawn at 

random from the set of 125 ordered triplets, 𝕁3, spanning the tertiary Cartesian product of the set {.2, .4, .6, 

.8, 1}. In other words, we included all possible combinations of the probability of drawing a red ball for 

each of the three jars. For each of the four causal structures tested, each point in this space was sampled 

an average of 32.208 times (Mconjunction = 32.07, SDconjunction = 5.66; Mdisjunction = 32.87, SDdisjunction = 5.43; Mmixed conjunction = 

31.80, SDmixed conjunction = 5.72; Mmixed disjunction = 32.08, SDmixed disjunction = 5.26; 3). Across all four causal structures we 

tested, each triplet was sampled an average of 128.83 times (SD=10.91, Figure 4.4).  
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Figure 4.4, Distribution of observations for each of the 125 levels of the normality condition across the four causal structures 

tested. 

 

4.3 Data 

The SQL DBLite database for the causal selection benchmark contains two relational tables. The 

Subjects table contains one entry per participant. Each row includes boolean columns representing 

whether the participant 1.) returned successful verification by Google’s reCAPTCHA API, 2.) provided 

informed consent,  3.) passed the instruction comprehension check, and 4.) completed the experiment. 

Each row also includes two SQL DateTime columns indicating start and completion times as Python 

DateTime objects recorded on consent submission and debrief presentation respectively. Finally, each 

row of the Subjects table contains three string columns indicating 1.) the participants’ answer to the free 

text-response question asked during the instruction comprehension check, 2.) the type of causal structure 

observed across all trials by the participant, and 3.) the participant’s unique, 16-character alphanumeric 

study ID.   
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The second table in the benchmark database, Trials, contains ten entries per participant; one for 

each trial completed. Each row/trial contains a column indicating 1.) the participant’s alphanumeric study 

ID; 2.) the trial number; 3.) a column indicating the probability of a given causal event, P(ci =1), for each 

of the three causal events under consideration; 4.) for each causal event (c1, c2, c3), a column containing a 

list of integers indicating the value after each move of the slider. The final value in this list indicates the 

participant’s final attribution rating of a given causal event submitted for that trial. Each row of the Trials 

table also contains information about which randomly chosen causal event was probed after the trial, as 

well as a boolean indicating whether or not the participant correctly recalled if the event was more or less 

likely to occur in that trial. These SQL tables are joined and provided as comma-separated values for 

convenience. All data and materials will be made available at 

https://github.com/BryanGonzalez262/ChooseWhy.  

 

4.3.1 Data Quality and preliminary trends 
On average, participants completed the task in ~13.7 minutes with no differences in duration 

times across participant groups. Recall that after each trial, a randomly chosen jar was used in an attention 

check in which we asked participants whether a red or blue ball was more likely to be drawn from the 

selected jar. The mean accuracy of these attention checks across all participants was 94.4%.  

Finally, we plotted causal ratings against relative probability values to determine if the effects of 

normality found in the literature were replicated in the paradigm we use here. Figure 4.5 illustrates the 

graded influence of normality on the casual judgments of a single, “focal”, event. In other words, causal 

judgments for one jar (the focal event), as a function of its normality relative to each alternative jar. The 

x-axes of Figure 4.5 represents the relative normality of the focal event against the first alternative, i.e the 

signed difference between the probability of drawing a red ball from one jar and the probability of 

drawing a red ball from the first alternative jar. Furthermore, the hue gradient of Figure 4.5 represents the 

relative normality of the focal event against the second alternative, i.e the signed difference between the 

https://github.com/BryanGonzalez262/ChooseWhy
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probability of drawing a red ball from one jar and the probability of drawing a red ball from the second 

alternative jar.  

 In the “Pure” Conjunction group (Figure 4.5, A.),  abnormal inflation against the first alternative 

jar (x-axis) can be seen from the increasing causal judgments moving across the x-axis from the center, 

P(focal jar) = P(alternative jar 1), to the left. P(focal jar) < P(alternative jar 1). Furthermore, abnormal 

deflation against the first alternative jar (x-axis) can be seen from the decreasing causal judgments 

moving across the x-axis from the center, P(focal jar) = P(alternative jar 1), to the right. P(focal jar) > 

P(alternative jar 1). Also in the “Pure” Conjunction group (Figure 4.5, A.), abnormal inflation against the 

second alternative jar (hue) can be seen from the increasing causal judgments moving across the hue 

gradient from the white, P(focal jar) = P(alternative jar 2), to the red. P(focal jar) < P(alternative jar 2). 

Furthermore, abnormal deflation against the second alternative jar (hue) can be seen in decreasing causal 

judgments moving across the hue gradient from the white, P(focal jar) = P(alternative jar 2), to the blue. 

P(focal jar) < P(alternative jar 2). Note that more complex patterns emerge at the extremes of each 

alternative (-0.8 and 0.8) whether the alternative event (-0.8) or the focal event (0.8) are certain to occur 

with a probability of 1. The general patterns observed in the “Pure” Conjunction group appear to reverse 

in the “Pure” Disjunctive case (Figure 4.5, B.).  
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A.  

B.  

Figure 4.5, Causal judgments of a focal event (jar) as a function of its normality relative to both alternative causal events. The x-

axis represents the relative normality of the focal event as compared to the first alternative (P(focal) - P(alternative-1)). Hues 

represent the relative normality of the focal event as compared to the second alternative (P(focal) – P(alternative-2)). A. ”Pure” 

3-jar conjunction. B. “Pure” 3-jar disjunction. 
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4.4 Discussion 

 Definitively characterizing what makes an event the “cause” of a singular outcome has 

remained elusive (Hume, 1748), leading to various hypotheses of causal attribution that often make 

diverging predictions of how humans intuitively judge one event as the cause of another (Halpern & 

Hitchcock, 2013). One possible reason for such heterogeneity of accounts is the oversimplification of 

factors known to play a role in causal selection.  

This causal selection benchmark dataset augments the study of human causal attribution in 

multiple ways. Existing work on human judgments in causal systems typically restricts investigation to 

elementary systems in which just two events are considered to jointly or individually cause an outcome. 

In these contexts, reasoners often pit causal events against one another, choosing one as the cause of an 

outcome. However, the distinction between causes and non-causes need not be dichotomous. In fact, 

human attribution of causality is often graded in nature, where multiple events are considered causes of 

the same outcome to varying extents. The benchmark dataset described here captures causal attribution 

judgments in systems involving dynamic relationships across a larger set of three distinct events. This 

simple, yet elegant modification will allow researchers to examine how humans diffuse responsibility for 

an outcome among a larger set of causes.  

This benchmark dataset also precisely manipulates the powerful influence of normality on the 

causal selection process (Cushman et al., 2008; Hitchcock & Knobe, 2009). With the exception of Morris 

et al (2019), most of the prior efforts to elucidate how our expectations of events impact the causality we 

attribute to them have operationalized this variable in broadly qualitative ways. However, this coarse 

approach produces more questions than it answers. Is the relationship between norms and causal 

attribution linear? What defines the threshold beyond which an event is considered ‘abnormal’? Our 

benchmark dataset is the first of its kind to systematically manipulate the normality of events in a causal 

system across a continuous 3-dimensional space of probabilities. Exploring normality in this quantitative 

way presents a new opportunity to study the relationship between normality and causal judgments using 



 

113 

more comparable numerical scales. Furthermore, since the effect of normality has been shown to hold 

across both descriptive and prescriptive norms (Bear & Knobe, 2017; Icard et al., 2017), insights gained 

from the quantitative manipulations employed here may have broader implications for the effect of 

normality more broadly. 

Finally, this benchmark dataset captures causal attribution judgments in novel configurations of 

causal systems that have been unexplored until now. This offers the chance to test the robustness of 

existing models, as well as invite new ideas that expand how researchers across disciplines characterize 

the causal selection process.  

4.4.1 Avenues for future research 
The causal selection benchmark dataset and materials were designed to allow simple expansions 

in a number of important directions. Below we describe additional variables for consideration, how these 

variables have been shown to interact with normality, and how our paradigm can be adjusted to study the 

effect of these factors on causal selection.  

Omission 

Barry promises to water Alice’s plants while she is on vacation. Suppose that while Alice is 

away, Barry completely forgets to water Alice’s plants. Upon returning from her trip, Alice finds that her 

plants have tragically died. Clearly, Barry’s failure to water Alice’s plants is the cause of their death. The 

plants dying counterfactually depend on this omission (i.e. if Barry had watered the plants, they would not 

have died.). In fact, any event counterfactually depends on the omission of other events that would 

otherwise prevent it from occurring. This notion exposes an endless amount of necessary antecedents that, 

by virtue of not happening, lead to a token outcome (McGrath, 2005; Menzies, 2004; Wolff et al., 2010). 

Countless omissive events also qualify as conjunctive causes for Alice’s dead plants. Beyonce not 

watering Alice’s plants is also a causal omission since if Beyonce had watered Alice’s plants, they would 

not have died. Nonetheless, most people would blame Barry, and not Beyonce, for Alice’s dead plants in 
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this conjunctive system. How people solve this variable selection problem in this scenario involves the 

relevance of counterfactuals given what is considered normal (Henne et al., 2017).   

One can imagine a different scenario in which Alice’s plants survive after Barry remembers to 

water them. Although not explicit the conjunction of an omission and commission are each necessary for 

this outcome. That is, Barry watering Alice’s plants and the omission of some preventative event (e.g. 

Barry is not called to work for an emergency meeting) are both necessary conditions for Alice’s plants to 

survive. In this scenario, people consistently judge the commissive event of Barry watering the plants as 

more responsible for the outcome than the omissive one in which Barry was not called to work. In causal 

systems requiring the conjunction of an omissive and commissive event, humans consistently attribute 

more responsibility to the commissive event across various contexts (Cushman & Young, 2011; Spranca 

et al., 1991; Walsh & Sloman, 2011; Yeung et al., 2022).  Again,  the pervasive influence of normality 

accounts for why causality is attributed to Barry's commissive actions, rather than the necessary 

commissive event (Schaffer, 2005). In other words, people’s causal judgments of omissive events are 

influenced by their expectations, which dictate the most relevant omissions to test for counterfactual 

dependence (Gerstenberg & Stephan, 2021). Other work has demonstrated that the effect of normality 

reverses in disjunctive systems involving commissive or omissive events (Henne et al., 2019). Further 

research is needed to explore the influence of expectations more methodically using quantitative 

manipulations like the ones we employ in the causal selection benchmark. 

The paradigm described in the methods section of this report can be easily amended to study the 

effects of normality on causal selection judgments of omissive events. Simply modifying the written rules 

of the lottery, described in section 4.2.2, and token events to reflect causal conditions in which not 

drawing a red ball leads to a winning lottery outcome, will allow interested researchers to explore the role 

of normality on judgments of causation by omission.  
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Value 

Another factor we believe is ripe for investigation is the influence of value on causal selection. 

The value associated with token events and their effects has, so far, demonstrated intriguing influences on 

how people select causes.  

Value has often been operationalized in vignettes that describe agents as causing an outcome by 

violating a moral norm. In these situations, there is a link between the valence of a necessary cause and 

the valence of the outcome. In one classic example, participants read the description of a person rushing 

to get who got into an accident. The accident was caused by the conjunction of two necessary events: the 

driver was speeding and it was raining. The authors manipulated valence by telling participants the person 

was rushing for a bad (to hide cocaine) or good (to hide an anniversary gift) reason. This manipulation 

lead to systematic changes in causal selection such that the rain was just more responsible for the accident 

if the driver was good, but speeding was deemed more causal if the driver was bad. (Alicke, 1992). 

Fascinating questions remain open about whether moral prescriptive norm violations exert an equal or 

stronger influence than statistical descriptive norm violations on causal selection judgments.  

The paradigm described in the methods section of this report can be easily amended to study the 

effects of normality on causal selection judgments of valenced events. Simply modifying the written rules 

of the lottery, described in section 4.2.2, and token events to reflect causal conditions in which drawing a 

red ball is associated with positive or negative consequences independent of the lottery outcome, will 

allow interested researchers to explore the role of normality on judgments of valenced causal events.   

       

4.5 Conclusion 

The process by which we attribute causal responsibility for specific outcomes to specific 

antecedent events is known as token causal selection (Halpern & Hitchcock, 2013; Hausman, 2005). Prior 

work has described causal events as categorically common or uncommon and demonstrates that our 
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expectations of an event’s normativity interact with our knowledge of causal relationships to influence 

what we select as the cause of an outcome (Icard et al., 2017). We introduced a publicly available dataset 

structured around four novel configurations of causal relationships. Furthermore, we quantitatively 

manipulate the influence of normality to systematically explore the continuous space of an event’s 

probability from unlikely to certain. This large sample of human judgments bears out some of the known 

influences of normality such as the tendency to consider relatively abnormal events as more causal in 

conjunctive cases, and relatively normal events as more causal in disjunctive cases.  Taken together, our 

benchmark dataset may serve researchers interested in causal selection as a growing testbed for diverging 

theoretical and computational models proposing to characterize how humans select causes.  
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Chapter 5.  

“Those who have a ‘why’ to live, can bear almost any ‘how’.” 

- Friedrich Nietzche x Viktor E. Frankl 

 

 

5.1 General Discussion 

This dissertation has examined epistemic mental state attribution, the interaction of social 

perception and causal reasoning, and the more domain-general influence of our normative expectations on 

the process of selecting causes of events. 

Outside of controlled psychology experiments, we mentalize about what others might know to be 

true much more often than what they falsely believe (Phillips & Norby, 2019). The first aim of this 

dissertation was to examine whether our capacity to represent another agent’s knowledge results from 

more fundamentally basic processes than those recruited to represent their beliefs. I demonstrate that 

evaluations of other people’s knowledge occurs faster than corresponding evaluations of their beliefs. 

Across five experiments I excluded the possibility that this effect results from the linguistic idiosyncrasies 

of our specific stimuli, or the English language thereof. I also demonstrated that the relative speed 

advantage in evaluating knowledge ascriptions generalizes to the larger class of factive and non-factive 

mental states and is instantiated in reduced neural responses during factive as compared non-factive 

mentalizing in a brain region known to be recruited when thinking about others. These results imply that 

we can represent the propositional knowledge of others without the need to further represent their 

simultaneous beliefs therein. This suggests that representations that are consistent with our existing sense 
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of reality are fundamentally easier to hold than those that may run against it. My conclusions speak to the 

broader function of our mentalizing abilities to teach us about the world beyond our own experience of it, 

extending our senses outwards through the eyes of others.  

The path from observing others’ external behaviors to inferring their latent internal mental states 

rests on the crucial assumption that other agents choose actions in order to maximize their subjective 

well-being (Dennett, 1983; Jara-Ettinger et al., 2016). As such, the inferences we make about an agent’s 

mind are over the subjective preferences and epistemic states that are causally responsible for an agent’s 

actions. Thus, the process of mentalizing is inextricable from that of causal reasoning more broadly 

(Premack & Woodruff, 1978, p. 525). The second aim of this dissertation is to examine how the 

perception of agency and prescriptive social norms interact to influence our intuitions of how agents and 

objects cause events in the world. Using anthropomorphic stimuli, I find evidence that agents are not 

judged as more causal to an outcome than objects by virtue of simply appearing “alive” and goal-directed. 

Instead, I argued that the differences in causal attributions to agents and objects derive from the effect of 

equifinality inherent to agency.  To get a sense for how this matters, consider an example from William 

James in which he compares the futures of intentional agents and inanimate iron filings (Lombrozo, 2010, 

p. 309):  

 

Romeo wants Juliet as the filings want the magnet; and if no obstacles intervene he moves 

towards her by as straight a line as they. But Romeo and Juliet, if a wall be built between them, 

do not remain idiotically pressing their faces against its opposite sides like the magnet and the 

filings [when a card is placed between them]. Romeo soon finds a circuitous way, by scaling the 

wall or otherwise, of touching Juliet’s lips directly. With the filings the path is fixed; whether it 

reaches the end depends on accidents. With the lover it is the end which is fixed, the path may be 

modified indefinitely (James, n.d., p. 20) .  

 



 

119 

This description of equifinality suggests that outcomes brought about by agents can be changed 

only through a change in the agent’s goal, rather than a change in the actions by which a ‘fixed end’ is 

pursued. In other words, merely simulating variations in the actions of  goal-directed agents are unlikely 

to produce the counterfactual contrasts needed for causal claims if the agent’s goal remains fixed and is 

nonetheless achieved despite the perturbance.  Accordingly, the counterfactuals we consider for agents 

involve alternative intentions. However, the ability to change the future only tells us that alternatives are 

possible for agents that cause events that are not for possible causal objects. It is our normative 

expectations that tell us which alternatives are most probable.  

A step toward understanding why we think something occurs is to consider how information 

about causal relationships shapes what we consider to be a cause at all. Consistent patterns have emerged 

in the factors influencing our causal attributions (Cushman & Young, 2011; Hitchcock & Knobe, 2009). 

However, our understanding of these influences can be improved by examining their effects more 

systematically. In chapter 4 of this dissertation, I focused on the effect of statistical normality on the way 

in which humans reason about the causes of events. I introduced a large, publicly available benchmark 

dataset of causal selection judgments I hope serves as a testbed for existing and new theories of causal 

cognition. This benchmark holds immense potential for researchers to closely examine the gradation of 

responsibility judgments over multiple causal events.  Furthermore, the systematic manipulation of the 

normality of these causal events provides the unprecedented opportunity to adjudicate competing theories 

of how we answer the question: ‘why?’. 

 

5.2 Mentalizing as Causal Inference 

Mental causation, or the capacity of mental states to cause physical events, is a controversial 

problem in philosophy of mind. Many psychologists take for granted, however, the notion that mental 

states, and the complexities therein, are the proximal causes of volitional behavior. As such, the process 
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of inferring another agent’s mental state is really one of selecting the latent cause of the past or future 

behavior. Researchers interested in characterizing our mentalizing abilities have much to gain by 

harnessing the insights known or theorized about the domain-general mechanisms of causal reasoning. 
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