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Abstract

An effective and efficient public transportation system is crucial to people’s mobility, eco-

nomic production, and social activities. The Operations Research community has been

studying transit system optimization for the past decades. With disruptions from the pri-

vate sector, especially the parking operators, ride-sharing platforms, and micro-mobility

services, new challenges and opportunities have emerged. This thesis contributes to inves-

tigating the interaction of the public transportation systems with significant private sector

players considering endogenous passenger choice. To be more specific, this thesis aims to

optimize public transportation systems considering the interaction with parking operators,

competition and collaboration from ride-sharing platforms and micro-mobility platforms.

Optimization models, algorithms and heuristic solution approaches are developed to de-

sign the transportation systems. Parking operator plays an important role in determining

the passenger travel mode. The capacity and pricing decisions of parking and transit op-

erators are investigated under a game-theoretic framework. A mixed-integer non-linear

programming (MINLP) model is formulated to simulate the player’s strategy to maximize

profits considering endogenous passenger mode choice. A three-step solution heuristic is

developed to solve the large-scale MINLP problem. With emerging transportation modes

like ride-sharing services and micro-mobility platforms, this thesis aims to co-optimize

the integrated transportation system. To improve the mobility for residents in the tran-

sit desert regions, we co-optimize the public transit and ride-sharing services to provide a

more environment-friendly and equitable system. Similarly, we design an integrated system
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of public transit and micro-mobility services to provide a more sustainable transportation

system in the post-pandemic world.
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Chapter 1

Introduction

1.1 Background

Designing a sustainable and equitable transportation system is crucial to society. The public

transportation system plays an essential role in providing mobility to residents, especially

to socio-demographic minorities and marginalized communities. An efficient public tran-

sit system can attract people away from using private vehicles, and taxis — modes that

produce more greenhouse gas emissions. The urban transportation system is a complex

system including multiple decision-makers including transit agencies, passengers, park-

ing agencies, and emerging traveling service operators. With the increasing adoption of

emerging traveling modes like ride-sharing and micro-mobility, it is increasingly important

for the city planner to design a public transportation system considering the interaction of

different operators, traveling modes, and passenger choices.

In 2010, the transportation sector accounted for 13.5% of global greenhouse gas, and

road transportation emitted 10% of global greenhouse gas (Burke, 2010). The transporta-

tion sector is predicted to be responsible for 30–50% of CO2 emissions by 2050 (Nebojsa,

2000). Public transportation is an essential segment of building a sustainable transportation

system. Metro only generates less than 10g CO2eq/pkt compared to 230g CO2eq/pkt for

1



gasoline sedan (de Bortoli, 2021). An efficient design of public transportation is essential

to countering climate change.

A better urban transportation system is also important to build a more equitable society.

The lack of access to public transportation poses a severe threat to people’s mobility and

financial well-being. A recent study by (Jiao and Bischak, 2018) shows that over 1 in 8

residents are living in transit desert regions in the most severely affected cities. Residents in

the transit deserts are forced to travel using private vehicles, taxis, or ride-hailing services

which produce more greenhouse gas emissions. Lack of access to public transportation

often coincides with a lack of access to high-quality healthcare and fresh food which makes

the inequality problem even worse.

The pandemic has forced city planners to rethink the urban planning process. Transit

ridership decreased significantly during the pandemic which made the financial condition

of transit agencies even worse EBP (2021). The possible continuation of remote-working

practices may prolong the situation. Therefore, the design of an efficient public transporta-

tion system is of great importance for the post-pandemic world.

This thesis aims to design an efficient urban transportation system by investigating

the interaction between public transit operators and other key operators, co-optimizing the

transportation system with other emerging travel modes considering endogenous passenger

demand. To be more specific, we analyze the capacity-pricing interaction of public transit

and parking operators. The impacts of different policies are evaluated in terms of the reduc-

tion of vehicle travel times and congestion in the city center. We also design a transportation

system where the transit network, frequencies and on-demand fleet size are optimized to

minimize the social cost in the transit desert regions. We analyze the equity improvement

of our transportation system by analyzing the disutility decrease for people with no private

vehicles and lower-income communities. We provide a framework to co-design the public

transit as well as micro-mobility system by determining the transit network, bike lane, and

micro-mobility deployment to cater to commuters navigating the post-pandemic world.

2



1.2 Interaction of Transit and Parking Operators

An efficient public transit system is important to alleviate environmental problems like

greenhouse gas emissions and increase social mobility. The availability of affordable park-

ing spaces can incentivize people to use private vehicles instead of using public transporta-

tion. When parking operators lower the parking fees or increase parking capacities in the

central business district, it will attract more people away from taking public transit and to-

ward using private vehicles. Similarly, when transit increases its frequencies or lowers its

fare, people are more likely to take public transit rather than drive to work. Therefore, the

interaction between the pricing and capacity decisions of transit and parking operators is

worth investigating in order to design a better transportation system.

We contribute by proposing a two-stage game-theoretic model and algorithmic frame-

work to capture the interactions between the decisions of transit and parking operators.

Both operators maximize their own profits under various forms and degrees of government

regulation. In the first stage of the game, they decide their respective capacities in terms of

transit frequencies and parking capacities. In the second stage, both operators make pricing

decisions, namely transit fares and parking fees. The passengers make their travel mode

decisions based on various costs, including notably the extra travel time induced by conges-

tion. A novel heuristic solution method is developed using a semi-approximate approach

to make the two-stage model tractable and solvable. We develop an original end-to-end

computational framework to simulate, solve and evaluate the solutions of two-stage games

for study networks with realistic characteristics. The impacts of various capacity decisions

by the operators as well as various incentive-generation and regulatory strategies by the

city planners are evaluated.
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1.3 Co-optimization of Transit and Ride-sharing System

Transit deserts pose a significant hurdle to local mobility and social equity. In the worst

affected regions, more than 10% of residents don’t have sufficient access to public trans-

portation. The problem also has a disproportionate impact on people with no private vehi-

cles and lower-income households since they have to pay for the more expensive taxis or

purchase private vehicles. However, transit agencies do not appear to be capable of solving

this problem by simply expanding their network since they already suffer from severe finan-

cial deficits. Similarly, this problem cannot be solved simply by offering more on-demand

services in the transit desert regions. On-demand services may introduce more congestion

to the city center and possibly even more greenhouse gas emissions than driving a private

vehicle. Therefore, we consider designing an integrated transportation system including

fixed-route transit and on-demand services.

We provide a comprehensive framework to address the transit desert problem by co-

optimizing transit networks and frequencies as well as the fleet size of on-demand services.

A mixed-integer non-linear programming model is developed to optimize transit services

(including transit network design and frequencies for each line) and on-demand fleet size

while considering the interaction with on-demand services and passenger mode choice. In

order to solve the large-scale non-linear non-convex model, we design an original two-step

heuristic solution approach. In the first step, we apply a rounding heuristic method to select

transit lines from the set of potential transit lines. In the second step, we determine the fre-

quency for each transit line and the fleet size for on-demand services by iteratively running

a mixed-integer second-order conic programming (MISOCP) model. The framework is ap-

plied to those parts of the greater Boston area that the MBTA has identified as transit desert

regions. The results indicate that we are able to reduce the total systemwide cost by 3%.

Low-income commuters and communities with no private vehicles enjoy a much greater

disutility reduction of 14% and 21% respectively. It demonstrates that our framework is

able to alleviate the transit desert problem and provides a more equitable transportation

4



system.

1.4 Co-optimization of Transit and Micro-mobility Sys-

tem

The pandemic has revealed both challenges and opportunities within the current transporta-

tion system. Due to social distancing requirements and remote-working practices, transit

ridership was reduced by 90% at the beginning of the pandemic. However, it also boosted

the growth of micro-mobility traveling where it is easier to comply with the social distanc-

ing regulations. Governments built bike lanes to accommodate increasing micro-mobility

trips. Bike-sharing and scooter-sharing platforms are also taking steps to expand their ser-

vices. Life may never be the same in the post-pandemic world. Work-from-home is likely

to continue in the form of hybrid working practices after the pandemic. An integrated de-

sign of public transportation and micro-mobility systems is essential to the city planner in

the post-pandemic world.

We aim to co-optimize the system of fixed-route transit, bike lanes, and micro-mobility

service operations considering endogenous passenger demand. The city planner decides the

transit network, frequencies, bike lane network, and micro-mobility vehicle deployment.

The passengers can choose to take any alternative out of fixed-route transit, bike-sharing

services, multi-modal services, or outside options based on the attractiveness of each mode.

A mixed-integer non-linear programming model is formulated to minimize the weighted

cost of passenger disutility, operational costs, and environmental costs.

1.5 Thesis Outline

The contents of the thesis are organized as follows. In Chapter 2, we focus on analyzing

the interaction of capacity-pricing decisions of public transit and parking operators. A two-
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stage game-theoretic model is developed to formulate the problem and solved using a novel

semi-approximate heuristic. Chapter 3 aims to generate an optimal transportation system

of fixed-route transit and on-demand services considering endogenous passenger demand.

Transit network, frequencies, and on-demand fleet size are decided using an MINLP model

and a two-step heuristic solution approach. Chapter 4 focuses on optimizing an integrated

transportation network of public transit, bike lane network, and micro-mobility operations

in response to challenges in the post-pandemic world. Chapter 5 summarizes the main

conclusions and lists the directions for future research.
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Chapter 2

Comprehensive Public Transit Design

Considering Parking Operator’s

Response Using a Tractable Two-stage

Framework

2.1 Introduction

Transit systems are advocated both by international organizations (such as the United Na-

tions and the European Union) and by the governments of virtually every country as a

beneficial alternative to private automobiles for satisfying the transportation needs of urban

commuters. Indeed, such systems can contribute significantly to alleviating the current en-

vironmental problems (fossil fuel consumption, greenhouse gas, pollutant emissions, and

traffic congestion) and social exclusion concerns associated with urban mobility (Schiller

et al., 2010; Miller, 2014).

However, transit usage in the United States is relatively low compared to other devel-

oped countries. To make things worse, transit ridership has been declining for the past
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decades. According to a report published by National Geographic (2009), transit usage in

the United States ranked the lowest among the 17 countries investigated. Freemark (2021)

concluded that the transit is struggling to retain ridership over the past half-century. Only

5% of workers get to work by bus or train, compared to 9% half a century ago. An efficient

and accessible transit network is essential to a sustainable urban transportation system (Ar-

bex and da Cunha, 2015; Cipriani et al., 2012a). Therefore, many studies have focused on

improving the transit network design (Arbex and da Cunha, 2015; Cipriani et al., 2012a;

Liang et al., 2019; Feng et al., 2019; Canca et al., 2019), conducting the optimal frequency

level (Wei et al., 2021; Jiang et al., 2022; Sun and Szeto, 2019), and setting the optimal

transit fare (Zhou et al., 2019; Guo et al., 2021; Yang and Tang, 2018; Li et al., 2009).

However, previous studies rarely considered external effects outside the public transit

system. The change in the transit network design will not only have an impact on the

utilities of those passengers taking transit, but it also exerts an impact on traveler mode

choice, congestion, and the decisions of other operators like taxis, ride-hailing operators,

and parking operators. As the data from U.S. Department of Transportation (2016) shows

the major alternative to taking transit is driving private vehicles. According to U.S. De-

partment of Transportation (2016), 76.6% of commuters drive alone to work in the United

States, while only 5.2% of commuters use public transit. Parking plays a significant role

when commuters make their decisions on whether to drive to work (Franco, 2017). Limited

parking capacities and higher parking fees can deter people from driving to adopting other

modes of commuting (Proulx et al., 2014; Hess, 2001; Yan et al., 2019). On the contrary,

free parking and ample parking spots will discourage people to switch from driving. When

transit operators design the public transit system, it is also important to consider how park-

ing operators will respond to transit frequencies and fare changes. Therefore, in this paper,

we want to investigate the optimal transit network design considering the response of the

parking operators.

In this paper, we contribute toward bridging that literature gap by presenting a versatile
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model and algorithm framework to optimize the transit frequency setting by considering

endogenous passenger choice, road congestion, and the interactions with the decisions of

parking operators. Transit operators minimize systemwide passenger travel costs. The

parking operators are assumed to maximize their own profits. We provide a model frame-

work where we investigate different scenarios where transit operators can either respond to

parking operators’ decisions flexibly or transit operators will not respond after making their

decisions. The parking operators can either not respond, respond by adjusting the parking

fees alone or adjusting both parking fees and parking capacities. We model endogenous

passenger choice using the Sales Based Linear Programming (SBLP) model from Gallego

et al. (2015). The model is a nonlinear mixed-integer programming model. In order to

make it tractable, we develop a semi-approximate heuristic algorithm to solve this com-

plicated model. We evaluate the parking operators’ responses under various combinations

of transit decisions. Then we use second-order regression to approximate transit revenue

and systemwide passenger travel cost. Finally, we obtain the optimal frequency levels by

minimizing systemwide passenger travel costs while satisfying a certain level of farebox

recovery rate. This framework is tested using the data from Boston Proper (including Back

Bay, Bay Village, Beacon Hill, Chinatown, Downtown Crossing, Fenway-Kenmore, Fi-

nancial District, Government Center, Leather District, North End, South End, West End,

and the Waterfront), Massachusetts. We obtained the optimal transit frequencies and transit

fares considering the parking operator’s response. Furthermore, we evaluate the impact of

various government policies and provide valuable policy insights.

2.2 Related Literature

2.2.1 Transit Pricing and Network Design Literature

A review of the existing literature on optimizing transit pricing and transit network design

indicates that the societal importance of these systems plays a central role in these stud-
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ies. The first stream is focused on establishing the optimal transit pricing and subsidization

rules. Li et al. (2009) investigate the optimal transit pricing structures under monopoly

market and oligopoly market respectively. They developed a network-based model to take

the uncertainty and transit arrival reliability into account. Yang and Tang (2018) investi-

gated how to use fare rewards to incentivize passengers from traveling during peak hours.

The total revenue was kept unchanged, while the total passenger traveling cost was re-

duced by 25%. However, they did not consider an endogenous demand where passengers

can switch to other travel modes when the price becomes higher. Zhou et al. (2019) stud-

ies the equity aspect of transit fare. The proposed methods such as “trajectory rebuilding”

and “fare matching” demonstrate the impact of transit fares on equity. Guo et al. (2021)

applied microeconomic models to optimize time-dependent transit fares. They concluded

that time-dependent pricing can avoid cross-subsidization among travelers in different time

periods.

Another stream of literature focuses on the transit network design and frequency set-

ting problem (TNDFSP). TNDFSP aims to find a set of transit lines and their associated

frequencies for a transit system. It is a combinatorial problem that is computationally

difficult to solve (Arbex and da Cunha, 2015). Cipriani et al. (2012a,b); Arbex and da

Cunha (2015); Feng et al. (2019); Liang et al. (2019); Canca et al. (2019); Szeto and Jiang

(2014a); Asadi Bagloee and Ceder (2011) solved the TNDFSP using Genetic Algorithm,

column generation, branch and cut, bee colony algorithm, and metaheuristic method. How-

ever, the studies mentioned above did not consider optimizing the transit price along with

the transit network and frequency setting. Bertsimas et al. (2020) demonstrated the benefit

of optimizing transit fare and transit frequencies jointly in a multimodal transportation net-

work. Zhang et al. (2018) compared the frequencies and prices under profit maximization

schemes and social surplus maximization schemes. They also investigated the impacts of

fare regulation, frequency regulation, goal regulation, and fiscal regulation. However, none

of these papers take road congestion into account.
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Capacity and pricing are among the most important decisions by transit and other op-

erators, with numerous studies focusing on optimizing these decisions (e.g., García and

Marín, 2002; Savage, 2010; Abdelfatah and Taha, 2014; Huang et al., 2016). High tran-

sit frequency and affordable fares make transit more desirable to passengers while limited

and expensive parking spaces deter trips by private vehicles. Moreover, changes in the ca-

pacities and prices of one operator impact the other operator by changing the passengers’

travel choice decisions. Prices are much easier to adjust and are often decided much later,

than physical capacity allocation decisions. Pricing in service industries is becoming in-

creasingly dynamic with many service industries moving away from fixed pricing strategies

(e.g., McGill and van Ryzin, 1999; Kimes, 2003; Nicas, 2015; Schechner, 2017). Under

dynamic pricing, service firms first decide facility locations, schedules, and capacities, and

then prices are decided through complex interactions between the competing firms and the

customers. A two-stage, rather than single-stage, model is a suitable way of modeling such

competition. Additionally, the insights and results from the single-stage models are known

to be quite different from those from two-stage models, and the latter has much better

alignment with empirical data (Hansen, 1990; Vaze and Harder, 2017; Harder and Vaze,

2017). Furthermore, two-stage optimization is widely used in urban transportation settings

(Lindsey, 2012; Wan and Zhang, 2013; de Rus and Socorro, 2019).

In our paper, the transit operator optimizes both transit frequencies and transit fares.

One important issue worth discussing is the order of decision-making for transit fares and

transit frequencies. In practice, both transit fares and transit frequencies have changed

over time. In 2016, Single-ride bus fares increased from $1.60 to $1.70 and a single ride

on the subway increased from $2.10 to $2.25 (DeCosta-Klipa, 2016). In July 2021, The

Massachusetts Bay Transportation Authority (MBTA) Express Bus routes Outer Express

were reduced from $5.25 to $4.25 per ride (MBTA, 2021b). Metropolitan Transportation

Authority (MTA) increased their base transit fare in 2003, 2009, 2013, and 2015 from $2

to $2.25, $2.5, and $2.75 (Wikipedia, 2022). Chicago Transit Authority (CTA) increased
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the fare by $0.25 in 2009 and increased it again in 2019 (CBS, 2018). CTA is proposing

a reduction in transit fares to boost ridership after the hit of the pandemic (Ford, 2021).

Regarding changes in the transit frequencies and schedule, MTA reduced the public transit

services by $100 million with bus services taking the biggest hit. Over 150 subway stations

were affected and 21 local and 12 express bus services were discontinued (MTA, 2010).

Some bus services were partially restored in 2013 based on customers’ feedback (CBS,

2013). In 2008, services were increased on subway line 3 in response to increasing Harlem

ridership. From a practical standpoint, it seems like transit fare changes are more often

than transit frequency changes.

2.2.2 Response From Other Operators

Besides transit operators, there are other major stakeholders in the urban transportation

system. The customer will respond to the changes in transit scheduling and transit fare

by changing their travel modes. Taxi operators may consider changing their prices. Ride-

hailing platforms, which adopted a much more flexible pricing strategy, can modify the

two-sided market prices to adjust the supply of drivers and passenger demand. Parking

operators are able to adjust their prices and capacities to maximize their profit. Among all

these stakeholders, we focus on the response from the parking operator. Driving private ve-

hicles is the major alternative to taking public transit in the United States. There are more

than 70% of commuters drive to work nationally. In Boston city, 48.1% of commuters drive

to work while 33% of commuters take transit (Boston Transportation Department, 2017).

Moreover, parking plays a significant role in the decision of commuter travel mode. There-

fore, it is important to take the parking operators’ responses into account when deciding

the optimal transit frequencies and fares.

Separately, there is a considerable amount of literature on the impact of parking pric-

ing on travel mode choice and congestion. Arnott and Rowse (1999), as well as Arnott

and Inci (2006), presented a downtown parking model which investigates the interaction
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between traffic congestion and saturated on-street parking. Arnott (2006) examined the

optimal parking policies under equilibrium in the parking garage market. Liu and Geroli-

minis (2016) investigated how cruising for parking reshapes the morning commute and

developed a dynamic model of pricing to reduce total social cost, including cruising time

cost, moving time cost, and schedule delay cost. Eftekhari and Ghatee (2017) developed

models to estimate the impact of dynamic parking prices on the central business district

travel demand. Nourinejad and Roorda (2017) applied a variational inequality model to

investigate the impact of hourly parking pricing on travel demand.

Besides parking fees, parking operators can also adjust their parking capacities. In

2001, there were 13830 parking spaces under construction or approved and 11890 park-

ing spaces under review and proposed (Boston Transportation Department, 2017). In East

Boston, there was a reduction in parking inventory of 190 parking spaces in 2001 (Boston

Transportation Department, 2017). It is nonetheless harder to adjust than parking fares,

parking operators can still manage to adjust parking capacities in the long term. In order

to ameliorate congestion in the city center and discourage people from driving, city plan-

ners have passed regulations to limit parking capacities. The Boston Air Pollution Control

Commission administers caps for all or part of the parking supply in Boston Proper, South

Boston, and East Boston (City of Boston, 2017). New York City eliminates mandatory

parking minimums which require new buildings to include a fixed number of off-street

parking spaces (Cuba, 2022). Therefore, government regulations also play a significant

role in deciding parking capacities.

An integrated approach to transit and parking planning was considered by Cavadas and

Antunes (2018). They developed an optimization model to minimize the joint operating

deficit of the transit and parking operators while ensuring required minimum levels of mo-

bility in a city. However, to the best of our knowledge, the topic of transit and parking

interactions under competition has not been explored in any part of the existing literature.
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2.2.3 Literature Gaps, Contributions

Through the literature review, we found that the interaction of transit and parking operators

is not well studied. When optimizing transit frequency or fares, most studies use private

vehicles as an alternative travel mode without considering the reaction of parking operators

to transit capacity and pricing changes (e.g., Liu et al., 2009; Basso and Jara-Díaz, 2012; Li

et al., 2012; Wang et al., 2016). Numerous studies have investigated the impact of transit

frequency and fares on reducing city congestion from a transit operator’s perspective or the

impact of parking fee regulations on reducing city congestion from the parking operator’s

perspective (e.g., Basso and Jara-Díaz, 2012; Azari et al., 2013). Our study bridges the

gap between the currently separate literature streams of transit and parking optimization by

optimizing transit decisions by considering the response from the parking operators.

Table 2.1 Model framework

Upfront Pricing Flexible Second Stage Pricing
No parking response TF+TP (S1)

PP only Stage I TF + TP (S2) TF (S4)
Parking Stage II PP PP & TP
Responds PP and PC Stage I TF + TP (S3) TF (S5)

Stage II PC + PP PC + PP & TP

*TF denotes transit frequencies; TP denotes transit price; PC denotes parking capacity; PP denotes parking
price; S1-S5 denote scenario 1 to scenario 5

We propose a model framework to provide optimal decisions under different assump-

tions and strategies. For simplicity, we only consider the case where there are only one

transit operator and one parking operator. Regarding the parking operator, We evaluate the

scenarios under three different assumptions: (1) the parking operator does not respond to

the decisions of the transit operator, (2) it responds only by adjusting parking fees, (3) or

it responds by adjusting both parking fees and parking capacities. For the transit operator,

we evaluate two different strategies: (1) Upfront pricing strategy, which means the transit

operator does not change its decision in response to the parking operator, and (2) Flexible
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second-stage pricing strategy, which means the transit operator adjust its price in response

to parking operator’s decision.

With different combinations of the assumptions and strategies aforementioned, we de-

veloped a model framework as presented in Table 2.1. The rows indicate whether the

parking operator will respond to the transit operator’s decision and how they will respond.

The columns indicate whether transit would respond to the parking operator’s decision in

Stage II. TF, TP, PC, and PP denote transit frequencies, transit price, parking capacities,

and parking price respectively. S1-S5 denotes Scenario 1 to Scenario 5.

In Scenario 1, we assume that the parking operator doesn’t respond and the transit

operator optimizes both frequencies and transit fare. In Scenario 2, transit frequencies and

transit fare are optimized in the first stage and parking price is optimized in the second

stage given transit decisions. In Scenario 3, the transit operator decides frequencies in the

first stage. Parking prices and transit fare will reach an equilibrium in the second stage.

Scenario 4 and 5 follow similar logic as Scenario 2 and 3 except that the parking operator

can also adjust parking capacities in Stage II.

We use the solution concept called subgame perfect pure strategy Nash equilibrium

(SPPSNE) for solving the flexible second-stage pricing scenarios. This solution concept

offers multiple advantages. First, it is a more intuitive refinement of the general notion

of a pure strategy Nash equilibrium (PSNE) for extensive form (i.e., multi-stage) games.

Second, in a recent study involving transportation capacity and pricing competition within

a different context, this solution concept has been shown to have promising mathematical,

computational, and empirical properties (Harder and Vaze, 2017; Vaze and Harder, 2017).

Our goal is to develop a realistic and tractable computational framework for optimizing

transit frequencies and transit fares considering the response from parking operators. An

improved and more sustainable urban transportation system is typically associated with

lower levels of traffic congestion, fossil fuel consumption, and greenhouse gas emissions,

enhanced transit ridership, financially sustainable transit systems, and improved access
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to urban mobility for passengers. This paper makes three major contributions. 1) We

develop an original modeling framework to optimize transit frequencies and transit fares

considering interactions with parking operators. The results in Section 2.6 demonstrate

the significance of the parking operator’s impact on the transit operator’s decision. To the

best of our knowledge, ours is the first study to model the transit decision considering

the parking operator’s response. 2) After highlighting the complexity associated with the

challenge of solving the proposed model, we develop a new solution method that uses a

semi-approximate approach to make the two-stage model tractable and solvable. To the

best of our knowledge, ours is the first study to present any tractable approach for solving

realistic-sized multi-stage games in any urban transportation setting. 3) Finally, using this

framework, we quantitatively assess the impacts under various scenarios mentioned above

in Boston city. We demonstrated the accuracy and scalability of our approach. We are also

able to draw managerial insights in a realistic city setting.

This paper is organized as follows. In Section 2.3, the model framework is described.

The semi-approximate solution approach, and various solution-time acceleration heuristics

to enhance model tractability, are detailed in Section 2.4. The setup of the computational

studies is presented in Section 2.5, while the computational results are described in Sec-

tion 2.6. Section 2.7 concludes with a summary of our main findings and future research

directions.

2.3 Model

We model a transportation system where there is only one transit operator and one parking

operator. The transit operator aims to minimize systemwide passenger travel costs and the

parking operator is a profit-maximizing entity. The transit operator charges a flat transit fare

for all transit trips while the parking operator can charge different parking fees in different

regions. Even though there may be multiple competing parking operators in the reality, we
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only consider the case where there is only one monopolistic parking operator in this paper.

We aim to optimize transit frequencies and transit fare under different scenarios as

stated in Table 2.1. Section 2.3.1 describes the base model (Scenario 1) where we assume

the parking operator does not respond to transit operator’s decision. This is an assumption

that is widely used in conventional literature. Scenario 1 provides a baseline for the other

four scenarios. In Section 2.3.2, we assume the transit operator decides the pricing strategy

up front; thus the transit frequencies and fare are decided in Stage I and the parking operator

responds in Stage II (corresponding to Scenarios 2 and 3). In Section 2.3.3, we assume that

the parking operator responds to the transit operator’s decision and the transit operator also

adjusts its price leading to an equilibrium in Stage II (scenarios 4 and 5).

2.3.1 Base Model

In the base model, the transit operator optimizes both frequencies and fares while the park-

ing operator’s decisions remain unchanged. We consider endogenous demand where trav-

elers can choose between taking public transportation, driving private vehicles, and outside

options. Road congestion is also taken into account for private vehicle traveling. This

allows us to analyze how an improvement of the transit design will have an impact on

ameliorating traffic congestion which is not well-studied in the previous literature.

In most cities, the transit operator is not a merely profit-maximizing agency, it also

shoulders the responsibility to provide accessibility and mobility to local travelers. How-

ever, the transit operator also has financial incentives to recover the cost of investment and

daily operation. Therefore, in our model, the transit operator minimizes passenger traveling

costs while satisfying a certain farebox recovery rate by optimizing transit frequencies and

transit fare.
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2.3.1.1 Objective Function

In most cities, the transit operators are not profit-maximizing agencies. They are heavily

subsidized by the government to provide sufficient accessibility and mobility to travel-

ers. However, the financial condition is also of great importance to the transit agency.

Therefore, this is a bi-objective problem where we want to minimize both systemwide pas-

senger travel costs and financial loss. We solve this bi-objective problem by minimizing

systemwide passenger travel cost (as shown in the Objective Function 2.1) while having

farebox recovery rate constraint to control the losses (as shown in constraint 2.2).

OD denotes the set of OD pairs. J denotes the set of parking destinations. RD denotes

the set of routes for driving a private vehicle. CO
od is the passenger travel cost for the outside

options in OD pair od ∈ OD, and Dod represents the demand for the OD pair od ∈ OD.

qTod the market share of public transit for OD pair od ∈ OD
qOod the market share of the outside option for od ∈ OD
qDod the market share of driving private vehicles for od ∈ OD
cTod passenger travel cost when using public transit for OD pair od ∈ OD
cDod passenger travel cost when driving private vehicle for OD pair od ∈ OD

Min
∑
od∈OD

Dod(c
T
odq

T
od + cDodq

D
od + CO

odq
O
od) (2.1)

2.3.1.2 Farebox Recovery Constraint

Besides passenger travel cost, another important consideration is the financial conditions.

We also have to ensure that the transit operator can recover a certain level of operational

cost through passenger fare revenues. Therefore, we add a constraint ensuring a minimum

farebox recovery rate. L is the set of transit lines. Cl is the operating cost for each transit

vehicle operating on line l ∈ L per unit time. R denotes farebox recovery rate in constraint

(2.2).
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pT transit fare
fl transit frequency for transit line l ∈ L
sl transit fleet size for transit line l ∈ L

∑
od∈OD

qTodp
T ≥ R

∑
l∈L

Clsl (2.2)

Transit fleet size is defined in constraints (2.3). fl is the frequency for transit line l. Ll is

the length of the route for transit line l and V T is the travel speed for transit. The multiplier

2 accounts for the fact that the total length of the line in both directions is 2Ll.

sl ≥
2Llfl
V T

∀l ∈ L (2.3)

2.3.1.3 Travel Mode Attractiveness

The utility of traveling for OD pair od using transit is given by Equation (2.4). This cost is

the weighted sum of the in-vehicle time T Vod, transit fare pT , access utility uACod . βV , βC and

βT are the coefficients for in-vehicle traveling time, transit fare cost, and the alternative-

specific constant coefficient for taking transit, respectively. The attractiveness of taking

transit (aTod) is the exponential of the utility uTod as shown in constraints (2.5).

uTod = βV T Vod + βCpT + uACod + βT ∀od ∈ OD (2.4)

aTod = eu
T
od ∀od ∈ OD (2.5)

The in-vehicle time cost is obtained by multiplying the cost per unit time βV , and the

total in-vehicle time (T Tod) that users need to spend in OD pair od by transit. The in-vehicle
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uDRr the utility of traveling by driving a private vehicle on route r ∈ RD

uDod the overall utility for driving private vehicle on OD pair od ∈ OD
uTod the utility for taking public transit for OD pair od ∈ OD
pDj parking fee at destination j ∈ J
aDod the attractiveness for driving private vehicle for OD pair od ∈ OD
aTod the attractiveness for taking public transit for OD pair od ∈ OD
uACod the access utility for taking public transit for OD pair od ∈ OD
wod the waiting time for taking public transit for OD pair od ∈ OD
tDr the travel time for driving private vehicle for driving route r ∈ R
zDr binary variable, 1 if route r is taken by commuters, 0 otherwise

time calculation assumes that the transit users always take the shortest path (defined as the

one with the minimum travel time), with at most one transfer, along the transit network.

Such a shortest path may involve one or zero transfers between different transit lines. Here,

a transit line is defined as the sequence of stops served by a transit vehicle. Typically,

a particular transit line will be served multiple times a day. The transit network can be

thought of as a collection of all such transit lines.

The access utility is the sum of utilities associated with the walking time to and from

the transit stops, and the total waiting time at the transit stops. The first component of

this access utility function corresponds to the average walking time utility, which is the

product of the walking time coefficient, βK , and the average walking time,KT
od. The second

component of the access utility function in Constraints (2.6) is the waiting time utility,

which is the product of the waiting time coefficient, βW , and the average waiting time

wod. Constraint (2.7) demonstrated how the waiting time is calculated. l1od (l2od) indicates

the index of the transit line for the first (second) segment of OD pair od. If no transfer is

needed for the trip, N2
od = 0 and l2od = l1od. Otherwise, N2

od = 1.

uACod = βKKT
od + βWwod ∀od ∈ OD (2.6)

wod =
1

2fl1od
+
N2
od

2fl2od
∀od ∈ OD (2.7)
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For commuters of OD pair od who choose to drive, they can choose from a set of routes

RD
od. Let tDr be the car travel time using car route r, βD be the vehicle depreciation, fuel,

and maintenance coefficient per unit distance, and let DD
r be the total distance traveled by

car using route r. Then the generalized travel utility (uDRr ) of driving a car using route r

includes the travel time utility, and the vehicle depreciation, fuel, and maintenance utility as

expressed in equation (2.8). This utility formulation can also be easily extended to include

other utilities, like road tolls for road pricing analysis, by simply adding the road tolls to

the end of the equation as an extra term τr where τr is the toll per car on route r.

βP denotes the coefficient for parking fees, βDR is the constant coefficient for driving

private vehicle and pDj is the parking fee for driving destination j ∈ J . jod is a parameter

indicating the driving destination for OD pair od. zDr is a binary variable indicating whether

route r is taken. uDod is a variable representing the utility for driving private vehicles for OD

pair od ∈ OD. M is a large number. Constraints (2.9) and (2.10) ensure that the travel

utility for od is the largest among all possible routes for OD pair od. Constraints (2.11)

calculate the driving attractiveness (aDod) for OD pair od.

uDRr = βV tDr + βDDD
r ∀r ∈ RD (2.8)

uDod ≥ uDRr + βPpDjod + βDR ∀r ∈ RD
od, od ∈ OD (2.9)

uDod ≤ uDRr + βPpDjod + βDR +M(1− zDr ) ∀r ∈ RD
od, od ∈ OD (2.10)

aDod = eu
D
od ∀od ∈ OD (2.11)

2.3.1.4 Congestion

We incorporate congestion into the endogenous passenger choice by modeling car travel

time tDr as a function of the traffic flow as defined in Equation (2.12). The road network

consists of a set of segments, denoted by S, and each car route includes a subset of these

segments. We adopt the widely used congestion formulation given by the Bureau of Public
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Roads (Bureau of Public Roads, 1964). FD
s is the free flow travel time on segment s. α and

β are constant parameters of the congestion model. MD
rs is a binary parameter that equals

1 if car route r travels on segment s, and 0 otherwise. SDr is the set of segments traveled

by route r. qDRr is the fraction of passengers taking car route r. qDRr Dod (where r ∈ RD
od)

is the number of passengers taking route r. The term
∑

od∈OD
∑

r∈RD
od
MD

rsq
DR
r Dod equals

the number of vehicles on segment s. CR
s denotes road capacity for segment s.

qDRr the market share of driving private vehicles for route r ∈ RD

tDr =
∑
s∈SDr

FD
s

1 + α

(∑
od∈OD

∑
r∈RD

od
MD

rsq
DR
r Dod

CR
s

)β
 ∀r ∈ RD (2.12)

The following constraints are used to model user equilibrium traffic assignment prob-

lem. The user equilibrium assumes that all drivers for the same OD pair will choose the

path that takes the shortest travel time and all the drivers should experience the same travel

time (Sheffi, 1985; Patriksson, 2015). The widely used formulation presented and proved

by Sheffi (1985) is to minimize the sum of all arcs of the integral between 0 and the segment

flow of the travel time function. However, we want to incorporate user equilibrium traffic

assignment problem into our model as a set of constraints. Therefore, we come up with a

novel method to model traffic assignment problem as shown in constraints (2.13)-(2.17).
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qDRr ≤ zDr ∀r ∈ RD (2.13)

MqDRr ≥ zDr ∀r ∈ RD (2.14)

uDRr ≥ uDRr′ +M(zDr − 1) ∀r, r′ ∈ RD
od, od ∈ OD (2.15)∑

r∈RD
od

zDr ≥ 1 ∀od ∈ OD (2.16)

qDod =
∑
r∈RD

od

qDRr ∀od ∈ OD (2.17)

zDr is a binary variable indicating whether any passenger takes route r. Therefore,

constraints (2.13) and (2.14) ensure that when market share of route r is non-zero (qDRr >

0), zDr = 1 and when qDRr = 0, zDr = 0. Constraints (2.15) guarantee that when uDRr <

uDRr′ , then zDr = 0. Therefore, no commuter will take a path that has a lower traveling

utility. Constraints (2.16) ensures that at least 1 route will be taken by the commuters.

Constraints (2.17) makes sure that the market shares individual routes add up to the total

market share for the OD pair.

The generalized cost of the outside option is estimated as a function of the generalized

cost of making the trip by transit or car. We assume this cost to be OD-dependent so that,

similar to the generalized costs of making the trip by transit or car, the generalized cost of

the outside option is also a linear function of the OD distance.

2.3.1.5 Passenger Traveling Cost

Passenger traveling cost constraints for driving private vehicle and taking public transit are

defined in Constraints (2.18) and (2.19) respectively. Passenger traveling cost for driving

is composed of parking fee, in-vehicle traveling time cost as well as driving distance cost.

The cost of taking public transit is composed of transit fare, in-vehicle travel time cost,

waiting time cost as well as walking time cost. CDV , CDD, CTV , CTW , and CTK are
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cost coefficients for driving travel time, driving travel distance, transit travel time, transit

waiting time and transit walking time.

cDod = (pDj + CDV tDr + CDDDD
r )qDodDod ∀od ∈ OD (2.18)

cTod = (pT + CTV T Tod + CTWwTod + CTKKT
od)q

T
odDod ∀od ∈ OD (2.19)

2.3.1.6 Passenger Choice

We adopt Sales Based Linear Programming (SBLP) model from Gallego et al. (2015) to

formulate the market share for each travel mode in Constraints (2.20) - (2.22). The market

share of each travel mode is proportional to its corresponding attractiveness unless the

capacity constraints are violated. Constraints (2.22) ensure that the total market share is 1.

We adopted SBLP instead of the widely used multinomial logistic (MNL) method because

SBLP can be easily incorporated with the capacity constrained as presented in Section

2.3.1.7, while MNL is not compatible with the capacity constraints.

qDoda
O
od ≤ qOoda

D
od ∀od ∈ OD (2.20)

qToda
O
od ≤ qOoda

T
od ∀od ∈ OD (2.21)

qTod + qDod + qOod = 1 ∀od ∈ OD (2.22)

2.3.1.7 Capacity Constraints

The capacity constraints are demonstrated in Constraints (2.23) and (2.24). ODj indicates

the set of OD pairs going to destination j. ST is the set of segments traveled by public

transit. γTodls is a binary parameter, which equals 1 when the transit passengers in OD pair

od travel using transit line l passing through segment s. SB is the transit vehicle capacity.

Constraints (2.23) ensure that the number of demand traveling to destination j using car
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does not exceed the parking capacity of j. Constraints (2.24) ensure that for each transit

segment, the number of passengers onboard does not exceed the transit vehicle’s passenger

carrying capacity.

cPj parking capacity at destination j ∈ J

∑
od∈ODj

Dodq
D
od ≤ cPj ∀j ∈ J (2.23)

∑
od∈OD

Dodγ
T
odlsq

T
od ≤ SBfl ∀s ∈ ST , l ∈ L (2.24)

2.3.1.8 Fix Parking Decision

Since we aim to optimize the transit operator’s capacity and pricing decisions, the parking

capacities and parking fees are given as constants in the optimization model.

pDj = PD
j ∀j ∈ J (2.25)

cDj = CD
j ∀j ∈ J (2.26)

2.3.1.9 Scenario 1

In Scenario 1, the transit operator optimizes both transit frequencies and transit fare with

objective function (2.1) and constraints (2.2) - (2.26).

2.3.2 Models for Upfront Pricing

In this section, we provide models where the transit operator makes frequency and pricing

decisions in the first stage, and the parking operator responds to the transit operator’s de-

cision in the second stage. Once the transit operator makes its decision, it will not adjust
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either transit frequencies or transit fare later. This scenario is a true reflection of reality.

Since the parking operators usually have more flexibility to adjust their price and capac-

ity than the transit operator. It is usually difficult for transit to adjust either its price or

frequencies once the decision has been approved. For example, a 2013 state law bars the

MBTA from increasing the fares more often than every two years and limits the increase

to 5 percent per year—or 10 percent every two years (DeCosta-Klipa, 2016). However, the

parking operator has greater flexibility when deciding its price (ITS, 2017; Milligan, 2020;

Zheng and Geroliminis, 2016).

In this section, we talk about how we model the parking operator’s response and how

we incorporate it when optimizing the first-stage decisions made by the transit operator.

2.3.2.1 Parking Operator’s response

The objective of the parking operator is to maximize its profit. The objective function is

shown in Objective Function (2.27). jod is a parameter indicating the destination for OD

pair od. qDod is the percentage of demand driving private vehicles for OD pair od and pDj

is the parking fee for destination j. CPO is the maintenance and operating costs for each

parking space per unit time. cPj is the parking capacity for destination j. Therefore, the first

term calculates the revenue for the parking operator, while the second term is the cost.

Max
∑
od∈OD

qDod · pDjod ·Dod −
∑
j∈J

CPO ∗ cpj (2.27)

fl = Fl, ∀l ∈ L (2.28)

pT = P T (2.29)

The parking operator is subject to constraints (2.4)-(2.24) and constraints (2.28) and

(2.29). P t and Fl are parameters denoting transit fare and transit frequencies. Therefore,

given a set of transit frequencies Fl and transit fare P t, we obtain an optimal set of parking
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decisions. Depending on whether parking can change its capacities, we can obtain the

function as in Constraints (2.30) and (2.31).

−→p D
= fp(

−→
f , pT ) (2.30)

−→
cP ,−→p D

= fpc(
−→
f , pT ) (2.31)

2.3.2.2 Scenario 2

In Scenario 2, we consider pricing adjustment from the parking operator. The objective

function is Function (2.1). The Constraints are Constraints (2.2) - (2.24), (2.26), and (2.30).

2.3.2.3 Scenario 3

In Scenario 3, the parking operator responds by adjusting both its capacities and parking

fees. Constraint (2.31) is added to the optimization model and Constraints (2.26) are re-

moved. Therefore, the Constraints are (2.2) - (2.24), and (2.31).

2.3.3 Models for Flexible Second Stage Pricing

In this section, we assume that the transit operator can also adjust its price flexibly. The

transit operator decides the transit frequencies in the first stage. In the second stage, there

will be an equilibrium where both the transit operator and the parking operator do not have

incentives to deviate from the current decisions.

We present how we model the second stage equilibrium and how we incorporate it into

the first stage optimization in this section.

2.3.3.1 Scenario 4

In Scenario 4, we consider a pricing equilibrium in the second stage between the parking

and transit operator. We introduce function (2.32) which is a function computing the op-
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timal transit fare given the transit frequencies, parking fees, and parking capacities. It is

the result of the optimization model with Objective Function (2.1) with Constraints (2.2) -

(2.26), and (2.28).

pT = ft(
−→
f ,−→p D

,−→c P
) (2.32)

Given the transit frequencies, Function (2.30) and (2.32) should be satisfied at the same

time. Function (2.33) is introduced to depict the price equilibrium for given transit frequen-

cies.

pT ,−→p D
= f2(

−→
f ,−→c P

) (2.33)

Therefore, the final set of constraints for scenario 5 is Constraints (2.2) - (2.24), (2.26),

and (2.33).

2.3.3.2 Scenario 5

Similar to Scenario 4, there is a second stage equilibrium between the parking and tran-

sit operator. However, the parking operator can also adjust its capacities in scenario 5.

Functions (2.31) and (2.32) should be satisfied at the same time.

Correspondingly, Function (2.33) is replaced by Function (2.34).

pT ,−→p D
,−→c D

= f2c(
−→
f ) (2.34)

Therefore, the final set of constraints for scenario 6 is Constraints (2.2) - (2.24), and

(2.34).
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2.4 Solution Approach

As presented in Section 2.3, this is a complicated model framework with nonlinear and

non-convex constraints in the base models (S1), response function from another operator

(S2 - S5), and a second stage equilibrium constraint (S4 and S5). To obtain near-optimal

solutions with a reasonable runtime for the base models, we adopt the coordinate descent

method (Section 2.4.1) and the acceleration method (Section 2.4.2). The coordinate descent

method iteratively computes the driving attractiveness under congestion and the driving

demand. The acceleration method shortens the runtime by reducing the range of decision

variables in each iteration.

Scenario 2, 3, 4, and 5 involve either a second-stage response from another operator or

a second-stage equilibrium. To incorporate it into our model, we generate numerous com-

binations of transit frequencies and fares to evaluate parking response. Then the regression

method is applied to approximate the transit revenue (Section 2.4.3). The first-stage deci-

sion is optimized based on the approximated function. Regarding obtaining the equilibrium

of the second stage. we iteratively optimize transit fare and parking operator’s decision un-

til it converges. We will elaborate on this in Section 2.4.4.

2.4.1 Coordinate Descent Method

The major component and contribution of the base models are incorporating road conges-

tion. It provides important insights into how an improved transit network design interacts

with traffic congestion. However, it also adds significant complexity to the model. There-

fore, we apply the coordinate descent method which separates the traffic congestion user

equilibrium component from the original optimization model.

Figure 2.1 demonstrates the iterative process of the coordinate descent method. The top

component is the traffic congestion user equilibrium model while the bottom component is

the rest of the optimization.
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Figure 2.1: Coordinate Descent Method

The top component is a traffic congestion user equilibrium model which has a constant

objective function with Constraints (2.12) - (2.17), (2.28), and (2.29) given the driving

demand for each OD pair. As a result of this optimization, we can get the travel time for

all driving routes (tDr ) as well as which routes are taken for traveling (zDr ). Taking these as

inputs, we can obtain the attractiveness for driving private vehicles for each OD pair using

Function (2.8) - (2.11).

In the bottom component, we take the attractiveness calculated in the traffic conges-

tion user equilibrium component as input to compute the optimal transit decisions and

corresponding demands. The constraints in the transit decision optimization model are

Constraints (2.2) - (2.7), and (2.18) - (2.26).

The detailed procedure is as follows:

A1. Initialize driving demands as 0 for all OD pairs. Transit frequencies, transit fare,

parking capacities, and parking fees are initialized as in the current scenario.

A2. Run the traffic congestion user equilibrium model with Constraints (2.8) - (2.17) and

obtain driving attractiveness for all OD pairs.
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A3. Use the attractiveness computed from Step A2 as input to the transit decision opti-

mization model with Constraints (2.2) - (2.7), and (2.18) - (2.26).

A4. Repeat Step A2 and Step A3 until convergence.

2.4.2 Acceleration Method

Even after separating the congestion user equilibrium component from the original opti-

mization model, the transit decision optimization is still a nonlinear non-convex model with

bilinear and exponential constraints. Even though the Gurobi optimizer is able to solve op-

timization models with bilinear and exponential models, the runtime increases dramatically

with the size of the problem. When running our case study in Boston Proper, we are not

able to obtain a solution with a 5% optimality gap within 24 hours. Therefore, we come up

with an acceleration method to shorten the runtime.

We observe that the solution doesn’t change much after running the optimization model

for 20 minutes in most cases. Moreover, the optimality gap reduces much faster when the

range for the decision variable is smaller. Therefore, we set a time limit for running the

optimization model and use the current solution to create decision variables with tighter

lower bounds and upper bounds. We iterate this process until we obtain a solution with an

optimality gap of 0.1%.

The detailed procedure is presented below. We use transit fare optimization (Scenario

1) as an example. Similar techniques are applied to all the other Scenarios.

B1. Initialize the lower bound of transit fare as pTmin and the upper bound as pTmax.

B2. Run transit decision optimization model with an optimality gap of 40% and obtain a

transit fare solution pT∗.

B3. We set the lower bound of transit fare as max(pTmin, p
T∗ − pTmax−pTmin

2
) and the upper

bound as min(pTmax, p
T∗ +

pTmax−pTmin

2
)
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B4. Update pTmin = max(pTmin, p
T∗− pTmax−pTmin

2
) and pTmax = min(pTmax, p

T∗+
pTmax−pTmin

2
).

B5. Reduce the optimality gap by half and iterative Step B2, B3 and B4 until the opti-

mality gap is smaller than 1%.

We find that the method significantly reduces the runtime. We will also demonstrate

in Section 2.5.2.1 that we don’t sacrifice much on optimality by adopting the acceleration

method.

2.4.3 Regression Method

Scenario 2, 3, 4, 5 are two-stage games. In Scenario 2 and Scenario 3, the transit opera-

tor decides transit frequencies and transit fare in the first stage, and the parking operator

responds in the second stage. For Scenario 4 and 5, the transit operator decides transit

frequencies in the first stage while there is an equilibrium between transit fare and the

parking operator’s decision in the second stage. The challenge here is how to incorporate

the second-stage decisions into the first-stage optimization. Here, we use Scenario 2 as an

example.

C1. Generate numerous combinations of transit frequencies and transit fares. The parking

operator’s decisions are optimized for each set of transit frequencies and transit fare.

The optimization model for the parking operator has the Objective Function (2.27)

and Constraints (2.4) - (2.24), (2.26), (2.28), and (2.29).

C2. Two linear regressions are run with the dependent variables of systemwide passen-

ger travel cost and Transit revenues. The independent variables are the quadratic

functions of transit frequencies and transit fare.

C3. The optimal transit frequencies and fare are obtained by minimizing the systemwide

passenger traveling cost (Objective Function (2.37)) while satisfying the farebox re-

covery constraints (Constraints (2.38) - (2.41)).
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The regression method approximates the systemwide passenger travel cost and transit

revenue corresponding to Stage II as functions of Stage I decisions. We find that trans-

formed polynomial approximations provide a strong goodness-of-fit to the exact net rev-

enue values calculated at the Stage II PSNEs, and capture the gross properties of the rela-

tionship between the Stage I decision variables – capacities and frequencies – and the net

revenues at the Stage II PSNE. These transformed polynomials are easy to fit during Step

C2 and easy to optimize during Step C3 of the solution method. The independent variables

(or predictors) in these regressions are the Stage I decision variables of both operators and

the dependent variable (or response) is the net revenue of each player at the Stage II PSNE.

Step C2 thus results in a closed-form expression of each operator’s Stage I profit.

Our detailed computational experiments showed that a quadratic function of transfor-

mations of transit line frequencies and parking capacities provided an appropriate tradeoff

between the objectives of achieving a good fit to the exact net revenue values and model

tractability. The regression parameters were estimated using an ordinary least squares

(OLS) estimation process. Specifically, we set the independent variables in the regressions

to be the transit headway and transit fare as well as the interaction terms. The polynomial

regression model is given by Equation (2.36). k is the systemwide passenger traveling cost.

rT is the transit revenue. θK0 , θKl , νK , ρKl1l2 , ζK and ηKl are the regression parameters for

systemwide passenger travel cost OLS estimation while θR0 , θRl , νR, ρRl1l2 , ζR and ηRl are the

regression parameters for transit revenue OLS estimation.

k =θK0 +
∑
l∈T R

θKl ·
1

fl
+ νK · pT +

∑
l1∈T R

∑
l2∈T R

ρKl1l2 ·
1

fl1
∗ 1

fl2
+ ζK(pT )2 +

∑
l∈T R

ηKl ·
1

fl
∗ pT

(2.35)

rT =θR0 +
∑
l∈T R

θRl ·
1

fl
+ νR · pT +

∑
l1∈T R

∑
l2∈T R

ρRl1l2 ·
1

fl1
∗ 1

fl2
+ ζR(pT )2 +

∑
l∈T R

ηRl ·
1

fl
∗ pT

(2.36)
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After estimating passenger travel cost and transit revenue, we strive to obtain the op-

timal first-stage decision for the transit operator. The optimization model for Step C3 is

presented below:

Min k (2.37)

k = θp0 +
∑
l∈T R

θpl · f
inv
l + νp · pT +

∑
l1∈T R

∑
l2∈T R

ρpl1l2 · f
inv
l1
∗ f invl2

+ ζp(pT )2 +
∑
l∈T R

ηpl · f
inv
l ∗ pT (2.38)

rT = αT0 +
∑
l∈T R

αtl · f invl + βt · pT +
∑
l1∈T R

∑
l2∈T R

γtl1l2 · f
inv
l1
∗ f invl2

+ ζt(pT )2 +
∑
l∈T R

ηtl · f invl ∗ pT (2.39)

fl ∗ f invl = 1 ∀l ∈ L (2.40)

rT ≥ R ∗
∑
l∈L

Cl ∗
2Ll · fl
V T

(2.41)

2.4.4 Sequential Optimization Heuristic Method

Scenario 4 and Scenario 5 of this approximate solution method involve computationally

finding a PSNE for a two-player game at Stage II. This is performed via a sequential

optimization heuristic (also known as the best response heuristic), which is a standard

method used in prior transportation studies that use computational approaches to solve

game-theoretic models (see, e.g., Martín and Román, 2003; Adler, 2001, 2005; Harder

and Vaze, 2017). The idea is to implement an iterative response chain, where each player

iteratively optimizes its own objective by reacting to the other player’s decisions. This

response chain will stop when neither player is able to further improve its objective by

changing its own decisions. This is when a PSNE is reached. Schematically, this process

is as follows:
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D1. Initialize with a strategy profile a, where a =
(
pT ,
−→
pD
)

. For the transit operator, fix

the parking operator’s decision and find the optimal response

D2. For the parking operator, fix the transit operator’s decision and find the optimal re-

sponse. Repeat until convergence to PSNE.

Thus, Step C1 requires repeatedly solving combinatorial, non-linear and non-convex

optimization formulations described in Section 2.3. These are very challenging optimiza-

tion problems (Hemmecke et al., 2010; Burer and Letchford, 2012), which only a few

software products are capable of handling effectively. Gurobi optimizer (Gurobi Optimiza-

tion, LLC, 2022a) is one of the most suitable software products to deal with non-linear and

combinatorial formulations (Gurobi Optimization, LLC, 2022c). It uses a global optimiza-

tion approach based on polyhedral branch-and-cut algorithms (Gurobi Optimization, LLC,

2022b), and is the optimization solver software used in this paper.

2.4.5 The Overall Solution Method

We describe the overall solution method is Figure 2.2. This Figure corresponds to the so-

lution method for Scenario 4 and Scenario 5. Scenario 1 - Scenario 3 is partially presented

in the Figure. Step C1, C2, and C3 correspond to the regression method discussed in Sec-

tion 2.4.3. In Step C1, Stage II pure strategy Nash equilibriums are found for a subset of

combinations of Stage I decisions. Within Step C1, we run Step D1 and Step D2 iteratively

until it reaches an equilibrium (discussed in Section 2.4.4). Due to the nonlinearity and

nonconvexity of the optimization model within Step D1 and Step D2, we applied Coordi-

nate Descent Method (discussed in Section 2.4.1) and acceleration method (discussed in

Section 2.4.2) to reduce the runtime.

Scenario 1 corresponds to Step D1 in Figure 2 where only the coordinate descent

method and acceleration method are being applied. Scenario 2 and Scenario 3 do not

have Stage II equilibrium. Therefore, In Step C1, we only run Step D2 for a subset of
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Figure 2.2: Solution method flowchart

combinations of Stage I decisions. Then the regression approximation will be applied.

2.5 Computational Setup and Results

We applied our model and solution approach to Boston proper which includes Back Bay,

Bay Village, Beacon Hill, Chinatown, Downtown Crossing, Fenway-Kenmore, Financial

District, Government Center, Leather District, North End, South End, West End, and the

Waterfront (NeighborhoodX Boston, NA). Since the original model cannot be evaluated in

the Boston Proper instance due to its large size. In order to evaluate the efficacy of our

method, we apply our algorithm to two smaller instances in South Boston (Waterfront) and

Downtown Boston.

2.5.1 Data

Since both private vehicle driving and fixed-route transit services are considered, we obtain

both road networks for the Boston Proper region and current subway and bus networks. We

are interested in optimizing the transit schedules during the morning rush hours (6:00 a.m.
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*Picture from Boston Planning Development Agency

Figure 2.3: Map of Boston city

- 9:00 a.m.).

The demand data is obtained from the 2010 Census LODES database where Workplace

Census Block Code, Residence Census Block Code, the total number of jobs, number of

jobs under different age brackets, number of jobs under different income levels, and number

of jobs in different industries were provided (United States Census Bureau, 2020).

Information on the subway, buses, and commuter rail was obtained from Massachusetts

Bay Transportation Authority (MBTA, 2021a) in the format of General Transit Feed Spec-

ification (GTFS). It provides the locations of stops, transit lines, lengths, and schedules.

The route of the public transit is obtained in the format of shapefile from MassDOT web-

site (MassDOT, 2021).

2.5.2 Computational Results

2.5.2.1 Base Models Method Evaluation

In this section, we evaluate the accuracy and the runtime of our coordinate descent method

and acceleration method. Both of these two methods aim to reduce the runtime for the

baseline model. However, it is important to evaluate the accuracy by comparing the solution

of this method to the original method.
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Table 2.2 Optimality Gap and Runtime Comparison of the Orginal Mothod and Our
Method

Optimality Gap Runtime of the original method Runtime of our method
Mean 0.03% 2634s 11s
Min 0% 38s 5s
Max 0.1% 5001s 23s

Table 2.2 presented the optimality gap and the runtime of our method and the original

method of 40 different combinations of parking fees in the South Boston instance. We

find that the optimality gap between our method and the original method is 0.03%, but the

average runtime is 250 times smaller. It shows that by adopting the coordinate descent

method and the acceleration method, we can maintain high accuracy while reducing the

runtime dramatically.

2.5.2.2 Regression Method Evaluation

In this section, we want to evaluate how accurate is the linear regression approximation in

Step C2. Table 2.3 presents the R square values for predicting systemwide passenger travel

cost and transit revenue under Scenario 2, 3, 4, and 5. The R squares in all cases are above

90% demonstrating the high accuracy of our approximation.

Table 2.3 R square values for Scenario 2, 3, 4, and 5 for predicting systemwide passenger
travel cost and transit revenue

R2 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Systemwide Passenger travel Cost 95% 96% 95% 96%
Transit Revenue 99% 99% 95% 92%
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2.6 Model Results

In this section, we present the results from our computational experiments. There are two

major questions we want to investigate in this section: (1) whether it is necessary to ac-

count for the response from the parking operator when optimizing transit frequencies and

transit fare, (2) what’s the impact of parking capacity on transit decisions and passenger

travel cost, and (3) is upfront pricing strategy or flexible second-stage better in achieving

lower passenger travel cost? Section 2.6.1 aims to address the first question by comparing

Scenario 1 and Scenario 2. Section 2.6.2 answers the second question by investigating Sce-

nario 2 and 3. Section 2.6.3 focuses on the third question by comparing the results from

Scenario 2 and 4 as well as Scenario 3 and 5.

Table 2.4 The Transit Frequencies, Parking Capacities, Transit Fare, Parking Fees and
Other Important Metrics for the current scenario and Scenario 1-5

Current
Scenarios Scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Transit Frequencies 1 3 6 7 7 7 7
Frequencies Frequencies 2 15 12 12 12 12 12

Frequencies 3 8 4 1 1 1 1
Frequencies 4 3 6 7 7 7 7
Frequencies 5 3 6 7 7 7 7
Frequencies 6 7 12 10 10 10 10
Frequencies 7 9 10 10 10 8 8
Frequencies 8 6 12 10 10 10 10
Frequencies 9 10 12 12 12 11 10
Frequencies 10 10 10 12 12 9 8
Frequencies 11 8 11 10 10 8 8

Parking Capacity 1 7000 7000 7000 5849 7000 6450
Capacities Capacity 2 2520 2520 2520 2463 2520 2386

Capacity 3 1320 1320 1320 1232 1320 1239
Capacity 4 60 60 60 39 60 46
Capacity 5 20 20 20 14 20 12
Capacity 6 10 10 10 4 10 5

Transit Pricing Transit fare 1.7 2.1 2.0 1.9 1.7 1.6
Parking Pricing Parking fee 1 ($) 23 23 22 25 22 24

Parking fee 2 ($) 26 26 26 25 26 26
Parking fee 3 ($) 38 38 37 39 38 39
Parking fee 4 ($) 20 20 19 24 20 21
Parking fee 5 ($) 20 20 24 22 21 24
Parking fee 6 ($) 17 17 16 22 16 18

Mode shares Transit market share 42% 44% 43% 48% 43% 45%
Driving share 47% 46% 48% 42% 47% 44%
Outside option share 11% 10% 10% 10% 10% 10%

Other Passenger travel cost ($ per hour) 212805 205634 203922 203729 205199 207490
Important Parking profit ($ per hour) 74148 71694 72062 70748 72160 72259
Metrics Transit profit ($ per hour) -20175 -26028 -24607 -24182 -21530 -20940

Transit Revenue ($ per hour) 5075 6522 5993 6418 5320 5160
Farebox ratio 20% 20% 20% 21% 20% 20%
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2.6.1 Impact of the Parking Operator’s Response

In this Section, we will analyze whether it is necessary to take the parking operator’s re-

sponse into account and how much impact the parking operator’s decision has on the transit

operator’s decision. Table 2.4 presents the transit frequencies, parking capacities, transit

fare, parking fees, travel mode shares, and other important metrics. In the current sce-

nario, the current transit frequencies, transit fare, parking capacities, and parking fees are

applied. Under the current scenario, 35% of commuters travel using public transit, 56% of

commuters take private vehicles, while the rest 9% travel using outside options like biking.

Scenario 1 optimize transit frequencies and transit fare while the parking operator doesn’t

change the parking capacities and parking fees. To guarantee a fair comparison, we ensure

that the farebox recovery rate is the same as the value in the current scenario. Compared to

the current scenario, the transit fare increases from 1.7 to 2.1 while there are changes in the

transit frequencies as well. The transit market share increases from 35% to 37% and the

passenger travel cost decreases by 3.4%.

Scenario 2 assumes that the parking operator will respond to the transit operator’s

change of decisions. When optimizing the transit frequencies and transit fare, the tran-

sit operator also takes the parking operator’s response into account. As presented in Table

2.4, the optimal transit frequencies and transit fare in Scenario 2 are different from the ones

in Scenario 1. The optimal transit fare is $2.0 which is slightly smaller than the optimal

transit fare in Scenario 1. Only 3 out of the 11 transit lines have the same optimal transit

frequencies as in Scenario 1. The difference is due to the fact the parking operator will ad-

just its parking fees in all regions except for region 2. The difference in transit frequencies

and fares as well as parking fees lead to a decrease in passenger travel costs. Compared to

Scenario 1, the passenger travel cost only reduces by 3.4% instead of 4.2%.

To provide a fair evaluation of the impact of incorporating the parking operator’s re-

sponse, we further conducted scenario 2, 3, 4, and 5 using the solution from scenario 1.

These scenarios provide the results when the transit operator is not considering the park-
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ing operator’s response, but the parking operator adjusts it decisions in practice. In Table

2.5, scenarios 2’, 3’, 4’ , and 5’ are the results of scenario 1 solution evaluated under the

assumptions of scenario 2, 3, 4, and 5. By comparing scenario 2’ with 2, 3’ with 3, 4’ with

4, and 5 with 5’, we are able to quantify the impact of considering parking responses. In all

four comparisons, we find that we are able to reduce the passenger travel cost further when

the transit decisions are optimized considering parking responses.

Table 2.5 The Transit Frequencies, Parking Capacities, Transit Fare, Parking Fees and
Other Important Metrics for the current scenario and Scenario 1-5

Scenarios 2’ 2 3’ 3 4’ 4 5’ 5
Transit Frequencies 1 6 7 6 7 6 7 6 7
Frequencies Frequencies 2 12 12 12 12 12 12 12 12

Frequencies 3 4 1 4 1 4 1 4 1
Frequencies 4 6 7 6 7 6 7 6 7
Frequencies 5 6 7 6 7 6 7 6 7
Frequencies 6 12 10 12 10 12 10 12 10
Frequencies 7 10 10 10 10 10 10 10 10
Frequencies 8 12 10 12 10 12 10 12 10
Frequencies 9 12 12 12 12 12 12 12 12
Frequencies 10 10 12 10 12 10 12 10 12
Frequencies 11 11 10 11 10 11 10 11 10

Parking Capacity 1 7000 7000 5767 5849 7000 7000 6953 6450
Capacities Capacity 2 2520 2520 2755 2463 2520 2520 2334 2386

Capacity 3 1320 1320 1134 1232 1320 1320 1254 1239
Capacity 4 60 60 28 39 60 60 54 46
Capacity 5 20 20 13 14 20 20 54 46
Capacity 6 10 10 6 4 10 10 9 12

Transit Pricing Transit fare 2.1 2.0 2.1 1.9 2.2 1.7 1.7 1.6
Parking Pricing Parking fee 1 ($) 22 22 25 25 22 22 23 24

Parking fee 2 ($) 25 26 23 25 26 26 27 26
Parking fee 3 ($) 39 37 42 39 41 38 39 39
Parking fee 4 ($) 25 19 28 24 18 20 19 21
Parking fee 5 ($) 27 24 24 22 28 21 29 24
Parking fee 6 ($) 16 16 17 22 16 16 18 18

Mode shares Transit market share 35% 43% 43% 47% 48% 43% 43% 45%
Driving share 47% 48% 43% 42% 47% 47% 46% 44%
Outside option share 9% 10% 10% 10% 10% 10% 10% 10%

Other Passenger travel cost ($ per hour) 205176 203922 206129 203729 207311 205199 210202 207490
Important Parking profit 72019 72062 70375 70748 72068 72160 73238 72259
Metrics Transit Revenue 6331 5993 6962 6418 6661 5320 5188 5160

This is an indication that without considering the response from the parking operator,

it is likely that the previous studies are overestimating the social impact of the optimized

transit system.
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2.6.2 Impact of the Parking Capacity Adjustment

In Scenario 3 and 5, we assume that the parking operator can also flexibly adjust its park-

ing capacities. By taking a closer look at scenario 3, the optimal strategy for the parking

operator is to reduce the parking capacities and increase the parking fees. Compared to

scenario 2, the average parking fee increases from $24 to $26. The total parking capacity

decreases from 10930 to 9601. This leads to a decrease in the market share of driving from

48% to 42% while the transit market share increases from 43% to 48%. The transit fare de-

creased slightly to $2 to alleviate the negative impact of surging parking fees on passenger

travel cost. The results further demonstrate the interaction between the parking operator

and the transit operator’s decision. It demonstrates the importance of taking considering

the parking operator while optimizing the transit system.

Comparing Scenario 5 with Scenario 4, the parking operator similarly reduces its park-

ing capacities and increases its parking fees. Even though the transit operator reduces its

transit fare, the overall passenger travel cost increases even further to 207,490.

2.6.3 Analysis of Transit Pricing Strategies

In this section, we will compare the two transit pricing strategies: upfront pricing strategy

and flexible second-stage pricing strategy. Comparing Scenario 2 and Scenario 4 as well as

Scenario 3 and Scenario 5, we find that the passenger travel cost is lower in Scenario 2 and

3 compared to Scenario 4 and 5. It shows that the upfront pricing strategy provides a better

result compared to the flexible second-stage pricing strategy. This is an interesting finding

indicating that having the flexibility to adjust its price can lead to worse results.

With closer examination, we find that this finding is not a coincidence. The upfront

pricing strategy is always superior to the flexible second-stage pricing strategy. The transit

operator enjoys a first-mover advantage with the upfront pricing strategy. We provide proof

below:

With the upfront pricing strategy, the transit operator can achieve passenger travel cost
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no greater than the cost with the flexible second-stage pricing strategy.

Proof. We assume the optimal results under the flexible second-stage pricing strategy

is (f ∗, pT∗, cP∗, pD∗). Under the upfront pricing strategy, the transit operator can adopt the

same transit frequencies and transit fare (f ∗, pT∗). Since (f ∗, pT∗, cP∗, pD∗) is a Nash equi-

librium solution in the second stage, which means the parking operator has no motivation

to deviate from this decision given transit operator’s decision (f ∗, pT∗). Therefore, under

the upfront pricing strategy, the parking operator also responds with (cP∗, pD∗). Therefore,

the upfront pricing strategy can always achieve the same passenger cost by adopting the

optimal solution from the flexible second-stage pricing strategy. Therefore, with the up-

front pricing strategy, the transit operator can achieve passenger travel cost no greater than

the cost with flexible second-stage pricing strategy.

2.7 Conclusion

An effective and sustainable urban transportation system should provide residents with

sufficient access to affordable urban mobility options while minimizing traffic congestion,

greenhouse gas emissions, and reliance on fossil fuels. Nevertheless, the actual perfor-

mance of most urban transportation systems is the result of complex interactions among

various service providers, passengers, and government agencies, whose goals are not com-

pletely aligned. Many urban transportation providers are moving toward more dynamic

pricing strategies creating further separation between the timelines of capacity and pric-

ing decisions. Therefore, it is important to consider the interaction with other operators

when planning the transit network. These multi-stage decisions of the interacting decision-

makers motivate using multi-stage game-theoretic models. While these models are good

representatives of real-world interactions, they are also notoriously hard to solve. To over-

come this challenge, this paper developed a realistic and tractable computational frame-

work for optimizing transit systems considering the response from the parking operator
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and evaluating policies to improve the urban transportation system.

We explore the optimal transit frequencies and transit fares under different assump-

tions and strategies. A comprehensive model framework is developed to optimize tran-

sit decisions considering the response from the parking operator. In order to solve the

mixed-integer non-linear programming model, we applied coordinate descent, accelera-

tion method, regression method, and sequential optimization heuristic method to provide a

near-optimal solution in a reasonable amount of time.

For the case studies used in this paper, we obtained several new insights. First, we

found that the capacity and pricing decisions of the parking operator do exert an impact on

the optimal transit frequency and pricing decisions. Furthermore, the impact on passenger

travel cost reduction can be overestimated when ignoring the paring operator’s response.

Second, the parking capacity is found to have a significant impact on the overall passenger

travel cost. When the parking operator is allowed to adjust parking capacities, they tend to

reduce the parking capacities while increasing the parking fees to achieve a higher profit.

This adjustment leads to a higher transit market share and sometimes a higher passenger

travel cost. Therefore, it is important for the policymaker to implement supplementary

regulations while reducing the parking capacities in urban areas. Third, we find that the

upfront pricing strategy is better than the flexible second-stage pricing strategy for the

transit operator to achieve lower passenger travel cost. The non-flexible pricing strategy can

in fact provide the transit operator the first-mover advantage. We also prove theoretically

that the upfront pricing strategy is always at least as good as the flexible second-stage

pricing strategy.

From a methodological standpoint, a promising future research direction is incorporat-

ing the decisions of other competing urban transportation service operators beyond transit

and parking. This may include careful modeling of ridehailing and ridesharing operators.

From a policy standpoint, while we focused mainly on taxes and subsidies, our framework

can be easily used to analyze a variety of other policies and regulatory tools including park-
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ing capacity restrictions in certain parts of the city, transit price and frequency regulations

on certain routes, modifications to transit fare structures (e.g., flat versus distance-based),

congestion tolls in the city center, and many more. We hope that quantification of the costs

and benefits of these alternative policy mechanisms using our computational framework

provides a path toward enhancing urban transportation systems.
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Chapter 3

Optimizing Transit Network Planning

and Local On-demand Services in

Transit Desert Regions

3.1 Introduction

Urbanization has brought over 80% of the US population to cities (U.S. Census Bureau,

2010). But this urban and suburban growth has also amplified the prevalence and severity

of gaps in public transit accessibility, in and around many major urban centers. The term

“Transit desert” has been coined to describe an area of the city where the demand for pub-

lic transportation exceeds supply (Jiao and Dillivan, 2013). In the most severely affected

cities, over 1 in 8 residents were found to live in transit desert regions (Jiao and Bischak,

2018). Transit desert residents are often forced to choose between walking long distances

to access the nearest transit stops or using alternative means of transportation like private

vehicles, taxis, and ride-hailing services. These alternative means produce more carbon

emissions and add more congestion to urban, and suburban streets. Besides, they might

not be affordable for some residents leading to financial distress, job losses, and hindered
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socioeconomic mobility. Moreover, the transit desert residents are also confronted with a

lack of access to fresh food, clean air, and quality medical care (Syed et al., 2013). Transit

deserts often coincide with the residential areas of lower-income, underserved, and mi-

nority populations exacerbating the income and racial inequalities (Chen, 2019; Williams,

2018).

Transit agencies often lack incentives or are ill-equipped to extend their networks to

transit deserts. The public transportation sector has been suffering from falling ridership,

especially in the US. Even before the COVID-19 pandemic began, ridership in the previous

five years had fallen in 44 of the 50 urban areas (O’Toole, 2020). Many transit agencies

are struggling with financial difficulties, with fares often covering under 25% of their costs,

and several of them are planning service cuts in the near future. Recently, the Metropolitan

Transportation Authority (MTA) in New York has been mulling a 15% cut to subway,

bus, and train service, as it tries to adapt to post-pandemic realities (GUSE, 2021), despite

receiving $15 billion in federal aid (Meyer, 2021). Therefore, finding ways to improve

transit access without a surging budget is key to alleviating the transit desert problem.

The proliferation of ride-hailing services can enhance access for people lacking access

to traditional fixed-route transit. Revenue in the Ride-Hailing & Taxi segment in the US

is projected to grow at an expected annual growth rate of 4.7%, resulting in a projected

market volume of $74.4 billion by 2026 with an average revenue per user of $660 (statista,

2021). Leading ride-hailing platforms | Uber and Lyft | have claimed that ride-hailing

services enhance people’s mobility and reduce private vehicle ownership (Gordon, 2021).

However, some studies indicate that these transportation network companies (TNCs) had

an insignificant effect on vehicle ownership, but instead led to a significant decline in pub-

lic transit ridership, and worsened congestion (Diao et al., 2021; Bliss, 2019; Erhardt et al.,

2019; Schaller, 2018; Tarduno, 2021). Given these concerns, governments have applied

various regulations to reduce the negative impacts of ride-hailing services. New York City

charges TNCs congestion tolls for entering Manhattan’s central business district (Guse,
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2021). Other collaborative policies are promoting the integration of traditional public tran-

sit and on-demand services where TNCs can help solve the first/last-mile problem for fixed-

route public transit.

Observing collaboration opportunities between fixed-route transit and on-demand ser-

vices, multiple transit agencies have announced TNC alliances to fill in the gaps in their

services, especially in the transit desert areas, and/or to provide more flexibility to their

passengers. St. Louis Metro Transit is partnering with Via to launch multi-modal shared-

ride services (Staff, 2020), with multi-modal route options made directly available through

their Via app. This new on-demand transit service for the St. Louis region called Via Metro

STL charges a flat price of $2 for any ride. Lyft riders in LA could take shared rides to and

from select Metro rail stations during weekday rush hours with a $3 flat fare (Metro, 2020).

Similar collaborations are in place in many other cities including Miami (Wanek-Libman,

2020), Boston (?), Dallas (Fernandez, 2019), Denver (RTD, 2021), Santa Monica (Big-

BlueBus, 2018), etc. These collaborations could potentially improve accessibility for pas-

sengers in transit deserts without exacerbating traffic congestion in city centers. However,

the governments and transit agencies currently have limited analytical tools and datasets

to estimate the influence of these collaborations (Blodgett et al., 2017). Moreover, few

programs have tried finetuning the current systems in light of these collaborations with

ride-sharing services.

This paper aims to address these gaps, by providing an analytical framework combin-

ing prescriptive models, datasets, and algorithms to alleviate the transit desert problem in a

holistic way. It attempts to simultaneously optimize the fixed-route public transit network

as well as the fleet size of the on-demand services to serve local demand and/or to act as

a feeder to the mainline transit network. This paper is particularly timely, in the context

of how the pandemic has brutally exposed the unequal distribution of medical, food, and

transportation resources. Our framework can also be seen as a tool for rigorous optimiza-

tion of the use of transportation infrastructure investments, such as the recent $1 trillion

48



infrastructure bill in the US of which $39 billion is devoted to expanding the current public

transit system. This paper makes the following contributions:

1. We provide a comprehensive analytical framework to address the transit desert prob-

lem by co-optimizing the transit network and frequencies as well as the fleet size of on-

demand services. The transit desert has been a decades-long problem in the US. With

the decreasing transit ridership and with the ongoing plans by transit providers to cut ser-

vices, the situation is likely to get worse in the foreseeable future. The problem cannot

be easily addressed by expanding the current transit network, or by relying solely on ride-

hailing/ride-sharing services. Therefore, joint planning of the transit network and ride-

sharing service deployment holds the potential to provide a better solution. In this study,

we optimize the transit network design, operating frequencies, and on-demand vehicle fleet

sizes while accounting for passengers’ mode and route choice decisions. Different poli-

cies like on-demand services restrictions, road pricing, and transit subsidies can also be

evaluated using this framework.

2. We formulate a new optimization model to determine transit network design and

frequencies for each line, and on-demand fleet size under passengers’ choice decisions.

The transit lines are chosen to minimize the social costs. The commuters have the options

to travel with public transit, on-demand services alone, multi-modal services (using both

on-demand services and fixed-route transit services), and outside options (driving private

vehicle or working from home). The discrete choice model is used to model passengers’

choices among different travel modes based on expenditure, in-vehicle travel time, waiting

time, and walking time. This problem is formulated as a mixed-integer non-linear program.

Due to its complexity, we further developed a mixed-integer second-order conic program-

ming model to solve the original problem iteratively. Few papers have investigated public

transportation planning with the planning of ride-hailing services (Wei et al., 2021; Liu and

Ouyang, 2021). However, these previous studies either didn’t consider changing the transit

network or were applied to a grid city network. This paper develops a framework to jointly
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optimize the public transportation network, frequencies, and on-demand fleet size.

3. We design an original two-step heuristic to solve the MINLP which is non-linear

and non-convex. In the first step, we select a subset of transit lines from the full set of

potential transit lines by applying the rounding heuristics method. The delayed constraints

generation method is applied to reduce the number of constraints. In the second step, we

determine the frequencies for each transit line and the fleet size for on-demand services by

iteratively running mixed-integer second-order conic programming (MISOCP) model. The

non-linear constraints are linearized using first-order Taylor series Expansion. By running

the MISOCP model and updating the Taylor Expansion points iteratively, we can obtain a

near-optimal solution in less than 2 hours. This approach provides a heuristic method to

solve MINLP problems by determining the integer variables in the first step and deciding

the continuous variables iteratively in the second step.

4. We provide important policy implications by performing computational experiments

in transit desert regions of the greater Boston area. The modeling and solution framework

is applied to those parts of the greater Boston area that the MBTA identified as priority

regions. The results indicate that we are able to reduce the social cost by more than 3.67%.

We are able to get this result within 12 hours. We further analyze the impact of different

pricing strategies and find that we can reduce the social cost further (5.67%) if the on-

demand service pricing can be adjusted. Moreover, we compare distance-based pricing

structures and flat pricing structures and find that the flat pricing structures generate more

profit while maintaining a similar service level. The analysis of different commuter groups

demonstrates that the improved transit system reduces the commuting disutility for low-

income commuters and communities with no private vehicles by 14% and 21% respectively.

The results confirm that the framework can provide a more fair and accessible urban public

transportation system.
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3.2 Related Literature

This paper fits in the literature on improving urban mobility and accessibility combining

different types of transportation modes including traditional fixed-route public transit and

the fast-growing on-demand services. This paper lies at the intersection of the studies in

transit network design, on-demand services operations, and passenger choice modeling.

In this section, we review the related research in improving public transportation while

considering on-demand services.

3.2.1 Transit Network Design and Frequency Setting Problem

Transit network and frequency design problems are usually seen as a two-stage sequential

decision-making process. The transit operators decide on where to build transit lines first

and then decide on the frequency for each transit line. This two-stage decision-making

process separates the transit network and frequency design problem into transit network

design problem and frequency design problem.

Research on transit network design problems has evolved rapidly due to the improve-

ment of search algorithms as well as the advancement of computing technologies. Re-

searchers first generate a pool of potential transit lines to build the network based on de-

mand volumes or expert insights. Then, a number of transit lines will be selected from

the potential transit lines as part of the final transit network. The objective of the transit

network design problem is usually to maximize ridership under budget constraints. Due to

the combinatorial nature of the transit network design problems, directly solving the op-

timization model would be extremely computationally expensive. Therefore, researchers

have applied various heuristic and metaheuristic approaches like Simulated Annealing (Yan

et al., 2013), Genetic Algorithm (Liu and Yang, 2007), Tabu search (Fan and Machemehl,

2008), bee colony optimization (Szeto and Jiang, 2014b), and particle swarm optimiza-

tion (Kechagiopoulos and Beligiannis, 2014) to obtain high-quality solutions. Most early
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researchers assumed an exogenously determined transit demand, which means that passen-

gers won’t switch between modes of transportation if the service availability and service

level in the area changes (Buba and Lee, 2018). In the second stage, the frequency de-

sign problem is to determine the optimal frequency for each transit line after the transit

lines have been decided. The objective function is usually to minimize the weight cost of

passenger waiting time as well as infrastructure and operating costs. However, this prob-

lem is highly complicated because we must address transit assignment problems. Transit

assignment problems emerge when passengers can take multiple lines to travel from their

origin to destination. Researchers have developed multiple models to simulate passengers’

decisions and probabilities to take certain transit lines. The most commonly used model

is the frequency-based model which assumes passengers arrive randomly at stops and they

take whichever bus or train comes first among those that can take them to their destination

(Oliker and Bekhor, 2016; Bowman and Turnquist, 1981). Another central theme is the

transit congestion effect. If the service is crowded, the waiting, boarding, and dwell time

tend to increase, and discomfort is caused to the passenger. If the capacity of the service is

lower than the demand, passengers may miss boarding a vehicle (Bowman and Turnquist,

1981).

3.2.2 On-demand Operations

Ride-hailing service platforms like Uber and Lyft facilitate two-sided markets. They don’t

own cars or hire drivers. Instead, they design algorithms to better match drivers and pas-

sengers, manipulate wages to attract or discourage drivers to/from certain areas and adjust

prices to profit more during peak hours. Most literature in the ride-hailing field also fo-

cuses on matching/dispatching strategies, and optimal surge prices for both drivers and

passengers.

Matching/dispatching strategies correspond to the process of finding a driver to serve

a passenger’s request. Previously, greedy methods, which immediately assign the pas-
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senger to the nearest available driver, were widely applied in large taxi companies (Liao,

2003; Zhang and Pavone, 2014). Although greedy methods are easy to implement, they

are suboptimal and may lead to longer waiting times for future passengers. An alternative

matching approach is batching which collects requests over a short period of time and then

optimizes to pair each request to an open driver (Korolko et al., 2018; Mazzuoccolo and

Mella, 2021). Batching can provide a better solution than the greedy method since it pools

requests information and it is especially helpful for ride-sharing services (e.g. Uber Pool).

Surge price has been widely studied as a solution to solve the wild goose chase prob-

lem. Wild goose chase happens when cars are thus sent to pick up distant customers,

wasting drivers’ time, longer passenger waiting time, and invoking more vehicle mileage

and congestion in the city (Castillo et al., 2017). This phenomenon occurs when the de-

mand is highly unbalanced especially during the morning commute when most commuters

are commuting from the outskirts to the city center. Surge prices can provide incentives for

drivers to exit the city center to outskirt regions serving the demand (Besbes et al., 2021).

However, surge prices cannot solve the problem entirely. Due to the demand imbalances,

drivers still drive empty cars for a large proportion of time which creates even more pollu-

tion than commuting using private vehicles. An alternative solution is to use ride-hailing

services as feeders to the transit systems which could solve both accessibility problems and

wild goose chase problems. This is the objective of this research.

3.2.3 Interaction of fixed-route and on-demand services

The studies most relevant to this paper are the ones that optimize fixed-route transit while

taking on-demand services into account. Wei et al. (2021) developed a mathematical model

and a solution heuristic to optimize transit timetables considering ride-hailing competition

and traffic congestion. The framework was applied to New York City showing a 0.4%-

3% system-wide cost reduction. Compared to this study, we optimize the transit network

and frequency setting instead of the timetable, which enables us to decrease the social cost
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to a larger extent. Instead of focusing on densely populated areas like New York City,

we focus on the transit desert regions and aim to increase mobility for low-income and

no-vehicle households. Unlike Wei et al. (2021), we also consider multi-modal services

which use on-demand services as feeders into the transit system. There are numerous

studies aiming to optimize the design of transit feeder systems. Quadrifoglio and Li (2009)

proposed an analytical model and solution framework to determine whether fixed-route

services or on-demand services are more effective. They came up with the critical demand

density threshold to facilitate the decision-making process for policymakers. Chandra and

Quadrifoglio (2013) further investigated the optimal terminal-to-terminal cycle length for

a demand-responsive transit feeder system. Wang et al. (2020) studied the optimal feeder

transit service area considering multiple types of vehicles. More recent studies focus on

hybrid transit optimization which co-optimizes the fixed-route transit network design and

demand-responsive services. Chen and Nie investigated the problem of a demand-adaptive

paired-line hybrid transit system in different networks (e.g. radial (Chen and Nie, 2018),

grid (Chen and Nie, 2017)). Luo and Nie (2019) further analyzed the impact of ride-

pooling comparing the results of six distinctive transit systems including two fixed-route

transit systems and four hybrid transit systems.

An increasing number of studies are proposing a multi-modal system to tackle first-mile

and last-mile problems. Jäppinen et al. (2013) estimated that a bike-sharing system would

decrease public transit travel times by 10% in Greater Helsinki. Stiglic et al. (2018) showed

that the integration of a ride-sharing system and a public transit system can significantly

enhance mobility but driver’s willingness to accommodate multiple riders is critical to the

efficiency of the system (Stiglic et al., 2018). Lee and Savelsbergh (2017) further improve

the multi-modal system by giving flexible dropping-off station options. They found that

flexible system offers cost advantages over regional systems.

In this paper, we focus on transit network and frequency design as well as on-demand

fleet size optimization. The passengers can choose from different transit modes (public
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transit, on-demand services only, multi-modal services, and outside options) based on their

corresponding attractiveness. To the best of our knowledge, this is the first paper combining

the fields of transit network design, on-demand fleet optimization, multi-modal services and

applying it to large-scale real-world scenarios.

3.3 Model Description

In this section, we present our MINLP model to optimize the transit network, its corre-

sponding frequencies and on-demand service fleet size considering the endogenous pas-

senger choice. We also present how we linearize the bilinear and exponential constraints

as well as the waiting time constraints in the following sections.

3.3.1 Setting and Assumptions

We consider morning commutes with four different travel modes: public transit, on-demand

services, multi-modal services (i.e., commuters taking both fixed-route transit and on-

demand service), and other travel options (including private vehicles, biking, not traveling,

etc.). Commuters make their decision to travel using a certain mode based on its attractive-

ness relative to the other modes.

The transit agency plays the role of a central planner who decides the fixed-route transit

routes, fixed-route transit frequencies and on-demand ride-sharing service fleet size. The

ride-sharing vehicles can pick up and drop off passengers in the local region either by

dropping passengers off at their destination or at a transit station. However, it is the com-

muter’s decision whether to use multi-modal services. Traffic congestion is assumed to be

not affected in a significant way due to the decisions being made in this study. This is a

reasonable assumption, consistent with the expected impacts, as shown in Section XXX.

The objective function of this model is to minimize the total system-wide cost including

passenger travel cost, parking cost, fixed-route transit operating cost, on-demand service
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operating cost, and environmental emissions cost generated by private vehicles, on-demand

vehicles, and buses. The constraints include transit budget constraints, capacity constraints,

passenger waiting time, travel time, walking time, attractiveness as well as market share for

each travel mode.

The model involves a number of assumptions which are listed below:

1. Passenger mode choice is captured using sales-based linear programming reformu-

lation (Gallego et al., 2015) of a general attraction model, whose special case is the

well-known multinomial logit model. The market share of a certain travel mode

increases with its attractiveness and the attractiveness is a function of travel time,

walking time, waiting time, fare, and parking fee.

2. Passengers choose the shortest-distance route when traveling. It is possible that there

are multiple routes to travel in a transit network. There are numerous papers inves-

tigating different transit assignment strategies (Li et al., 2018; Sun and Szeto, 2018;

Codina and Rosell, 2017; Xie et al., 2020; Wu et al., 2019; Xu et al., 2020) and

traffic assignment problems (Feng et al., 2020; Xie et al., 2018; Xie and Xie, 2016).

However, our focus is on network design and frequency planning, and therefore,

we decided to simplify the transit assignment such that the passenger chooses the

shortest-distance path if multiple paths exist.

3. When traveling using fixed-route transit, the passenger will take at most one transfer.

Transit agencies generally believe that passengers won’t take more than one transfer

in a journey (Stern, 1996). Therefore, we assume that the passenger can only take

either one local bus directly to the destination, or take two different bus lines with

one transfer, or take the subway directly to the city center, or transfer from a bus

line to the subway. Similarly, for multi-modal services, we assume the passenger

will use on-demand services as the first-mile or last-mile transport or both with one

bus/subway journey with no transfer in between.
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4. The model simplifies the operations for on-demand services. We approximate the

travel time for on-demand services as a function of on-demand fleet size and the

number of people taking on-demand services in that region. We adopt the analytical

model from Daganzo and Ouyang (2019) which provides an analytical framework

to compute the on-demand service detour ratio for non-shared rides, dial-a-ride, and

ride-sharing services. We applied the model to our setting and fit a 3-dimensional

curve with demand, fleet size and detour ratio and added it to the optimization model

as a constraint. It enables us to capture the interaction of on-demand travel time, wait

time, fleet size and demand without involving complicated routing and matching

details.

5. The model considers exogenous transit fare and on-demand service pricing. We ap-

plied the prevalent pricing in the optimization model. For transit fare, we applied

a flat price structure which is the status quo in Boston. We borrow Uber’s pricing

structure for ride-sharing services which has a minimum fare for each trip, a base

price for making a request, and an additional price based on travel distance or travel

time. In Section 3.7.1, we further analyze the impact of different pricing strategies

on social cost and market share.

3.3.2 Model Setup

In our model, we take the perspective of a central planner who makes primary decisions of

transit network design, corresponding frequencies and on-demand fleet sizes; auxiliary de-

cisions include fleet size for fixed-route transit, passengers’ travel disutility, attractiveness

for each travel mode and market share.
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3.3.2.1 Transit Network, Frequencies, Fleet Sizing, and Budget

Let L represent the set of potential transit lines. Let Nmax and Nmin be the upper and lower

bounds on the total number of allowable lines in the network. The lower and upper bounds

on transit frequencies are represented by Fmin and Fmax respectively. Let the length (in

miles) of each transit line l ∈ L be Ll. The travel speed for transit is V F . The purchasing

costs for each fixed-route transit and on-demand vehicle are CF and CR respectively. The

budget for vehicle purchase is B. We define the following decision variables:

xl ∈ {0, 1}: is 1 if transit line l ∈ L is selected, and 0 otherwise
ξll′ ∈ {0, 1}: is 1 if transit lines l, l′ ∈ L are both selected, and 0 otherwise
fl ∈ R+: frequency of transit line l ∈ L if the line is selected, and 0 otherwise
bR ∈ Z+: ride-sharing vehicle fleet size
bF ∈ Z+: fixed-route transit vehicle fleet size

Constraints (3.1)-(3.2) ensure that the number of chosen fixed-route lines is within an

allowable range, and constraints (3.3) restrict the upper and lower bounds on the fixed-route

transit frequencies in the final solution. Constraint (3.4) determines transit fleet size to sat-

isfy the line frequencies while constraint (3.5) enforces the budget (B) spent on purchasing

fixed-route and on-demand vehicles.

∑
l∈L

xl ≤ Nmax (3.1)

∑
l∈L

xl ≥ Nmin (3.2)

xlFmin ≤ fl ≤ xlFmax (3.3)

bF ≥
∑
l∈L

Llfl
V f

(3.4)

CRbR + CF bF ≤ B (3.5)
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3.3.2.2 Path Selection Constraints

Let P andOD represent the set of paths and set of OD pairs. PF ,PM ⊆ P ,PF ∩PM = ∅

partition the set of paths into those using fixed-route transit and multi-modal trips, respec-

tively. PFod ⊆ PF and PMod ⊆ PM , respectively, are paths serving fixed-route transit and

multi-modal trips for OD pair od ∈ OD. Also, define PF2 ⊆ PF as the subset of transit

paths that involve transfers between two transit lines.

yp ∈ {0, 1} is 1 if all transit lines serving path p ∈ P are selected in the final solution, and 0
otherwise

zp ∈ {0, 1} is 1 if path p ∈ P is used to serve passengers, and 0 otherwise. Note that
zp ≤ yp,∀p ∈ P

In the preprocessing stage, we generate all possible paths to serve each OD pair as-

suming all transit lines will be included in the final solution. yp serves as an indicator of

whether a path p is available, that is, whether all transit lines needed to serve the path are

included in the final solution. Parameter φF1
lp is 1 if the first (or the only) leg of the path

p ∈ PF is served by transit line l ∈ L, and 0 otherwise. Similarly, parameter φF2
lp is 1 if

path p ∈ PF is served by transit line l ∈ L in the last (or the only) leg of the trip, and 0

otherwise. Finally, parameter φMlp is 1 if multi-modal path p ∈ PM is served by transit line

l ∈ L, and 0 otherwise. Recall that we don’t consider intra-transit transfers for multi-modal

trips; so no parameters are needed to be defined for the second transit leg of a multi-modal

trip. Lp is the total length of the path p ∈ P . M is a large positive number. zp indicates
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whether a path p ∈ P will be an actual path traveled by commuters.

yp =
∑
l∈L

∑
l′∈L

φF1
lp φ

F2
l′p ξll′ p ∈ PF2 (3.6)

yp =
∑
l∈L

φF1
lp xl p ∈ PF \ PF2 (3.7)

yp =
∑
l∈L

φMlp xl ∀p ∈ PM (3.8)

(Lp − Lp′)yp′ ≤M(1− zp) ∀p, p′ ∈ PFod, od ∈ OD (3.9)∑
p∈PF

od

zp ≤ 1 ∀od ∈ OD (3.10)

M
∑
p∈PF

od

zp ≥
∑
p∈PF

od

yp ∀od ∈ OD (3.11)

zp ≤ yp ∀p ∈ P (3.12)

(Lp − Lp′)yp′ ≤M(1− zp) ∀p, p′ ∈ PMod , od ∈ OD (3.13)∑
p∈PM

od

zp ≤ 1 ∀od ∈ OD (3.14)

M
∑
p∈PM

od

zp ≥
∑
p∈PM

od

yp ∀od ∈ OD (3.15)

Constraints (3.6)-(3.8) ensure that yp equals 1 when all relevant transit lines are selected

to serve the path; 0 otherwise. Constraints (3.9)-(3.15) ensure that the shortest-distance path

will be selected among the available paths. In constraints (3.9), if the length of a transit-

only path p (Lp) is strictly greater than that of another transit-only path p′ (Lp′), and path

p′ is available (i.e., if yp′ = 1), then path p will never be selected (i.e., zp = 0). Constraints

(3.10) ensure that at most one transit-only path is selected in each OD pair. Constraints

(3.11) make sure that at least one transit-only path will be used to serve passengers in each

OD pair if any such path is available for that OD pair. Constraints (3.12) ensure that if a

path is used to serve passengers, then it must be available. Constraints (3.13)-(3.15) follow

the same logic as constraints (3.9)-(3.11) for multi-modal services. Finally, constraints
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(3.16)-(3.18) set ξll′ to its correct value.

ξll′ ≤ xl ∀l, l′ ∈ L (3.16)

ξll′ ≤ xl′ ∀l, l′ ∈ L (3.17)

ξll′ ≥ xl′ + xl − 1 ∀l, l′ ∈ L (3.18)

3.3.2.3 Waiting Time Constraints

For formulating the waiting time constraints, we define the following decision variables:

wF1
p ∈ R+: passenger waiting time for the first leg (before any transfer) on fixed-route transit

path p ∈ PFod, and is 0 if path p is not used to serve any passengers.
wF2
p ∈ R+: passenger waiting time for the last leg (after any transfer) on fixed-route transit

path p ∈ PFod; Note that wF2
p = 0 if path p is used to serve any passengers, or if

path p involves no transfer.
wFp ∈ R+: total passenger waiting time when using fixed-route transit path p ∈ PFod
wMp ∈ R+: passengers’ waiting time for the fixed-route transit phase of multi-modal path

p ∈ PMod

Constraints (3.19)-(3.22) compute waiting times for the fixed-route phase of each path.

Constraints (3.19) ensure that the waiting time is greater or equal to half of the headway if

the path is taken, and is 0 otherwise. Constraints (3.20) are the analogous constraints for

the last leg of a transit-only path involving a transfer. Constraints (3.21) follow a similar

logic for multi-modal services. Constraints (3.22) calculate the total waiting time for the

transit-only paths.
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wF1
p


≥ 1

2
∑

l∈L flzpφ
F1
lp
, if zp 6= 0

= 0, otherwise
∀p ∈ PF (3.19)

wF2
p


≥ 1

2
∑

l∈L flzpφ
F2
lp
, if zp 6= 0 and p ∈ PF2

= 0, otherwise
∀p ∈ PF (3.20)

wMp


≥ 1

2
∑

l∈L flzpφ
F1
lp
, ifzp 6= 0

= 0, otherwise
∀p ∈ PM (3.21)

wFp = wF1
p + wF2

p ∀p ∈ PF (3.22)

Constraints (3.19), (3.20) and (3.21) are non-linear on multiple accounts. They include

the multiplication of a binary and a continuous variable (flzp), a reciprocal function, and

also a conditional statement dependent on the value of a binary decision variable. We de-

velop an exact reformulation of these constraints into more tractable mixed-integer second-

order conic constraints. First, we tackle the multiplication of a binary and a continuous

variable in the denominator, creating additional variables ζlp = flzp and adding constraints

(3.23)-(3.25) to the optimization model.

ζlp ≤ fl ∀p ∈ P , l ∈ L (3.23)

ζlp ≤ zpFmax ∀p ∈ P , l ∈ L (3.24)

ζlp ≥ fl − (1− zp)Fmax ∀p ∈ P , l ∈ L (3.25)

Next, we use these ζlp variables to convert non-linear constraints (3.19), (3.20) and

(3.21) into mixed-integer second-order conic constraints. In constraints (3.26), when zp

equals 0, ζlp will also be 0 (due to constraints (3.24)) and the left-hand side will be trivially
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equal to the right-hand side. When zp is 1, by moving the first term on the right-hand

side to the left, we get (wF1
p +

∑
l∈L φ

F1
lp ζlp)

2 − (wF1
p −

∑
l∈L φ

F1
lp ζlp)

2 ≥ 2; then by

expanding the two quadratic terms on the left-hand side, we get 4wF1
p

∑
l∈L φ

F1
lp ζ lp ≥ 2, and

since
∑

l∈L φ
F1
lp ζ lp is strictly positive in this case, this is equivalent to wF1

p ≥ 1
2
∑

l∈L φ
F1
lp ζlp

which in turn is equivalent to constraints (3.19). To ensure that wF1
p is 0 when zp is 0,

constraints (3.27) are added to the model. Similarly, constraints (3.20)-(3.21) are equivalent

to constraints (3.28)-(3.32).

(wF1
p +

∑
l∈L

φF1
lp ζlp)

2 ≥ (wF1
p −

∑
l∈L

φF1
lp ζlp)

2 + 2zp ∀p ∈ PF (3.26)

wF1
p ≤

zp
2Fmin

∀p ∈ PF (3.27)

(wF2
p +

∑
l∈L

φF2
lp ζlp)

2 ≥ (wF2
p −

∑
l∈L

φF2
lp ζlp)

2 + 2
∑
l∈L

zpφ
F2
lp ∀p ∈ PF2 (3.28)

wF2
p ≤

∑
l∈L zpφ

F2
lp

2Fmin
∀p ∈ PF2 (3.29)

wF2
p = 0 ∀p ∈ PF \ PF2 (3.30)

(wMp +
∑
l∈L

φF1ζlp)
2 ≥ (wMp −

∑
l∈L

φF1ζlp)
2 + 2zp ∀p ∈ PM (3.31)

wMp ≤
zp

2Fmin
∀p ∈ PM (3.32)

3.3.2.4 Utility Calculation Constraints

For each of the four travel modes for each OD pair, the following constraints calculate

the deterministic component of the utility as the weighted sum of travel time, wait time,

walking time, and commuting expenditure - their utility coefficients are given by βT , βW ,

βK , and βC , respectively. βF , and βR are the alternative specific constants for fixed-route

transit and ride-sharing, respectively. All β values are negative since the attractiveness

of the trip is negatively affected by travel time, wait time, walking time, and commuting
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expenditure. Therefore, vFp , vRp , and vMp are also non-positive values. F F is the (flat) fare

for the fixed-route transit. Let FR0 be the base fare for ride-sharing services and FRT be

the hourly markup. FR
MIN is the minimum fare for the ride-sharing services. T Fp ∀p ∈ PF ,

TRod ∀od ∈ ODF , TMF
p ∀p ∈ PM , TMR

p ∀p ∈ PM are the in-vehicle travel times for fixed-

route transit alternative, for ride-sharing alternative, for the fixed-route transit phase of

the multi-modal alternative, and for the ride-sharing phase of the multi-modal alternative,

respectively. Both TRod and TMR
p ignore the waiting time and detour times associated with

ride-sharing services. They are accounted for separately through a multiplier ∆, defined as

the detour ratio for ride-sharing services compared to traveling using private vehicles. KF
p

is the walking time for path p ∈ PF . The related decision variables are listed below.

vFod ∈ R− utility of taking the fixed-route transit alternative for od ∈ OD
vRod ∈ R− utility of taking ride-sharing alternative for od ∈ OD
vMod ∈ R− utility of taking multi-modal alternative for od ∈ OD

∆ detour ratio compared to traveling using personal vehicles via the shortest path.
For example, ∆ = 2 means that the travel time (including wait time) is twice the
time required for traveling directly using a personal vehicle.

Constraints (3.33)-(3.35) compute the deterministic utility for fixed-route transit, ride-

sharing, and multi-modal alternatives respectively. For fixed-route transit, it equals a weighted

sum of wait time, in-vehicle travel time, walking time, transit fare, and an alternative-

specific constant. For ride-sharing it equals a weighted sum of in-vehicle travel time, fare,

and another alternative specific constant. The ride-sharing fare structure in (3.34) follows

the prevalent pricing structure which has a minimum fare for each ride, a base fare, and an

hourly markup based on the travel time. For multi-modal services, deterministic utility in-

cludes negative contributions from the wait time for the fixed-route transit phase, in-vehicle

travel time for both fixed-route transit and ride-sharing phases, and fares for both transit and

ride-sharing phases of the multi-modal services.
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vFp = βWwFp + βTT Fp + βKKF
p + βCF F + βF ∀p ∈ PF (3.33)

vRod = βTTRod∆ + βC(max(FRTTRod∆ + FR0, FR
MIN)) + βR ∀od ∈ OD (3.34)

vMp = βWwMp + βTTMR
p ∆ + βTTMF

p

+ βC(max(FRTTMR
p ∆ + FR0, FR

MIN) + F F ) + βR + βF ∀p ∈ PM (3.35)

3.3.2.5 Market Share Constraints

Let S represent the set of segments, where a segment is defined as the portion of a fixed-

route transit line between consecutive stops. Each segment is associated with a unique

transit line. If multiple lines share a pair of consecutive stops, then they correspond to

multiple elements in set S. ψps is 1 if path p ∈ P uses segment s ∈ S, and 0 otherwise. V O
od

is the utility of using the outside option for OD pair od. WR
od is 1 if ride-sharing is available

for OD pair od, 0 otherwise. Related decision variables are as below:

sFod ∈ R+ fixed-route transit’s market share in OD pair od ∈ OD
sRod ∈ R+ ride-sharing’s market share in OD pair od ∈ OD
sMod ∈ R+ multi-modal service’s market share in OD pair od ∈ OD
sOod ∈ R+ outside option’s market share in OD pair od ∈ OD
δs ∈ {0, 1} 1 if the fixed-route transit vehicle is full on segment s ∈ S, and 0 otherwise.

Constraints (3.36)-(3.39) compute market shares using the sales-based linear program-

ming model from Gallego et al. (2015). Constraints (3.36) ensure that as long as the ca-

pacity constraint is not violated, the market share is proportional to the exponential of the

deterministic component of utility for each alternative, and when the capacity constraint is

tight, the market share is less than or equal to that in the absence of the capacity constraint.

Constraints (3.37) follow a similar logic for multi-modal services. When ride-sharing ser-

vice is available for this OD pair, the market share is proportional to its attractiveness
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(constraints (3.38)), and when it is not available, the market share is 0. Constraints (3.39)

ensure that the sum of the market shares for all four travel modes is at least 1 for each OD

pair, and they are met with equality at the optimal solution.

sFodexp(V
O
od)


= sOod

∑
p∈PF

od
zpexp(v

F
p ), if

∑
p∈PF

od
zp
∑

s∈S ψpsδs = 0

≤ sOod
∑

p∈PF
od
zpexp(v

F
p ), otherwise

∀od ∈ OD

(3.36)

sModexp(V
O
od)


= sOod

∑
p∈PM

od
zpexp(v

M
p ), if

∑
p∈PM

od
zp
∑

s∈S ψpsδs = 0

≤ sOod
∑

p∈PM
od
zpexp(v

M
p ), otherwise

∀od ∈ OD

(3.37)

sRodexp(V
O
od) =


sOodexp(v

R
od), if WR

od 6= 0

0, otherwise
∀od ∈ OD (3.38)

sFod + sRod + sMod + sOod ≥ 1 ∀od ∈ OD (3.39)

In order to incorporate the capacity constraints, we introduce decision variables gFod and

gMod , which convert constraints (3.36)-(3.38) into constraints (3.40)-(3.44). If the vehicle

capacity constraint is not violated on any of the fixed-route transit segments associated

with the path used to serve passengers in an OD pair od ∈ OD, then the corresponding

gFod and gMod should be set to 0. However, when the vehicle is full on any of the fixed-route

transit segments, gFod and gMod can be positive, allowing the market shares for fixed-route

transit and multi-modal alternatives to be lower than those under the unlimited capacity

setting. We introduce continuous decision variables σOp = zps
O
od ∀p ∈ Pod, od ∈ OD (as

modeled by constraints (3.45)-(3.47)), as well as binary decision variables ηp, which equal

0 when zp
∑

s∈S ψpsδs = 0, 1 otherwise (as modeled by constraints (3.48)-(3.50)).
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gFod ∈ R+ slack in the fixed-route transit attractiveness-market share constraint in od ∈ OD
gMod ∈ R+ slack in the multi-modal attractiveness-market share constraint in od ∈ OD

sFodexp(V
O
od) =

∑
p∈PF

od

σOp exp(v
F
p )− gFod ∀od ∈ OD (3.40)

sModexp(V
O
od) =

∑
p∈PM

od

σOp exp(v
M
p )− gMod ∀od ∈ OD (3.41)

sRodexp(V
O
od) = WR

ods
O
odexp(v

R
od) ∀od ∈ OD (3.42)

gFod ≤M
∑
p∈PF

od

ηp ∀od ∈ OD (3.43)

gMod ≤M
∑
p∈PM

od

ηp ∀od ∈ OD (3.44)

σOp ≤ zp ∀p ∈ P (3.45)

σOp ≤ sOod ∀p ∈ Pod, od ∈ OD (3.46)

σOp ≥ sOod + zp − 1 ∀p ∈ Pod, od ∈ OD (3.47)

ηp ≤ zp ∀p ∈ P (3.48)

ηp ≤
∑
s∈S

ψpsδs ∀p ∈ P (3.49)

ηp ≥ zp + ψpsδs − 1 ∀s ∈ S, p ∈ P (3.50)

Note that these reformulations have ensured that the only non-linearities remain the first

terms of the right hand sides of constraints (3.40)-(3.42), in the form of a decision variable

multiplied by an exponential of another decision variable. While these terms make con-

straints (3.40)-(3.42) highly non-linear and non-convex, some of the most advanced opti-

mization solvers, e.g., Gurobi 9.1, offer quadratic and bilinear solvers which use piece-wise

linear approximations as well as cutting planes and branching methods to tackle bilinearity

and exponential constraints (Achterberg and Towle, 2020). However, these approaches end
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up introducing a significant number of binary integer decision variables which increase the

runtime dramatically.

Therefore, we applied an iterative first-order linear approximation to get the solution

in a shorter time which we describe further in Section 3.4.3.1. Constraints (3.40)-(3.42)

are replaced by first-order Taylor series expansions at points (vFp , sOod), (vMp , sOod), and (vRod,

sOod) respectively. We also introduce decision variables νFp and νMp representing zpvFp and

zpv
M
p respectively for linearization (as modeled in constraints (3.54)-(3.59)). Constraints

(3.40)-(3.42) can be replaced by constraints (3.51)-(3.59).

sFodexp(V
O
od) =

∑
p∈PF

od

σOp exp(v
F
p ) + sOod

∑
p∈PF

od

νFp exp(v
F
p )− sOod

∑
p∈PF

od

zpvFp exp(v
F
p )− gFod

∀od ∈ OD (3.51)

sModexp(V
O
od) =

∑
p∈PM

od

σOp exp(v
M
p ) + sOod

∑
p∈PM

od

νMp exp(v
M
p )− sOod

∑
p∈PM

od

zpvMp exp(v
M
p )

− gMod ∀od ∈ OD (3.52)

sRodexp(V
O
od) = WR

ods
O
odexp(v

R
od) +WR

ods
O
odexp(v

R
od)(v

R
od − vRod) +WR

odexp(v
R
od)(s

O
od − sOod)

∀od ∈ OD (3.53)

νFp ≥ −Mzp ∀p ∈ PF (3.54)

νFp ≥ vFp ∀p ∈ PF (3.55)

νFp ≤ vFp +M(1− zp) ∀p ∈ PF (3.56)

νMp ≥ −Mzp ∀p ∈ PM (3.57)

νMp ≥ vMp ∀p ∈ PM (3.58)

νMp ≤ vMp +M(1− zp) ∀p ∈ PM (3.59)
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3.3.2.6 Ride-sharing Travel Time Constraints

An important set of constraints is needed to establish the relationship between ride-sharing

detour time (including both travel time and waiting time), ride-sharing fleet size, and the

number of customers taking the ride-sharing services. Dod represents the demand for OD

pair od. Constraint (3.60) model this relationship by means of a new decision variable

related to ride-sharing service operations defined as below:

dR Number of passengers using ride-sharing services

We adopt the method from Daganzo and Ouyang (2019) to capture this relationship.

First, we plotted the data points corresponding to different combinations of fleet sizes and

demands, and their estimated detour ratios. Then we fit the data using second-order poly-

nomial regression. For all case studies, the R square was found to be more than 96%. More

details are provided in the appendix.

∆ = f(dR, bR) (3.60)

dR =
∑
od∈OD

((sRod + sMod)Dod) (3.61)

3.3.2.7 Capacity Constraints

KF represents each fixed-route transit vehicle’s passenger carrying capacity. To indi-

cate whether the capacity constraint is binding on each segment, we create new decision

variables as below:

gs slack in the capacity constraint of fixed-route transit segment s ∈ S
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Define Sl as the set of segments belonging to transit line l ∈ L. Constraints (3.62)

ensure that the number of passengers on each segment of the fixed-route transit network

does not exceed vehicle capacity. Constraints (3.63)-(3.64) ensure that when gs is 0, δs is 1

and when gs is positive, δs is 0.

∑
od∈OD

(sFod
∑
p∈PF

od

ψpszp + sMod
∑
p∈PM

od

ψpszp)Dod = KFfl − gs ∀s ∈ Sl, l ∈ L (3.62)

1− δs ≤Mgs ∀s ∈ S (3.63)

M(1− δs) ≥ gs ∀s ∈ S (3.64)

The multiplication of zp with sFod as well as sMod generates non-linearities in constraints

(3.62). We linearize them by defining σFp = zps
F
od and σMp = zps

M
od (as modeled in con-

straints (3.66)-(3.71)). This converts constraints (3.62) into constraints (3.65).

∑
od∈OD

(
∑
p∈PF

od

ψpsσ
F
p +

∑
p∈PM

od

ψpsσ
M
p )Dod = KFfl − gs ∀s ∈ Sl, l ∈ L (3.65)

σFp ≤ zp ∀p ∈ PF (3.66)

σFp ≤ sFod ∀p ∈ PFod, od ∈ OD (3.67)

σFp ≥ sFod + zp − 1 ∀p ∈ PFod, od ∈ OD (3.68)

σMp ≤ zp ∀p ∈ PM (3.69)

σMp ≤ sMod ∀p ∈ PMod , od ∈ OD (3.70)

σMp ≥ sMod + zp − 1 ∀p ∈ PMod , od ∈ OD (3.71)
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3.3.2.8 Objective Function

The model minimizes total systemwide costs including the costs to passengers, costs to

operators, and the environmental costs. CFW is the unit cost for walking to the transit

station. CRT is the unit cost of in-vehicle travel time using ride-sharing. COP
od is the cost

of using the outside option for the passengers in OD pair od ∈ OD. COE
od ∈ OD is the

environmental cost of using the outside option in OD pair od ∈ OD. CFE and CRE are

the environmental costs of using each transit/ride-sharing vehicle per unit time. CFO and

CRO are the operational costs for each transit/ride-sharing vehicle per unit time. Since the

walking cost and in-vehicle travel cost are fixed for each path p, we use the parameter UF
p

to denote these two passenger costs for path p. Similarly, we use parameter UM
p to denote

the cost of the in-vehicle travel time of the fixed-route transit phase of a multi-modal path

p.

The objective function is presented next. Its first term is the sum of the walking cost

and the in-vehicle travel time cost for fixed-route transit. Similarly, the second term is

the in-vehicle travel time cost of the fixed-route phase of the multi-modal alternative. The

third and fourth terms are the wait time costs for the fixed-route transit alternative, and

for the fixed-route transit phase of the multi-modal alternative, respectively. The fifth and

sixth terms are the in-vehicle travel time costs for the ride-sharing alternative and for the

ride-sharing phase of the multi-modal alternative, respectively. The seventh term is the

cost associated with traveling using outside options which includes parking cost, no travel

cost, and travel time cost. The eighth, ninth, and tenth term are the environmental costs

for outside option, fixed-route transit, and ride-sharing services, respectively. The last two

terms are the operational costs for fixed-route transit and ride-sharing services, respectively.
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Min
∑
od∈OD

(
Dods

F
od

∑
p∈PF

od

zpU
F
p

)
+
∑
od∈OD

(
Dods

M
od

∑
p∈PM

od

zpU
M
p

)
+ CFW

∑
od∈OD

(
Dods

F
od

∑
p∈PF

od

wFp

)
+ CFW

∑
od∈OD

(
Dods

M
od

∑
p∈PM

od

wMp

)
+ CRT

∑
od∈OD

DodT
R
od∆s

R
od + CRT

∑
od∈OD

(
Dods

M
od

∑
p∈PM

od

zp∆T
MR
p

)
+
∑
od∈OD

Dod(C
OP
od + COE

od )sOod + (CFO + CFE)bF + (CRO + CRE)bR (3.72)

Note that the first six terms in the objective function are non-linear. The first two terms

are the multiplication of a binary variable and a continuous variable, while the rest are the

multiplications of two continuous variables. The multiplication of a binary variable and a

continuous variable can be linearized by introducing another variable. For the multiplica-

tion of two continuous variables, we will use other techniques to handle them.

There are non-linear terms in the objective function including both bilinear terms (the

multiplication of two continuous variables) and the multiplication of binary variables and

continuous variables. As mentioned in Section 3.3.2.5, we keep the bilinear terms in the

first step and introduce decision variables µMp = zp∆ (modeled by constraints (3.74)-

(3.76)). The objective function and added constraints for the first step are presented below.
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Dod

∑
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od
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)
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(
Dod

∑
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σMp U
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p
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od

∑
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wFp

)
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∑
od∈OD

(
Dods

M
od

∑
p∈PM

od

wMp

)
+ CRT∆

∑
od∈OD

DodT
R
ods

R
od + CRT

∑
od∈OD

(
Dods

M
od

∑
p∈PM

od

TMR
p µMp

)
+
∑
od∈OD

Dod(C
OP
od + COE

od )sOod + (CFO + CFE)bF + (CRO + CRE)bR (3.73)

µMp ≤ ∆ ∀p ∈ PM (3.74)

µMp ≤Mzp ∀p ∈ PM (3.75)

µMp ≥ ∆−M(1− zp) ∀p ∈ PM (3.76)

In Step 2, we completely linearize the model by applying firsr-order Taylor series ex-

pansion to the third, fourth, fifth and sixth terms in the objective function (3.73) at points

(wFp , sFod), (wMp , sMod), (∆, sRod) and (∆, sMod) respectively. We also introduce decision vari-

ables ρMp = zps
M
od for linearization (modeled by constraints (3.78)-(3.80)). We modify the

objective function and add constraints as below.
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od∈OD
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Dod

∑
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(wFp s
F
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F
od − wFp sFod)

)
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∑
od∈OD

(
Dod

∑
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od

(wMp s
M
od + wMp s

M
od − wMp sMod)

)
+ CRT

∑
od∈OD

(
DodT

R
od(∆s

R
od + ∆sRod −∆sRod)

)
+ CRT

∑
od∈OD

(
Dod

∑
p∈PM

od

(TMR
p µMp s

M
od + TMR

p ρMp ∆− zpTMR
p sMod∆)

)
+
∑
od∈OD

Dod(C
OP
od + COE

od )sOod + (CFO + CFE)bF + (CRO + CRE)bR (3.77)

ρMp ≤ sMod ∀p ∈ PMod , od ∈ OD (3.78)

ρMp ≤MzMp ∀p ∈ PM (3.79)

ρMp ≥ sMod −M(1− zMp ) ∀p ∈ PMod , od ∈ OD (3.80)

3.4 Solution Approach

The model presented in Section 3 aims to optimize fixed-route transit network design, line

frequencies, and the ride-sharing fleet size. The original model is an MINLP model with

objective function (3.73) and constraints (3.1)-(3.18), (3.22)-(3.35), (3.39)-(3.50), (3.60)-

(3.61), (3.63) - (3.71) and (3.74)-(3.76). It is a complicated problem to solve for practical-

sized instances for three reasons. First, since we need to apply this to a large network

with more than 4,000 OD pairs and 14,000 paths, a large number of integer variables |

corresponding to network design and path selection decisions | are involved. Second, the

objective function (3.73), as well as the constraints (3.40), (3.41), and (3.42) have bilinear

terms involving a product of multiple continuous decision variables. Finally, constraints
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(3.40), (3.41), and (3.42) also involve exponential terms. There is no known exact approach

to solve this to optimality in a computationally efficient manner. MINLP generalizes both

mixed-integer programming problems (MIP) and non-linear programming problems (NLP)

which makes the problem difficult to solve in both classes (?). Therefore, we strive to sep-

arate the complexity of MIP from the NLP and conquer them individually. ? is one good

example of how the separation can be done by repeatedly searching for better integer so-

lutions and solving the NLP subproblem. In this paper, we follow a similar but innovative

approach. We apply a new combination of (1) rounding method, and (2) first-order approx-

imation method to solve this complex MINLP model,

3.4.1 Rounding Heuristics

In order to solve a problem with such a large number of integer variables, we adopt the

rounding method. The rounding method is often used when solving large-scale integer

programs (???). ? designed a heuristic method to solve the robust crew-pairing optimiza-

tion problem. They first solved the LP relaxation of the original problem, then applied the

rounding method to assign the largest fractional variables to 1.

The conventional way of applying rounding heuristics is to run the continuous relax-

ation of the original model to optimality, then assign the decision variables based on certain

criteria. After investigating this approach, we decided that this approach is not feasible.

First of all, the runtime for continuous relaxation is extremely long. Due to the existence

of exponential constraints and bilinear constraints in the model, Gurobi automatically in-

troduces more integer variables when applying piece-wise linear approximation to these

constraints. It usually takes more than 10 days to get a solution with 5% optimality gap.

Secondly, Gurobi can provide a much tighter lower bound when running with binary vari-

ables than in the continuous relaxation model. We found that Gurobi applies advanced

presolving and cutting planes techniques when running the original MINLP model which

provides a much better lower bound. In recent years, Gurobi has witnessed remarkable im-
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provements in the capabilities of MIP algorithms and four of the biggest contributors have

been presolved, cutting planes, heuristics, and parallelism (Gurobi, 2019). When applying

rounding heuristics when running the original model, we are able to get a solution in 10

hours. We also observe that many binary variables that should be assigned to 0 are already

very close to 0 in the root node. It shows that our approach is superior in both run-time and

solution quality. Therefore, rather than applying the rounding method to the continuous

relaxation of the original MINLP model, we run the original model directly and apply the

rounding method to xl obtained at the root node. When xl is determined, yp and zp are

automatically determined according to constraints (3.6)-(3.18). The significant decrease in

the number of integer variables renders the problem feasible to solve.

There are various ways to apply the rounding method. The first one is rounding xl

according to the fractional values of xl in the root node. Another approach is rounding

xl according to domain-specific metrics like the number of people using the transit line in

the root node. We decided to adopt the domain-specific rounding method due to its better

performance.

3.4.2 First-order Approximation Method

When solving non-linear, non-convex optimization models, one of the widely used methods

is the first-order approximation method (?). In ?’s paper, they encounter similar bilinear and

exponential constraints when optimizing transit frequencies and price. Adopting the first-

order approximation method, ? replaced the non-linear multinomial logit choice constraints

using first-order local linear constraints.

However, different from ?’s problem setting, our problem also requires optimizing the

transit network design. The MINLP involves a significant number of binary decision vari-

ables (e.g., xl, yp, zp, ξll′ , δs) that make the optimization model difficult to solve even after

the first-order approximation. Therefore, we first apply the rounding heuristics to deter-

mine the transit lines (Xl). After the transit lines are determined, we manage to eliminate
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xl, yp, zp, and ξll′ . The only remaining integer variables are δs, bR and bF . In the sec-

ond step, we apply the first-order approximation method to optimize the model with the

objective function (3.77) and constraints (3.1)-(3.18), (3.22)-(3.35), (3.39), (3.43)-(3.61),

(3.63)-(3.71), (3.74)-(3.76), and (3.78)-(3.81). The reference points are updated after each

iteration until convergence.

xl = Xl ∀l ∈ L (3.81)

3.4.3 Proposed Method

We propose a two-step solution approach to solve this large-scale non-convex optimization

problem. The solution framework is presented in Figure 3.1. The details will be elabo-

rated in the remainder of Section 3.4. We first generate a set of potential transit lines to be

selected in the final transit network. Then we generate the parameters needed to run the

optimization model. Furthermore, we apply our two-step approach to solve this compli-

cated model. The first step aims to determine the transit network using rounding heuristics

by assigning the binary transit line variables (xlm) to either 0 or 1 based on the number

of passengers they serve. The second step aims to decide the frequency and on-demand

fleet size given the transit network decided in the first step. First-order Taylor expansion

is applied to bilinear and exponential terms and constraints. The MINLP model is trans-

formed into a mixed-integer second-order conic programming (MISOCP) model. Then we

iteratively run the MISOCP model with updated Taylor expansion points at each iteration

until it converges.

In Step 1 (as described in the third box of Figure 3.1), we run the MINLP model with the

objective function (3.73) and constraints (3.1)-(3.18), (3.22)-(3.35), (3.39)-(3.50), (3.60)-

(3.61), (3.63) - (3.71) and (3.74)-(3.76). Due to its non-convexity and non-linearity, we

cannot run this MINLP model to optimality. Therefore, we apply the rounding heuristics
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to assign xlm to either 1 or 0 based on the number of passengers served by the transit line.

After the transit network is decided in the first step, we run the MISOCP model with the

objective function (3.77) and constraints (3.1)-(3.18), (3.22)-(3.35), (3.39), (3.43)-(3.61),

(3.63)-(3.71), (3.74)-(3.76), and (3.78)-(3.81). Since we applied Taylor expansion in the

second step, we need to run this model iteratively and update the Taylor expansion points

at each iteration until it converges.

Different from the previous two-step studies that determine the transit network in the

first step and frequencies in the second step, this study incorporates the interaction among

market share, different travel modes, and passenger choice in both steps while most previ-

ous literature doesn’t consider them in the first step.

Figure 3.1: Solution Approach Framework

3.4.3.1 First Step: Applying Rounding Heuristics Method to Determine Transit Lines

In the first step, we run the MINLP model with objective function (3.73) and constraints

(3.1)-(3.18), (3.22)-(3.35), (3.39)-(3.50), (3.60)-(3.61), (3.63) - (3.71) and (3.74)-(3.76).

This model is an MINLP model with 11672 quadratic objective terms, 40897 quadratic

constraints, 640724 continuous, and 66485 integers (66458 binary) variables in one of our
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case studies. Due to its non-linear, non-convex nature, the model itself takes more than 10

days to get the first feasible solution. Therefore, we decided to apply rounding heuristics to

determine the transit networks. One important feature of this problem is that even though

there is a large number of integer variables, most of them depend on the transit network.

yp, zp can be easily obtained once xlm is determined. Once the transit network is decided,

the number of integer variables will decrease to 10. Therefore, when applying rounding

heuristics, we applied it only to the binary variables that decide whether to include certain

transit lines in the network. We first run the MINLP model using Gurobi 9.1 solver with

callback functions displaying xlm , frlm and the number of passengers served by each transit

line at each MIP node. Then we round the unassigned binary variables to either 0 or 1 based

on the number of commuters they serve. The top three lines that serve the most demand are

assigned to 1 and the bottom three lines are assigned to 0. This process is repeated until all

lines are assigned.

3.4.3.2 Second Step: Applying an Iterative Linearization Method to Optimize Fre-

quency and Fleet Size

After deciding the transit lines in the network, the second step aims to optimize the frequen-

cies for each transit line and on-demand fleet size. As discussed in Section 3.4.3.1, most of

the integer variables come from the transit network decision. Once xl is fixed, yp and zp are

both determined. Therefore, we have very few integer variables at this stage (usually fewer

than 30). However, the bilinear and exponential constraints will still slow down the process

significantly since Gurobi introduces a large number of binary variables when applying

piece-wise linear approximation and a special-ordered set. Therefore, we approximate all

the bilinear and exponential constraints with first-order linear approximation.

We apply first-order Taylor expansion to the third, fourth, fifth, and sixth terms in

the objective function (3.73) as well as constraints (3.40), (3.42), and (3.41). We run the

MISOCP model with objective function (3.77) and constraints (3.1)-(3.18), (3.22)-(3.35),
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(3.39), (3.43)-(3.61), (3.63)-(3.71), (3.74)-(3.76), and (3.78)-(3.81). It’s worth noting that

since the transit network is decided, xlm , yp, and zp are constant instead of decision vari-

ables. Therefore, the path selection constraints are not included in the second-step opti-

mization model.

First, we obtain an initial solution by fixing the frequencies and on-demand fleet size

at the prevalent value. Then, we will have an initial value for sFod, s
R
od, s

M
od , sOod, v

F
p , vRod,

vMp , wFp , wMp in objective function (3.77) and constraints (3.51), (3.52), and (3.53). We run

the MISOCP model as described above and update the Taylor expansion points after each

iteration until it converges.

3.5 Computational Experiment

We use the greater Boston area as a case study to demonstrate how to apply this framework

to address the transit desert problem.

The "focus40" report published by massDOT (2019) identified priority places that need

or can support higher-quality transit. In our case study, we focus on the regions defined as

Urban Gateways by massDOT (2019). The definition is presented below:

• Urban gateways: Boston is far from the only city within the MBTA service area. Sev-

eral smaller cities have many of the characteristics that make Boston so amenable to

transit services, such as population and employment density and walkable streets.

These cities are home to a disproportionate share of the region’s immigrant and

lower-income workforce and those dependent on public transportation. Housing in

these communities is also more affordable than in Boston and its immediate suburbs.

In a region where many municipalities can be reluctant to build dense, mixed-use de-

velopment, these Urban Gateways are often eager to attract new residents and jobs.

Collectively, the Urban Gateways represent enormous potential to support the re-

gion’s economic, environmental, and equity goals. More and better transit could be
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the key to unlock the potential of these communities and better connect their residents

to the regional economy.

Figure 3.2: Urban Gateways identified by MBTA (Source: Focus40: positioning the MBTA
to meet the needs in the regions in 2040)

These regions identified as Urban Gateways are suffered from low transit accessibility.

The larger proportion of low-income and household with no private vehicles also exacer-

bate the situation. massDOT (2019) identified 9 regions in the Urban Gateways categories

including Woburn-Melrose region, Salem region, Lynn region, Waltham region, Brockton

region, and Framingham region, Lowell region, Lawrence region, and Haverhill region.

Woburn-Melrose region, Salem region, Lynn region, and Waltham region are served by

MBTA buses. Therefore, we focus on optimizing the bus system for these four regions.

Due to the proximity of Salem and Lynn regions with multiple bus lines serving both re-

gions, we combine these two regions and optimize the bus lines within the combined area.
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3.5.1 Experimental Setup

Since we consider both on-demand services and fixed-route transit services, we obtain both

road networks for the greater Boston area and the current subway and bus networks. The

road network consists of 14209 nodes and 71076 road segments. The subway network

consists of 7397 nodes and 14876 road segments. We are interested in optimizing the

transit schedules during the morning rush hours (6:00 a.m. - 9:00 a.m.).

We get accurate block-level OD pair commuter data from the 2010 Census LODES

database. For each OD pair, it provides the Workplace Census Block Code, Residence

Census Block Code, the total number of jobs, number of jobs under different age brackets,

number of jobs under different income levels, and number of jobs in different industries

(United States Census Bureau, 2020).

We obtain all relevant information on subway, buses, and commuter rail from Mas-

sachusetts Bay Transportation Authority (MBTA, 2021a) in the format of General Transit

Feed Specification (GTFS). It provides the locations of stops, transit lines, lengths and

schedule. We also get the transit line geographic information in the format of shapefile for

commuter rail, subway, and buses from MassDOT website (MassDOT, 2021). It provides

the transit lines which can be easily converted into a graph in Python using networkx pack-

age. In our optimization, we enforce Nmin to be equal to Nmax which equals the current

number of transit lines serving the region.

We categorize four types of commuters in our data. The first type is higher-income

commuters with private vehicles, the second type higher-income commuters with no pri-

vate vehicles, the third type lower-income commuters with private vehicles, and the fourth

type lower-income commuters with no private vehicles. The income information is in-

cluded in the Census LODES data (United States Census Bureau, 2020). For each OD

pair, it shows the number of jobs with earnings $1250/month or less, the number of jobs

with earnings $1251/month to $3333/month, and the number of jobs with earnings greater

than $3333/month. Furthermore, we obtain the vehicle ownership information from 2019
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American Community Survey: 5-Year Data obtained from IPUMS (Manson et al., 2020).

Households with an annual income of less than $25,000 are almost nine times as likely to be

a zero-vehicle household than households with incomes greater than $25,000. Therefore,

we assign 90% of people with no vehicle to low-income with no private vehicle categories

and the rest 10% to high-income with no vehicle categories.

We adopted the same utility coefficients as in Wei et al. (2021). However, we assigned

different utility coefficients to high-income and low-income commuters with low-income

commuters having higher coefficients for cost and fares and high-income commuters hav-

ing higher coefficients for traveling time, walking time, and waiting time. The coefficients

are tuned so that the market shares of different travel modes in the current system fit the

market shares in reality. In the objective function, we also apply different cost coefficients

for different categories of passengers, the traveling/walking/waiting time cost coefficients

for low-income commuters are half of those for high-income commuters since their income

is lower.

3.5.2 Computational Results

To prove the efficiency of our method, a few alternative methods were investigated and

compared with our method. We listed different scenarios that we want to compare in Table

3.1.

Table 3.1 Different scenarios for computational comparison
First-order approximation
No Yes

No S1 S2
Rounding LP relaxation S3 S4
Heuristics Yes Root node Naïve S5 S6

Domain-specific S7 S8

The columns indicate whether we apply the first-order approximation method. The

rows indicate whether and how we apply the rounding heuristics. In S1, where we ap-
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ply neither rounding heuristics nor first-order approximation, we simply feed the original

model to Gurobi and let it handle the MINLP problem directly. In S2, we only apply the

first-order approximation method. We optimize the model with objective function (3.77)

and constraints (3.1)-(3.18), (3.22)-(3.35), (3.43)-(3.61), (3.63)-(3.71), (3.74)-(3.76), and

(3.78)-(3.80). For S3-S8, we apply the rounding heuristics to obtain transit lines in the first

stage. In S3 and S4, we first run the LP relaxation of the original model to optimality, then

apply the rounding method to obtain the final transit lines. In the second step, we run the

original problem with fixed xl values in S3. In S4, we apply first-order approximation and

fix xl to the values obtained from step 1. In S5-S8, the rounding heuristic is applied to the

root node. We first optimize the original model using Gurobi to obtain the root node. Then

we either apply rounding heuristics using the naive method (based on the value of xl) or

using domain-specific method (based on the number of passengers using transit line xl).

After determining the transit lines, S5 and S7 will run the original model again with fixed

transit lines Xl. S6 and S8 will adopt first-order approximation method in the second step.

S8 is the method we are adopting in this paper.

We conducted these different scenarios in the Waltham region. In order to have a fair

comparison, we set the runtime to a maximum of six hours. The computational results are

listed in Table 3.2.

Table 3.2 Computational Results for Different scenarios
First-order approximation
No Yes

No NaN (bound: 33069) 69653
Rounding LP relaxation NaN (bound: 21671) NaN (bound: 21671)
Heuristics Yes Root node Naïve NaN (bound: 40807) 53798

Domain-specific NaN (bound: 39482) 51565

As shown in Table 3.2, S1, S3, S4, S5, and S7 cannot provide a feasible solution within

the runtime limit. It demonstrates the complexity of the problem. In S5 and S7, even after

fixing the binary variables, we are not able to solve the NLP successfully without adopting

the first-order approximation method. Even though S2 and S6 are able to provide a feasible
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solution, the final result is 35% and 4.3% higher than the result obtained using our method

(in S8). It demonstrates the necessity of using the rounding method in the first stage.

3.6 Practical Results

We applied our model and solution method to Woburn-Melrose region, Salem-Lynn re-

gion, and Waltham region, the total computational times range from 6 to 12 hours which is

reasonable for making strategic level decisions.

Table 3.3 summarized the passenger mode share, passenger disutility, social cost for

three regions by different commuter types under the current scenarios and optimal scenar-

ios.

Table 3.3 Passenger mode share, disutility breakdown and social cost for Woburn-Melrose,
Salem-Lynn, Waltham regions under current scenario and optimal scenario by different
commuter types

Region Scenarios Commuter Total Transit On-
demand

Multi Outside Disutility Average Average Social % Social %
DisutilityCategories Demand -modal Option per Person Expenditure Travel Time Cost Cost

Woburn Current Overall 6806 8.53% 4.17% 1.20% 86.15% 18.29 10.45 0.27 177038 2.76% 5.73%
-Melrose Scenario No car 369 49.91% 12.30% 5.88% 32.14% 40.51 7.89 0.54

Low-income 1077 26.20% 2.43% 1.60% 69.77% 15.78 6.16 0.30
High-income 5728 5.20% 4.49% 1.13% 89.22% 18.76 11.26 0.26

Optimal Overall 6806 11.67% 2.44% 1.99% 83.90% 17.24 9.80 0.27 172158
Scenario No car 369 61.64% 13.01% 6.51% 18.84% 30.54 6.36 0.56

Low-income 1077 33.81% 2.27% 1.98% 61.94% 13.31 5.63 0.32
High-income 5728 7.51% 2.47% 1.99% 88.03% 17.98 10.58 0.26

Salem Current Overall 5222 14.54% 5.63% 1.74% 78.09% 21.38 10.39 0.32 146090 3.84% 6.57%
-
Lynn

Scenario No car 881 54.13% 12.28% 5.31% 28.27% 40.34 7.81 0.59
Low-income 1010 43.50% 2.95% 2.50% 51.05% 21.48 6.02 0.46
High-income 4212 7.59% 6.28% 1.56% 84.58% 21.36 11.44 0.29

Optimal Overall 5222 17.88% 4.34% 2.28% 75.50% 19.98 9.61 0.32 140487
Scenario No car 881 60.91% 12.84% 5.55% 20.69% 34.17 6.34 0.60

Low-income 1010 53.57% 2.72% 2.73% 40.98% 17.45 4.99 0.47
High-income 4212 9.32% 4.74% 2.17% 83.78% 20.59 10.71 0.29

Waltham Current Overall 2137 10.45% 4.78% 1.20% 83.58% 19.09 9.78 0.25 54980 7.16% 10.09%
Scenario No car 283 48.98% 11.22% 4.83% 34.98% 44.04 7.85 0.56

Low-income 290 44.40% 1.96% 1.77% 51.87% 24.67 6.28 0.47
High-income 1847 5.13% 5.22% 1.11% 88.55% 18.22 10.33 0.22

Optimal Overall 2137 14.77% 7.97% 2.09% 75.17% 17.17 9.08 0.25 51565
Scenario No car 283 54.14% 17.60% 6.95% 21.32% 30.52 6.42 0.45

Low-income 290 49.35% 3.25% 2.70% 44.70% 19.52 5.65 0.38
High-income 1847 9.35% 8.71% 2.00% 79.95% 16.93 9.61 0.22

By analyzing the results for the current scenario, it is evident that inequality exists both

across and within regions. Comparing these three different regions, we found that Salem-

Lynn region has the highest proportion of low-income community (19%) while Waltham

has the lowest percentage of low-income community (14%). Salem-Lynn region also has
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the highest number of residents without private vehicles (17%). However, under the current

scenario, we find that commuters living in Salem-Lynn region have the highest average

disutility cost of $21.38 and the highest average commuting time of 0.32 hours. While

commuters in Waltham enjoy the shortest average commuting time of 0.25 hours and the

lowest average commuting cost of $9.78. With further inspection of different commuter

types within the same region, we can also find out that commuters with no cars suffer

from much larger travel disutilities compared to high-income commuters. The disutility

of people with no cars are almost twice as that of the high-income commuters in all three

regions. The disutility for low-income community is lower than the high-income commu-

nity in Woburn-Melrose region, but it’s mainly due to the fact that the unit time cost for

low-income commuters is half of the high-income commuters. Even with much longer

commuting times, their commuting disutility may still be lower than that of high-income

commuters. We will further investigate this in the extension section. These results confirm

the existence of inequality both across and within regions among low-income, high-income

and no-car commuters.

After applying the model and solution approach mentioned above, we are able to in-

crease the transit ridership in all three regions. Take Woburn-Melrose region for an exam-

ple, we are able to increase the transit ridership from 8.53% to 11.67%. The transit ridership

of no-car and low-income commuters increase considerably by 11.73% and 7.61% respec-

tively. The overall market shares for multi-modal services also increase from 1.20% to

1.99%. The disutility per person decreases from $18.29 to $17.24. When breaking down

the benefits across different commuter types, we find that the commuters with no private

vehicles enjoy the largest decrease of travel disutility from $40.51 to $30.54. The low-

income commuters also get significant disutility decrease from $15.78 to $13.31 while the

disutility for high-income people only reduces slightly by $0.78. It shows that our method

will disproportionately benefit the underprivileged community. The average expenditures

per person decrease the most among no-car commuters because they are able to switch to
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lower-cost fixed-route transit instead of taking ride-hailing services. The results are similar

for the other regions with under-privileged community benefiting more from the improved

transportation systems.

The comparison of environmental cost for three regions under the current and optimal

scenarios are presented in Figure 3.3. In all three regions, the environmental costs decrease

compared to the current scenario. It shows that the improved transportation network can

help mitigate greenhouse emissions. Waltham has the largest percentage reduction of 4%

while Woburn has the largest decrease of $1080 per hour in the morning commute.

Figure 3.3: Environmental costs for the current scenario and optimal scenario in three
regions

The social costs decrease by 2.76%, 3.84%, and 7.16% for Woburn-Melrose region,

Salem-Lynn region, and Waltham region respectively. The average travel disutilities also

decrease by 5.73%, 6.57%, and 10.09% respectively showing the benefit enjoyed by com-

muters.

Figure 3.4 shows the disutility decile plot under the current scenario and optimal sce-

nario in Woburn. It shows that for commmuters of all disutility levels have enjoyed de-

creases in travel disutility. Commuters with higher disutilities generally enjoy higher de-

creases in travel disutility. However, for commuters with the highest disutilities, the im-

provement is not significant. It shows that even after the optimization, specific mobility

services need to be paid to those commuters with extremely high travel disutilities.
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Figure 3.4: Decile plots for Disutility under Current and Optimal Scenarios in Woburn

3.7 Policy Analysis

In this section, we investigate the impact of pricing structure on social welfare and pas-

senger travel disutility. To better integrate the on-demand system with the conventional

transit system, multiple cities have provided discounts to passengers if using multi-modal

services. In LA, the commuters pay only $3 if they use multi-modal services from se-

lected rail stations during the rush hours (Metro, 2020). We first investigate the impact

of different on-demand service pricing levels on commuters’ disutility and social welfare.

Furthermore, we analyze the impact of discounted multi-modal services on the increase of

transit ridership. Here, we evaluate both distance-based pricing scheme and flat pricing

scheme for multi-modal services.

3.7.1 On-demand Service Pricing

In the original model, we adopt the prevalent ride-sharing price from Uber’s website (Uber,

2021) which has a minimum of price of $7.65, flat price of $2.2, and $1.2 per mile. To an-

alyze the impact of ride-sharing prices on social cost, passenger disutility and profitibility,

we apply 0%, 25%, 50%, 75% of the original price.

Figure 3.5 presents the changes of disutilities for all commuter types under different
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Figure 3.5: Disutility per person for different commuter categories in three regions under
different scenarios

ride-sharing prices in all three regions. It is clear that the disutilities decrease when the

ride-sharing price decreases for all commuter types. Furthermore, we notice that the on-

demand service price has a greater impact on commuters with no private vehicles than the

other commuter types. The disutility decreases from $30.5 to $22.3 for commuters with

no private vehicles in Woburn, while it only decreases by $2 for low-income commuters

and $1 for high-income commuters. This is mainly due to the fact that on-demand service

is the major alternative to public transit for commuters with no private vehicles. When

public transit is not easily accessible, a cheaper on-demand service will significantly lessen

commuting disutility.

Figure 3.6 further demonstrates the relationship between social welfare and on-demand

service price. When the ride-sharing fares go all the way to $0, the disutility per person de-

creases more than $1 per person in all three regions. The social costs are reduced by 1.2%,

1.6%, and 2% in Woburn-Melrose, Waltham, and Salem-Lynn regions respectively. How-

ever, it is interesting to note that when reducing the on-demand service price to 75% of its

original price, the social welfare increases slightly in Woburn-Melrose region while there

89



Figure 3.6: Social Costs and Disutilitites in three regions under different scenarios

are no such phenomena in the other two regions. This can be explained by the different

compositions of commuters in these three regions. Woburn region has the least percentage

of commuters with no private vehicles among the three regions (5.4% compared to 13.2%

in Waltham and 16.8% in Salem-Lynn). As shown in Figure 3.5, commuters with no private

vehicles benefit the most from the cheaper on-demand services. However, the operational

costs for on-demand services will increase due to the increased demand. Due to the small

percentage of commuters with no private vehicles in Woburn region, the reduction of travel

disutility cannot compensate for the increase in operational costs. Therefore, the overall so-

cial cost increases slightly when reducing the on-demand service price by 25% in Woburn.

When we further reduce the on-demand service price, the reduction of travel disutility starts

to outweigh the increase in operational costs which drives the systemwide cost downwards.

Another interesting finding is that the environmental cost does not follow a monotonic

pattern with the price of the on-demand service price. The decrease in on-demand service

price can lead to fewer private vehicles on the road but also result in more on-demand vehi-

cles in the system. In Figure 3.7, the environmental costs follow dramatically different pat-
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terns in the three different regions. In Woburn-Melrose, the environmental cost decreases

with the price except when free on-demand service is offered. In Salem-Lynn region, the

environmental cost increases when the on-demand service price is reduced to 75% and de-

creases afterwards while the environmental cost fluctuates irregularly with the on-demand

service price in Waltham. It indicates the complicated impact of on-demand services on the

environment. Depending on the commuter types, commuting route patterns, a subsidized

on-demand system may lead to more environmental damage than driving private vehicles.

The results coincide with the recent literature questioning the positive impact of on-demand

services on reducing congestion in the city center. City planners should take demographic

information and travel patterns into account when regulating on-demand services.

Figure 3.7: Environmental costs in three regions under different scenarios

These results show that even though lower ride-sharing prices can reduce the travel

disutility for passengers and overall social cost, the city may suffer from decreasing profits

and increasing environmental cost. It is important for the city planner to strike a balance

between reducing disutility for commuters and having a healthy financial condition as well

as providing a sustainable transportation system.
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3.7.2 Multi-model Service Pricing

In order to encourage public transit usage and reduce congestion brought by on-demand

services, various cities have carried out policies to promote multi-modal commuting ser-

vices. One major policy is to provide discounts for passengers adopting multi-modal be-

havior. Cities like Los Angeles also provide low-price ($3) multi-modal services during

rush hours. In this section, we will investigate the impact of different multi-modal service

pricing schemes including discounted distance-based pricing and flat pricing. Similar to

Section 3.7.1, we analyze scenarios where we charge 0%, 25%, 50%, 75%, and 100% of

the original multi-modal price (for the on-demand phase, the fixed-route transit pricing re-

mains the same). We also evaluate the scenarios where flat prices are being charged at $1,

$2, $3, $4, $5, and $6.

Figure 3.8: Market Shares for On-demand Service and Multi-modal Service in Woburn-
Melrose region under Different Pricing Scheme

Figure 3.8 depicts the market share changes for on-demand services and multi-modal

services under different pricing schemes. There is a monotonically increasing trend for

multi-modal market share when reducing the price to 0. Interestingly, two-thirds of the

market share gained by multi-modal came from on-demand service and another one-third

came from driving private vehicles. It means commuters are switching from taking on-

demand services to using multi-modal services when there is enough financial motivation.

It indicates that the policy has a positive effect on increasing transit ridership and reducing

congestion caused by on-demand services in the city center.
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Figure 3.9: Disutility for Different Commuter Types under Different Pricing Schemes

We further investigate which group of commuters benefits the most from cheaper multi-

modal service. Figure 3.9 shows the breakdown of disutility for commuters with no private

vehicles, low-income commuters, and high-income commuters. The high-income com-

muters are not affected much by the reduced price since they are not as sensitive to price

changes as other groups. Commuters with no private vehicles and low-income commuters

benefit the most from the price change. They save $1.18 and $0.57 on average respec-

tively when the multi-modal service charges $0. Furthermore, the environmental cost also

reduces when we reduce the multi-modal service prices as shown in Figure 3.10.

We further compare the flat pricing schemes and distance-based pricing schemes. Prof-

itability is an important metric that needs to be considered when deciding multi-modal

service price. It would be desirable to increase transit ridership with as little reduction in

profitability as possible. Figure 3.11 shows the transit ridership changes and profits under

different pricing schemes. We found It is obvious that when more discount is provided,

the profits will decrease. However, the overall transit ridership will increase accordingly.

In order to balance the trade-off between profitability and transit ridership, we compare

the impact of flat pricing schemes and distance-based pricing schemes. Looking at 50%
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Figure 3.10: Environmental Costs under different Pricing Schemes in Woburn-Melrose

distance-based price and $5 flat price, 50% distance-based price provides both higher prof-

its and higher transit ridership compared to the scenario of $5 flat price. Therefore, in the

case of Woburn-Melrose, the distance-based price would be preferable to the flat pricing

scheme.

Figure 3.11: Transit Ridership and Profits under Different Pricing Schemes in Woburn-
Melrose
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3.8 Conclusion

Transit desert has been a severe problem in the US, not only affecting the mobility of

daily commuters but also exacerbating the inequality problem for low-income people and

marginalized communities. Since this problem cannot be simply addressed by the expan-

sion of the current transit network, we consider developing an integrated transportation

system that includes public transit and ride-sharing services to tackle this problem. This

paper aims to address the transit desert problem by jointly optimizing the transit network, its

corresponding frequencies and on-demand service fleet size considering endogenous pas-

senger demand. We formulate a Mixed-integer non-linear programming model to tackle

the problem. A two-step heuristic method is developed to tackle the large-scale MINLP

modal. In the first step, we decide on the transit network. In the second step, we determine

the transit frequencies and on-demand fleet size.

Case study results in the greater Boston area demonstrate that the optimized transporta-

tion system can double the transit ridership compared to the current scenario in Waltham

and Woburn regions. The overall social costs are reduced by 2.76%, 3.84%, and 6.96% in

Woburn, Salem, and Waltham respectively. The commuter travel disutility also decreases

by 5.73%, 6.57%, and 9.56% respectively. We further investigated the impact of ride-

sharing pricing strategies on social welfare, disutility, profitability, and environmental cost.

We find that social cost and disutility increase with ride-sharing price. A cheaper on-

demand service benefits the commuters with no private vehicles the most. However, it

has a more complicated effect on environmental costs. The city planner needs more take

specific travel patterns into consideration when making policies.
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Chapter 4

Bikes and Buses: A Heuristic Adaptive

Discretization Scheme for Multimodal

Network Design

4.1 Introduction

The recent COVID-19 pandemic posed severe challenges to the current urban transporta-

tion system but also demonstrated the importance of building more integrated and sus-

tainable systems. The public transportation system experienced a significant reduction in

ridership during the pandemic. When the pandemic struck the US in March 2020, overall

transit ridership decreased dramatically. Subways in multiple cities were entirely shut down

(Los Angeles Times, 2020; WMATA, 2020). To observe the social distancing regulations,

buses suffered a major capacity drop of 60%–90% (Gkiotsalitis and Cats, 2020; Heraldo,

2020; Walawalkar, 2020). That, combined with telework policies, led to a significantly re-

duced bus ridership for most operators. With social distancing rules and work-from-home

arrangements, the overall US transit ridership dropped by nearly 80% in April 2020 and

remained more than 60% below the 2019 levels through the rest of the year, as shown in
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Figure 4.1 (?).

Figure 4.1: Transit Ridership changes from Dec 2019 to Jul 2022. Source:
https://transitapp.com/apta

However, the pandemic also led to increased use of micromobility services like bikes

and scooters. The percentage of people commuting using bikes and scooters increased from

4.9% to 11.2% according to Association for Commuter Transportation (de Palma et al.,

2022). The sale of bikes rocketed in the summer of 2021. The biking activities increased

by 28% in the U.S., 45% in Germany, and 82% in the UK from March 2020 to May 2020

(Lindsey et al., 2021). Bluebikes increased their total number of biking stations from 325

to over 400 in the greater Boston area in 2020. Other micromobility also expanded the

services significantly during the pandemic. The total scooter fleet in Chicago ballooned

from 2,500 total vehicles in 2019, to 10,000 total devices in 2020 (Greenfield and Cobbs,

2020). Lime decided to partner with a commuting benefits provider to prepare for the

post-pandemic commuting boom (Holder, 2021).

Shared micromobility has the potential to be an important component of a sustainable
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public transportation system to counter climate change. Globally, about a quarter of the to-

tal greenhouse gas emissions derives from the transportation sector (Creutzig et al., 2015),

and 57% of those are from light-duty vehicles (as compared to only 8% from aircraft). De-

veloping a sustainable transportation system is essential to mitigating climate change, and it

is also desirable from a health, economic, and natural resource perspective (Lovelace et al.,

2011). For example, a shared e-scooter only generates 75g CO2eq/pkt (CO2 equivalent per

passenger kilometer) while compared to 230g CO2eq/pkt from a gasoline-powered sedan

(de Bortoli, 2021). In a pandemic and post-pandemic world, shared micromobility may

also allow commuters to adhere to social distancing guidelines. Moreover, it can provide

mobility to essential workers without private vehicles when the public transit service level

is significantly reduced.

Figure 4.2: 2020 U.S. Transportation Sector GHG Emissions by Source. Source:
https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions

Given these potential benefits of micromobility services, local governments have in-

vested enormously in biking infrastructures taking advantage of the empty roads during the
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pandemic. Like automobiles, traveling via bikes and scooters also requires a significant

infrastructure investment like designated bike lanes and biking racks (Daraei et al., 2021).

Philadelphia closed a large 4.4-mile road segment to motor vehicles to create more space

for cyclists and pedestrians (LoBasso, 2021). Mexico City proposed plans for 130 kilo-

meters of temporary bike infrastructure providing an alternative to people without private

vehicles (COVID Mobility Works, 2020). Berlin created temporary pop-up bike lanes at

the height of the pandemic and these pop-up bike lanes are converted to permanent bike

lanes with an increasing number of bikers (Kallgren, 2021). Oakland, Minneapolis, Den-

ver, Louisville, Vancouver, and New York City have all implemented similar measures as

well (Schwedhelm et al., 2020).

Despite all these benefits, micromobility is not attractive for longer-distance travel, and

a significant portion of travelers are still reluctant to adopt micromobility. Dill and McNeil

(2013) found that about 30% of adults in Portland, Oregon would never see cycling as

an option in any circumstances. With these limitations, it is clear that micromobility is

not a viable replacement for commutes during larger transit vehicles like buses and trains.

Thus sole dependence on micromobility services won’t be sufficient for a more sustainable

post-pandemic urban transportation system. However, better integration of micromobility

services with the public transit system could encourage commuters to more sustainable

alternatives to using private vehicles (Oeschger et al., 2020; Ju, 2022). In many cases,

micromobility can serve as the first-mile and last-mile solution by offering flexibility and

efficient door-to-door accessibility, while the traditional transit vehicles and routes, such

as buses and trains, can take advantage of their higher speeds and greater spatial reach to

serve as the mid-mile solutions (Kager et al., 2016).

Both micromobility services, as well as traditional public transit systems, have been

studied extensively. There are numerous studies focusing solely on optimizing micromo-

bility systems or solely on optimizing transit systems without considering their integration.

The co-design of public transit and micromobility network is the focus of this study, in
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which we optimize both transit frequencies and bike-sharing decisions.

The first contribution of this paper is formulating an integrated model to optimize the

transit system and the bike-sharing system considering endogenous demand. We optimize

the frequency for each transit line, the set of bike-sharing station locations, the number

of docks at each station, as well as operational decisions like rebalancing clusters and the

number of bikes deployed, loaded and unloaded at each station during rebalancing.

The second contribution is to extend the adaptive discretization method developed by

Wang et al. (2022). to multidimensional functions as well as develop heuristics to reduce

the runtime and memory usage. Compared to the study of Wang et al. (2022), our prob-

lem involves higher dimensional non-linear non-convex constraints. Along with bigger

case study sizes, it makes the problem intractable using the original adaptive discretization

method. We develop our own heuristic method combining three key ideas: (1) adaptive dis-

cretization method, (2) coordinate descent, and (3) anchor point parsimony. For coordinate

descent, we separate the decision variables into three categories: A) transit frequencies,

B) bike-sharing service levels, and C) all remaining decision variables which include bike

station locations, number of docks and bikes at each station, and rebalancing decisions.

Our iterative approach first optimizes decision variables in categories B and C by fixing

decision variables in category A, and then optimizes those in categories A and C while

fixing those in B, until convergence. By applying coordinate descent, we are able to re-

duce the model size significantly for each iteration. The complexity of the model increases

with the number of anchor points added at each iteration when implementing the original

adaptive discretization method. By strategically adding and removing anchor points in a

parsimonious way, we can significantly reduce the runtime and memory usage while only

minimally compromising the optimality of our solution.

The third contribution is that we demonstrate that our algorithm can provide high-

quality solutions in a reasonable amount of time by testing it in the city of Boston, Mas-

sachusetts. By applying our algorithm to five case studies with increasing sizes within
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Boston, we demonstrate the scalability of our algorithm, where all benchmark approaches

either have enormous runtimes or fail due to large memory usage. We also compare our

algorithm with the original adaptive discretization method which provides an optimality

guarantee. We found that the optimality gap between our solution and the true optimal

result is within 0.5% but the runtime is 95% smaller. It further demonstrates the superiority

of our method when dealing with large-scale, multi-dimensional non-convex relationships

within a mixed-integer program. When compared to the current system, our network de-

sign solutions reduce the overall travel distance by 4.5% by co-designing the bike-sharing

system and public transit system.

4.2 Related Literature

There are three streams of literature related to our work, which we will now discuss in

detail. The first stream focuses on bike-sharing system operational level decisions which

mainly involve rebalancing clustering and routing decisions. The second stream of litera-

ture investigates the optimal bike-sharing strategic level decision like bike station locations

and number of docks at each station. In this stream of studies, researchers also have to

incorporate operational-level decisions when making strategic-level decisions. The third

stream focuses on multi-modal transportation system design. This stream of literature is

not limited to the integrated design of the bike-sharing system and transit system. It also

includes the co-design of the public transit system with other emerging technologies like

ride-hailing services.

4.2.1 Bike-sharing rebalancing

One of the major bike-sharing operational costs is to rebalance the bikes to other bike sta-

tions ensuring their availability across the system. The bike rebalancing problem is aNP-

hard problem, of which traveling salesman is a special case (Bruck et al., 2019). Zhang
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et al. (2020) has developed an adaptive Tabu Search algorithm based on local search to

solve this problem. An iterated local search and a route elimination operator were intro-

duced to reduce the number of routes. Shui and Szeto (2018) applied a hybrid rolling hori-

zon artificial bee colony approach to minimize total unmet demand and CO2 emissions.

Due to the complexity of the problem, (Schuijbroek et al., 2017) introduced a two-step

method where the service level and rebalancing clusters were determined in the first stage,

and vehicle routes were decided in the second stage. Similarly, (Forma et al., 2015) de-

veloped a three-step algorithm. In the first step, the stations were clustered. In the second

step, the route across clusters was determined. In the final step, the stations within the

clusters were connected to make one single route for the rebalancing vehicle. Studies have

also explored strategies in which the rebalancing vehicle can visit a single station multiple

times. There are certain large, central bike stations in which the demand of which cannot be

satisfied in a single visit. Bulhões et al. (2018) presented an iterated local search heuristic

for the static bicycle relocation problem with multiple vehicles and visits problem. Branch-

and-cut algorithm was introduced to tackle the exponential number of constraints. Pal and

Zhang (2017) also investigated the possibility of multiple visits but focuses on the free-

floating bike-sharing system. A hybrid nested large neighborhood search with a variable

neighborhood descent algorithm was presented to solve the mixed integer linear program

formulation. Considering the stochastic nature of the demand, (Dell’Amico et al., 2018)

developed stochastic programming models and used L-shaped and branch-and-cut meth-

ods to solve them. They also developed a heuristic based on the correlation of demands

between stations to find good-quality upper bounds.

Our paper incorporates bike-rebalancing operations in our modeling. However, our

main focus is co-design the transit-bikesharing system. Instead of solely focusing on bike

rebalancing, we also have to optimize the bike station location, number of docks as well as

transit frequencies.
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4.2.2 Bike station decision

The most commonly used location–allocation modeling approach is maximizing coverage

(García-Palomares et al., 2012). Frade and Ribeiro (2015) optimized bike-station loca-

tions and the number of bikes at each station to maximize the demand covered within the

available budget. Mix et al. (2022) jointly modeled the demand for bike-sharing trips and

optimized the location of stations in the system. They first estimated the demand for the

bike-sharing system using multiple regressions. Then, maximum demand coverage models

are developed to allocate the BSS stations. Similarly, García-Palomares et al. (2012) esti-

mated the spatial distribution of potential demand using GIS data and determine the station

locations and their corresponding capacities by maximizing demand coverage. However,

Caggiani et al. (2020) found that maximizing coverage without considering equality led

to an unequal distribution of accessibility among the population, which would produce

discrimination between different groups. Therefore, they proposed a model to minimize

inequality in the system while maintaining a certain level of accessibility. The studies

mentioned above didn’t consider the rebalancing problem when determining the bike sta-

tion location and capacity, but in reality, the effectiveness of rebalancing has a significant

impact on the optimal station capacity and system operation. Fu et al. (2022) investigated

the optimal bike-sharing system station location problem with rebalancing vehicle service

design. We present a two-stage robust optimization model with a demand-related uncer-

tainty set. In the first stage, the station locations, initial bike inventory, and rebalancing

clusters were determined. In the second stage, the rebalancing operation was optimized to

maximize profit. In the first stage, an approximate maximum travel distance for each rebal-

ancing cluster using maximum spanning star, which is also applied by Schuijbroek et al.

(2017). We adopt this approximation method in our model to simplify the vehicle routing

formulation.

Most of the papers in this stream did not consider incorporating rebalancing operations

in the planning stage. Besides that, we also consider the stochasticity regarding the orders
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of pick-ups and drop-offs, which will be explained in detail in Section 4.3.2.5 and 4.3.2.6.

Moreover, we provide an integrated optimization framework to optimize the transit sys-

tem and bike-sharing system. Therefore, we consider endogenous demand and passenger

choice while most of the studies here assumed exogenous demand.

4.2.3 Multi-modal transportation system design

The papers that are most relevant to our study are those investigating multi-modal trans-

portation system design. These papers did not necessarily focus on optimizing the bike-

sharing system, but they provided insights into how other emerging transportation modes

can be effectively integrated with the public transit system. Yan et al. (2021) conducted a

spatiotemporal analysis of the interaction between e-scooters and public transit in Wash-

ington DC. They found that e-scooter usage both competes and promotes public transit

usage. About 10% of e-scooter rides were taken to get connected to the public transporta-

tion system. There is a trade-off between price and time when passengers are deciding

whether to take an e-scooter or public transit. Périvier et al. (2021) focused on smart transit

systems where a set of cars are used as feeders to high-capacity fixed-route transit lines.

They developed an optimization model and applied approximation heuristic to determine

the bus routes and frequencies. Shen et al. (2018) and Wei et al. (2021) investigate how to

better integrate the ride-hailing/ride-sharing services with public transit system. Shen et al.

(2018) proposed to preserve high-demand bus routes and replace low-demand bus routes

with shared AVs as an alternative. The agent-based simulation was applied to evaluate the

scenarios with different fleet sizes and ride-sharing preferences. The results demonstrated

the benefits of the integrated system. However, they didn’t provide a framework to obtain

the optimal integrated design. Wei et al. (2021) optimize the transit schedules consider-

ing road congestions and endogenous passenger choice. They found that the optimized

schedule managed to reduce the systemwide cost by 0.4% - 3%. Different from our paper,

they didn’t consider the possibility of people taking multi-modal travel mode (using ride-

104



hailing as first-mile and last-mile solution and taking public transit in between). The lack of

long-distance travel capability is the key difference between bike-sharing and ride-hailing

system. Multi-modal travel mode is an important component in our paper compared to

Wei et al. (2021). Moreover, bike-sharing operational decisions involve a different set of

problems like bike rebalancing and station location decisions.

4.3 Model

In this section, we present both the original model and the discretized model to co-optimize

the transit system and bike-sharing system.

4.3.1 Assumptions

This paper considers morning commutes where four different traveling modes are consid-

ered: public transit, bike-sharing services, multi-modal services (commuters taking both

fixed-route transit and bike-sharing services), and other traveling options (including pri-

vate vehicle, biking, not travel etc.). We consider endogenous travel demand where the

commuters determine the travel mode based on their corresponding attractiveness.

We co-design the transit system and bike-sharing system from the perspective of a city

planner. We are able to decide both transit frequencies and biking decisions. Our objective

is to maximize the saved distance not traveled by driving by optimizing bus frequencies,

bike-sharing stations, the number of docks at each station, and rebalancing strategies. We

don’t consider congestion in this study.

The model involves a number of assumptions:

1. Passenger mode choice is captured using a sales-based linear programming model

from Gallego et al. (2015) model. The market share of a certain traveling mode

increases with its attractiveness which is a function of traveling time, walking time,

waiting time, fares, and parking fee.
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2. Passengers choose the shortest-distance route when traveling.

3. There is at most one transfer when the commuter is taking fixed-route transit.

4. Commuters are able to enter the transit system with their bikes.

5. The model considers exogenous transit fare and on-demand service pricing. We ap-

plied the prevalent flat pricing for both transit and bike-sharing system.

4.3.2 Original Model

4.3.2.1 Objective Function

The objective function of the optimization model is to maximize the total saved traveling

distance by switching from driving to other modes of transportation like fixed-route transit,

bike-sharing services, and multi-modal services. T is the set of time periods being con-

sidered during the day. OD is the set of OD pairs. In the Objective Function (4.1), Dtod

is the total demand for OD pair od ∈ OD at time period t ∈ T . LDod refers to the travel

distance in OD pair od when driving private vehicles. The objective function is equivalent

to
∑

t∈T,od∈OD(1−mD
tod) ∗Dtod ∗ LDod. The decision variables are defined below:

mT
tod the market share for taking fixed-route transit for OD pair od ∈ OD during the

time period t ∈ T
mB
tod the market share for taking bike-sharing services for OD pair od ∈ OD during

the time period t ∈ T
mM
tod the market share for taking multi-modal services for OD pair od ∈ OD during

the time period t ∈ T
mD
tod the market share for driving for OD pair od ∈ OD during the time period t ∈ T

Max
∑
t∈T

∑
od∈OD

(mT
tod +mB

tod +mM
tod)DtodL

D
od (4.1)
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4.3.2.2 Budget Constraints

Two budget constraints are included to prevent excessive investment in the transit and bike-

sharing system. We set the transit budget and biking budget separately since they are usu-

ally operated by two departments in most cities.

Constraints (4.2) and (4.3) compute the number of bus vehicles and heavy rail vehicles

that are needed to operate under certain frequency levels. Let L be the set of fixed transit

lines. L1 ⊆ L is the set of bus lines whose frequencies are being optimized. L2 ⊆ L is the

set of heavy rail lines whose frequencies we are optimizing. By definition, L1 ∪ L2 = L

and L1 ∩ L2 = ∅. Ll is the transit route length of transit line l. V T1 and V T2 are the travel

speed for buses and heavy rail. ftl is the frequency of transit line l ∈ L during time period

t ∈ T .

Constraint (4.4) is the transit budget constraint. The two terms on the left-hand side are

the operating cost for buses and heavy rail (T). CF1
op and CF2

op are the operating cost per unit

time for one bus and one heavy rail. BF and BB are the operating budgets for the transit

system and bike-sharing system respectively.

Constraint (4.5) is the budget constraint for the bike-sharing system. The operating cost

involves two major components: (1) the maintenance cost of bike stations and bikes, and

(2) the rebalancing cost due to unbalanced demand. J is the set of candidate regions for

bike stations. G is the set of rebalancing clusters where one rebalancing vehicle traverses

all stations picking up and dropping off bikes. CB
s is the maintenance cost for each bike,

and CB
c is the maintenance cost for each dock at the station. CBR is the cost of picking up

each bike during the rebalancing process. CBD is the cost for traveling unit distance per

rebalancing vehicle.∑
t∈T ,j∈J (CB

c ∗ cBtj + CB
s ∗ sBtj) +

∑
t∈T ,g∈G C

B
s ∗ eBtg represents the maintenance cost.

The first term is the maintenance cost for the docks at the bike station. The second and

third term represent the maintenance cost for all bikes in the system. sBtj is the number of

bikes that need to be deployed at location j at time t and eBtg is the number of extra bikes
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needed for each rebalancing cluster cl at time t since some clusters may have a deficit of

bikes within the rebalancing cluster. Therefore, the total number of bikes needed for the

system at time t is
∑

j∈J s
B
tj +

∑
g∈G e

B
tg.∑

t∈T ,j∈J C
BR∗rBtj+

∑
t∈T ,g∈G C

BReBtg+
∑

t∈T ,g∈G C
BDdBg is the rebalancing cost. The

first two terms represent the cost of picking up and dropping off bikes when rebalancing.

The first term is the cost of picking up and dropping off bikes at the bike stations and the

second term is the cost of picking up extra bikes in the case where there is a bike deficit

within the cluster. The third term calculates the rebalancing cost based on the vehicle

traveling distance.

The decision variables are listed below:

ftl frequency for transit line l ∈ L during the time period t ∈ T
kTtl fleet size for transit line l ∈ L during the time period t ∈ T
sBtj number of bikes deployed at location j ∈ J at the start of time period t ∈ T .
cBj number of docks at location j ∈ J .
rBtj number of bikes needed to be picked up or dropped off at location j ∈ J at time

period t ∈ T for rebalancing.
eBtg number of extra bikes needed due to demand deficit within cluster g ∈ G at time

period t ∈ T for rebalancing.
dBg distance traveled to traverse all stations within cluster g ∈ G for rebalancing.

kTtl ≥
Llf

T
tl

V T1
∀t ∈ T, l ∈ L1 (4.2)

kTtl ≥
Llf

T
tl

V T2
∀t ∈ T, l ∈ L2 (4.3)∑

t∈T ,l∈L1
CT1
op ∗ kTtl +

∑
t∈T ,l∈L2

CT2
op ∗ kTtl ≤ BT (4.4)

∑
t∈T ,j∈J

(CB
s ∗ sBtj + CB

c ∗ cBtj + CBR ∗ rBtj)

+
∑

t∈T ,g∈G

(CB
s ∗ eBtg + CBDdBg + CBReBtg) ≤ BB (4.5)
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4.3.2.3 Path Selection Constraints

Let PM and PMod represent the set of multi-modal paths and set of multi-modal paths for the

OD pair od. PMod ⊆ PM is a subset of multi-modal path set that serves od pair od. We first

generate all possible paths for multi-modal service for each OD pair assuming bike-sharing

services are available for all OD pairs. However, only a subset of bike-sharing services will

be offered in the final system, we need to identify the available paths and paths taken by

the commuters. Therefore, we define the following decision variables:

bj =1 if bike-sharing service is available in region j ∈ J
yMp = 1 if path for multi-modal service p ∈ PM is available for passengers
zMp = 1 if path for multi-modal service p ∈ PM will be taken to serve passengers.

zpM ≤ ypM
zBod = 1 if od ∈ OD can be served using bike-sharing services

One of the major decisions for optimizing bike-sharing system is to decide whether to

offer services in one region. The decision variables bj are created to indicate whether the

service is offered in the region j. In the preprocessing stage, we generate all the possible

paths to serve each OD pair assuming the bike-sharing service is available in all regions

concerned. yMp serves as an indicator of whether the path is available. yMp = 1 when the

bike-sharing service is available for both pick-up and drop-off for path p. Similarly, zBod

indicates whether bike-sharing service is available for OD pair od ∈ OD. jBPod and jMP
p are

the bike pickup regions for bike-sharing od-pair od ∈ OD and multi-model path p ∈ PM.

jBDod and jMD
p are the bike drop-off regions for bike-sharing od-pair od ∈ OD and multi-

model path p ∈ PM. Constraints (4.6) and (4.7) ensure that zBod and yMp equal to 1 if the

bike-sharing service is available to serve the OD pair (or path).

zMp indicates whether the passenger will choose path p. We assume the passenger will

choose the shortest path among the available paths for the OD pair. Constraints (4.8)-(4.11)

are to ensure that zMp is correctly defined. LMp is a parameter for the length of multi-modal

path p. In constraints (4.8), when LMp1 − LMp2 > 0 and yMp2 = 1 which means the length

109



of path p1 is longer than path p2 and path p2 is available, zMp1 on the right-hand side will

be forced to be 0. It ensures that the passengers will not choose a longer path when a

shorter path is available. Constraints (4.9) guarantee that at most one path will be chosen.

Constraints (4.10) ensure that passengers will choose at least 1 path if paths are available

for the OD pair. Constraints (4.11) make sure that only available paths will be traveled.

zBod = bjBP
od
∗ bjBD

od
∀od ∈ OD (4.6)

yMp = bjMP
p
∗ bjMD

p
∀p ∈ PM (4.7)

(LMp1 − L
M
p2

) ∗ yMp2 ≤ (1− zMp1 ) ∗M ∀p1, p2 ∈ PMod (4.8)∑
p∈PM

od

zMp ≤ 1 ∀od ∈ OD (4.9)

M ∗
∑
p∈PM

od

zMp ≥
∑
p∈PM

od

zMp ∀od ∈ OD (4.10)

zMp ≤ yMp ∀p ∈ PM (4.11)

Since there are bilinear terms in constraints (4.6) and (4.7), constraints (4.12)-(4.17) are

linear constraints that can replace these two constraints.

zBod ≤ bjBP
od
∀od ∈ OD (4.12)

zBod ≤ bjBD
od
∀od ∈ OD (4.13)

zBod ≥ bjBP
od

+ bjBD
od
− 1 ∀od ∈ OD (4.14)

yMp ≤ bjMP
od
∀p ∈ PM (4.15)

yMp ≤ bjMD
od
∀p ∈ PM (4.16)

yMp ≥ bjMP
od

+ bjMD
od
− 1 ∀p ∈ PM (4.17)
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4.3.2.4 Waiting Time Constraints

Waiting time constraints compute the transit waiting time for passengers taking fixed-route

transit and multi-modal services. Assuming that passenger’s waiting time for transit is

a uniform distribution with lower bound 0 and upper bound of the headway, the average

waiting time for the passenger is 1
2∗frequency . Since passengers may make a transfer to

another transit line, the total waiting time is the sum of the average waiting times for two

segments of the trip. The decision variables are listed below:

wTtod waiting time when taking fixed-route transit for OD pair od ∈ OD during time
period t ∈ T

wMtod waiting time when taking multi-modal services for OD pair od ∈ OD during
time period t ∈ T

lT1od and lT2od indicate the transit line taken for the first/second segment of the trip for

OD pair od. If no transfer is needed, lT1od = lT2od , but F T
od which is a binary parameter

indicating whether a transfer is taken will be 0. If a transfer is needed, F T
od = 1 and

lT1od 6= lT2od . Similarly for the multi-modal services, if lM1
p and lM2

p indicate the transit line

taken for the first/second segment of the trip for the path p. FM
p is 1 when a transfer is

needed. Constraints (4.18) and (4.19) calculate the waiting time for fixed-route transit and

multi-modal service respectively. However, it is worth noticing that both constraints are

non-linear. In Section 4.3.3, we will present the algorithms to eliminate the non-linearity.

wTtod =
1

2 ∗ ftlT1
od

+
F T
od

2 ∗ ftlT2
od

∀t ∈ T , od ∈ OD (4.18)

wMtp =
1

2 ∗ ftlM1
p

+
FM
p

2 ∗ ftlM2
p

∀t ∈ T , p ∈ PM (4.19)
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4.3.2.5 Bike-sharing Availability Constraints

To maintain user satisfaction, it is essential for the bike-sharing system to operate at a

reasonable service level. To make it convenient for passengers to pick up and drop off

bikes at the station, a certain number of vacant bikes and docks should be available at the

station when there is demand. In the following constraints, we will define the relationship

between service level, demand, number of bikes deployed at each station, and number of

docks at each station. The decision variables are presented below:

hptj number of passengers to pick up bikes at location j ∈ J during time period
t ∈ T

hdtj number of passengers to drop off bikes at location j ∈ J during time period
t ∈ T

sBtj number of bikes to be deployed at location j ∈ J at the beginning of time period
t ∈ T

lptj ∈ [0, 1], service level for bike pick-up at bike station location j ∈ J which is the
probability that a bike is available for pick up at location j

ldtj ∈ [0, 1], service level for bike drop-off at bike station location j ∈ J which is
the probability that an empty dock is available for drop off at location j

γMtp = zMp ∗mM
todp

ODpj and ODdj represent the set of OD pairs that pick up (drop off) bikes at location

j ∈ J . Similarly, Ppj and Pdj represent the set of multi-modal paths that pick up (drop off)

bikes at location j ∈ J . odp is a parameter denoting the OD pair that is served by path p.

Constraints (4.20) and (4.21) calculate the number of pick-ups and drop-offs at location j.

Constraints (4.22) and (4.23) ensure that the docks and bikes deployed at the station can

sustain service level lptj and ldtj . Constraints (4.24) compute the number of bikes needed to

be loaded or unloaded at each location j. Constraints (4.25) compute the number of extra

bikes needed for each cluster cl due to the imbalanced demand. To linearize constraints

(4.22)-(4.25), we use a linear approximation method which is detailed in Section 4.3.3.
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hptj =
∑

od∈ODp
j

mB
tod ∗Dtod +

∑
p∈PJ p

j

mM
todp ∗Dtodp ∗ zMp ∀t ∈ T , j ∈ J (4.20)

hdtj =
∑

od∈ODd
j

mB
tod ∗Dtod +

∑
p∈PJ d

j

mM
todp ∗Dtodp ∗ zMp ∀t ∈ T , j ∈ J (4.21)

sBtj = fp(h
p
tj, h

d
tj, l

p
tj) ∀t ∈ T , j ∈ J (4.22)

cj − sBtj = fd(h
p
tj, h

d
tj, l

d
tj) ∀t ∈ T , j ∈ J (4.23)

rBtj = fr(s
B
tj, stj+1, h

p
tj, h

d
tj, l

d
tj) ∀t ∈ T /{T}, j ∈ J (4.24)

eBtg = fib(h
p
tj, h

d
tj, l

d
tj) ∀t ∈ T , j ∈ J (4.25)

cBj ≤M ∗ bj ∀t ∈ T , j ∈ J (4.26)

Since both mM
tp and zMp are both decision variables, we linearize constraints (4.20) and

(4.21) by introducing another set of decision variables γMtp . Constraints (4.20) and (4.21)

are replaced by constraints (4.27) and (4.28). Constraints (4.29)-(4.31) are added to the

optimization model to define γMtp .

hptj =
∑

od∈ODp
j

mB
tod ∗Dtod +

∑
p∈PJ p

j

γMtp ∗Dtodp ∀t ∈ T , j ∈ J (4.27)

hdtj =
∑

od∈ODd
j

mB
tod ∗Dtod +

∑
p∈PJ d

j

γMtp ∗Dtodp ∀t ∈ T , j ∈ J (4.28)

γMtp ≤ zMp ∀t ∈ T , p ∈ PM (4.29)

γMtp ≤ mM
todp ∀t ∈ T , p ∈ P

M (4.30)

γMtp ≥ mM
todp − (1− zMp ) ∀t ∈ T , p ∈ PM (4.31)
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4.3.2.6 Service Level Approximation

To linearize constraints (4.22)-(4.25), we first obtain the distribution of demand deficit dur-

ing the time period. We assume that the pick-ups and drop-offs follow Poisson distribution.

The difference between pick-ups and drop-offs follows Skellam distribution. Ftj is a Skel-

lam distribution for location j during time period t. Constraints (4.32) and (4.33) ensure

that the pick-up and drop-off service level are at least lptj and ldtj . Constraints (4.34) and

(4.35) give a conservative estimate for number of bikes to be (un)loaded onto the rebalanc-

ing vehicle and number of extra bikes needed for each cluster.

otj =1 when αp0 + αp1 ∗ h
p
tj + αp2 ∗ hdtj + αp3 ∗ l

p
tj ≥ 0, 0 otherwise.

lp
′

tj = lptj if bj = 1, 0 otherwise.
ld
′
tj = ldtj if bj = 1, 0 otherwise.
vjg = 1 when region j ∈ J is in cluster g ∈ G
qptj = lp

′

tj if vjg = 1, 0 otherwise.
qdtj = ld′tj if vjg = 1, 0 otherwise.
hp
′

tjg = hptj if vjg = 1, 0 otherwise.
hd
′
tjg = hdtj if vjg = 1, 0 otherwise.
v′jg = vjg if bj = 1, 0 otherwise.
s′tjg = sBtj if vjg = 1, 0 otherwise.
nptjg = lptj if v′jg = 1, 0 otherwise.
ndtjg = ldtj if v′jg = 1, 0 otherwise.

sBtj = max(0, F−1tj (lptj)) ∀t ∈ T , j ∈ J (4.32)

sBtj − cBj = min(0, F−1tj (1− ldtj)) ∀t ∈ T , j ∈ J (4.33)

rBtj = max(sBtj − sBt+1j − F−1tj (1− ldtj), sBt+1j − sBtj + F−1tj (lptj)) ∀t ∈ T , j ∈ J (4.34)

eBtg = max(0,
∑
j∈J

(sBt+1j − sBtj + F−1tj (lptj)) ∗ vjg ∗ bj) ∀t ∈ T , g ∈ G (4.35)

However, we are not able to compute the exact Skellem distributions beforehand since

they are affected by variables hptj and hdtj . Therefore, we generate a large pool of different

114



hptj , h
d
tj , and service levels to obtain F−1tj (lptj) and F−1tj (1− ldtj). Then, the results are fitted

with two linear regressions, one for available bikes, the other for available docks. ~αp and

~αd are the vectors of coefficients from the two linear regressions. Constraints (4.36)-(4.39)

are the linearized availability constraints that replace constraints (4.22) and (4.23).

sBtj ≥ (αp0 + αp1 ∗ h
p
tj + αp2 ∗ hdtj + α3 ∗ lptj) ∗ bj ∀t ∈ T , j ∈ J (4.36)

sBtj ≥ 0 ∀t ∈ T , j ∈ J (4.37)

sBtj − cBj ≤ (αd0 + αd1 ∗ h
p
tj + αd2 ∗ hdtj + αd3 ∗ ldtj) ∗ bj ∀t ∈ T , j ∈ J (4.38)

sBtj ≤ cBj ∀t ∈ T , j ∈ J (4.39)

rBtj ≥ (sBt+1j − sBtj + (αp0 + αp1 ∗ h
p
tj + αp2 ∗ hdtj + αp3 ∗ l

p
tj)) ∗ bj ∀t ∈ T , j ∈ J (4.40)

rBtj ≥ (sBtj − sBt+1j − (αd0 + αd1 ∗ hdtj + αd2 ∗ hdtj + αd3 ∗ ldtj)) ∗ bj ∀t ∈ T , j ∈ J (4.41)

eBtg ≥
∑
j∈J

(sBt+1j − sBtj + αd0 + αd1 ∗ h
p
tj + αd2 ∗ hdtj + αd3 ∗ ldtj) ∗ vjg ∗ bj

∀t ∈ T , g ∈ G (4.42)

eBtg ≥ 0 ∀t ∈ T , g ∈ G (4.43)

Following the same logic, constraints (4.24) and (4.25) will be replaced by constraints

(4.40)-(4.43). We adopted a conservative method when calculating rBtj assuming the max-

imum number of (un)load bikes given the current service level. Constraints (4.40) refer to

the case where bikes need to be unloaded from the rebalancing vehicle while constraints

(4.41) refer to the case where bikes need to be loaded onto the vehicle. rBtj will take the

maximum value from the two constraints. Constraints (4.42) and (4.43) also provide a con-

servative estimation for the number of extra bikes needed for each cluster. By summing up

the upper bound of extra bikes needed for each location within the cluster, we obtain an

upper bound for eBtg.

However, since constraints (4.36) are not equality constraints, it is possible that sBtj may

115



take an unnecessarily large value. The term −sBtj and −sBt+1j in constraints (4.40), (4.42),

and (4.41) also provides forces for certain sBtj extremely large to reduce the value of rBtj and

eBtg. Therefore, we introduce a binary variable otj indicating whether αp0 + αp1 ∗ h
p
tj + αp2 ∗

hdtj + αp3 ∗ l
p
tj ≥ 0. Constraints (4.44) and (4.45) define variable otj . Constraints (4.46) and

(4.47) will be added to the optimization model.

(αp0 + αp1 ∗ h
p
tj + αp2 ∗ hdtj + α3 ∗ lptj) ∗ bj ≤ otj ∗M ∀t ∈ T , j ∈ J (4.44)

(−(αp0 + αp1 ∗ h
p
tj + αp2 ∗ hdtj + α3 ∗ lptj)) ∗ bj ≤ (1− otj) ∗M ∀t ∈ T , j ∈ J (4.45)

sBtj ≤M ∗ otj ∀t ∈ T , j ∈ J (4.46)

sBtj ≤ (αp0 + αp1 ∗ h
p
tj + αp2 ∗ hdtj + α3 ∗ lptj) ∗ bj + (1− otj) ∗M ∀t ∈ T , j ∈ J (4.47)

To eliminate the bilinear terms in constraints (4.36), (4.38), (4.40), (4.41), (4.42),

(4.44), (4.45), and (4.47), variables lp
′

tj , l
d′
tj , q

p
tj , q

d
tj , h

p′

tjg, h
d′
tjg, b

′
jg and s′tjg are introduced.

These new variables are defined in constraints (4.48)-(4.71). Moreover, constraints (4.36),

(4.38), (4.40), (4.41), (4.42), (4.44), (4.45), and (4.47) are replaced by constraints (4.72)-

(4.79).
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lp
′

tj ≤ lptj ∀t ∈ T , j ∈ J (4.48)

lp
′

tj ≤ bj ∀t ∈ T , j ∈ J (4.49)

lp
′

tj ≥ lptj − (1− bj) ∀t ∈ T , j ∈ J (4.50)

ld
′

tj ≤ ldtj ∀t ∈ T , j ∈ J (4.51)

ld
′

tj ≤ bj ∀t ∈ T , j ∈ J (4.52)

ld
′

tj ≥ ldtj − (1− bj) ∀t ∈ T , j ∈ J (4.53)

nptjg ≤ lp
′

tj ∀t ∈ T , j ∈ J , g ∈ G (4.54)

nptjg ≤ vjg ∀t ∈ T , j ∈ J , g ∈ G (4.55)

nptjg ≥ lp
′

tj − (1− vjg) ∀t ∈ T , j ∈ J , g ∈ G (4.56)

ndtjg ≤ ld
′

tj ∀t ∈ T , j ∈ J , g ∈ G (4.57)
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ndtjg ≤ vjg ∀t ∈ T , j ∈ J , g ∈ G (4.58)

ndtjg ≥ ld
′

tj − (1− vjg) ∀t ∈ T , j ∈ J , g ∈ G (4.59)

hp
′

tjg ≤ hptj ∀t ∈ T , j ∈ J , g ∈ G (4.60)

hp
′

tjg ≤ vjg ∗M ∀t ∈ T , j ∈ J , g ∈ G (4.61)

hp
′

tjg ≥ hptj − (1− vjg) ∗M ∀t ∈ T , j ∈ J , g ∈ G (4.62)

hd
′

tjg ≤ hdtj ∀t ∈ T , j ∈ J , g ∈ G (4.63)

hd
′

tjg ≤ vjg ∗M ∀t ∈ T , j ∈ J , g ∈ G (4.64)

hd
′

tjg ≥ hdtj − (1− vjg) ∗M ∀t ∈ T , j ∈ J , g ∈ G (4.65)

s′tjg ≤ sBtj ∀t ∈ T , j ∈ J , g ∈ G (4.66)

b′jg ≤ bj ∀j ∈ J , g ∈ G (4.67)

b′jg ≤ vjg ∀j ∈ J , g ∈ G (4.68)

b′jg ≥ vjg + bj − 1 ∀j ∈ J , g ∈ G (4.69)

s′tjg ≤ vjg ∗M ∀t ∈ T , j ∈ J , g ∈ G (4.70)

s′tjg ≥ sBtj − (1− vjg) ∗M ∀t ∈ T , j ∈ J , g ∈ G (4.71)

sBtj ≥ αp0 ∗ bj + αp1 ∗ h
p
tj + αp2 ∗ hdtj + α3 ∗ lp

′

tj ∀t ∈ T , j ∈ J (4.72)

sBtj − cBj ≤ αd0 ∗ bj + αd1 ∗ h
p
tj + αd2 ∗ hdtj + αd3 ∗ ld

′

tj ∀t ∈ T , j ∈ J (4.73)

rBtj ≥ sBt+1j − sBtj + (αp0 ∗ bj + αp1 ∗ h
p
tj + αp2 ∗ hdtj + αp3 ∗ l

p′

tj) ∀t ∈ T , j ∈ J (4.74)

rBtj ≥ sBtj − sBt+1j − (αd0 ∗ bj + αd1 ∗ hdtj + αd2 ∗ hdtj + αd3 ∗ ld
′

tj) ∀t ∈ T , j ∈ J (4.75)

eBtg ≥
∑
j∈J

(s′t+1jg − s′tjg + αd0 ∗ b′jg + αd1 ∗ h
p′

tjg + αd2 ∗ hd
′

tjg + αd3 ∗ ndtjg)

∀t ∈ T , g ∈ G (4.76)

αp0 ∗ bj + αp1 ∗ h
p
tj + αp2 ∗ hdtj + α3 ∗ lp

′

tj ≤ otj ∗M ∀t ∈ T , j ∈ J (4.77)

−(αp0 ∗ bj + αp1 ∗ h
p
tj + αp2 ∗ hdtj + α3 ∗ lp

′

tj) ≤ (1− otj) ∗M ∀t ∈ T , j ∈ J (4.78)

sBtj ≤ αp0 ∗ bj + αp1 ∗ h
p
tj + αp2 ∗ hdtj + α3 ∗ lp

′

tj + (1− otj) ∗M ∀t ∈ T , j ∈ J (4.79)

118



4.3.2.7 Rebalancing Routing Distance Constraints

A significant cost of operating a bike-sharing system is bike repositioning. Constraints

(4.80) define the rebalancing routing distance. The locations are divided into multiple clus-

ters that are served by a single vehicle. The optimization will decide the assignment of

locations to rebalancing clusters. We use binary variable vjg to denote whether location

j is assigned to cluster cl. After the clusters are defined, the computation of routing dis-

tance naturally becomes a traveling salesman problem where a single vehicle traverses all

locations and comes back to the original location.

G is the set of rebalancing clusters. Each cluster is served by one rebalancing vehicle.

The vehicle will traverse all locations and come back to the original location. G is a matrix

that defines the distance between locations. Constraints (4.80) define the traveling distance

as a function of ~b (a binary vector of whether the location offers bike-sharing service), ~vg

(a binary vector indicating whether the locations is served within cluster cl), and G (the

distance between locations).

dBg ≥ frb(~b, ~vg, G) ∀g ∈ G (4.80)

4.3.2.8 Routing Distance Approximation

Due to the complexity of the traveling salesperson problem, constraints (4.80) are sim-

plified to make the optimization model feasible and tractable. Instead of calculating the

shortest path for the traveling salesman problem, we use the maximum spanning star to ap-

proximate the vehicle traveling distance. This approximation is adopted by Fu et al. (2022)

and Schuijbroek et al. (2017). Schuijbroek et al. (2017) proves that Spanning Star is an

upper bound on the shortest Hamiltonian path over the cluster. The updated constraints are

presented in constraints (4.81) and (4.82). βjg denotes the distance of spanning star with

the internal node j and the rest of the nodes within cluster g as leaves. When location j
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is served by cluster g and offers bike-sharing services, constraints (4.81) will compute the

summation of the distance of every other location within the cluster to location j. How-

ever, if location j is not within cluster g or does not offer bike-sharing service, βjg will be

0. Constraints (4.82) return the maximum distance among all the spanning stars within the

cluster.

βjg distance of spanning star with internal node j ∈ J in cluster j ∈ J
βMg the distance of the maximum spanning star in cluster g ∈ G

βjg =
∑
k

bk ∗ bj ∗ vkg ∗ vjg ∗Gkj ∀j ∈ J , g ∈ G (4.81)

βMg = maxj∈J (βjg) ∀g ∈ G (4.82)

However, both constraints (4.81) and (4.82) are non-linear. Therefore, we linearize them

as constraints (4.83). When both b′jg equals to 1, constraints (4.83) become equivalent to

dBg ≥ βjg ∀j ∈ J . Therefore, dBg ≥ βMjg .

dBg ≥
∑
k∈J

Gjk ∗ (b′jg + b′kg − 1) ∀j ∈ J , g ∈ G (4.83)

4.3.2.9 Capacity Constraints

Constraints (4.84) are capacity constraints for transit. S is a set of road segments that

are traveled by fixed-route transit. We preprocessed the data so that each segment is only

traveled by one transit line. Multiple transit lines may share the same segments in reality,

but we create distinctive segments for each transit line since different lines don’t share one

capacity constraint. ODs is the set of OD pairs that travels segment s. PMs is the set of

multi-modal paths that travels segment s. Kl is the capacity for transit line l ∈ L. ls is the
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parameter denoting the transit line that travels segment s. Constraints (4.84) make sure that

the number of passengers in all segments will not surpass the vehicle capacity.

∑
od∈ODs

mT
tod ∗Dtod +

∑
p∈PM

s

vMtodp ∗Dtodp ≤ fTtls ∗Kls ∀t ∈ T , s ∈ S (4.84)

4.3.2.10 Attractiveness and Market Share Constraints

Our optimization model considers endogenous demand. The demand for each traveling

mode depends on the attractiveness of that mode. Therefore, constraints (4.85)-(4.90)

are included to compute disutility and attractiveness for traveling using fixed-route tran-

sit, multi-modal service, and bike-sharing service.

uTtod the disutility of traveling using fixed-route transit for OD pair od ∈ OD during
time period t ∈ T

uMtp the disutility of traveling using multi-modal service for path p ∈ PM during time
period t ∈ T

uBtod the disutility of traveling using bike-sharing service for OD pair od ∈ OD during
time period t ∈ T

aTtod the attractiveness of traveling using fixed-route transit for OD pair od ∈ OD
during time period t ∈ T

aMtp the attractiveness of traveling using multi-modal service for path p ∈ PM during
time period t ∈ T

aBtod the attractiveness of traveling using bike-sharing service for OD pair od ∈ OD
during time period t ∈ T

Constraints (4.85)-(4.87) calculate the travel disutilities. The disutility of traveling us-

ing fixed-route transit includes in-vehicle traveling cost, walking time cost, and waiting

time cost. While waiting time is a function of transit frequencies which are decision vari-

ables, in-vehicle traveling cost and walking time cost are constant for each OD pair. We use

UT
od to denote the in-vehicle traveling cost and walking cost for traveling using fixed-route

transit. CT
w is the cost of waiting for bus per unit time. By adding up UT

od and the waiting

cost, constraints (4.85) compute the disutility for taking transit.
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Similarly, constraints (4.86) calculate the distuility for using multi-modal service which

includes in-vehicle traveling time cost, walking time cost, and waiting time cost for transit

as well as traveling time cost for biking and cost for waiting in case bike pick-up or drop-

off is unavailable. We assume the cost for waiting for a vacant bike/dock is a decreasing

linear function of pick-up/drop-off service level lp
tjMp

and ldtjMp . When the service level is 1,

the cost is 0, when the service level is 0, the cost is CB
sb. U

M
p includes in-vehicle traveling

cost, walking time cost for transit as well as traveling cost for biking.

Constraints (4.87) follow a similar logic. UB
od is the traveling cost for biking. The

total disutility of taking the bike-sharing system is traveling cost and unavailability cost as

shown in constraints (4.87).

Attractiveness is the exponential term of negative disutilities. Constraints (4.88)-(4.90)

compute the attractiveness for these three travel modes for each OD pair. Since we are

taking only one path for multi-modal service, the attractiveness for that OD pair equals

to the attractiveness of the path taken. Therefore, in constraints (4.89), we multiply the

attractiveness of each path with zMp and sum over all paths for OD pair od.

We adopt Sales Based Linear Programming (SBLP) model from Gallego et al. (2015)

to formulate the market share for each travel mode in constraints (4.91)-(4.94). The market

share of each travel mode is proportional to its corresponding attractiveness unless the

capacity constraints are violated. Constraints (4.94) ensure that the total market share is 1.

122



uTtod = UT
od + CT

w ∗ wTtod ∀t ∈ T , od ∈ OD (4.85)

uMtp = UM
p + CM

w ∗ wMtp + CB
sb ∗ (1− lp

tjMp
+ 1− ldtjMod ) ∀t ∈ T , p ∈ PM (4.86)

uBtod = UB
od + CB

sb ∗ (1− lp
tjBod

+ 1− ldtjBod) ∀t ∈ T , p ∈ PM (4.87)

aTtod = e−u
T
tod ∀t ∈ T , od ∈ OD (4.88)

aMtod =
∑
p∈PM

od

zMp e
−uMtp ∀t ∈ T , od ∈ OD (4.89)

aBtod = zBode
−uBtod ∀t ∈ T , od ∈ OD (4.90)

mT
tod ∗ ADod ≤ mD

tod ∗ aTtod ∀t ∈ T , od ∈ OD (4.91)

mM
tod ∗ ADod ≤ mD

tod ∗ aMtod ∀t ∈ T , od ∈ OD (4.92)

mB
tod ∗ ADod ≤ mD

tod ∗ aBtod ∀t ∈ T , od ∈ OD (4.93)

mT
tod +mB

tod +mM
tod +mD

tod = 1 ∀t ∈ T , od ∈ OD (4.94)

4.3.2.11 Full model

In the original optimization model, we maximize the saved distance traveled by switching

from driving to using transit, bike-sharing, and multi-modal (Objective function (4.1), with

constraints (4.2)-(4.5), (4.8)-(4.19), (4.26)-(4.31), (4.37), (4.39), (4.43), (4.43)-(4.79), and

(4.83)-(4.94). However, constraints (4.18) and (4.19) are non-linear. The exponential terms

in constraints (4.88)-(4.90) and bilinear terms in constraints (4.91)-(4.93) are non-linear

which can significantly increase the model complexity. In Section 4.3.3, we introduce the

adaptive discretization method to tackle the problem which will be detailed in 4.3.3.

4.3.3 Discretized Model

Due to the non-linearity caused by constraints (4.18), (4.19), (4.90)-(4.93), it is not feasible

to solve the optimization model with real-world problem instances in a reasonable amount
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of time. Therefore, we decided to discretize the transit frequencies and bike service levels

to eliminate the non-linearity in our model.

We useW to denote the set of candidate frequencies and Q to denote the set of candi-

date service levels. We introduce the three sets of main binary decision variables f btlw, sbptjq,

and sbdtjq to discretize transit frequency and biking service level.

The extra decision variables are listed below:

f btlw =1 when transit line l ∈ L takes frequency w ∈ W during time period t ∈ T , 0
otherwise

lbptjq =1 when location j ∈ J takes pick-up service level q ∈ Q during time period
t ∈ T , 0 otherwise

lbdtjq =1 when location j ∈ J takes drop-off service level q ∈ Q during time period
t ∈ T , 0 otherwise

xTtodw1w2
=1 when the first transit segment takes frequency w1 ∈ W and the second transit
segment takes frequency w2 ∈ W for OD pair od ∈ OD during the time period
t ∈ T , 0 otherwise

xBtodq1q2 =1 when the pick-up service level is q1 ∈ Q and the drop-off service level is
q2 ∈ Q for OD pair od ∈ OD during the time period t ∈ T , 0 otherwise

xMtpw1w2q1q2
=1 when the first transit segment takes frequency w1 ∈ W , the second transit
segment takes frequency w2 ∈ W , the pick-up service level is q1 ∈ Q, and the
drop-off service level is q2 ∈ Q for OD pair p ∈ PM during the time period
t ∈ T , 0 otherwise

Constraints (4.95) define the relationship between bTtodw1w2
and f btlw. If the transit line

of the first segment takes frequency index w1 and the transit line of the second segment

takes frequency index w2, then bTtodw1w2
will be 1. Constraints (4.96) and (4.97) follow

similar logic. jBPod (jBDod ) returns the pick-up (drop-off) location for OD pair od for bike-

sharing service. jMP
p (jMD

p ) returns the pick-up (drop-off) location for path p for multi-

modal service. Constraints (4.98)-(4.100) ensure that only 1 frequency or service level will

be chosen for each transit line or bike location.

Constraints (4.101)-(4.103) can replace constraints (4.91)-(4.93) as market share con-

straints. In the pre-processing stage, we calculate the attractiveness under all combina-

tions of frequencies and service levels. Therefore, the attractiveness values in constraints
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(4.101)-(4.103) become parameters instead of decision variables. Constraints (4.104)-

(4.106) ensure that the values of frequencies and service levels are consistent with the

binary variables f btlw, sbptjq and sbdtjq.

xTtodw1w2
= f btlT1

od w1
∗ f btlT2

od w2
∀t ∈ T, od ∈ OD (4.95)

xBtodq1q2 = lbp
tjBP

od q1
∗ lbdtjBD

od q2
∀t ∈ T, od ∈ OD (4.96)

xMtpw1w2q1q2
= f btlM1

p w1
∗ f btlM2

p w2
∗ lbp

tjMP
p q1

∗ lbdtjMD
p q2

∀t ∈ T, p ∈ P (4.97)∑
q∈Q

sbptjq = 1 ∀t ∈ T , j ∈ J (4.98)

∑
q∈Q

sbdtjq = 1 ∀t ∈ T , j ∈ J (4.99)

∑
w∈W

f btlw = 1 ∀t ∈ T , l ∈ L (4.100)

mT
tod ∗ ADod ≤ mD

tod ∗
∑
w1∈W

∑
w2∈W

ATtodw1w2
xTtodw1w2

∀t ∈ T , od ∈ OD (4.101)

mM
tod ∗ ADod ≤ mD

tod ∗
∑
p∈PM

od

zMp
∑
w1∈W

∑
w2∈W

∑
q1∈Q

∑
q2∈Q

AMtpw1w2q1q2
xMtpw1w2q1q2

∀t ∈ T , od ∈ OD (4.102)

mB
tod ∗ ADod ≤ mD

tod ∗
∑
q1∈Q

∑
q2∈Q

ABtodq1q2x
B
todq1q2

∀t ∈ T , od ∈ OD (4.103)

fTtl =
∑
w∈W

Ftlw ∗ f btlw ∀t ∈ T , l ∈ L (4.104)

lptj =
∑
q∈Q

ltjq ∗ lbptlq ∀t ∈ T , j ∈ J (4.105)

ldtj =
∑
q∈Q

Stjq ∗ lbdtlq ∀t ∈ T , j ∈ J (4.106)

However, constraints (4.95)-(4.97) and constraints (4.101)-(4.103) are still bilinear. We

introduce several auxiliary variables below to linearize them.

Constraints (4.95)-(4.97) are replaced by (4.107)-(4.117). Constraints (4.101)-(4.103)
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θTDtodw1w2
=mD

tod when xTtodw1w2
= 1, 0 otherwise

θBDtodq1q2 =mD
tod when xBtodq1q2 = 1, 0 otherwise

γMD
tp =mD

todp
when zMp = 1, 0 otherwise

γMD′
tpw1w2q1q2

=γMD
tp when xMtpw1w2q1q2

= 1, 0 otherwise

are replaced by (4.118)-(4.120). θTDtodw1w2
, θBDtodq1q2 , γMD

tp , and γMD′
tpw1w2q1q2

are defined by

constraints (4.124)-(4.132).

xTtodw1w2
≤ f btlT1

od w1
∀t ∈ T, od ∈ OD, w1 ∈ W , w2 ∈ W (4.107)

xTtodw1w2
≤ f btlT2

od w2
∀t ∈ T, od ∈ OD, w1 ∈ W , w2 ∈ W (4.108)

xTtodw1w2
≥ f btlT1

od w1
+ f btlT2

od w2
− 1 ∀t ∈ T, od ∈ OD, w1 ∈ W , w2 ∈ W (4.109)

xBtodq1q2 ≤ lbp
tjBP

od q1
∀t ∈ T, od ∈ OD, q1 ∈ Q, q2 ∈ Q (4.110)

xBtodq1q2 ≤ lbdtjBD
od q2

∀t ∈ T, od ∈ OD, q1 ∈ Q, q2 ∈ Q (4.111)

xBtodq1q2 ≥ lbp
tjBP

od q1
+ lbdtjBD

od q2
− 1 ∀t ∈ T, od ∈ OD, q1 ∈ Q, q2 ∈ Q (4.112)

xMtpw1w2q1q2
≤ f btlM1

p w1
∀t ∈ T, od ∈ OD, w1 ∈ W , w2 ∈ W , q1 ∈ Q, q2 ∈ Q (4.113)

xMtpw1w2q1q2
≤ f btlM2

p w2
∀t ∈ T, od ∈ OD, w1 ∈ W , w2 ∈ W , q1 ∈ Q, q2 ∈ Q (4.114)

xMtpw1w2q1q2
≤ lbp

tjMP
p q1

∀t ∈ T, od ∈ OD, w1 ∈ W , w2 ∈ W , q1 ∈ Q, q2 ∈ Q (4.115)

xMtpw1w2q1q2
≤ lbdtjMD

od q2
∀t ∈ T, od ∈ OD, w1 ∈ W , w2 ∈ W , q1 ∈ Q, q2 ∈ Q (4.116)

xMtpw1w2q1q2
≥ f btlM1

p w1
+ f btlM2

p w2
+ lbp

tjMP
p q1

+ lbdtjMD
od q2

− 4

∀t ∈ T, od ∈ OD, w1 ∈ W , w2 ∈ W , q1 ∈ Q, q2 ∈ Q (4.117)

mT
tod ∗ ADod ≤

∑
w1∈W

∑
w2∈W

ATtodw1w2
θTDtodw1w2

∀t ∈ T , od ∈ OD (4.118)

mM
tod ∗ ADod ≤

∑
p∈PM

od

∑
w1∈W

∑
w2∈W

∑
q1∈Q

∑
q2∈Q

AMtpw1w2q1q2
γMD′

tpw1w2q1q2

∀t ∈ T , od ∈ OD (4.119)
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mB
tod ∗ ADod ≤

∑
q1∈Q

∑
q2∈Q

ABtodq1q2θ
BD
todq1q2

∀t ∈ T , od ∈ OD (4.120)

θTDtodw1w2
≤ xTtodw1w2

∀t ∈ T, od ∈ OD, w1 ∈ W , w2 ∈ W (4.121)

θTDtodw1w2
≤ mD

tod ∀t ∈ T, od ∈ OD, w1 ∈ W , w2 ∈ W (4.122)

θTDtodw1w2
≥ mD

tod − (1− xTtodw1w2
) ∀t ∈ T, od ∈ OD, w1 ∈ W , w2 ∈ W (4.123)

θBDtodq1q2 ≤ xBtodq1q2 ∀t ∈ T, od ∈ OD, q1 ∈ Q, q2 ∈ Q (4.124)

θBDtodq1q2 ≤ mD
tod ∀t ∈ T, od ∈ OD, q1 ∈ Q, q2 ∈ Q (4.125)

θBDtodq1q2 ≥ mD
tod − (1− xBtodq1q2) ∀t ∈ T, od ∈ OD, q1 ∈ Q, q2 ∈ Q (4.126)

γMD
tp ≤ zMp ∀t ∈ T, p ∈ PM (4.127)

γMD
tp ≤ mD

todp ∀t ∈ T, p ∈ P
M (4.128)

γMD
tp ≥ mD

todp − (1− zMp ) ∀t ∈ T, p ∈ PM (4.129)

γMD′

tpw1w2q1q2
≤ γMD

tp ∀t ∈ T, p ∈ PM , w1 ∈ W , w2 ∈ W , q1 ∈ Q, q2 ∈ Q (4.130)

γMD′

tpw1w2q1q2
≤ xMtpw1w2q1q2

∀t ∈ T, p ∈ PM , w1 ∈ W , w2 ∈ W , q1 ∈ Q, q2 ∈ Q (4.131)

γMD′

tpw1w2q1q2
≥ γMD

tp − 1 + xMtpw1w2q1q2

∀t ∈ T, p ∈ PM , w1 ∈ W , w2 ∈ W , q1 ∈ Q, q2 ∈ Q (4.132)

The discretized model has the objective function (4.1) and constraints (4.2)-(4.5), (4.8)-

(4.17), (4.26)-(4.31), (4.37), (4.39), (4.43), (4.43)-(4.79), and (4.83)-(4.84), (4.94), (4.98)-

(4.100), and (4.107)-(4.132).

4.4 Solution method

In Section 4.3, we introduced the original model and discretized model. The original model

is a non-linear and non-convex model which cannot be solved in a reasonable amount of

time for a real-life size city. The discretized model eliminates the non-linearity and non-
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convexity in the model, but it still poses two significant issues. (1) We are not able to

evaluate the performance of our solution to the true optimal solution, and (2) we still need

an algorithm for the selection of the anchor points (the selected frequencies and service lev-

els) in the discretization model. Therefore, we adopted the adaptive discretization method

in the study of Wang et al. (2022). This method develops a conservative model (which

provides a feasible solution) and a relaxed model (which provides an upper bound) for the

original non-linear optimization problem. Convergence to a global optimum is secured by

alternatively solving the conservative model and relaxed model. We will elaborate on this

method in Section (4.4.1).

4.4.1 Adaptive Discretization Method

The adaptive discretization method is developed by Wang et al. (2022). as an exact algo-

rithm to solve the non-convex optimization problems converging to the global optimum.

The non-convex constraints were approximated using piece-wise constant segments. Fig-

ure 4.3 shows how Wang et al. (2022) discretized the non-convex constraints and the cor-

responding feasible regions for the original model, the conservative model, and the relaxed

model. In Figure 4.3(b), the feasible region is a subset of the feasible regions of the original

model (Figure 4.3(a)). The feasible region of the relaxed model (Figure 4.3(c)) contains

the feasible region of the original model. Therefore, the conservative model will provide

a feasible solution to the original model, while the relaxed model will provide an upper

bound.

The adaptive method is guaranteed to converge to a global optimum by iteratively solv-

ing the conservative model and the relaxed model. After each iteration, a new anchor point

will be added based on the solution from the current model as shown in Figure 4.4. The

algorithm can also be accelerated by adding tangent lines in the convex region as shown in

4.4(c).

The adaptive discretization method fits perfectly with our problem which is also a non-

128



Figure 4.3: Example of S-curve function and feasible regions of the original model, con-
servative model, and relaxed model from Wang et al. (2022)

Figure 4.4: Adaptive discretization scheme, and acceleration based on local convexity from
Wang et al. (2022)

convex optimization problem. The major non-convexity in our problem comes from the

market share constraints (4.91)-(4.93). Market share is a monotonically increasing func-

tion of the attractiveness of that travel mode. Therefore, if we discretize the attractiveness,

we can apply the adaptive discretization method mentioned above. With closer scrutiny

of the disutility constraints (4.85)-(4.87), we found that disutilities and attractiveness are

functions of transit frequencies and bike-sharing service levels. Therefore, instead of dis-

cretizing the attractiveness, we discretize transit frequencies and bike-sharing service level

as shown in Section 4.3.3. Some adjustment needs to be made to the discretization model.

We replace constraints (4.104)-(4.106) with (4.133)-(4.138). Constraints (4.118)-(4.120)

will be replaced by constraints (4.139)-(4.141) in the conservative model and constraints

(4.142)-(4.144) in the relaxed model.
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ftl ≥
∑
w∈W

Ftlw ∗ f btlw ∀t ∈ T , l ∈ L (4.133)

ftl ≤
∑

w∈W\{0}

Ftlw ∗ f btlw−1 ∀t ∈ T , l ∈ L (4.134)

lptj ≥
∑
q∈Q

Ltjq ∗ lbptlq ∀t ∈ T , j ∈ J (4.135)

lptj ≤
∑

q∈Q\{0}

Ltjq ∗ lbtlq−1 ∀t ∈ T , j ∈ J (4.136)

ldtj ≥
∑
q∈Q

Ltjq ∗ lbdtlq ∀t ∈ T , j ∈ J (4.137)

ldtj ≤
∑

q∈Q\{0}

Ltjq ∗ lbdtlq−1 ∀t ∈ T , j ∈ J (4.138)

Conservative model:

mT
tod ∗ ADod ≤

∑
w1∈W

∑
w2∈W

ATtodw1w2
θTDtodw1w2

∀t ∈ T , od ∈ OD (4.139)

mM
tod ∗ ADod ≤

∑
p∈PM

od

∑
w1∈W

∑
w2∈W

∑
q1∈Q

∑
q2∈Q

AMtpw1w2q1q2
γMD′

tpw1w2q1q2

∀t ∈ T , od ∈ OD (4.140)

mB
tod ∗ ADod ≤

∑
q1∈Q

∑
q2∈Q

ABtodq1q2θ
BD
todq1q2

∀t ∈ T , od ∈ OD (4.141)
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Relaxed model:

mT
tod ∗ ADod ≤

∑
w1∈W

∑
w2∈W

ATtodw1w2
θTDtodw1−1w2−1 ∀t ∈ T , od ∈ OD (4.142)

mM
tod ∗ ADod ≤

∑
p∈PM

od

∑
w1∈W

∑
w2∈W

∑
q1∈Q

∑
q2∈Q

AMtpw1w2q1q2
γMD′

tpw1−1w2−1q1−1q2−1

∀t ∈ T , od ∈ OD (4.143)

mB
tod ∗ ADod ≤

∑
q1∈Q

∑
q2∈Q

ABtodq1q2θ
BD
todq1−1q2−1 ∀t ∈ T , od ∈ OD (4.144)

The major difference from the study of Wang et al. (2022) is that our discretization is multi-

dimensional instead of one-dimensional. There are at most 4 combinations of frequencies

and service levels. For example, when we increase the number of anchor points from 2

to 3, the number of possible attractiveness values and its corresponding binary decision

variables (xtpw1w2q1q2) increase from 16 to 81 for each multi-modal path. Therefore, the

complexity of our model will grow significantly with more anchor points. Besides the

model complexity, our case study is also larger than that in the study of Wang et al. (2022).

They focused on long-distance aerial trips, but we investigate transit and bike-sharing users

in urban areas with much more OD pairs and data points. In order to reduce runtime, we

further apply the coordinate descent method and anchor point parsimony method which

will be explained in Section 4.4.2 and 4.4.3.

4.4.2 Coordinate Descent Method

Instead of focusing on one system as in the study of Wang et al. (2022), we co-optimize

two systems: the public transit system and the bike-sharing system. In order to reduce the

complexity of the original problem, we introduce the coordinate descent method where we

iteratively optimize decision variables in one system while fixing certain decision variables

in another system. We separate the decision variables into three categories:

A Bike-sharing service level decision variables (lptj and ldtj)

131



B Transit frequencies decision variables (fTtl )

C All the other decision variables (including cBj , sBtj , r
B
tj , e

B
tg etc.)

We first fix the decision variables B (transit frequencies) and optimize the decision variables

A (bike-sharing service level) and C (all the other decision variables), then we fix the

decision variables A (bike-sharing service level) and optimize decision variables B (the

transit frequencies) and C (all the other decision variables). We iteratively run these two

optimizations until it converges.

4.4.3 Anchor Point Parsimony

As discussed in Section 4.4.1, model complexity increases significantly with the number

of anchor points. When the number of anchor points increase to 7, the runtime is already

more than 30 hours for a single iteration. Furthermore, with a closer observation of the

added anchor points, we find that many of them are redundant. For example, we start the

algorithm with 3 service levels with anchor points [0.75, 0.85, 0.95]. After 4 iterations, the

anchor points become [0.75, 0.85, 0.9, 0.9125, 0.91875, 0.925, 0.95]. As you can see, the

algorithm is mostly exploring and adding points to the range of [0.9, 0.95]. [0.75, 0.85] is

redundant only adding complexity to the model.

Therefore, we developed an algorithm where we only keep three anchor points at all

iterations. We start with [a, b, c], we presented how we update the anchors below:

1. If the optimal solution x∗ is not a, b, or c, then the anchors becomes [a+x
∗

2
, x∗, x

∗+c
2

]

2. If the optimal solution x∗ is a, then the anchors becomes [a, a+b
2
, a+c

2
]

3. If the optimal solution x∗ is b, then the anchors becomes [a+b
2
, b, b+c

2
]

4. If the optimal solution x∗ is c, then the anchors becomes [a+c
2
, b+c

2
, c]
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4.5 Case Studies and Results

We applied our algorithm to Boston city in Massachusetts. We obtain the origin-destination

data from Longitudinal Employer-Household Dynamics Origin-Destination Employment

Statistics (LODES) (United States Census Bureau, 2020) and the transit network and sched-

ule from MBTA (2021a). The major bike-sharing system in Boston is Bluebikes. We are

able to get access to data like station location, number of docks at each location, and the

number of trips from their website (Bluebikes, 2022).

Figure 4.5: Map of Boston City, Massachusetts

4.5.1 Case Studies

We develop 5 different case studies with increasing size within the city of Boston (Figure

4.5). There are several reasons we are doing this. (1) The scale for running the optimization

model on the entire Boston city is very big, we are not able to apply the method of Wang

et al. (2022) for Boston proper directly. However, we still want to evaluate our results

against the optimal solution to get an optimality gap. Therefore, we run our method and the

method developed by Wang et al. (2022) in smaller case study to show obtain the optimality

gap of our method. (2) Other than obtaining the optimality gap, the increasing size of our
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case studies provides strong evidence of the scalability of our method. The runtime of our

method is significantly smaller than that when using the method of Wang et al. (2022) in

the smallest case study. And the method of Wang et al. (2022) will fail to provide a feasible

solution in the following case studies since it runs out of memory, while our method can

still provide results in a reasonable amount of time. (3) With different case study sizes, we

are able to evaluate the impact of the three different solution methods mentioned above.

Our final solution algorithm applies all three methods mentioned in Section 4.4 which are

the adaptive discretization method, coordinate descent method, and anchor point parsimony

method. We want to evaluate the contribution of each of them regarding the reduction of

runtime and optimality gap.

The case instances and their included regions are listed in Table 4.1.

Table 4.1 The regions included for 5 case instances
Case Instances Regions included
Case 1 Downtown
Case 2 Downtown and Beacon Hill
Case 3 Downtown, Beacon Hill and South End neighborhood
Case 4 Downtown, Beacon Hill, South End, Fenway, and South Boston neighborhood
Case 5 Downtown, Beacon Hill, South End, Fenway, South Boston, Charlestown,

East Boston, and Allston-Brighton neighborhood

4.5.2 Computational Results

In this section, we further investigate how the three solution methods contribute to the

reduction of runtime and how accurate these methods are compared to the true optimal

solution. The method of Wang et al. (2022) is used as an optimal solution benchmark. The

result for the current scenario is evaluated to be compared with our solution. We evaluate

the scenarios where we apply all three solution methods as well as the scenarios we only

apply two of them. We set a runtime limit of 24 hours and a memory limit of 50 GB.

Table 4.2 presents the objective values and the runtime under the current scenario, when

applying all three solution methods, applying two solution methods as well as the method

134



of Wang et al. (2022) (with and without time limit). Since the method of Wang et al. (2022)

guarantees optimality, it provides an optimal benchmark for our algorithm. The percentage

improvement of applying all three methods compared to the current scenario is presented

in the second last column. The optimality gap between applying all three methods and the

method of Wang et al. (2022) is presented in the last column. In Table 4.2, AD, CD, and

AP denotes The runtime is presented in the parentheses. Column AD+CD+AP presents

the results when we apply all three solution methods mentioned in Section 4.4. Column

AD+CD presents the results where we only apply the adaptive discretization method and

coordinate descent method. Comparing columns AD+CD+AP and AD+CD, we find that

the results are within 1% difference for all cases. However, the runtime for AD+CD is

much longer than AD+CD+AP in Instances 2,3, and 4. In Instance 5, AD+CD reached the

time limit of 24 hours and we cannot obtain a feasible solution since the memory limit has

been reached.

Table 4.2 The objectives and the runtime for 5 case instances under the current scenario
and different combinations of 3 methods

Current AD+CD+AP AD+CD AD+AP CD + AP AD without AD % Optimality
scenario time limit increase gap

1 1994 (7s) 2000 (2m) 1997 (34m) 1987 (24m) 1995 (1m) 2002 (256m) 2002 (256m) 0.31% 0.09%
2 8929 (9s) 9102 (25m) 9086 (89m) 9063 (6h) 9057 (10m) NA (50h) 9081 (24h) 1.94% NA
3 11670 (9s) 11957 (2h) 11975 (6.5h) 11973 (24h) 11973 (72m) NA NA 2.46% NA
4 47838 (15s) 48436 (3.7h) 48410 (12h) NA 48442 (2h) NA NA 1.25% NA
5 149192 (42s) 154182 (20h) NA NA 154006 (15h) NA NA 3.34% NA

*AD denotes adaptive discretization; CD denotes coordinate descent; AP denotes anchor point parsimony.
The second last column indicates the percentage difference between Column AD+CD+AP and the current
scenario. The last column indicates the percentage difference between Column AD+CD+AP and Column
AD without a time limit. If not specified, all solutions are evaluated with a time limit of 24 hours.

Column AD+AP applies adaptive discretization and anchor point parsimony methods.

Due to the large decision space, it does not manage to obtain a feasible solution for In-

stances 4 and 5. The runtime is also much larger in Instances 1, 2, and 3. It shows that

coordinate descent is indispensable in co-optimize the transit system and bike-sharing sys-

tem in large real-world instances.

Column CD+AP applies coordinate descent and anchor point parsimony methods. In-

stead of applying the adaptive discretization method stated in the study of Wang et al.
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(2022), we made a modification to the method. Rather than iteratively running the relaxed

model and the conservative model, we only run the conservative model and update the an-

chor points solely based on the results of the conservative models. Comparing the results

with Column AD+CD+AP, we find that it offers similar quality results (less than 0.5%)

within a similar, if not shorter, amount of time. It shows that iteratively running a con-

servative model and a relaxed model may not provide much value in reducing runtime or

improving the quality of our solution in our case studies.

Column AD without time limit is the method of Wang et al. (2022) which uses only

the adaptive discretization method. It guarantees optimality and provides a benchmark for

our own solution. Comparing this column with Column AD+CD+AP, we find that the

optimality gap for the first instance is within 0.1%. It proves that our method provides a

near-optimal solution. In Instances 2 - 5, we are not able to obtain a solution by applying

the method of Wang et al. (2022) within a reasonable amount of time. In the next column

AD, we set a time limit of 24 hours for the method of Wang et al. (2022). We find that the

runtimes reach the limit for instances 2 and 3. We are not able to obtain a feasible solution

for Instances 3, 4 and 5. This explains why we cannot simply apply the method of Wang

et al. (2022) to our instances. It again demonstrates the importance of coordinate descent

and anchor point parsimony in obtaining a near-optimal solution in a shorter runtime.

Comparing the current scenarios and our solution in columns 2 and 3, it is clear that

our solution provides a more efficient integrated design. The percentages of objective gain

range from 0.31% (case study 1) to 3.34% (case study 5). The percentage improvement

increases with the size of the instances in general. It shows that our tool is more powerful

in larger instances where multi-modal services can have a bigger impact.

Table 4.3 compares the market share under the current scenario and the proposed so-

lution. From Case 1 to Case 5, there is a clear trend of decreasing bike-sharing market

shares. This is due to the fact that smaller case instances are within the city center while

larger instances involve more longe-distance commuting. Biking is not suitable for long-
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Table 4.3 The market share for the current scenario and proposed solution of case 1-5
Instances Current Scenario Proposed Solution

Transit Bike-sharing Multi-modal Outside option Transit Bike-sharing Multi-modal Outside option
Case 1 53% 8% 0% 39% 52% 12% 0% 36%
Case 2 53% 3% 0% 43% 51% 9% 1% 40%
Case 3 52% 2% 1% 46% 49% 7% 2% 42%
Case 4 58% 2% 2% 38% 55% 8% 1% 36%
Case 5 57% 0% 0% 42% 56% 2% 2% 40%

distance traveling. Therefore, the market share for bike-sharing generally decreases with

the size of the case instance. However, the market share for multi-modal increases slightly

in the proposed solution with the size of the instance. It demonstrates the potential for an

integrated bike-sharing and transit system in longer-distance commuting.

Comparing the market shares between the current scenario and the proposed solution,

there is an obvious increase in bike-sharing and multi-modal market share in the proposed

solution. There is also a slight decline in transit market share. However, in Case 5, the

total transit ridership increases if we count commuters taking only fixed-route transit and

multi-modal services. In all instances, we are able to reduce the outside option market

share by 3%. It demonstrates the value of our proposed solution in discouraging private

vehicle driving.

4.6 Conclusion

The micromobility industry has been recovering rapidly after the hit of the pandemic.

More innovative micro-mobility platforms and services have provided an alternative for

a more sustainable urban transportation system. However, due to the limited travel range of

micro-mobility services, the integration of micro-mobility and public transit is the key to

its prevalence. This paper aims to co-optimize the public transit and bike-sharing system.

It provides an integrated framework for future urban transportation planning.

We develop an integrated model framework to optimize transit frequencies, bike-sharing

station locations, the number of docks at each location as well as the rebalancing opera-

tions. A mixed-integer non-linear programming model is formulated. In order to solve
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this complicated model, we applied three important solution algorithms: (1) adaptive dis-

cretization method, (2) coordinate descent method, and (3) anchor point parsimony method.

We compare our algorithm to the method of Wang et al. (2022) which guarantees optimal-

ity. We found that our solution algorithm can provide a near-optimal solution (within 0.1%

optimality gap) with only 5% of runtime. We also evaluate the impact of each individual

algorithm and find that coordinate descent and anchor point parsimony contribute signifi-

cantly to reducing runtime as well as reducing memory usage.

Our model and solution are evaluated using data from Boston city. We are able to

increase the bike-sharing market share as well as the multi-modal service market share.

Regarding future research, this model framework can be extended to e-scooter and e-

bike services with more consideration in charging facilities. Furthermore, our paper only

considers dock-based bike-sharing services. Future studies can also investigate the inte-

gration of dockless micro-mobility services with public transit systems. Lastly, our model

does not optimize the transit network. By further optimizing the transit network, it can

potentially provide more mobility and accessibility inside the city.
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Chapter 5

Conclusions and Future Directions

In this thesis, we focus on optimizing the public transit system considering the interactions

with both traditional operators (parking operators) and emerging technologies (ride-hailing

services and micro-mobility services). In this section, we summarize our contributions and

present future research directions.

5.1 Chapter 2: Comprehensive Public Transit Design Con-

sidering Parking Operator’s Response Using a Tractable

Two-stage Framework

This chapter aims to optimize transit frequencies and transit fare considering the inter-

actions with the parking operator as well as endogenous passenger choice. There was

extensive literature on transit network design and frequency setting. However, few stud-

ies considered the response from the parking operator and how this interaction exerted an

impact on the optimal transit frequencies and transit fare. In this chapter, we capture the

interrelationship between the transit operator and the parking operator as well as obtain the

optimal transit frequencies and transit fare under different strategies and assumptions.

Methodologically, this is the first paper presenting a two-stage game-theoretic model
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and a heuristic solution to optimize transit frequencies and transit fare considering the park-

ing operator’s response, road congestion, and endogenous passenger demand. A mixed-

integer non-linear model is developed to optimize transit frequencies and transit fare. The

coordinate descent method and acceleration method is applied to the base models to solve

the complicated non-linear optimization model. Regression method is introduced to solve

incorporate the Stage II response to Stage I decision making. The sequential Optimization

Heuristic Method is applied to obtain Nash Equilibrium in the second stage. From the

methodological standpoint, it provides a prototype for solving two-stage sequential games.

From a practical standpoint, it demonstrates that it is necessary for researchers to in-

corporate the responses from other major players in the system when optimizing the transit

system. The results demonstrate that the optimal frequencies and transit fare is different

when considering the parking operator’s response. The positive impact on systemwide

passenger travel cost under the optimal solution is also overestimated when assuming the

parking fees and parking capacities will remain unchanged. Two different transit pricing

strategies (upfront pricing and flexible second-stage pricing strategy) are evaluated. We

find that the flexible second-stage pricing strategy provides a solution with a lower sys-

temwide passenger travel cost compared to the upfront pricing strategy. Interestingly, it

shows that pricing flexibility will actually put the transit operator at disadvantage. This

argument is also proved theoretically. Our model framework enables the evaluation of

different government policies like subsidies, taxation, road pricing, etc.

This research leads to numerous future directions of research. It provides a model

framework to optimize transit operations considering the response from the parking oper-

ator. The framework can be easily extended to other transportation systems where com-

petition happens between other operators. For example, the interactions between transit

and ride-hailing system, and between private vehicle driving and autonomous vehicle ride-

hailing systems can be potentially analyzed using this framework. Furthermore, more gov-

ernment regulations and policies can be evaluated using this framework. For example, the
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impacts of road space rationing in Beijing, and congestion pricing in NYC can be evaluated

using this framework.

5.2 Chapter 3: Optimizing Transit Network Planning and

Local On-demand Services in Transit Desert Regions

This chapter aims to optimize the transit network, frequencies as well as fleet size of on-

demand services to provide a solution to the transit desert problem. Commuters can choose

from four travel modes, fixed-route transit, on-demand services, multi-modal services, and

outside options, depending on the attractiveness of each travel mode.

From a methodological standpoint, we develop a mixed-integer non-linear program-

ming model to optimize the transit network, frequencies, and fleet size of on-demand ser-

vices. We manage to incorporate the complicated ride-sharing service process into our

model in a tractable manner. In order to solve the non-linear optimization model, a two-

step heuristic solution approach is developed. In the first step, we solve the transit network

design problem and determine the transit lines. In the second step, we determine the transit

frequencies and fleet size. In the first step, we apply rounding heuristics using callback

functions in Gurobi. We also compare our approach with the other rounding heuristic

which runs the linear relaxation model to optimality and then applies rounding heuristic.

We argue that our approach is faster and more effective. This research provides an alter-

native way to tackle complicated mixed-integer non-linear programming models by using

callback functions.

Practically, we apply our framework to the greater Boston city. We first identify the

inequality of commuting costs among different regions. Our proposed solution managed

to reduce the overall social costs and travel disutility. The overall social costs are reduced

by 2.76%, 3.84%, and 6.96% in Woburn, Salem, and Waltham respectively. The commuter

travel disutility also decreases by 5.73%, 6.57%, and 9.56% respectively. We also find that
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our solution disproportionately benefits low-income commuters and commuters with no

cars. A cheaper on-demand service benefits commuters with no private vehicles the most.

However, it has a more complicated effect on environmental costs. The city planner needs

more take specific travel patterns into consideration when making policies.

There are several future research directions. First, we do not consider road congestion

in this paper. Congestion can be incorporated into the framework in future studies. Sec-

ondly, we significantly simplify the on-demand service operations in the current model.

Future studies can also focus on how different dispatching, matching, and routing rules can

influence the systemwide cost. Thirdly, we only consider low-capacity on-demand service

vehicles to serve as feeders to transit lines. There are other forms of integration that are

worth investigating. For example, high-capacity on-demand vehicles can be used as feeders

to the system. Flexible and hybrid transit should also be investigated as a solution to transit

desert problems.

5.3 Chapter 4: Bikes and Buses: A Heuristic Adaptive

Discretization Scheme for Multimodal Network De-

sign

This chapter aims to co-optimize the transit system as well as the bike-sharing system

deciding the optimal transit frequencies, bike-sharing station location, number of bike-

sharing docks and rebalancing operations to maximize the saved vehicle miles traveled

by private vehicles. The passengers can choose from four different travel modes: fixed-

route transit, bike-sharing services, multi-modal services, and outside options based on the

attractiveness of each travel mode.

From the methodological perspective, we are the first paper to formulate a mixed-

integer non-linear optimization model to optimize both transit frequencies and bike-sharing
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operations decisions like bike station location and rebalancing operations. We also manage

to solve this complicated model by adopting the adaptive discretization method, coordinate

descent method, and anchor point parsimony method. By comparing our results to the op-

timal solution, we are able to achieve an optimality gap of less than 0.5% while reducing

the runtime by more than 95%. The framework is tested using data from the city of Boston.

We develop 6 study instances with increasing sizes. Our method is able to finish within 24

hours. It demonstrates our ability to provide a near-optimal solution in a reasonable time

for large-scale realistic cases.

From a practical standpoint, we provide the optimal transit frequencies and bike-sharing

operations in Boston city. We are able to reduce the total vehicle miles traveled by private

vehicles by more than 5%. We also further demonstrate how the optimal solution changes

under different budget levels. The integration of bike-sharing and transit systems plays a

greater role in longer-distance travel. It encourages more people to switch from a private

vehicle driving.

This research generates several future directions. First of all, we only consider bike-

sharing system in this paper, but this model framework can be easily extended to other

micro-mobility services like scooters and e-bikes. Secondly, we have only considered

dock-based bike-sharing system in this paper, future studies can further investigate the

co-optimization of dockless micro-mobility services. Thirdly, our model does not optimize

the transit network. Future research can further integrate the transit system and the bike-

sharing system by adjusting the current transit lines. It has the potential to provide more

mobility in the transit desert regions inside the city. Lastly, there are other micro-mobility

infrastructures decisions that need to be optimized in the integrated system. For example,

what’s the optimal bike lane network to maximize biking experience? Where to locate the

charging facilities if e-bikes and e-scooters are adopted? These are some questions needing

to be addressed in future works.
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