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Abstract 

The accumulating evidence suggest that viruses and their components can be 

domesticated by their hosts, equipping them with convenient molecular toolkits for 

various functions. One of such domesticated system is Gene Transfer Agents (GTAs) that 

are produced by some bacteria and archaea. GTAs morphologically resemble small 

phage-like particles and contain random fragments of their host genome. They are 

produced only by a small fraction of the microbial population and are released through a 

lysis of the host cell. Bioinformatic analyses suggest that GTAs are especially abundant 

in the taxonomic class of Alphaproteobacteria, where they are vertically inherited and 

evolve as a part of their host genomes. In this work, we extensively analyze evolutionary 

patterns of alphaproteobacterial GTAs using comparative genomics, phylogenomics and 

machine learning methods. We initially develop an algorithm that validate the wide 

presence of GTA elements in alphaproteobacterial genomes, where they are generally 

mistaken for prophages due to their homology. Furthermore, we demonstrate that GTAs 

evolve under the selection that reduces the energetic cost of their production, indicating 

their importance for the conditions of the nutrient depletion. The genome-wide screenings 

of translational selection and coevolution signatures highlight the significance of GTAs as 

a stress-response adaptation for the horizontal gene transfer, revealing a set of previously 

unknown genes that could play a role in the GTA cycle. As production of GTAs leads to 

the host death, their maintenance is likely to be under a kin or group level selection. By 

combining our findings with accumulated body of knowledge, this work proposes a 

conceptual model illustrating the role of GTAs in bacterial populations and their 

persistence for hundreds of millions of years of evolution.  
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Horizontal gene transfer – a major mechanism for the microbial 

evolution 

Thanks to the billions of years of evolution, a remarkable diversity of microbial 

organisms has emerged, colonizing almost every imaginable environmental habitat – 

from cold ecosystems to terrestrial hot springs (DeLong & Pace, 2001; Lozupone & 

Knight, 2007; Shu & Huang, 2022). Hence, microbes are arguably can be considered as 

the most dominant life forms in the biosphere, playing a critical role in a wide range of 

biogeochemical processes (Madsen, 2011). Consequently, it is essential to gain a better 

understanding of factors that govern their evolution and diversification in order to address 

arising challenges in many different fields including medicine (Frieri et al., 2017), 

climate change (Kirchman et al., 2009), agriculture (Sundin & Wang, 2018) and 

bioremediation (Pieper & Reineke, 2000). 

Microbes can get novel traits and phenotypes via two primary mechanisms – 

either by mutation of the existing DNA material or through a horizontal gene transfer 

(HGT). In the latter, the microbial cells acquire the genetic material not from their 

parents, as opposed to the vertical inheritance, but from other, even very distantly related 

organisms (Gogarten & Townsend, 2005; Koonin et al., 2001). Despite the initial 

skepticism and underestimation, the modern genomic data unequivocally suggest that 

horizontal gene transfer is a crucial factor in the microbial evolution (Soucy et al., 2015). 

The main benefits of gene exchange in bacterial communities are associated with the 

rapid spread of advantageous alleles and genes, promoting adaptation to new and 

unstable ecological conditions (Arnold et al., 2022). For example, bacteria can rapidly 

become unsusceptible to antibiotics by horizontal acquisition of certain genes from 

antibiotic-resistant bacteria, posing a serious threat to the global healthcare (Andersson & 

Hughes, 2010). Systematic quantification of HGT events suggest that a lot of bacterial 

genomes exhibit a highly mosaic structure, with a considerable number of their genes 

being derived from diverse microbial lineages (Andreani et al., 2017; Jain et al., 2003; 

Zamani-Dahaj et al., 2016; Zhaxybayeva et al., 2006). 

Three canonical molecular mechanisms that facilitate HGT are transformation, 

conjugation, and transduction (Figure 1). In transformation, bacteria uptake the genetic 
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material from the environment by developing a physiological state known as a 

competence (Avery et al., 1944; Griffith, 1928). Although a natural transformation under 

the laboratory conditions was observed only for a limited number of bacterial species 

(Johnston et al., 2014), the competence proteins can be bioinformatically identified in the 

vast majority of sequenced bacterial genomes suggesting that it can be more common in 

natural environments (Pimentel & Zhang, 2018). During the transformation, bacteria 

import environmental DNA using the competence proteins, generating a ssDNA molecule 

(Chen & Dubnau, 2004). Consequently, the imported ssDNA can either be utilized as a 

source of deoxyribonucleotides or get integrated into the host genome via a homologous 

recombination pathway by recruiting DprA and RecA enzymes (Johnston et al., 2014; 

Mell & Redfield, 2014). As a success rate of the homologous recombination 

exponentially decreases with increasing divergence of DNA sequence (Majewski, 2001; 

 

Figure 1. Three canonical mechanisms for HGT. 
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Majewski & Cohan, 1999), transformation primarily promotes the HGT between closely 

related organisms. Benefits linked to the transformation-mediated homologous 

recombination include the dissemination of advantageous alleles, reduction of the 

mutation load (Takeuchi et al., 2014), assistance in DNA damage repair (Michod et al., 

1988), and introduction of novel genes via flanking homology (Kung et al., 2013). 

In conjugation, donor and recipient cells establish a cell-to-cell contact via a pilus 

that facilitates transfer of the conjugative genetic elements (Lederberg & Tatum, 1946). 

Such conjugative elements generally possess all genes required for the assembly of a 

conjugative machinery and can additionally carry extra accessory genes. The content of 

the accessory genes is very variable in the nature and thus the conjugative elements 

considerably differ in their size. The smallest elements contain only genes necessary for 

their propagation, while the largest ones have a length of at least ~1 MB, encoding 

diverse metabolic pathways (Romanchuk et al., 2014). Upon the transfer into the 

recipient cells, conjugative elements can either stay as autonomous plasmids or integrate 

themselves into the host genome using the molecular mechanisms similar to those of 

viruses (Johnson & Grossman, 2015). Consequently, conjugation can occur between 

phylogenetically distant microbes and was even demonstrated to happen between 

Bacteria and Archaea that represent two distinct domains of life (Dodsworth et al., 2010).  

The conjugation is an extremely widespread process, as it has been detected in diverse 

microbial communities that were isolated from vastly different environments (Cury et al., 

2017; Davison, 1999). 

In transduction, the HGT is facilitated by bacterial and archaeal viruses. It can 

either happen due to the erroneous excision of integrated viruses, which will include 

flanking segments of the host genome or the accidental packaging of random fragments 

of the host DNA into viral capsids (Touchon et al., 2017). Consequently, the transducing 

viruses shuttle packaged genetic material to other cells in the population. Hence, 

transduction can equip bacteria with novel traits, including resistance to antibiotics, 

secretion of virulence factors and metabolism of novel molecules (Haaber et al., 2017; 

Lindell et al., 2004; Wagner & Waldor, 2002). As bacterial viruses (phages) are the most 

abundant entities in the biosphere and the rate of infection is extremely high (~1023 
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infections per second), the transduction greatly influences the bacterial ecological and 

evolutionary dynamics (Clokie et al., 2011; Suttle, 2007). 

The shared characteristic among described canonical processes for HGT is their 

ubiquitous occurrence in the nature, and their impact on microbes belonging to almost all 

established phylogenetic clades. However, other additional mechanisms for exchange of 

genes continue to be discovered, expanding the currently known repertoire. These 

relatively understudied systems include membrane vesicles, nanotubes, and gene transfer 

agents (Emamalipour et al., 2020; Soucy et al., 2015).  

Membrane vesicles (MVs) are produced by all living cells and represent spherical 

buddings derived from the cell surfaces (Domingues & Nielsen, 2017). In addition to 

mediating functions similar to other extracellular vesicles, such as cell-to-cell 

communication, delivering different cargo and removing toxic compounds, MVs also 

participate in genetic exchange by carrying DNA molecules (Fulsundar et al., 2014; Grull 

et al., 2018). By coating the genetic material, MVs confer protection of the DNA against 

nucleases and facilitate HGT between cells (Domingues & Nielsen, 2017). Multiple 

studies indicate that the nature of DNA within the MVs can vary, including the genetic 

material originating from chromosomes, plasmids and phages (Orench-Rivera & Kuehn, 

2016). Upon the entry into the recipient cell, the MVs-delivered DNA can get integrated 

into the genome by the homologous recombination (Domingues & Nielsen, 2017). 

Similar to MVs, nanotubes are also membranous structures that mediate 

intercellular communication by physically connecting neighboring cells (Dubey & Ben-

Yehuda, 2011). Unlike conjugation pili that generally facilitate transfer of mobile 

elements that directly encode them, nanotubes can transfer non-conjugative plasmids and 

participate in exchange of various cytoplasmic molecules, including nutrients and toxins 

(Abe et al., 2020). Interestingly, the recent study in Bacillus subtilis suggests that the 

nanotubes are formed when cells are dying, or even after the cell disintegration, 

challenging the previous belief that they have a physiological role in natural 

environments (Pospisil et al., 2020). Hence, further studies are needed to validate the role 

of nanotubes in HGT and their prevalence in microbial communities.  
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Gene transfer agents – phage-like particles for genetic exchange 

Gene transfer agents are found in multiple microbial organisms 

Another understudied molecular system that can facilitate exchange of genes and 

the main theme of this dissertation is gene transfer agents (GTAs) (Lang et al., 2012). 

GTAs were discovered in 1970s by studying the model alphaproteobacterium 

Rhodobacter capsulatus, when Barry Marrs found that a previously unknown small-sized 

vector is capable of transferring any genetic marker to other cells in the population 

(Marrs, 1974). While the molecular nature of that vector was initially unresolved, the 

subsequent studies have unveiled that GTAs resemble tiny phage-like particles that carry 

a small fragment of a linear duplex DNA molecule (Solioz & Marrs, 1977; Solioz et al., 

1975). Since then, the production of GTAs was experimentally demonstrated in multiple 

bacterial species and at least one archaeon (Anderson et al., 1994; Bertani, 1999; Biers et 

al., 2008; Gozzi et al., 2022; Humphrey et al., 1997; Nagao et al., 2015; Rapp & Wall, 

1987; Tomasch et al., 2018). Intriguingly, among the experimentally validated GTAs, 

there are five genetically unrelated groups that present in phylogenetically distant 

microbial clades. These data suggest that GTAs have originated multiple times from 

different genetic sources via the process of convergent evolution (Lang et al., 2017). 

While these distinct GTA groups have some molecular and genetic differences, they also 

share significant commonalities with each other. All GTA groups generally encapsulate 

mostly random pieces of the host genome, primarily propagate via the vertical inheritance 

and cannot self-replicate independently from their hosts due to the limited size of their 

capsid heads (Lang et al., 2017). These properties put GTAs in a stark contrast with 

mobile elements involved in conjugation and transduction that typically exhibit an 

autonomous mode of behavior (Frost et al., 2005).  

As GTA-producing organisms die, individual selection becomes non-operational 

for that trait, and the benefits associated with GTAs production should function at the 

population level. While the nature of such benefits is not completely characterized, GTAs 

were hypothesized to be involved in exchange of advantageous genes and facilitating the 

repair of DNA damage (Lang et al., 2012; Marrs et al., 1977; McDaniel et al., 2010). 

Indeed, 48 years after their discovery, the beneficial role of GTAs in promoting DNA 



 

 7 

repair processes was experimentally confirmed for the GTA system in the model 

organism Caulobacter crescentus (Gozzi et al., 2022). Hence, GTAs can be described as 

phage-derived elements that have been repurposed by their hosts to serve as the vehicles 

for genetic exchange within microbial populations. 

The gene transfer agent of Rhodobacter capsulatus (RcGTA) 

Currently, the most well-studied and well-characterized GTA system belongs to 

the Rhodobacter capsulatus (abbreviated as “RcGTA”). The production of RcGTA is 

governed by at least twenty four genes that are scattered across five different loci (Figure 

2) (Hynes et al., 2016; Lang & Beatty, 2000; Westbye et al., 2016). One of these loci, 

known as the ‘head-tail cluster’ (~14 kb), harbors seventeen genes that are required for 

the assembly of DNA packaging machinery and construction of head and tail structures 

(Lang & Beatty, 2000). Comparative genomics analyses suggest that eighteen out of 

twenty-four genes have homologs in the viral databases, supporting the idea that RcGTA 

system has originated from phages many millions years ago (Shakya et al., 2017). 

Despite that RcGTA shares significant morphological and genetic similarities with 

phages, there are notable differences in their molecular cycles (Figure 3). The production 

of RcGTA particles is increased during the stationary phase (Solioz et al., 1975) and is 

particularly pronounced under the conditions of the nutrient depletion (Westbye, O'Neill, 

et al., 2017). As a result, RcGTAs are produced only by a small fraction of the population, 

approximately 0.15 to 3% (P. C. Fogg et al., 2012; Hynes et al., 2012). The RcGTA 

 

Figure 2. Gene map of five loci that encode production of RcGTAs. Each gene is 

illustrated as an arrow and their functional role is shown below them.  
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producers start actively expressing RcGTA genes, causing a subsequent lysis and release 

of particles that contain ~4.5 kb of encapsulated DNA (Yen et al., 1979). The remaining 

members of the population act as RcGTA recipients by producing specific polysaccharide 

receptors (Brimacombe et al., 2013). These receptors play a crucial role in the adsorption 

of RcGTA particles, making them essential for the successful gene transfer (Alim et al., 

2023; Brimacombe et al., 2013). Consequently, the RcGTA-delivered DNA entry into 

cells is facilitated by the competence system (Brimacombe et al., 2015) and it is 

integrated into the recipient genome via the RecA-mediated homologous recombination 

(Brimacombe et al., 2014). These mechanisms indicate that RcGTA-mediated HGT 

incorporates properties of both transduction and transformation processes, where phage-

like entities facilitate exchange of genes using the competence system and homologous 

recombination (Brimacombe et al., 2015).  

As production of RcGTA particles effectively kills the cell, it is critical to tightly 

control the expression of RcGTA genes. Indeed, numerous studies indicate that multiple 

genetic circuits are involved in this important task (Fogg, 2019; Lang & Beatty, 2000; 

Mercer & Lang, 2014; Mercer et al., 2012; Westbye, Beatty, et al., 2017). The expression 

of RcGTA genes is primarily regulated by the GtaR/GtaI-quorum sensing regulator and 

 

Figure 3. The differences between RcGTA and lysogenic phage cycles. 
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the CckA-ChpT-CtrA phosphorelay system (Lang & Beatty, 2000; Leung et al., 2012; 

Mercer et al., 2012; Schaefer et al., 2002). Molecular studies suggest that both CtrA and 

GtaR indirectly control the expression of RcGTA genes using the intermediary proteins 

(Fogg, 2019; Leung et al., 2012). One of such proteins is GafA, which serves as a direct 

transcription regulator of two RcGTA loci – the head-tail cluster and the holin/endolysin 

genes that are crucial for the release of RcGTA particles (Fogg, 2019). The complete 

mechanism of the CtrA protein’s action on RcGTA genes is not fully understood. 

However, it appears to play a role in regulating the production of RcGTAs by affecting 

levels of the cyclic dimeric GMP (c-di-GMP) second messenger (Farrera-Calderon et al., 

2021; Pallegar et al., 2020). Such complex and deep RcGTA system’s integration into the 

molecular circuits of its host signifies its importance for the producing organisms. 

Evolution of RcGTA-like GTA systems 

While homologs of the RcGTA head-tail cluster are found in viral databases 

(Lang & Beatty, 2000), they are also extensively detected in bacterial genomes and 

particularly pronounced in the taxonomic class of Alphaproteobacteria (Lang & Beatty, 

2007; Lang et al., 2002; Shakya et al., 2017). Although some of such homologs are likely 

located in the prophage regions (Shakya et al., 2017), others may be part of the functional 

or decaying RcGTA-like GTA systems (here referred as “GTA systems” for brevity). 

Indeed, functionally validated GTA systems in alphaproteobacterial species of Ruegeria 

pomeroyi (Biers et al., 2008), Rhodovulum sulfidophilum (Nagao et al., 2015), 

Dinorosobacter shibae (Tomasch et al., 2018) and Caulobacter crescentus (Gozzi et al., 

2022) are all encoded by homologs of RcGTA genes. The comparative genomics analyses 

indicate that the regions containing at least 9 homologs of the head-tail cluster (so-called 

‘large clusters’) generally have evolutionary patterns similar to the core housekeeping 

genes, which significantly differ from those observed in common phages (Shakya et al., 

2017). These large clusters of GTA genes are widely computationally detected in 

alphaproteobacterial genomes within four taxonomic orders – Sphingomonadales, 

Rhizobiales, Caulobacterales and Rhodobacterales (Lang & Beatty, 2007; Shakya et al., 

2017). The molecular clock estimates that large clusters have originated at least 700 

million years ago and have been evolving as part of their host genomes since that time 
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with very limited horizontal transfer events (Shakya et al., 2017). Their widespread 

presence raises an intriguing hypothesis that GTAs are much more widespread than it is 

currently acknowledged. Conversely, multiple species from the same alphaproteobacterial 

clade do not encode large clusters, suggesting that under some ecological conditions 

GTAs are not beneficial for their hosts and can get purged from the genomes (Shakya et 

al., 2017). 

Overview of chapters 

The main purpose of this thesis is to advance our understanding and knowledge of 

alphaproteobacterial GTAs by thoroughly investigating their evolutionary patterns using 

phylogenomics and comparative genomics methods. 

In chapter 2, we conceptualize and implement a machine learning tool called 

“GTA-Hunter”, which can quickly and accurately predict large clusters of GTA genes 

without relying on complex and time-consuming phylogenetic analyses. The efficiency of 

the GTA-Hunter arises from its ability to distinguish GTA proteins from their viral 

homologs by analyzing their amino acid composition dissimilarities. After running the 

GTA-Hunter on a collection of more than 1,400 alphaproteobacterial genomes, we 

detected putative GTA systems in approximately 57.5% of them. Our findings reveal that 

GTA systems are generally incorrectly annotated as prophages due to their homology. 

In chapter 3, we seek to understand the nature of amino acid bias in GTAs that we 

have observed while analyzing GTA clusters predicted by GTA-Hunter. We discovered 

that GTA proteins are composed of energetically cheaper amino acids in comparison to 

their viral homologs. Interestingly, in instances when viruses horizontally acquire GTA 

genes, that amino acid bias disappears over the course of their evolution. This implies 

that reduction in the energetic cost of proteins plays an important role for GTAs, but not 

for phages. In Alphaproteobacteria, this bias is particularly pronounced in the taxonomic 

order of Sphingomonadales, whose members are known to predominantly live in nutrient 

depleted conditions. By analyzing patterns of substitutions in that taxon, we found that in 

many cases positive selection drives the reduction in the protein cost. These findings 
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support that GTAs are specialized bacterial adaptations that facilitate the survival of their 

host populations under the nutrient-limited conditions, which are very prevalent in nature. 

While our findings indicate that selection favors nonsynonymous substitutions 

toward energetically cheaper amino acids, synonymous substitutions could also be under 

the selection pressure. Although synonymous codons encode the same amino acids, they 

are not used to the same extent because different organisms are enriched in different sets 

of codons. That phenomenon is known as the codon usage bias and is explained in part 

by the translational selection pressure to match the available pool of tRNA molecules 

(Plotkin & Kudla, 2011). In chapter 4, we examine signatures of codon usage bias in 

GTAs and their host genomes. We found that codon usage bias substantially fluctuates 

among individual GTA genes and different taxonomic groups but is especially notable in 

Sphingomonadales order. We further detected that codon usage bias has a significant 

negative correlation with the energetic cost of GTA proteins, indicating that increase in 

production of GTAs is also associated with the stronger selection on the carbon saving. 

By conducting genome-wide screening for gene families with the similar patterns in the 

codon usage bias, we found 13 genes that were not previously implicated to be involved 

in the GTA cycle. They are significantly enriched in ‘homologous recombination’, 

‘mismatch repair’, ‘carotenoid biosynthesis’, and ‘terpenoid backbone biosynthesis’ 

molecular pathways. These results provide insights into the impact of translational 

selection on evolution of GTA genes across various taxonomic clades and outline a 

specific set of genes that are likely to be involved in the integration of GTA-delivered 

DNA into the recipient genome. 

As GTAs evolve as part of their host genomes for hundreds of millions of years, 

GTA genes are expected to coevolve with other gene families involved in their cycle. In 

chapter 5, we study coevolutionary relationships between GTA genes and other gene 

families residing in their host genomes by comparing their evolutionary rates across 

phylogenetic trees. Our results suggest that GTA genes significantly coevolve with each 

other, and with 59 gene families, 4 of which have been previously experimentally 

validated to be involved in the GTA cycle. Other gene families are associated with 

various molecular processes, including DNA repair, stress response and biofilm 
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formation. By combining existing knowledge about GTAs, we outlined a model that 

explains their persistence in microbial populations. 

Despite the shared ancestry with viruses, molecular and evolutionary data suggest 

that GTAs are strongly integrated into cellular functions of their hosts and provide 

benefits to them. In chapter 6, we propose to classify GTAs as ‘viriforms’ that per 

definition of International Committee on Virus Taxonomy (ICTV) represent virus-derived 

elements that have been exapted by their hosts to perform functions important for their 

lifecycle. Using phylogenetic analyses, we demonstrated that different GTAs groups have 

clearly distinct origins and follow different evolutionary trajectories comparatively to the 

viruses. We established specific criteria that characterize GTAs and outlined a 

classification scheme for three distinct GTAs lineages. The ICTV has approved and 

ratified the proposal in April 2023 (Zerbini et al., 2023). 
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Abstract 

Many of the sequenced bacterial and archaeal genomes encode regions of viral 

provenance. Yet, not all of these regions encode bona fide viruses. Gene transfer agents 

(GTAs) are thought to be former viruses that are now maintained in genomes of some 

bacteria and archaea and are hypothesized to enable exchange of DNA within bacterial 

populations. In Alphaproteobacteria, genes homologous to the ‘head-tail’ gene cluster 

that encodes structural components of the Rhodobacter capsulatus GTA (RcGTA) are 

found in many taxa, even if they are only distantly related to Rhodobacter capsulatus. 

Yet, in most genomes available in GenBank RcGTA-like genes have annotations of 

typical viral proteins, and therefore are not easily distinguished from their viral homologs 

without additional analyses. Here, we report a ‘support vector machine’ classifier that 

quickly and accurately distinguishes RcGTA-like genes from their viral homologs by 

capturing the differences in the amino acid composition of the encoded proteins. Our 

open-source classifier is implemented in Python and can be used to scan homologs of the 

RcGTA genes in newly sequenced genomes. The classifier can also be trained to identify 

other types of GTAs, or even to detect other elements of viral ancestry. Using the 

classifier trained on a manually curated set of homologous viruses and GTAs, we 

detected RcGTA-like ‘head-tail’ gene clusters in 57.5% of the 1,423 examined 

alphaproteobacterial genomes. We also demonstrated that more than half of the in silico 

prophage predictions are instead likely to be GTAs, suggesting that in many 

alphaproteobacterial genomes the RcGTA-like elements remain unrecognized. 

Introduction 

Viruses that infect bacteria (phages) are extremely abundant in biosphere (Keen, 

2015). Some of the phages integrate their genomes into bacterial chromosomes as part of 

their infection cycle and survival strategy. Such integrated regions, known as prophages, 

are very commonly observed in sequenced bacterial genomes. For example, Touchon et 

al. (2016) report that 46% of the examined bacterial genomes contain at least one 

prophage (Touchon et al., 2016). Yet, not all of the prophage-like regions represent bona 

fide viral genomes (Koonin & Krupovic, 2018). One such exception is a Gene Transfer 
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Agent, or GTA for short (reviewed most recently in (Lang et al., 2017) and (Grull et al., 

2018)). Many of genes that encode GTAs have significant sequence similarity to phage 

genes, but the produced tailed phage-like particles generally package pieces of the host 

genome unrelated to the “GTA genome” (Hynes et al., 2012; Tomasch et al., 2018). 

Moreover, the particles are too small to package complete GTA genome (Lang et al., 

2017). Hence, GTAs are different from lysogenic viruses, as they do not use the produced 

phage-like particles for the purpose of their propagation. 

Currently, five genetically unrelated GTAs are known to exist in Bacteria and 

Archaea (Lang et al., 2017). The best studied GTA is produced by the 

alphaproteobacterium Rhodobacter capsulatus and is referred hereafter as the RcGTA. 

Since RcGTA’s discovery 45 years ago (Marrs, 1974), the genes for the related, or 

RcGTA-like, elements have been found in many of the alphaproteobacterial genomes 

(Shakya et al., 2017). For a number of Rhodobacterales isolates that carry RcGTA-like 

genes, there is an experimental evidence of GTA particle production (Y. Fu et al., 2010; 

Nagao et al., 2015; Tomasch et al., 2018). Seventeen of the genes of the RcGTA 

“genome” are found clustered in one locus and encode proteins that are involved in DNA 

packaging and head-tail morphogenesis (Figure 1 and Supplementary Table S1). This 

locus is referred to as a ‘head-tail cluster’. The remaining seven genes of the RcGTA 

genome are distributed across four loci and are involved in maturation, release and 

regulation of RcGTA production (Hynes et al., 2016). Since the head-tail cluster 

resembles a typical phage genome with genes organized in modules similar to those of a 

l phage genome (Lang et al., 2017), and since many of its genes have homologs in bona 

fide viruses and conserved phage gene families (Shakya et al., 2017), the cluster is 

usually designated as a prophage by algorithms designed to detect prophage regions in a 

genome (Shakya et al., 2017). The RcGTA’s classification as a prophage raises a 

possibility that some of the ‘in silico’-predicted prophages may instead represent 

genomic regions encoding RcGTA-like elements. 

Presently, to distinguish RcGTA-like genes from the truly viral homologs one 

needs to examine evolutionary histories of the RcGTA-like and viral homologs and to 

compare gene content of a putative RcGTA-like element to the RcGTA “genome”. These 
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analyses can be laborious and often require subjective decision making in interpretations 

of phylogenetic trees. An automated method that could quickly scan thousands of 

genomes is needed. Notably, the RcGTA-like genes and their viral homologs have 

different amino acid composition (Figure 1 and Supplementary Figure S1). Due to the 

purifying selection acting on the RcGTA-like genes at least in the Rhodobacterales order 

(Lang et al., 2012) and of their overall significantly lower substitution rates when 

compared to viruses (Shakya et al., 2017), we hypothesize that the distinct amino acid 

composition of the RcGTA-like genes is preserved across large evolutionary distances, 

and therefore the RcGTA-like genes can be distinguished from their bona fide viral 

homologs by their amino acid composition.  

 

Figure 1. The ‘head-tail’ cluster of the Rhodobacter capsulatus GTA “genome” and 

the amino acid composition of viral and alphaproteobacterial homologs for some of 

its genes. Genes that are used in the machine learning classification are highlighted in 

grey. For those genes, the heatmap below a gene shows the relative abundance of each 

amino acid (rows) averaged across the RcGTA-like and viral homologs that were used 

in the classifier training (columns). The amino acids are sorted by the absolute 

difference in the average relative abundance between RcGTA-like and viral homologs, 

which was additionally averaged across 11 genes. The heatmaps of the amino acid 

composition in the individual homologs are shown in Supplementary Figure S1. 
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Support vector machine (SVM) is a machine learning algorithm that can quickly 

and accurately separate data into two classes from the differences in specific features 

within each class (Cortes & Vapnik, 1995). The SVM-based classifications have been 

successfully used to delineate protein families (e.g., DNA binding proteins (Bhardwaj et 

al., 2005), G-protein coupled receptors (Karchin et al., 2002), and herbicide resistance 

proteins (Meher et al., 2019)), to distinguish plastid and eukaryotic host genes (Kaundal 

et al., 2013), and to predict influenza host from DNA and amino acid oligomers found in 

the sequences of the flu virus (Xu et al., 2017). During the training step, the SVM 

constructs a hyperplane that best separates the two classes. During the classification step, 

data points that fall on one side of the hyperplane are assigned to one class, while those 

on the other side are assigned to the other class. In our case, the two classes of elements 

in need of separation are phages and GTAs, while their distinguishing features are several 

metrics that capture the amino acid composition of the encoding genes. 

In this study, we developed, implemented, and cross-validated an SVM classifier 

that distinguishes RcGTA-like head-tail cluster genes from their phage homologs with 

high accuracy. We then applied the classifier to 1,423 alphaproteobacterial genomes to 

examine prevalence of putative RcGTA-like elements in this diverse taxonomic group 

and to assess how many of the RcGTA-like elements are mistaken for prophages in the in 

silico predictions. 

Materials and Methods 

The Support Vector Machine (SVM) classifier and its implementation 

Let’s denote as u a homolog of an RcGTA-like gene	g that needs to be assigned to 

a class y, “GTA” (y = −	1) or “virus” (y = 1). The assignment is carried out using a 

weighted soft-margin SVM classifier, which is trained on a dataset of m sequences T! =

,T"
!, … , T#

! / that are homologous to u (see “SVM training data” section below). The 

basis of the classification is the n-dimensional vector of features 𝐱 associated with 

sequences u and T$
! (see “Generation of sequence features” section below). Each 

sequence T$
!is known to belong to a class y$. 
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Using the training dataset T!, we identify hyperplane that separates two classes as 

an optimal solution to the objective function: 

min3
1
2 |
|𝐰||% + 	𝐂9ξ$

#

$&"

;	(eq. 1) 

subject to: 

	∀$∶ 	y$(𝐰𝐱𝐢 	+ 	b) ≥ 	1 −	ξ$, where		ξ$ ≥ 	0, i	 = 	1, … ,m	(eq. 2) 

where 𝐰 and b define the hyperplane f(𝐱) = 𝐰𝐱𝐢 + b that divides the two classes, ξ$ is 

the slack variable that allows some training data points not to meet the separation 

requirement, and 𝐂 is a regularization parameter, which is represented as an m	 × 	m 

diagonal matrix. The 𝐂 matrix determines how lenient the soft-margin SVM is in 

allowing for genes to be misclassified: larger values “harden” the margin, while smaller 

values “soften” the margin by allowing more classification errors. The product 𝐂x 

represents the cost of misclassification. The most suitable values for the 𝐂 matrix were 

determined empirically during cross-validation, as described in the “Model training, 

cross validation, and assessment” section below. 

To solve equation 1, we represented this minimization problem in the Lagrangian 

dual form L(α):  

max
α$ 								L(α) =9α$ −	

1
299α$α(y$y(K(𝐱$𝐱()

#

$&(

#

$&"

#

$&"

	(eq. 3) 

subject to: 

∀$ :	9α$y$

#

$&"

= 0	and	0 ≤ 	α$ ≤ C, i = 1,… ,m 

where K represents a kernel function. The minimization problem was solved using the 

convex optimization (CVXOPT) quadratic programming solver (Andersen et al., 2012). 
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The pseudocode of the algorithm for the weighted soft-margin SVM classifier training 

and prediction is shown in Figure 2. 

SVM training data 

To train the classifier, sets of “true viruses” (class y = 	1) and “true GTAs” (class 

y = 	−1) were constructed separately for each RcGTA-like gene g. To identify the 

representatives of “true viruses”, amino acid sequences of 17 genes from the RcGTA 

head-tail cluster were used as queries in BLASTP (E-value < 0.001; query and subject 

overlap by at least 60% of their length) and PSI-BLASTP searches (E-value < 0.001; 

query and subject overlap by at least 40% of their length; maximum of six iterations) of 

the viral RefSeq database release 90 (last accessed in November 2018; accession numbers 

of the viral entries are provided in Supplementary Table S2). BLASTP and PSI-BLAST 

executables were from the BLAST v. 2.6.0+ package (Altschul et al., 1997). The obtained 

homologs are listed in Supplementary Table S3. Due to few or no viral homologs for 

some of the queries, the final training sets T! were limited to 11 out of 17 RcGTA-like 

head-tail cluster genes (g2, g3, g4, g5, g6, g8, g9, g12, g13, g14, g15; see 

Supplementary Table S1 for functional annotations of these genes). 

As the representatives of the “true GTAs”, we used the RcGTA-like regions that 

were designated as such via phylogenetic and genome neighborhood analyses by Shakya 

et. al. (2017) (Shakya et al., 2017). To make sure that our “true GTAs” do not contain any 

other regions, we created a database of the 235 complete alphaprotebacterial genomes 

that were available in the RefSeq database prior to January 2014 (Supplementary Table 

S4). To identify the representatives of “true GTAs” in this database, amino acid 

sequences of 17 genes from the RcGTA head-tail cluster (Lang et al., 2017) were used as 

queries in BLASTP (E-value < 0.001; query and subject overlap by at least 60% of their 

length) and PSI-BLAST searches (E-value < 0.001; query and subject overlap by at least 

40% of their length; maximum of six iterations) of the database. For each genome, the 

retrieved homologs were designated as an RcGTA-like head-tail cluster if at least 9 of the 

homologs had no more than 5,000 base pairs between any two adjacent genes. The 

maximum distance cutoff was based on the observed distances between the neighboring 

RcGTA head-tail cluster genes. This assignment was determined by clustering of the  
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Figure 2. The pseudocode of the SVM classifier algorithm that distinguishes 

RcGTA-like genes from the ‘true’ viruses. The algorithm is implemented in the GTA-

Hunter software package (see “Software Implementation” section in Materials and 

Methods). 

 

 

1: Let 𝑇  =   (𝑇1, . . . ,𝑇𝑚 ) be an array of training sequences 𝑇𝑖 , 1 ≤ 𝑖  ≤ 𝑚 

 2: Let 𝑋  = (𝑥𝑖) be the feature sets for genes 𝑇𝑖  ∈ 𝑇 

 3: Let 𝑌  =   (𝑦𝑖) be the classes for genes 𝑇𝑖  ∈  𝑇 

 4: Let 𝑊  =   (𝑑𝑖) be the weights for genes 𝑇𝑖  ∈  𝑇 

 5: Let 𝑦𝑖 = − 1 if 𝑇𝑖  is a GTA and 𝑦𝑖 = 1 if it is a virus 

6: Let 𝑄𝑈𝐴𝐷𝑃𝑅𝑂𝐺 be a quadratic programming solver

 7: procedure 𝑆𝑉𝑀𝑇𝑟𝑎𝑖𝑛(𝑇,𝐶) 

 8:  𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒 −  𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠  = 𝑄𝑈𝐴𝐷𝑃𝑅𝑂𝐺(𝑋,𝑌,𝐶 ∗ 𝑊)  

 9:  Let 𝑎𝑙𝑝ℎ𝑎𝑠  =   {𝛼𝑖 ∈ 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒 −  𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠  ∶  𝛼𝑖 > 10 − 5}   

10:  Let 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠  =   {𝑇𝑖 ∈  𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒 −  𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠  ∶  𝛼𝑖 > 10− 5 }  

11:  return 𝑎𝑙𝑝ℎ𝑎𝑠, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 

12: end procedure 

13:  

14: Let 𝑢 be an unclassified gene, where 𝑥𝑢  is the feature set of 𝑢  

15: procedure 𝑆𝑉𝑀𝑃𝑟𝑒𝑑𝑖𝑐𝑡(𝑎𝑙𝑝ℎ𝑎𝑠, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑣𝑒𝑐𝑡𝑜𝑟𝑠, 𝑥𝑢) 

16: Let 𝑠𝑐𝑜𝑟𝑒  =  0 

17:  for 𝛼𝑖 ∈  𝑎𝑙𝑝ℎ𝑎𝑠 𝑎𝑛𝑑 𝑇𝑖 ∈  𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 do 

18:  𝑠𝑐𝑜𝑟𝑒  = 𝑠𝑐𝑜𝑟𝑒  +  (𝛼𝑖 ∗  𝑦𝑖 ∗  𝐾(𝑥𝑖 ∗ 𝑥𝑢))  

19: end for 

20:  if 𝑠𝑐𝑜𝑟𝑒  <  0 then 

21: return “GTA”

22:  else 

23:  return “virus” 

24:  end if 

25: end procedure 

Figure 2. The pseudocode of the SVM classifier algorithm that distinguishes RcGTA-
like genes from the ‘true’ viruses. The algorithm is implemented in the GTA-Hunter 
software package.
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obtained homologs with the DBSCAN algorithm (Ester et al., 1996) using an in-house 

Python script (available in a GitHub repository; see “Software Implementation” 

section below). The resulting set of 88 “true GTAs” is provided in Supplementary Table 

S5 and was verified to represent a subset of RcGTA-like elements that were identified by 

Shakya et. al. (2017) (Shakya et al., 2017) 

 Since GTA functionality has been extensively studied only in Rhodobacter 

capsulatus SB1003 (Lang et al., 2017) and horizontal gene transfer likely occurred 

multiple times between the putative GTAs and bacterial viruses (Hynes et al., 2016; Zhan 

et al., 2016), the bacterial homologs that were both too divergent from other bacterial 

RcGTA-like homologs and more closely related to the viral homologs were eliminated 

from the training sets to reduce possible noise in classification. To do so, for each of the 

11 trainings sets T!, all detected viral and bacterial homologs were aligned using 

MUSCLE v3.8.31 (Edgar, 2004) and then pairwise phylogenetic distances were estimated 

under PROTGAMMAJTT substitution model using RAxML version 8.2.11 (Stamatakis, 

2014). For each bacterial homolog in a set T!, the pairwise phylogenetic distances 

between it and all other bacterial homologs were averaged. This average distance was 

defined as an outlier distance (o) if it satisfied the inequality: 

o > 	Q) + 1.5 ∗ (Q) − Q")	(eq. 4) 

where Q" and Q) are the first and third quartiles, respectively, of the distribution of the 

average distances for all bacterial homologs in the training set T!. If an outlier distance 

was greater than the shortest distance from it to a viral homolog in the set T!, the 

bacterial homolog was removed from the dataset. The alignments, list of removed 

sequences and the associated calculations are available in the FigShare repository. 

Additionally, for each gene g, the sequences that had the same RefSeq ID (and 

therefore 100% amino acid identity) were removed from the training data sets. The final 

number of sequences in each training dataset are listed in Table 1. 

Assignments of weights to the training set sequences 

Highly similar training sequences can have an increased influence on the position 

of the hyperplane, as misclassification of two or more similar sequences can be 
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considered less optimal than misclassification of only one sequence. This could be a 

problem for our classifier, since there is generally a highly unequal representation of 

taxonomic groups in the RefSeq database. To correct for this taxonomic bias, a weighting 

scheme was introduced into the soft-margin of the SVM classifier during training. To do 

so, sequences in each training set T! =	 {T", … , T#} were aligned in MUSCLE v3.8.31 

(Edgar, 2004) (The alignments are available in the FigShare repository). For each pair of 

sequences in a training set T!, phylogenetic distances were calculated in RAxML version 

8.2.11 (Stamatakis, 2014) under the best substitution model (PROTGAMMAAUTO; the 

selected substitution matrices are listed in the Supplementary Table S6). The farthest-

neighbor hierarchical clustering method was used to group sequences with distances 

below a specified threshold t. Weight d$ of each sequence in a group was defined as a 

reciprocal of the number of genes in the group. These weights are used to adjust the cost 

of misclassification by multiplying C$$ for each sequence T$ by d$. The most suitable 

value of t was determined empirically during cross-validation, as described in the 

“Model training, cross validation, and assessment” section below. 

Generation of sequence features 

To use amino acid sequences in the SVM classifier, each sequence was 

transformed to an n-dimensional vector of compositional features. Three metrics that 

Table 1. Number of the RcGTA homologs in the “true GTA” and “true virus” 

training datasets. 

Gene “true GTAs” “true viruses” 
g2 69 1646 
g3 65 769 
g4 62 465 
g5 67 627 
g6 61 19 
g8 62 96 
g9 66 61 
g12 63 12 
g13 73 57 
g14 67 124 
g15 67 155 
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capture different aspects of sequence composition were implemented: frequencies of 

“words” of size k (k-mers), pseudo amino-acid composition (PseAAC), and 

physicochemical properties of amino acids. 

In the first feature type, amino acid sequence of a gene is broken into a set of 

overlapping subsequences of size k, and frequencies of these n unique k-mers form a 

feature vector 𝐱. Values of k equal to 1, 2, 3, 4, 5 and 6 were evaluated for prediction 

accuracy (see the “Model training, cross validation, and assessment” section below). 

 The second feature type, pseAAC, has n = (20+l) dimensions and take into 

account frequencies of 20 amino acids, as well as correlations of hydrophobicity, 

hydrophilicity and side-chain mass of amino acids that are � positions apart in the 

sequence of the gene (after (Chou, 2001). More precisely, PseAAC feature set 𝐱 of a 

sequence of length L consisting of amino acids R1R2…RL is defined as follows: 

x$ =	

⎩
⎨

⎧
r$

∑ r$ +ω∑ s*+
*&" 	%,

$&"
,												if	1 ≤ i ≤ 20,

ωs(-%,
∑ r$ +ω	∑ s*+

*&"
%,
$&"

,						if	21 ≤ j ≤ 20 + 	λ
									(eq. 5) 

where r$ is the frequency of the i-th amino acid (out of 20 possible), ω is a weight 

constant for the order effect that was set to 0.05, and s* (k = 1, …, �) are sequence order-

correlation factors. These factors are defined as 

s* =	
1

L − k	9 J$,$/*

0-*

$&"

		(eq. 6) 

where 

J$,( =
1
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(R$)m
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% 	
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and H"(R$), H%(R$), and M(R$) denote the hydrophobicity, hydrophilicity, and side-chain 

mass of amino acid R$, respectively. The H"(R$), H%(R$), and M(R$) scores were 

subjected to a conversion as described in the following equation: 

⎩
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⎪
⎪
⎪
⎪
⎪
⎪
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⎪
⎪
⎪
⎪
⎪
⎪
⎧
H"(i) = 	

H",(i) − ∑
H",(i)
20

%,
$&"

r∑ gH",(i) − ∑
H",(i)
20

%,
$&" o

%
%,
$&"

20

																					

H%(i) = 	
H%,(i) − ∑

H%,(i)
20

%,
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20

%,
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%
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M(i) =
M,(i) − ∑ M,(i)

20
%,
$&"
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20

%,
$&" o
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%,
$&"

20

																						

, 

where H",(i) is the original hydrophobicity value of the i-th amino acid, H%,(i) is 

hydrophilicity value, and M,(i) is the mass of its side chain. Values of l equal to 3 and 6 

were evaluated for prediction accuracy (see the “Model training, cross validation, and 

assessment” section below). 

The third feature type relies on classification of amino acids into 19 overlapping 

classes of physicochemical properties (Supplementary Table S7; after (Kaundal et al., 

2013)). For a given sequence, each of its encoded amino acids was counted towards one 

of the 19 classes, and the overall scores for each class were normalized by the length of 

the sequence to form n = 19-dimensional feature vector x. 

Model training, cross validation, and assessment  

For each GTA gene, parameter, and feature type, the accuracy of the classifier was 

evaluated using a five-fold cross-validation scheme, in which a dataset was randomly 

divided into five different sub-samples. Four parts were combined to form the training 

set, while the fifth part was used as the validation set and its SVM-assigned 
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classifications compared to the known classes. This step was repeated five times, so that 

every set was tested as a known class at least once.  

For each class y (“GTA” and “Virus”), the results were evaluated by their 

accuracy scores, defined as the number of correctly classified homologs divided by the 

total number of homologs that were tested. The cross-validation procedure was repeated 

ten times to reduce the partitioning bias, and the generated results were averaged, 

resulting in an Average Accuracy Score (AAS) for each gene and each class. To ensure 

that “GTA” and “Virus” classes had equal impact on the accuracy assessment, each class 

was assigned a weight of 0.5. The final, Weighted Accuracy Score (WAS) was calculated 

as: 

WAS! = 100 ∗ (AAS234
! ∗ 0.5 + AAS5$678

! ∗ 0.5)				(eq. 9) 

The most suitable “softness” of the SVM margin was determined by trying all 

possible combinations of several raw diagonal values of the matrix 𝐂 (0.01, 0.1, 1, 100, 

10000) and the threshold t (0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1). The set of parameters and 

features that resulted in the highest WAS was defined as the optimal set for a gene g. If 

multiple parameter and feature sets resulted in the equally highest WAS, we applied the 

following parameter selection criteria, in the priority order listed, until only one 

parameter set was left: first, we selected parameter set(s) with k-mer size that on average 

performed better than other k-mer sizes; second, we avoided parameter set(s) that 

included PseAAC and physicochemical composition features; third, we selected 

parameter set(s) with the value of 𝐂 that gives the highest average accuracy across the 

remaining parameter sets; and finally, we opted for the parameter set with the value of t 

that also gives the highest WAS across the remaining parameter sets. Additionally, we 

evaluated classifier accuracy using the Matthews correlation coefficient (MCC) 

(Matthews, 1975). 

Selection of alphaproteobacterial genomes for testing the presence of RcGTA-like 

genes 

From the alphaproteobacterial genomes deposited to the RefSeq database between 

January 2014 and January 2019, we selected 636 complete and 789 high-quality draft 
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genomes, with the latter defined as genome assemblies with N50 length >400 kbp. The 

taxonomy of each genome was assigned using the GTDB-Tk toolkit (Parks et al., 2018). 

The GTDB assignment is based on the combination of Average Nucleotide Identity (Jain 

et al., 2018) and phylogenetic placement on the reference tree (as implemented in the 

pplacer program (Matsen et al., 2010). Three of the 1,425 genomes could not be reliably 

placed into a known alphaproteobacterial order, and hence were left unclassified. Two of 

the 1,425 genomes were removed from further analyses due to their classification outside 

of the Alphaproteobacteria class, resulting in 635 complete and 788 high-quality 

genomes in our dataset (Supplementary Table S8). 

Detection of RcGTA-like genes and head-tail clusters in Alphaproteobacteria  

The compiled training datasets of the RcGTA-like genes (see the “SVM training 

data” section) were used as queries in BLASTP (E-value < 0.001; query and subject 

overlap by at least 60% of their length) searches of amino acid sequences of all annotated 

genes from the 1,423 alphaproteobacterial genomes. Acquired homologs of unknown 

affiliation (sequences u) were then assigned to either “GTA” or “virus” category by 

running the SVM classifier with the identified optimal parameters for each gene g (Table 

2). 

The proximity of the individually predicted RcGTA-like genes in each genome 

was evaluated by running the DBSCAN algorithm (Ester et al., 1996) implemented in an 

in-house Python script (available in a GitHub repository; see “Software 

Implementation” section below). The retrieved homologs were designated as an 

RcGTA-like head-tail cluster only if at least 6 of the RcGTA-like genes had no more than 

8,000 base pairs between any two adjacent genes. The maximum distance cutoff was 

increased from the 5,000 base pairs used for the clustering of homologs in the training 

datasets (see “SVM Training Data” section) because the SVM classifier evaluates only 

11 of the 17 RcGTA-like head-tail cluster homologs and therefore the distances between 

some of the identified RcGTA-like genes can be larger. 

To reduce the bias arising from the overrepresentation of particular taxa in the 

estimation of the RcGTA-like cluster abundance in Alphaproteobacteria, the 1,423 

genomes were grouped into Operational Taxonomic Units (OTUs) by computing pairwise 
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Average Nucleotide Identity (ANI) using the FastANI v1.1 program (Jain et al., 2018) 

and defining boundaries between OTUs at the 95% threshold. Since not all OTUs consist 

uniformly of genomes that were either all with or all without the RcGTA-like clusters, 

each RcGTA-like cluster in an OTU was assigned a weight of “1/[number of genomes in 

an OTU]”. The abundance of the RcGTA-like clusters in different alphaproteobacterial 

orders was corrected by summing up the weighted numbers of RcGTA-like clusters.  

Software Implementation 

The above described SVM classifier, generation of sequence features, and 

preparation and weighting of training data are implemented in a Python program called 

“GTA-Hunter”. The source code of the program is available via GitHub at 

https://github.com/ecg-lab/GTA-Hunter-v1. The repository also contains training data for 

the detection of the RcGTA-like heat-tail cluster genes, examples of how to run the 

Table 2. The combinations of features and parameters that showed the highest 

weighted accuracy score (WAS) in cross-validation. The listed parameter sets were 

used in predictions of the RcGTA-like genes in 1,423 alphaproteobacterial genomes. 

See Materials and Methods for the procedure on selecting one parameter set in the 

cases where multiple parameter sets had the identical highest WAS. 

Gene Weighted 
Accuracy 
Score, 
WAS (%) 

Matthews 
Correlation 
Coefficient, 
MCC 

k-mer 
(size) 

PseAAC 
(value of λ) 

Grouping based on 
physicochemical 
properties of 
amino acids 

C t 

g2 100 1 2 -1 - 10000 0.02 
g3 100 1 3 - - 10000 0.02 
g4 100 1 3 3 - 10000 0.02 
g5 100 1 3 - - 100 0.02 
g6 95.9 0.88 4 - + 0.1 0.02 
g8 99.4 0.98 2 3 - 0.1 0.03 
g9 100 1 2 - - 100 0.1 
g12 95.6 0.90 5 - - 10000 0.05 
g13 99.1 0.98 2 - - 100 0 
g14 99.6 0.99 6 6 - 0.01 0.03 
g15 99.7 0.99 2 - - 10000 0.02 

1 throughout the table, “-“ denotes that the feature type was not used 
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program, and the script for clustering of the detected RcGTA-like genes using the 

DBSCAN algorithm. 

Assessment of prevalence of the RcGTA-like clusters among putative prophages 

Putative prophages in the 1,423 alphaproteobacterial genomes were predicted 

using the PHASTER web server ((Arndt et al., 2016); accessed in January, 2019). The 

PHASTER program was chosen due to its solid performance in benchmarking studies (de 

Sousa et al., 2018) and its useful scoring system that ranks predictions based on a 

prophage region completeness (Song et al., 2019). To restrict our evaluation to likely 

functional prophages, only predicted prophages with the PHASTER score >90 (i.e., 

classified as “intact” prophages) were retained for further analyses. The proportion of 

these predicted intact prophages classified by the GTA-Hunter as “GTA”s was calculated 

by comparing the overlap between the genomic locations of the predicted intact 

prophages and the putative RcGTA-like regions. 

Construction of the alphaproteobacterial reference phylogeny 

From the set of 120 phylogenetically informative proteins (Parks et al., 2017), 83 

protein families that are present in a single copy in >95% of 1,423 alphaproteobacterial 

genomes were extracted using hmmsearch (E-value < 10-7) via modified AMPHORA2 

scripts (Wu & Scott, 2012) (Supplementary Table S9). For each protein family, 

homologs from Escherichia coli str. K12 substr. DH10B and Pseudomonas aeruginosa 

PAO1 genomes (also retrieved using hmmsearch, as described above) were added to be 

used as an outgroup in the reconstructed phylogeny. The amino acid sequences of each 

protein family were aligned using MUSCLE v3.8.31 (Edgar, 2004). Individual 

alignments were concatenated, keeping each alignment as a separate partition in further 

phylogenetic analyses (Chernomor et al., 2016). The most suitable substitution model for 

each partition was selected using ProteinModelSelection.pl script downloaded from 

https://github.com/stamatak/standard-RAxML/tree/master/usefulScripts. Gamma 

distribution with 4 categories was used to account for rate heterogeneity among sites 

(Yang, 1994). The maximum likelihood phylogenetic tree was reconstructed with IQ-

TREE v 1.6.7 (Nguyen et al., 2015). One thousand ultrafast bootstrap replicates were 
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used to get support values for each branch (Hoang et al., 2018; Minh et al., 2013). The 

concatenated sequence alignment in PHYLIP format and the reconstructed phylogenetic 

tree in Newick format are available in the FigShare repository. 

Examination of conditions associated with the decreased fitness of the knock-out 

mutants of the RcGTA-like head-tail cluster genes 

From the three genomes that are known to contain RcGTA-like clusters 

(Caulobacter crescentus NA100, Dinoroseobacter shibae DFL-12, and Phaeobacter 

inhibens BS107), fitness experiments data associated with the knock-out mutants of the 

RcGTA-like head-tail cluster genes were retrieved from the Fitness Browser ((Price et al., 

2018); accessed in May, 2019 via http://fit.genomics.lbl.gov/cgi-bin/myFrontPage.cgi). 

Price et al. (2018) defined gene fitness as the log2 change in abundance of knock-out 

mutants in that gene during the experiment. For our analyses, the significantly decreased 

fitness of each mutant was defined as a deviation from the fitness of 0 with a 

|t − score| ≥ 4. The conditions associated with the significantly decreased fitness were 

compared across the RcGTA-like head-tail cluster genes in all three genomes. 

Data deposition 

Sequence alignments and phylogenetic trees are available in a FigShare repository at 

DOI 10.6084/m9.figshare.8796419. The Python source code of the described classifier 

and additional scripts used in the analyses are available via a GitHub repository at 

https://github.com/ecg-lab/GTA-Hunter-v1. 

Results 

GTA-Hunter is an effective way to distinguish RcGTA-like genes from their viral 

homologs 

The performance of the developed SVM classifier depends on values of 

parameters that determine type and composition of sequence features, specify acceptable 

levels of misclassification, and account for biases in taxonomic representation of the 

sequences in the training sets. To find the most effective set of parameters, for each of the 
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11 RcGTA-like head-tail genes with the sufficient number of homologs available (Figure 

1; also, see Materials and Methods for details) we evaluated the performance of 1,435 

different combinations of the parameters using a cross-validation technique 

(Supplementary Table S10). 

Generally, the classifiers that only use k-mers as the feature have higher median 

WAS values than the classifiers that solely rely either on physicochemical properties of 

amino acids or on pseudo amino acid composition (PseAAC) (Supplementary Figure 

S2 and Supplementary Table S10), indicating that the conservation of specific amino 

acids blocks is important in delineation of RcGTA-like genes from their viral 

counterparts. However, the WAS values are lower for the large k-mer sizes 

(Supplementary Figure S2), likely due to the feature vectors becoming too sparse. 

Consequently, parameter combinations with values of k above 6 were not tested. The 

WAS values are also lower for k=1, likely due to the low informativeness of the feature. 

The lowest observed WAS values involve usage of physicochemical properties of 

proteins as a feature (Supplementary Figure S2 and Supplementary Table S10), 

suggesting the conservation of physicochemical properties of amino acids among proteins 

of similar function in viruses and RcGTA-like regions despite their differences in the 

amino acid composition. The more sophisticated re-coding of physicochemical properties 

of amino acids as the PseAAC feature performs better, but for all genes its performance is 

worse than the best-performing k-mer (Supplementary Figure S2 and Supplementary 

Table S10). 

For several genes, the highest value of WAS was obtained with multiple 

combinations of features and parameter values (Supplementary Table S10). Based on 

the above-described observations of the performance of individual features, we preferred 

parameter sets that did not include PseAAC and physicochemical composition features, 

and selected k-mer size that on average performed better than other k-mer sizes (see 

Materials and Methods for the full description of the parameter selection procedure). 

For individual genes, the WAS of the selected parameter set ranges from 95.6 to 

100% (Table 2), with 5 out of 11 genes reaching the WAS of 100%. The two genes with 

the highest WAS below 99% (g6 and g12) have the smallest number of viral homologs 
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available for training (Table 2). Additionally, several viral homologs in the training 

datasets for g6 and g12 genes have smaller phylogenetic distances to “true GTA” 

homologs than to other “true virus” homologs (Supplementary Table S11). As a result, 

the SVM classifier erroneously categorizes some of the RcGTA-like g6 and g12 genes as 

“viral”, resulting in the reduced classifier efficacy (Supplementary Table S10). 

Assessment of accuracy using the Matthews correlation coefficient (MCC) 

generally agrees with the results based on WAS (Table 2 and Supplementary Table 10). 

For 10 out of 11 genes, the set of parameters with the highest WAS also has the highest 

MCC. For gene g6, there are sets of parameters with higher MCC than the MCC for set 

of parameters with the highest WAS, but the differences among the MCC values are small 

(Supplementary Table S10). Therefore, the combinations of features and parameters 

chosen using the WAS scheme (Table 2) were selected to classify homologs of the 

RcGTA genes in the 1,423 alphaproteobacterial genomes (Supplementary Table S8). 

GTA-Hunter predicts abundance of RcGTA-like head-tail clusters in 

Alphaproteobacteria 

The 1,423 examined alphaproteobacterial genomes contain 7,717 homologs of the 

11 RcGTA genes. The GTA-Hunter classified 6,045 of these homologs as “GTA” genes 

(Supplementary Table S12). However, many genomes are known to contain regions of 

decaying viruses that may be too divergent to be recognizably “viral” and there is at least 

one known case of horizontal gene transfer of several GTA genes into a viral genome 

(Zhan et al., 2016), raising a possibility that some of the predicted “GTA” genes may not 

be part of “true GTA” genomic regions. To minimize such false positives, we imposed an 

extra requirement of multiple predicted RcGTA-like genes to be in proximity on a 

chromosome. Specifically, we called a genomic region the putative RcGTA-like cluster 

only if it consisted of at least 6 genes classified as “GTA”. We found that the RcGTA-like 

clusters defined that way are present in one (and only one) copy in 818 of the 1,423 

(~57.5%) examined alphaproteobacterial genomes (Supplementary Table S13 and Table 

3). Uneven taxonomic representation of Alphaproteobacteria among the analyzed 

genomes may inflate this estimation of the abundance of the GTA-harboring genomes 

within the class. To correct for this potential bias, 1,423 genomes were grouped into 797 
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Operational Taxonomic Units (OTUs) based on the average nucleotide identity (ANI) of 

their genomes (Supplementary Table S14). Although indeed some taxonomic groups are 

overrepresented in the set of 1,423 genomes, in 450 of the 797 OTUs (56.4%) all OTU 

members contain the putative RcGTA-like clusters (Supplementary Table S14).  

RcGTA-like clusters are widely distributed within a large sub-clade of 

Alphaproteobacteria 

The 818 genomes with the RcGTA-like gene clusters detected in this study are not 

evenly distributed across the class (Table 3), but are found only in a clade that includes 

Table 3. Distribution of prophages and RcGTA-like elements across different 

orders within class Alphaproteobacteria. 
Order Number 

of 
genomes 

Number of 
prophages 

Number 
of 
RcGTA-
like 
clusters 

Number 
of OTUs 

Corrected 
abundance 
of RcGTA-
like 
clusters1 

Percentage 
of OTUs 
that have 
RcGTA-
like clusters 

Acetobacterales 62 34 0 34 0 0 
Azospirillales 13 10 0 12 0 0 
Caedibacterales 1 0 0 1 0 0 
Caulobacterales 50 30 39 45 35 78 
Elsterales 1 0 0 1 0 0 
Kiloniellales 5 1 0 3 0 0 
Oceanibaculales 2 1 0 2 0 0 
Paracaedibacterales 1 2 0 1 0 0 
Parvibaculales 5 5 2 5 2 40 
Pelagibacterales 5 0 0 5 0 0 
Rhizobiales 730 763 435 300 155 52 
Rhodobacterales 241 318 208 174 150 86 
Rhodospirillales 24 10 0 15 0 0 
Rickettsiales 70 18 0 24 0 0 
Sneathiellales 2 1 0 2 0 0 
Sphingomonadales 207 115 132 169 110 65 
Thalassobaculales 1 0 0 1 0 0 
Unclassified order 1 1 0 0 1 0 0 
Unclassified order 2 1 2 1 1 1 100 
Unclassified order 3 1 2 1 1 1 100 

1 See “Detection of RcGTA-like genes and head-tail clusters in Alphaproteobacteria” subsection of 

the Materials and Methods for explanation about the correction. 
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seven orders (clade 4 in Figure 3). Overall, 66% of the examined OTUs within the clade 

4 are predicted to have an RcGTA-like cluster (Table 3). RcGTA-like clusters are most 

abundant in clade 6 (Figure 3), a group that consists of the orders Rhodobacterales and 

Caulobacterales (Table 3). Although the two unclassified orders that contain RcGTA-

like clusters are represented by only two genomes (clades 2 and 3 in Figure 3), their 

position on the phylogenetic tree of Alphaproteobacteria suggests that the RcGTA-like 

element may have originated earlier than was proposed by Shakya et. al. (Shakya et al., 

2017) (clade 5 on Figure 3). Given that RcGTA-like head-tail cluster genes are readily 

detectable in viral genomes, it is unlikely that the RcGTA-like clusters remained 

completely undetectable in the examined genomes outside of the clade 4 due to the 

sequence divergence. Therefore, an RcGTA-like element was unlikely to be present in the 

last common ancestor of all Alphaproteobacteria (clade 7 on Figure 3), which was 

suggested when only a limited number of genomic data was available (Lang & Beatty, 

2007).  

Most of the detected RcGTA-like clusters can be mistaken for prophages 

Among the 818 detected RcGTA-like clusters, the functional annotations of the 11 

examined genes were similar to the prophages and none of them refer to a “gene transfer 

agent” (data not shown). Since at least 11 of the 17 RcGTA head-tail cluster genes have 

detectable sequence similarity to viral genes (Supplementary Table S3), it is likely that, 

if not recognized as GTAs, many of the putative RcGTA-like clusters will be designated 

as “prophages” in genome-wide searches of prophage-like regions. To evaluate this 

hypothesis, we predicted prophages in the set of 1,423 alphaproteobacterial genomes, and 

limited our analyses to the predicted prophage regions that are more likely to be 

functional integrated viruses (‘intact’ prophages; see Materials and Methods for the 

criteria). Indeed, of the 1,235 ‘intact’ prophage regions predicted in the clade 4 genomes, 

664 (54%) coincide with the RcGTA-like clusters (Figure 4). Conversely, 664 out of 818 

of the predicted RcGTA-like clusters (81%) are classified as intact prophages. Of the 351 

RcGTA-like clusters that contain all 11 examined genes, 323 (92%) are classified as 

intact prophages. 
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Figure 3. Distribution of the detected RcGTA-like clusters across the class 

Alphaproteobacteria. The presence of RcGTA-like clusters is mapped to a reference 

phylogenetic tree that was reconstructed from a concatenated alignment of 83 marker 

genes (See Materials and Methods and Supplementary Table S9). The branches of 

the reference tree are collapsed at the taxonomic rank of “order”, and the number of 

OTUs within the collapsed clade is shown in parentheses next to the order name. 

Orange and brown bars depict the proportion of OTUs with and without the predicted 

RcGTA-like clusters, respectively. The orders that contain at least one OTU with an 

RcGTA-like cluster are colored in green. Nodes 1, 2 and 3 mark the last common 

ancestors of the unclassified orders. Node 4 marks the lineage where, based on this 

study, the RcGTA-like element should have already been present. Nodes 5 and 7 mark 

the lineages that were previously inferred to represent last common ancestor of the 

RcGTA-like element by Shakya et al. (2017) and Lang and Beatty (2007), respectively. 

Node 6 marks the clade where RcGTA-like elements are the most abundant. The tree is 

rooted using homologs from Escherichia coli str. K12 substr. DH10B and Pseudomonas 

aeruginosa PAO1 genomes. Branches with ultrafast bootstrap values >= 95% are 

marked with black circles. The scale bar shows the number of substitutions per site. The 

full reference tree is provided in the FigShare repository. 
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Interestingly, within 818 genomes that contain RcGTA-like clusters, the average 

number of predicted intact prophages is 1.23 per genome (Figure 5), which is 

significantly higher than 0.51 prophages per genome in genomes not predicted to contain 

RcGTA-like clusters (p-value < 0.22 * 10-17; Mann-Whitney U test). If the 664 RcGTA-

like regions classified as intact prophages are removed from the genomes that contain 

them, the average number of predicted ‘intact’ prophages per genome drops to 0.42 

(Figure 5) and the difference becomes insignificant (p-value = 0.1492; Mann-Whitney U 

test). This analysis suggests that an elevated number of the observed predicted prophage-

like regions in some alphaproteobacterial genomes may be due to the presence of 

unrecognized RcGTA-like elements. 

Discussion 

Our study demonstrates that RcGTA-like and bona fide viral homologs can be 

clearly separated from each other using a machine learning approach. The highest 

accuracy of the classifier is achieved when it primarily relies on short amino acid k-mers 

present in the examined genes. This suggests that the distinct primary amino acid 

 

Figure 4. An overlap between prophage and GTA predictions. The “predicted 

RcGTA-like clusters” set refers to the GTA-Hunter predictions, while the “predicted 

intact prophages” set denotes predictions made by the PHASTER program (Arndt et al., 

2016) on the subset of the genomes that are found within clade 4 (Figure 3). 

 

 

Figure 4. An overlap between prophage and GTA predictions.  
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composition of the RcGTA-like and truly viral proteins is what allows the separation of 

the two classes of elements (Figure 1). However, the cause of the amino acid preferences 

of the RcGTA-like genes, and especially enrichment of the encoded proteins in alanine 

and glycine amino acids (Figure 1), remains unknown. Given the structure of the genetic 

code, the skewed amino acid composition may be the driving force behind the earlier 

described significantly higher %G+C of the genomic region encoding the RcGTA-like 

head-tail cluster than the average %G+C in the host genome (Shakya et al., 2017). 

Regardless of the cause of the skewed amino acid composition, the successful 

 

Figure 5. The number of predicted ‘intact’ prophages in alphaproteobacterial 

genomes. The 1,423 genomes were divided into two groups: those without GTA-

Hunter-predicted RcGTA-like clusters (in brown) and those with these RcGTA-like 

clusters (in dark orange). For the latter group, the number of prophages was re-

calculated after the RcGTA-like clusters that were designated as prophages were 

removed (in light orange). The distribution of the number of predicted intact prophages 

within each dataset is shown as a violin plot with the black point denoting the average 

value. The datasets with significantly different average values are denoted by asterisks 

(p < 0.001; Mann-Whitney U test). 
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Figure 5. The number of predicted ‘intact’ prophages in alphaproteobacterial genomes. 
The 1,423 genomes were divided into two groups: those without GTA-Hunter-predicted 
RcGTA-like clusters (in brown) and those with these RcGTA-like clusters (in dark orange). For 
the latter group, the number of prophages was re-calculated after the RcGTA-like clusters that 
were designated as prophages were removed (in light orange). The distribution of the number 
of predicted intact prophages within each dataset is shown as a violin plot with the black point 
denoting the average value. The datasets with significantly different average values are 
denoted by asterisks (p < 0.001; Mann-Whitney U test). 
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identification of the putative RcGTA-like elements in alphaproteobacterial taxa only 

distantly related to Rhodobacter capsulatus (clade 4 in Figure 3) suggests that the 

selection to maintain these elements likely extends beyond the Rhodobacterales order. 

Nevertheless, whether these putative elements indeed encode GTAs, as we currently 

understand them, remains to be experimentally validated. 

The benefits associated with the GTA production that would underlie the selection 

to maintain them remain unknown. In a recently published high-throughput screen for 

phenotypes associated with specific genes (Price et al., 2018), knockout of the RcGTA-

like genes in the three genomes that encode the RcGTA-like elements resulted in 

decreased fitness of the mutants (in comparison to the wild type) under some of the tested 

conditions (Supplementary Table S15). Interestingly, the conditions associated with the 

most statistically significant decreases in fitness correspond to the growth on non-glucose 

sugars, such as D-Raffinose, β-Lactose, D-Xylose and m-Inositol. Overall, carbon source 

utilization is the most common condition that elicits statistically significant fitness 

decreases in the mutants. The RcGTA production was also experimentally demonstrated 

to be stimulated by carbon depletion (Westbye, O'Neill, et al., 2017). Further 

experimental work is needed to identify the link between the RcGTA-like genes 

expression and carbon utilization. Conversely, absence of the RcGTA-like elements in 

some of the clade 4 genomes (Figure 3) indicates that in some ecological settings 

RcGTA-like elements are either deleterious or “useless” and thus their genes were either 

purged from the host genomes (if RcGTA-like element evolution is dominated by vertical 

inheritance) or not acquired (if horizontal gene transfer plays a role in the RcGTA-like 

element dissemination). 

Previous analyses inferred that RcGTA-like elements had evolved primarily 

vertically, with few horizontal gene exchanges between closely related taxa (Hynes et al., 

2016; Lang & Beatty, 2007; Shakya et al., 2017). Under this hypothesis, the distribution 

of the RcGTA-like head-tail clusters in alphaproteobacterial genomes suggests that 

RcGTA-like element originated prior to the last common ancestor of the taxa in clade 4 

(Figure 3). This places the origin of the RcGTA-like element to even earlier timepoint 

than the one proposed in Shakya et al. (2017) (Shakya et al., 2017). However, it should be 

noted that our inference is sensitive to the correctness of the inferred relationships of taxa 
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within the alphaproteobacterial class, which remain to be disputed due to compositional 

biases and unequal rates of evolution of some alphaproteobacterial lineages (Munoz-

Gomez et al., 2019). The most recent phylogenetic inference that takes into account these 

heterogeneities (Munoz-Gomez et al., 2019) is different from the reference phylogeny 

shown in Figure 3. Relevant to the evolution of RcGTA-like elements, on the phylogeny 

in Munoz-Gomez et al. (2019) the order Pelagibacterales is located within the clade 4 

instead of being one of the early-branching alphaproteobacterial orders (Figure 3). No 

RcGTA-like clusters were detected in Pelagibacterales, although in our analyses the 

order is represented by only five genomes. Better sampling of genomes within this order 

would be needed either to show a loss of the RcGTA-like element in this order or to re-

assess the hypothesis about origin and transmission of the RcGTA-like elements within 

Alphaproteobacteria. 

Genes in the detected RcGTA-like head-tail clusters remain mainly unannotated 

as “gene transfer agents” in GenBank records, and therefore they can be easily confused 

with prophages. For example, recently described “conserved prophage” in 

Sphingomonadales (Viswanathan et al., 2017) is predicted to be an RcGTA-like element 

by GTA-Hunter. Incorporation of a GTA-Hunter-like machine learning classification into 

an automated genome annotation pipeline will help improve quality of the gene 

annotations in GenBank records and facilitate discovery of GTA-like elements in other 

taxa. Moreover, application of the presented GTA-Hunter program is not limited to the 

detection of the RcGTA-like elements. With appropriate training datasets, the program 

can be applied to the detection of GTAs that do not share evolutionary history with the 

RcGTA (Lang et al., 2017) and of other elements that are homologous to viruses or viral 

sub-structures, such as type VI secretion system (Leiman et al., 2009) and encapsulins 

(Giessen & Silver, 2017).  
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Abstract 

 Gene transfer agents (GTAs) are virus-like elements integrated into bacterial 

genomes, particularly, those of Alphaproteobacteria. The GTAs can be induced under 

nutritional stress, incorporate random fragments of bacterial DNA into mini-phage 

particles, lyse the host cells and infect neighboring bacteria, thus enhancing horizontal 

gene transfer. We show that the GTA genes evolve under pronounced positive selection 

for the reduction of the energy cost of protein production as shown by comparison of the 

amino acid compositions with both homologous viral genes and host genes. The energy 

saving in GTA genes is comparable to or even more pronounced than that in the genes 

encoding the most abundant, essential bacterial proteins. In cases when viruses acquire 

genes from GTAs, the bias in amino acid composition disappears in the course of 

evolution, showing that reduction of the energy cost of protein is an important factor of 

evolution of GTAs but not bacterial viruses. These findings strongly suggest that GTAs 

are bacterial adaptations rather than selfish, virus-like elements. Because GTA production 

kills the host cell and does not propagate the GTA genome, it appears likely that the 

GTAs are retained in the course of evolution via kin or group selection. Therefore, we 

hypothesize that GTA facilitate the survival of bacterial populations under energy-

limiting conditions through the spread of metabolic and transport capabilities via 

horizontal gene transfer and increase of nutrient availability resulting from the altruistic 

suicide of GTA-producing cells. 

Importance 

 Kin and group selection remain controversial topics in evolutionary biology. We 

argue that these types of selection are likely to operate in bacterial populations by 

showing that bacterial Gene Transfer Agents (GTAs), but not related viruses, evolve 

under positive selection for the reduction of the energy cost of a GTA particle production. 

We hypothesize that GTAs are dedicated devices for the survival of bacteria under the 

conditions of nutrient limitation. The benefits conferred by GTAs under nutritional stress 

appear to include horizontal dissemination of genes that could provide bacteria with 



 

 59 

enhanced capabilities for nutrient utilization and the increase of nutrient availability 

through the lysis of GTA-producing bacteria. 

Introduction 

 Gene transfer agents (GTAs) are phage-like entities that are known to be produced 

by several groups of bacteria and archaea (Lang et al., 2017; Lang et al., 2012). Unlike 

phages, GTAs do not package genes encoding their own structural proteins, and instead 

package pieces of DNA of the cell that produces them. The biological functions of the 

GTAs are not well understood, but the leading hypothesis is that GTAs are dedicated 

vehicles for horizontal gene transfer (HGT) (Brimacombe et al., 2014; Brimacombe et al., 

2015). The GTAs can be induced by stress (Westbye, O'Neill, et al., 2017) and, after 

packaging host DNA and lysing the host cell, can infect neighboring cells (Fogg, 2019; 

Lang et al., 2012). These cells can integrate the DNA contained within the GTAs, and 

thus can acquire new alleles, some of which could increase their fitness (McDaniel et al., 

2010). GTAs are thought to have evolved from different viral ancestors on at least five 

independent occasions (Lang et al., 2017), and in Alphaproteobacteria, GTAs appear to 

have been maintained for many millions of years (Shakya et al., 2017). Such convergent 

acquisition, long-term persistence and sequence conservation of these elements suggests 

that GTAs provide a selective advantage for their host populations (Lang et al., 2017). 

 The best-studied GTA (RcGTA) comes from the alphaproteobacterium 

Rhodobacter capsulatus (Marrs, 1974). Its production is directed by at least five loci that 

are scattered across the R. capsulatus genome, with 17 genes that encode most of the 

proteins necessary for the production of the RcGTA particles located in one locus (Table 

S1) (Hynes et al., 2016). This locus, also known as the ‘head-tail’ cluster (Lang et al., 

2017), is detectable in many alphaproteobacterial genomes (Kogay et al., 2019; Shakya et 

al., 2017). Across Alphaproteobacteria, the RcGTA-like ‘head-tail’ clusters appear to 

evolve relatively slowly (Lang et al., 2012), have an elevated GC-content relative to the 

host genome (Shakya et al., 2017), and have skewed amino acid composition when 

compared to their viral homologs (Kogay et al., 2019). 
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 Because bacteria and archaea occupy diverse ecological niches, they face different 

levels and directions of selective pressures and have different mutation rates, skewed GC-

content and amino acid composition that emerged from multiple, intertwined processes. 

As a result, the genomic GC-content of bacterial and archaeal species varies in the wide 

range from less than 20% to more than 75% (Hildebrand et al., 2010) and cannot be 

explained solely by the universal mutational AT-bias (Hershberg & Petrov, 2010). Several 

studies have shown that the availability of different nutrients in the environment can act 

as a selective force and is involved in shaping the GC content of genomes and amino acid 

content of the encoded proteins. For example, inhabitants of nitrogen-poor environments 

tend to have a low content of G and C nucleotides and of amino acids containing nitrogen 

in their side chains (Grzymski & Dussaq, 2012; Luo et al., 2015). Because A and T each 

contain one nitrogen atom less than G and C, respectively, the reduced usage of the G and 

C allows an organism to minimize the demand for the limiting nitrogen during replication 

and transcription. By contrast, carbon limitation could drive long-term elevation of the 

genomic GC-content (Hellweger et al., 2018; Mende et al., 2017), likely, because small 

(carbon-poor) amino acids are preferentially encoded by GC-rich codons (Bragg & 

Hyder, 2004). 

 In addition to the GC-content fluctuation between species, there is also a 

considerable GC-content heterogeneity within single bacterial and archaeal genomes. For 

example, bacterial genomes can be subject to GC-biased gene conversion and thus 

recombination hotspots within a genome can have elevated GC-content compared to the 

rest of the genome (Lassalle et al., 2015). (19). Also, highly expressed genes tend to have 

an elevated GC-content and, accordingly, their highly abundant protein products have a 

skewed amino acid composition (Chen et al., 2016). Because highly abundant proteins 

appear to be optimized for low cost of production (Raiford et al., 2012; Swire, 2007), the 

elevated GC-content of highly expressed genes can be explained by selection for GC-rich 

codons that tend to encode small, energetically cheap amino acids. Generally, molecular 

composition of genes and proteins appears to reflect various selection pressures, among 

which those associated with energy savings are prominent. 

 Thus, there are two possible explanations for the observed skew in both the GC-

content and amino acid composition of the RcGTA-like genes and proteins. Under one 
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scenario, selection and mutational biases act on the base composition, so that the amino 

acid bias is a byproduct of the skewed GC-content. Under the second scenario, selection 

could favor the skewed amino acid composition, resulting in a biased GC-content due to 

the structure of the genetic code. Here, we present evidence for the second scenario and 

show that the observed amino acid bias is driven by selection to reduce carbon utilization 

and biosynthetic cost of production of the RcGTA-like proteins. We show that the energy 

expense of the production of RcGTA-like proteins is comparable to that of the highly 

expressed housekeeping genes. For some of the amino acid changes, we identify clear 

signatures of positive selection towards amino acids with a smaller number of carbons in 

their side chains. We hypothesize that evolution of RcGTA-like elements was affected by 

selection to minimize cellular energy investment into their production under nutrient-poor 

conditions. 

Results 

Elevated GC-content in RcGTA-like regions is due to the higher GC-content in the 

first and second codon positions of the coding genes. 

 Because of the degeneracy of the genetic code, GC3-content is known to track the 

overall GC-content of genomic regions (Palidwor et al., 2010). Hence, if the GC-content 

of RcGTA-like ‘head-tail’ clusters is elevated because they reside in GC-rich genomic 

regions, the GC-content in the third, primarily synonymous codon positions (GC3-

content) of the RcGTA-like genes is expected to be higher compared to the genomic 

average of the GC3-content. Moreover, the elevated GC3-content would not be limited to 

the genes in the RcGTA-like region but would be apparent in the adjacent genes as well. 

To test this hypothesis, we examined homologs of one RcGTA locus (‘head-tail’ cluster) 

in 212 alphaproteobacterial genomes (see Materials and Methods) (Kogay et al., 2019; 

Shakya et al., 2017). Although we analyzed homologs of only one locus from one GTA 

only, for brevity, we hereafter refer to these regions simply as “GTA regions”, and to 

genes and encoded proteins in these regions as “GTA genes” and “GTA proteins”. 

Contrary to the aforementioned expectation, we found no significant difference between 

the GC3-content of GTA genes of the 212 alphaproteobacterial genomes, their 
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neighboring genes and all genes in the genome (Kruskal-Wallis H test, p-value = 0.62; 

Figure 1). By contrast, the GC1- and GC2-content of GTA genes are significantly higher 

than the corresponding values for both the neighboring genes (Dunn’s test, p-value < 

0.0001) and the genes across the entire genome (Dunn’s test, p-value < 0.0001) (Figure 

1). Furthermore, the genes adjacent to the GTA regions do not have elevated GC1- and 

GC2-content when compared to the genes in the entire genome (Dunn’s test, p-value = 1), 

indicating that the elevated GC1- and GC2-content is limited to the GTA genes. Due to 

the relationship between codons and amino acids in the genetic code, the elevated GC1- 

and GC2- content of an open reading frame (ORF) translates into a biased amino acid 

composition of the encoded protein. Indeed, a significant amino acid composition bias in 

the GTA proteins has been demonstrated previously (Kogay et al., 2019). Specifically, the 

 

Figure 1. The GC1-, GC2- and GC3-content of GTA regions, their immediate 

neighborhoods and all protein-coding genes in 212 alphaproteobacterial genomes. 

The neighborhoods immediately upstream and downstream of a GTA region consists of 

17 genes each. Boxplots represent median values bounded by the first and third 

quartiles. Whiskers show the values that lie in the range of 1.5*interquartile rule. Dots 

outside of the whiskers are the outliers. 
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relative abundance of amino acids encoded by GC-rich codons is significantly higher in 

the GTA genes than the genomic average (Figure S1; Student’s t-test, p-value < 0.0001; 

see Materials and Methods for definition of GC-rich codons). Taken together, these 

findings suggest that the GC-content of GTA regions in Alphaproteobacteria is driven by 

selection for a specific amino acid composition of the encoded proteins. 

Proteins encoded in GTA regions contain smaller number of carbons and are 

energetically cheaper than their viral homologs. 

 The RcGTA production has been experimentally demonstrated to be stimulated by 

carbon depletion (Westbye, O'Neill, et al., 2017). Furthermore, knockout of the RcGTA-

like genes in three alphaproteobacterial strains (Price et al., 2018) resulted in a significant 

decrease in fitness of the mutants under growth conditions with alternative carbon 

sources that might not be utilized by these strains (Kogay et al., 2019). If GTAs are 

indeed produced under conditions of limited carbon availability, the observed amino acid 

bias in the GTA genes might represent an adaptation in the GTA-containing lineages to 

utilize energetically cheaper amino acids for GTA particle production. To test this 

hypothesis, we compared the number of carbons in amino acid side chains and costs of 

amino acid biosynthesis (measured as the number of high-energy phosphate bonds) in 

GTA proteins and by their viral homologs. We assumed that (a) all amino acids are 

produced by bacteria de novo, as at least 174 of the analyzed genomes can produce 19 or 

all 20 amino acids (Figure S2), and (b) viral infections are not specifically associated 

with the carbon-limited conditions, and therefore, viral homologs of RcGTA genes should 

not be subject to selection for energy saving. Consistent with the proposed hypothesis, for 

all of the 12 genes with sufficient number of viral homologs to estimate statistical 

significance (Table S1), GTA proteins have both a significantly smaller number of 

carbons (Mann-Whitney U test, all 12 Bonferroni-corrected p-values < 0.01; Figure 2A) 

and a significantly reduced cost of amino acid biosynthesis than their viral homologs 

(Mann-Whitney U test, all 12 Bonferroni-corrected p-values < 0.01; Figure 2B). 

To demonstrate that the observed differences in the carbon content of the GTA 

and viral proteins are not simply due to the compositional bias present in the ancestor of 

the alphaproteobacterial GTA elements (Shakya et al., 2017), we sought to examine only 
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a subset of viral homologs that are presumed to be horizontally acquired from the GTA 

regions. Genes with significant sequence similarity to GTA genes have been previously 

found in viruses and inferred to be horizontally acquired from GTAs on the basis of 

phylogenetic reconstruction (Hynes et al., 2016; Zhan et al., 2016). In our phylogenetic 

analyses, we examined several viral genes of this apparent origin (Table 1, Figure S3; 

also see Materials and Methods for details). Under the assumption of no selection for 

energy saving in viruses, we expect the carbon content of the GTA genes acquired by 

viruses to increase after their relocation to the virus genomes. Indeed, in all cases, the 

carbon content of the now-viral homologs consistently (and, overall, significantly) 

increased compared to the inferred ancestral state at the time of acquisition (Table 1, SI 

Figure S3).  

 

Figure 2. Carbon content (A) and biosynthetic cost (B) of proteins encoded by GTA 

genes in 212 alphaproteobacterial genomes and their viral homologs. Boxplots 

represent median values that are bounded by the first and third quartiles. Whiskers show 

the values that lie in the range of 1.5*interquartile rule. Dots outside of the whiskers are 

the outliers. The number of data points in each boxplot is listed in Table S1. 
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Energetic cost of the GTA proteins is as low as that of essential bacterial proteins. 

 Highly expressed genes have been demonstrated to evolve under selection to 

decrease the energetic cost of the encoded protein production (Chen et al., 2016). Indeed, 

20 single-copy housekeeping genes involved in translation ([J] COG category; (Galperin 

et al., 2019)) (Table S2), and therefore presumed to be expressed at relatively high levels 

under any conditions, collectively, have a significantly lower energetic cost than the 

average of all proteins encoded in a genome, as measured by both side chain carbon 

utilization and biosynthetic cost of production per amino acid (Figure 3; Mann-Whitney 

Table 1. Change in the carbon content between viral homologs of the GTA proteins 

and their closest GTA ancestral node. 

GTA 
gene 

Virus name Change in the 
number of 
carbons per 
side chain of an 
amino acid  

p-value Alignment 
length 

g6 Cellulophaga phage phi10 1 +0.605 <0.001 193 

g7 Cellulophaga phage phi18 1 +0.394 0.001 147 
g7 Streptomyces phage phiSASD1 +0.167 0.179 147 

g7 Salmonella phage ST64B +0.222 0.048 147 
g7 Salmonella phage 118970 sal3 +0.229 0.042 147 
g7 Shigella phage SfIV +0.184 0.115 147 
g7 Enterobacteria phage SfV +0.244 0.083 147 
g7 Shigella phage SfII +0.191 0.107 147 
g10 Rhizobium phage 16-3 +0.105 0.271 123 

g12 Rhodobacter phage RcCronus +0.123 0.081 228 

g13 Paracoccus phage vB PmaS R3 +0.048 0.226 304 

g13 Dinoroseobacter phage vB DshS R5C +0.027 0.383 304 
g13 Roseobacter phage RDJL Phi 1 +0.005 0.447 304 
g13 Roseobacter phage RDJL Phi 2 +0.019 0.388 304 
g14 Rhodobacter phage RcRhea +0.191 0.108 166 
g15 Rhodobacter phage RcRhea +0.147 <0.001 1369 
g15 Rhodobacter phage RcCronus +0.143 <0.001 1369 
Cumulative across 7 genes +0.163 <0.001 2530 
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U test, p-values < 0.0001). The biosynthetic cost per amino acid of the GTA proteins was 

found to be statistically indistinguishable from that of the products of the 20 highly 

expressed genes (Mann-Whitney U test, p-value = 0.3372), and remarkably, utilize even 

less carbon (Mann-Whitney U test , p-value < 0.0001) (Figure 3).  

Reduction in carbon utilization varies among GTA genes and across bacterial taxa. 

To investigate how reduction of carbon content evolved from the common ancestor of the 

examined GTA genes to the extant forms, we reconstructed the number of carbons per 

amino acid at the ancestral nodes of individual evolutionary trees of 14 GTA genes (those 

with at least one detectable viral homolog; Table S1). To correct for differences in the 

GC-content across taxa (which affects the carbon content of the encoded proteins), for 

each taxon we normalized the number of carbons per amino acid of GTA proteins by that 

of 26 housekeeping proteins (Table S2). No unifying pattern of directional selection 

 

Figure 3. The number of carbons (A) and number of high-energy phosphates (B) in 

proteins encoded by all protein-coding genes in 212 genomes, highly expressed 

genes, and GTA genes. Boxplots represent median values that are bounded by the first 

and third quartiles. Whiskers show the values that lie in the range of 1.5*interquartile 

rule. Dots outside of the whiskers are outliers. 
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towards the lower carbon content was detected across all genes and all taxa (Figure S4). 

This lack of an overall signal was not surprising because GTA genes can be horizontally 

transferred across taxa (Shakya et al., 2017), have different evolutionary rates among and 

within taxa (Shakya et al., 2017), and are likely to reach unequal translation levels during 

GTA production (Chen et al., 2009). These differences would make the carbon content 

optimization gene- and taxon- specific, blurring the net effect. However, members of the 

order Sphingomonadales show the most pronounced reduction in carbon utilization for 

the GTA regions overall, as well as for the majority of individual genes (Figure 4). 

Notably, many Sphingomonadales species can live under nutrient-depleted conditions 

(Balkwill et al., 2006).  

In Sphingomonadales, the decrease in carbon content of GTA proteins is driven by 

positive selection. 

To evaluate whether diversifying (positive) selection plays a role in the observed 

reduction of carbon utilization in the GTA genes in Sphingomonadales, we tested for 

evidence of positive selection in individual sites on the branch leading to this clade. For 9 

of the 14 evaluated genes, the model of positive selection on the branch was a 

significantly better fit than the neutral null model (Table S3). For 8 of these 9 genes, 

members of the Spingomonadales clade showed significant decrease in the carbon 

utilization relative to three other orders (Mann-Whitney U Test; α of 0.01, p -values < 

0.01; Table S4; Figure 4). Conversely, for 4 of the 5 genes that did not show evidence of 

positive selection, there was no significant decrease in the carbon content of proteins in 

the Sphingomonadales genomes (Figure 4). 

To assess how the specific sites that are inferred to be subject to positive selection 

contribute to the carbon content of the Sphingomonadales’ GTA genes, we examined 

carbon content of amino acids in the sites with >0.95 posterior probability of being 

subject to positive selection. For 8 of the 9 positively selected genes, these sites 

substantially contributed to the decrease in carbon utilization in Sphingomonadales 

(Table 2, Table S5). This trend is manifested, in particular, by the observed replacements 

of aromatic amino acids, which contain relatively high numbers of carbons and have 

excessive biosynthetic costs, with non-aromatic amino acids (Figure S5). The observed 
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replacements of tryptophan with phenylalanine indicate that, under a constraint of 

maintaining an amino acid with similar physicochemical properties, there is selection for 

utilization of a cheaper amino acid (Figure S5). Mapping of the positively selected sites 

in the Sphingomonadales’ g5 homolog onto a structural model of the T5 bacteriophage 

 

Figure 4. Carbon content of GTA proteins for four orders of the class 

Alphaproteobacteria. For each GTA protein, the heatmap visualizes the number of 

carbons per the side chain in amino acid averaged across taxonomic order. The numbers 

are shown either as raw values (panel A), or as values normalized by the carbon content 

of proteins encoded by 26 single-copy genes (panel B). The asterisks mark GTA 

proteins with significantly lower numbers of carbons per amino acid in the 

Sphingomonadales order than in the other three orders combined (α of 0.01; Mann-

Whitney U test, all p-values < 0.01). Boxplots summarize the distribution of carbon 

content within each alphaproteobacterial order averaged across the examined GTA 

genes. Median values are bounded by the first and third quartiles. Whiskers show the 

values that lie in the range of 1.5*interquartile rule and dots outside of the whiskers are 

the outliers. The phylogenetic tree is the reference alphaproteobacterial phylogeny (see 

Materials and Methods for details), in which branches are collapsed at the taxonomic 

rank of order. Numbers at the tree nodes represent bootstrap support values. Scale bar, 

number of substitutions per site. 
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major capsid protein shows that these sites tend to be located on the surface of the protein 

(Supplementary Movie in FigShare Repository). This example suggests that carbon-

saving replacements preferentially occur in sites that are not involved in the folding of 

GTA proteins, allowing the GTAs to preserve the functionality of their proteins at reduced 

production costs.  

Discussion 

 We show here that the elevated GC-content of GTA regions is driven by selection 

towards encoding proteins with energetically cheaper amino acids. Although GC-rich 

genes have an increased cost of mRNA expression, cells spend much more energy on the 

synthesis of amino acids than on the synthesis of ribonucleotides (Chen et al., 2016; 

Lynch & Marinov, 2015). Hence, the elevation of GC-content in non-synonymous codon 

positions (GC1 and GC2) reduces the energetic expenses on the production of the 

respective proteins. Consistent with this notion, energy savings for GTA proteins are as 

pronounced or even greater than those for highly expressed housekeeping genes that are 

known to utilize cheaper and smaller amino acids (Chen et al., 2016). Given that 

production of RcGTA-like particles in Alphaproteobacteria occurs in the stationary phase 

(Lang et al., 2017; Solioz et al., 1975) and is associated with carbon depletion (Kogay et 

Table 2. Contribution of positively selected sites to the reduction of carbon 

utilization in GTA proteins of Sphingomonadales. 

GTA      
protein 

Number of sites 
under the positive 
selection 

Average change in 
number of carbons by the 
contribution of all sites 
under the positive 
selection 

Number of sites that 
contribute to the decrease in 
number of carbons 

g2 13 -0.22 6 
g3 33 -0.72 22 
g4 29 -0.42 13 
g5 12 -0.39 8 
g6 11 +0.16 5 
g9 29 -0.68 16 
g12 23 -0.52 13 
g13 31 -0.44 16 
g15 27 -0.55 15 
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al., 2019; Westbye, O'Neill, et al., 2017), the shift in GC-content of GTA genes and amino 

acid composition of their products likely reflects the adaptation for their efficient 

expression under such conditions. 

 The change in the amino acid composition of GTA proteins was not uniform 

across the examined alphaproteobacterial lineages. These differences are not unexpected 

because GTA-carrying bacteria live in different environments and under different 

selection pressures. We demonstrated that, on the branch leading to Sphingomonadales, 

the decrease in carbon content of the GTA proteins is driven by positive selection for the 

use of cheaper amino acids. We hypothesize that the last common ancestor of 

Sphingomonadales evolved in a nutrient-depleted environment that selected for the 

reduction in the use of energetically expensive amino acids in the GTA proteins. 

 Although bacterial viruses also spend disproportionate amounts of energy on 

translation (Mahmoudabadi et al., 2017), our analysis of viral genes that apparently were 

acquired by viruses from bacterial GTAs shows a decrease in GC1 and GC2 content, with 

the concomitant increase in protein production energy cost. Thus, positive selection for 

cost saving, probably ceases to substantially affect the evolution of these genes once they 

are transferred to virus genomes. Lytic bacteriophages reproduce rapidly, with a typical 

burst size of about 200 virions that hijacks about 30% of the host energy budget 

(Mahmoudabadi et al., 2017). Under the conditions of such brief, explosive growth, 

energy saving might not be an important selective factor. Differences in the viral burst 

sizes imply that selection for energy saving could play some role. However, such 

selection is expected to be weak due to other constraints affecting the lytic viruses, such 

as fluctuations in the host energy budget, often error-prone viral replication machinery, 

and the main evolutionary pressure being evasion of host defense systems (Paez-Espino 

et al., 2015; Paterson et al., 2010). Thus, our observations provide additional evidence 

that GTAs are not selfish, virus-like agents but rather microbial adaptations. 

 Taken together, our findings, and in particular, the evidence of positive selection 

for energy saving in Sphingomonadales, are in line with the previous suggestions that 

maintenance of GTAs and production of GTA particles confers some advantage to the 

bacterial hosts (Lang et al., 2017; McDaniel et al., 2010). Because GTA-producing cell 
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lyses and GTA genes are not transferred to the recipient cell, the reduction of energy 

utilization for the production of GTA particles has to be beneficial at the population or 

community level, that is, it needs to involve some form of kin or group selection (Smith, 

1964; West et al., 2006). The nature of such benefit(s) is not entirely clear, but it appears 

likely that the GTAs, effectively, are devices for survival under energy- or nutrient-

limited conditions that are common in bacterial ecology. More specifically, GTAs could 

provide two types of adaptations. Previous studies suggest that oligotrophic conditions do 

not interfere with the capacity of bacteria to engage in genetic exchange (Goodman et al., 

1994). Moreover, the nutrient limitation can upregulate horizontal gene transfer via 

transformation (Meibom et al., 2005), suggesting potential benefits of gene exchange 

under adverse conditions of energy or nutrient limitations. Conceivably, HGT mediated 

by the GTAs can confer additional metabolic or transport capacities to the recipient 

bacteria. Additionally, GTAs could be perceived as a mechanism of bacterial programmed 

cell death (Engelberg-Kulka et al., 2006; Peeters & de Jonge, 2018). Under this type of 

adaptation, the GTA-mediated lysis of a fraction of the bacterial community would 

decrease the population density and increase the nutrient availability per cell, by 

supplying additional nutrients released from the lysed cells.  

Materials and Methods 

Reduction in carbon utilization varies among GTA genes and across bacterial taxa. 

 The initial dataset of 422 GTA regions in 419 alphaproteobacterial genomes 

consisted of 88 regions identified by Shakya et al. (Shakya et al., 2017) and 334 regions 

in complete alphaproteobacterial genomes predicted by Kogay et al. (Kogay et al., 2019). 

Four GTA regions from the Methylobacterium nodulans ORS2060 genome were removed 

due to their questionable assignment as GTAs (Shakya et al., 2017). Because our previous 

GTA prediction procedure (Kogay et al., 2019) screened for the presence of only 11 of 

the 17 homologs of the RcGTA head-tail cluster (Lang et al., 2012), the remaining 6 

homologs were identified using BLASTP (Altschul et al., 1997) (version 2.6.0, e-value = 

0.1, manually curated homologs from Kogay et al. (Kogay et al., 2019) as queries), with 

subsequent restriction of the hits to the regions with previously identified GTA genes. To 
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reduce the computational cost of the downstream analyses, highly similar GTA regions 

were excluded. To this end, genomes that contained the 418 GTA regions were clustered 

into OTUs using furthest neighbor clustering and Average Nucleotide Identity (ANI) 

cutoff of 95%. The ANI values were calculated using fastANI v.1.1 (Jain et al., 2018). 

From each of the identified 215 OTUs, only the GTA region with the largest number of 

the relevant genes was retained. Further removal of the regions that contained less than 9 

genes resulted in the final dataset of 212 GTA regions. 

 To obtain viral homologs of the GTA genes, genes from the 212 GTA regions 

were used as queries in BLASTP searches (Altschul et al., 1997) (version 2.6.0, e-value = 

0.001, query and subject coverage of at least 60%) against the viral RefSeq database 

(release 96, accessed on October 2019) (Brister et al., 2015). 

 The numbers of identified alphaproteobacterial and viral homologs for the 17 

RcGTA genes are shown in Table S1.  

Calculation of GC-content for the 212 alphaproteobacterial genomes. 

The GTA region’s neighborhood was defined as 51 genes upstream and 51 genes 

downstream of the region. Each neighborhood was divided into 6 non-overlapping 

regions with 17 genes each. For each neighborhood region, the GTA region, and all 

annotated genes in the genome, GC1-, GC2-, and GC3-content values were calculated 

using an in-house script. The significance of the GC-content differences among the 

obtained 8 groups was assessed using the Kruskal-Wallis H test followed by the Dunn’s 

test (Dunn, 1964). The p-values were adjusted for multiple testing using the Bonferroni 

correction. 

Calculation of the relative abundance of amino acids encoded by GC-rich codons for 

212 alphaproteobacterial genomes. 

The amino acids that are encoded by GC-rich codons were defined as those that 

have G or C in the first and second codon positions (alanine, arginine, glycine and 

proline). For each genome, the amino acid frequencies were calculated for the pooled set 

of proteins encoded by genes in the GTA region, as well as for the pooled set of proteins 

encoded by all genes in a genome. The significance of the difference in relative 
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abundances of the 4 amino acids encoded by GC-rich codons in the two sets was assessed 

using the Student’s t-test. 

Calculation of carbon content and biosynthetic cost of amino acids in the encoded 

proteins. 

Because differences in the carbon-content of amino acids are determined solely by 

the composition of their side chains, for each amino acid sequence encoded by a GTA 

gene (or its viral homolog), the number of carbons in the side chains of the amino acids 

was counted and normalized by the length of the encoded polypeptide. Additionally, for 

each amino acid sequence encoded by a GTA gene (or its viral homolog), the average 

biosynthetic cost of protein production per amino acid, defined as the number of high-

energy phosphate bonds needed to produce a particular amino acid, was calculated. 

Because almost all of the 212 alphaproteobacteria containing the GTA regions are either 

obligate or facultative aerobes, the individual costs of amino acid production already 

computed for Escherichia coli by Akashi and Gojobori (Akashi & Gojobori, 2002) were 

used. The significance of the differences in the carbon utilization and biosynthetic cost 

between GTA proteins and viral homologs was assessed using the Mann-Whitney U test, 

followed by the Bonferroni correction of p-values to account for multiple testing. 

Verification of amino acid biosynthesis pathways in the alphaproteobacterial 

genomes. 

Presence of the amino acid biosynthesis pathways in the genomes was evaluated 

using the KEGG database release 92 (Kanehisa & Goto, 2000). For 189 of the 212 

alphaproteobacteria, either its own genome (186 genomes) or the genome of a close 

relative (ANI > 95%; 3 genomes) were examined. For the remaining 23 genomes, no 

information from the closely related genomes was available in KEGG. For each of the 

189 genomes, the map of amino acid biosynthesis (map number = 01230) was examined 

for completeness. If key enzymes were missing, additional maps (map number = 00250 – 

00400) were evaluated to identify alternative enzymes that could catalyze the same 

reactions. If alternative enzymes were not found, Escherichia coli homologs that catalyze 

the missing steps were used as queries for a BLASTP search of the genome (version 
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2.6.0, e-value 0.001, query coverage of at least 50%) and the RefSeq annotations of the 

obtained matches were examined. If a complete biosynthetic pathway of an amino acid 

could not be reconstructed, the genome was designated as “auxotrophic” for the 

biosynthesis of the given amino acid. 

Exclusion of divergent viral homologs. 

To minimize possible misplacement of viral homologs due to long branch 

attraction, we have identified and excluded divergent viral homologs using the following 

procedure. Amino acid sequences of GTA genes and their viral homologs were aligned 

using MAFFT v 7.305 with the ‘auto’ setting (Katoh & Standley, 2013). Phylogenetic 

trees from individual gene alignments were reconstructed in the IQ-TREE v 1.6.7 

(Nguyen et al., 2015) using the best substitution model detected by ModelFinder 

(Kalyaanamoorthy et al., 2017). The obtained trees were used as guides for the 

reconstruction of more accurate trees, using the profile mixture model “LG+C60+F+G” 

and the site-specific frequency models that were approximated by the posterior mean site 

frequency (Wang et al., 2018) as implemented in IQ-TREE. 

To exclude viral homologs that are not closely related to GTA genes, only viral 

homologs nested within the taxonomic rank of alphaproteobacterial order with ultrafast 

bootstrap support >= 60% (1,000 pseudoreplicates; (Hoang et al., 2018)) were retained. 

Because, for genes g3, g4 and g8, large numbers of viral homologs were retained, only 

top 5 non-identical viral proteins most closely related to the alphaproteobacterial 

homologs were kept. The retained viral homologs were realigned with the GTA genes, 

and the phylogenetic trees were reconstructed and examined as described above. The 

process was repeated until all retained viral homologs grouped within 

alphaproteobacterial orders. 

Reconstruction of ancestral amino acid sequences. 

  Amino acid sequences of the ancestral nodes of the reconstructed phylogenetic 

trees were reconstructed using FastML v 3.11 (Ashkenazy et al., 2012). Indels in the 

ancestral sequences were inferred using the maximum likelihood and probability cutoff of 

0.5. Ancestral amino acid states of non-gapped states were determined using marginal 
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reconstruction under LG substitution matrix (Le & Gascuel, 2008), with heterogeneity in 

substitution rates among sites modeled using Gamma distribution (Yang, 1994). 

Reconstruction of the alphaproteobacterial reference phylogeny. 

 In each of the 212 genomes containing GTA regions, 31 phylogenetic markers 

were detected and retrieved using AMPHORA2 (Wu & Scott, 2012). Amino acid 

sequences of these markers were aligned using MAFFT v 7.305 with the ‘auto’ setting 

(Katoh & Standley, 2013). The best substitution matrix for each gene was determined 

using the ProteinModelSelection.pl script obtained from 

https://github.com/stamatak/standard-RAxML/tree/master/usefulScripts (last accessed 

November 2019). The individual gene alignments were concatenated, and each gene was 

treated as a separate partition (Chernomor et al., 2016) in the subsequent phylogenetic 

reconstruction. The maximum likelihood tree was reconstructed by the IQ-TREE v 1.6.7 

(Nguyen et al., 2015), and Gamma distribution with four categories was used to account 

for heterogeneity in substitution rates among sites (Yang, 1994). Although no outgroup 

sequences were included into the alignment, for presentation purposes, the tree was 

rooted to reflect the branching of Alphaproteobacteria as previously observed (Kogay et 

al., 2019). Phylogenetic tree was visualized using iTOL (Letunic & Bork, 2019). 

Retrieval of selected single-copy and highly-expressed genes. 

Twenty-six of the 120 phylogenetically informative genes (Parks et al., 2017) 

were found to be present in a single copy in all 212 genomes (SI Table S2). The 26 genes 

were extracted from each genome using hmmersearch v 3.1b2 via modified scripts from 

AMPHORA2 (Wu & Scott, 2012). The functional annotations of the 26 genes were 

examined using the eggNOG-mapper (Huerta-Cepas et al., 2017) based on the eggNOG 

orthology database v. 4.5 (Huerta-Cepas, Szklarczyk, et al., 2016). Twenty of the 26 

genes belong to the [J] COG category (“Translation, ribosomal structure and biogenesis”) 

and therefore were designated “highly-expressed” genes. 

Calculation of carbon utilization in extant and ancestral GTA genes. 

 The relative carbon utilization of each extant protein encoded by a GTA gene was 

defined as the ratio of the average number of carbon atoms per site to that of the 26 

https://github.com/stamatak/standard-RAxML/tree/master/usefulScripts
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single-copy genes. To calculate carbon utilization for the ancestral states, amino acid 

sequences of 14 GTA proteins with at least one viral homolog were aligned by MAFFT v 

7.305 with the “auto” setting (Katoh & Standley, 2013), and phylogenetic trees were 

reconstructed using IQ-TREE v 1.6.7 (Nguyen et al., 2015) using the best substitution 

model detected with ModelFinder (Kalyaanamoorthy et al., 2017). Using reconstructed 

phylogenies and carbon utilization data for extant proteins, carbon utilization at the 

internal nodes was inferred using the marginal maximum likelihood reconstruction, as 

implemented in the phytools package (Revell, 2012). The change of carbon utilization 

along the tree branches was deduced via equation 2 of Felsenstein (Felsenstein, 1985), 

also as implemented in the phytools package (Revell, 2012). 

 To assess the significance in the increase of carbon content of the selected viral 

proteins in comparison to their inferred ancestral protein, for each of the seven GTA 

genes with such viral homologs, amino acid sequences of these extant viruses and their 

closest inferred ancestral sequence were retrieved and aligned via MAFFT using “linsi” 

settings (Katoh & Standley, 2013). For each gene alignment, 1000 bootstrap replicates 

were generated in RAxML v 8.2.11 (Stamatakis, 2014). For each bootstrap replicate, the 

net change in the number of carbons per amino acid between the viral protein and the 

ancestral protein was calculated. The p-value was defined as the proportion of bootstrap 

replicates with a zero or negative net change in the number of carbons per amino acid. 

Additionally, the cumulative net change in the number of carbons per amino acid across 

all 7 GTA proteins (Table 1) was calculated by adding up the net changes across 

individual genes. For genes with more than one viral homolog, the viral homolog with the 

smallest difference in the number of carbons per amino acid was selected to obtain a 

conservative estimate. The p-values were calculated as they were for individual 

comparisons. 

Detection of positive selection on the branch leading to Sphingomonadales. 

 Using the phylogenetic trees and amino acid sequence alignments of the GTA 

proteins (see “Calculation of carbon utilization states in contemporary and ancestral 

GTA genes” section), evidence of episodic events of positive selection in the 

Sphingomonadales clade was inferred under the branch site A model, as implemented in 
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the codeml package of PAML version 4 (Yang, 2007). Codon alignments of nucleotide 

sequences were obtained using pal2nal (Suyama et al., 2006). The branch lengths in the 

corresponding phylogenetic trees were re-estimated in PAML. Because g12 and g15 

genes vary in length between Sphingomonadales and other alphaproteobacterial orders, 

codons that were present in less than 50% and 80% of sequences in g12 and g15 datasets, 

respectively, were removed. For the null model (no positive selection), ω2a and ω2b were 

fixed to 1, and the significance for the alternative model (positive selection) was tested 

using the likelihood ratio test with one degree of freedom and α of 0.01. P-values were 

adjusted for multiple testing using the Bonferroni correction. A site was classified as 

being “under positive selection” if it had the probability of at least 0.95 in the Bayes 

Empirical Bayes estimation (Yang et al., 2005), and was present in at least of 50% of the 

Sphingomonadales branches and 50% of the remaining branches. 

Visualization of positively selected sites on the 3D model of capsomer. 

 The amino acid sequences of the RcGTA genes were used in a BLASTP search (e-

value < 0.01, low-complexity masking, and query coverage of at least 50%) against the 

PDB database (Berman et al., 2000) (last accessed November 2019). Only the g5 gene 

query returned significant matches to the PDB database. The amino acid sequence of the 

top-scoring match (PDB ID – 5TJT) was retrieved and aligned with the representative g5 

homolog from Sphingomonadales (Sphingobium amiense DSM 16289) using the 

Needleman-Wunsch algorithm (Needleman & Wunsch, 1970). Of the 12 sites classified 

as being under positive selection in the Sphingobium amiense DSM 16289 homolog, 2 

sites did not have homologous positions in the 5TJT sequence. The remaining 10 sites 

were mapped onto the 5TJT PDB structure using PyMol version 2.3 (The PyMOL 

Molecular Graphics System, Version 2.0 Schrödinger, LLC.) 

Data availability 

 List of accession numbers of 212 alphaproteobacterial genomes with GTA 

regions, amino acid sequences of identified GTA proteins in alphaproteobacteria and 

viruses, as well as sequence alignments and phylogenetic trees used in the described 

analyses have been deposited to FigShare under the doi: 10.6084/m9.figshare.12071223. 
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Abstract 

 Gene transfer agents (GTAs) are virus-like elements that are encoded by some 

bacterial and archaeal genomes. The production of GTAs can be induced by the carbon 

depletion and results in host lysis and release of virus-like particles that contain mostly 

random fragments of the host DNA. The remaining members of a GTA-producing 

population act as GTA recipients by producing proteins needed for the GTA-mediated 

DNA acquisition. Here, we detect a codon usage bias towards codons with more readily 

available tRNAs in the RcGTA-like GTA genes of alphaproteobacterial genomes. Such 

bias likely improves the translational efficacy during GTA gene expression. While the 

strength of codon usage bias fluctuates substantially among individual GTA genes and 

across taxonomic groups, it is especially pronounced in Sphingomonadales, whose 

members are known to inhabit nutrient-depleted environments. By screening genomes for 

gene families with similar trends in codon usage biases to those in GTA genes, we found 

a gene that likely encodes head completion protein in some GTAs were it appeared 

missing, and 13 genes previously not implicated in GTA lifecycle. The latter genes are 

involved in various molecular processes, including the homologous recombination and 

transport of scarce organic matter. Our findings provide insights into the role of selection 

for translational efficiency in evolution of GTA genes, and outline genes that are 

potentially involved in the previously hypothesized integration of GTA-delivered DNA 

into the host genome. 

Importance 

Horizontal gene transfer (HGT) is a fundamental process that drives evolution of 

microorganisms. HGT can result a rapid dissemination of beneficial genes within and 

among microbial communities, and can be achieved via multiple mechanisms. One 

peculiar HGT mechanism involves viruses “domesticated” by some bacteria and archaea 

(their hosts). These so-called gene transfer agents (GTAs) are encoded in hosts’ genomes, 

produced under starvation conditions, and cannot propagate themselves as viruses. We 

show that GTA genes are under selection to improve efficiency of their translation when 

the host activates GTA production. The selection is especially pronounced in bacteria that 
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occupy nutrient-depleted environments. Intriguingly, several genes involved in DNA 

incorporation into a genome are under similar selection pressure, suggesting that they 

may facilitate integration of GTA-delivered DNA into the host genome. Our findings 

underscore the potential importance of GTAs as a mechanism of HGT under nutrient-

limited conditions, which are widespread in microbial habitats. 

Introduction 

 Gene transfer agents are phage-like particles produced by multiple groups of 

bacteria and archaea (Lang et al., 2017). Unlike viruses, GTA particles tend to package 

random pieces of the host cell DNA instead of genes that encode GTAs themselves (Lang 

et al., 2012; Marrs, 1974). Released GTA particles can deliver the packaged genetic 

material to other cells (Brimacombe et al., 2014), impacting exchange of genetic material 

in prokaryotic populations (Brimacombe et al., 2015; McDaniel et al., 2010; Québatte et 

al., 2017). The benefits of GTA production and GTA-mediated DNA acquisition are not 

well understood. It has been hypothesized that GTAs may facilitate DNA repair (Marrs et 

al., 1977), enable population-level exchange of traits needed under the conditions of a 

nutritional stress via horizontal gene transfer (HGT) (McDaniel et al., 2010) or decrease 

population density during the carbon starvation periods (Kogay et al., 2020). 

 To date, at least three independently exapted GTAs are functionally characterized 

(Kogay et al., 2022). The most studied GTA system (RcGTA) belongs to the 

alphaproteobacterium Rhodobacter capsulatus (Marrs, 1974). RcGTA is encoded by at 

least 24 genes that are distributed across 5 distinct genomic loci (Hynes et al., 2016; 

Shakya et al., 2017). Seventeen of the 24 genes are situated in one locus, which is dubbed 

the ‘head-tail’ cluster because it encodes most of the structural proteins of the RcGTA 

particles (Lang et al., 2017). RcGTA-like ‘head-tail’ clusters are present in many 

alphaproteobacterial genomes; they evolve slowly and are inferred to be inherited mostly 

vertically from a common ancestor of an alphaproteobacterial clade that spans multiple 

taxonomic orders (Kogay et al., 2019; Lang & Beatty, 2007; Shakya et al., 2017). 

Additionally, multiple cellular genes regulate RcGTA production, release and reception 

(Fogg, 2019; Hynes et al., 2016). It is likely that other, yet undiscovered, genes in R. 

capsulatus genome are involved in GTA lifecycle. 



 

 90 

 Expression of RcGTA is known to be triggered by nutrient depletion (Westbye, 

O'Neill, et al., 2017), under which a small fraction of the R. capsulatus population 

becomes dedicated to GTA production (P. C. Fogg et al., 2012; Hynes et al., 2012). As a 

result, RcGTA-producing cells likely express GTA genes at high levels. By extension, 

RcGTA-like GTA genes in other alphaproteobacteria (hereafter referred to as “GTA 

genes” for brevity) also likely to be highly expressed in GTA-producing cells of 

alphaproteobacterial populations. 

 Highly expressed genes that are involved in core biological processes, such as 

translational machinery, are known to exhibit a strong codon usage bias (Roller et al., 

2013). For example, codon usage in ribosomal proteins, which are highly expressed in 

almost all organisms, deviates most dramatically from the distribution of codons expected 

under their equal usage corrected for organismal GC content (Wright, 1990). Such bias is 

primarily due to selection to match the pool of most abundant tRNA molecules in order to 

have the most efficient translation for proteins needed in high number of copies (Quax et 

al., 2015; Rocha, 2004; Zhou et al., 2016). As a result, highly expressed genes tend to 

have codons that correspond to the most abundant tRNA molecules in the cell. This type 

of selection is known as the “selection for translational efficiency” and is ubiquitous 

among bacteria (Supek et al., 2010). 

 Besides constitutively highly expressed genes, selection for translational 

efficiency also acts on genes that are highly expressed under specific environmental 

conditions that microorganisms experience (LaBella et al., 2021; Roller et al., 2013; 

Supek et al., 2010). For instance, genes that utilize galactose have higher codon usage 

biases in budding yeasts that live in dairy-associated habitats than in yeasts that occupy 

alcohol-associated habitats (LaBella et al., 2021). Additionally, genes that encode 

interacting proteins and genes involved in the same pathway often exhibit similar codon 

usage biases (Fraser et al., 2004; LaBella et al., 2021). 

In earlier work, we have discovered that alphaproteobacterial GTA genes have a 

striking bias towards GC-rich codons in comparison to the rest of the genome (Kogay et 

al., 2020; Shakya et al., 2017). However, this bias is different from the codon usage bias: 

skewed composition of the encoded proteins towards containing energetically cheaper 
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amino acids caused the first two positions of the codons to be enriched in Gs and Cs, due 

to the structure of the genetic code (Kogay et al., 2020). In this study, we examined GTA 

genes in 208 alphaproteobacterial genomes and assessed if there is additionally a codon 

usage bias due to the genes being under selection for the translation efficiency. For this 

purpose, we used two well-established metrics for assessment of codon usage bias and its 

match to the tRNA abundance: effective number of codons (ENC) (Wright, 1990) and 

tRNA adaptation index (tAI) (dos Reis et al., 2003). ENC quantifies how equally 

synonymous codons are used in a gene, and varies from 20 (when only one codon is used 

per each amino acid; strong bias) to 61 (when all codons are used equally; no bias). The 

tAI measures how optimally the codon usage of each gene fits the available tRNA pool 

by correlating frequency of each codon in the gene with the abundance of its cognate 

tRNA. The degree of adaptation of a gene is gauged by comparing its tAI value to the tAI 

values of all other genes in a genome. We also searched for genes whose involvement in 

GTA production and regulation is currently unsuspected by screening GTA-encoding 

genomes for genes with codon usage patterns similar to those of GTA genes. 

Results 

Codon usage bias of GTA genes and its match to available tRNAs varies across GTA 

genes and GTA-containing genomes 

To assess the presence of codon usage bias in GTA genes across 

alphaproteobacteria, we have calculated ENC for each “reference GTA gene” (see 

Methods for the definition) and compared them against the expected ENC of a gene in a 

genome under the null model of no codon usage bias, corrected for the genomic GC 

content (dos Reis et al., 2004). Indeed, we found that 1,543 out of 2,308 (66.8%) 

reference GTA genes detected across 208 GTA head-tail clusters deviate from the 

genome-specific null expectations by more than 10% (Supplemental Figure S1). 

However, there is a substantial variation in this deviation for different GTA genes 

(Supplemental Figure S2), and only in genes g5 and g8 the deviation is significantly 

higher than the genomic average (Kruskal-Wallis rank sum test, p-value < 2.2e-16; 

Dunn’s test, p-value < 0.05, Benjamini-Hochberg correction). 
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To assess the match of the observed codon usage bias to available tRNA pool, we 

calculated tAI values of the reference GTA genes across 208 genomes and converted 

them to percentile tAI values (ptAI; see Methods for the definition) to allow for the 

intergenomic comparisons. Similar to the ENC values, the ptAI values also vary 

substantially across the genes and genomes (Figure 1), suggesting that the strength of 

selection for translational efficiency should be examined in individual GTA genes and in 

specific taxonomic groups, which we investigate in the next two sections.  

Selection for translational efficiency is uneven among GTA genes 

 

Figure 1. Distribution of ptAI values among reference GTA genes from GTA head-

tail clusters in 208 alphaproteobacterial genomes. Line within a box displays the 

median ptAI value for a GTA gene across all genomes, in which the gene was detected. 

The boxes are bounded by first and third quartiles. Whiskers represent ptAI values 

within 1.5*interquartile range. Dots outside of whiskers are outliers. 
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The differences of ptAI values among the reference GTA genes are statistically 

significant (Kruskal-Wallis rank sum test, p-value < 2.2e-16) (Figure 1). Particularly 

notable is a significant decline in ptAI values of the region encoding genes g12 through 

g15 (Dunn’s test, p-value < 0.05, Benjamini-Hochberg correction), which are located at 

the 3’ end of the head-tail cluster and encode the tail components of a GTAs particle. In 

contrast, ptAI values of the genes g5 (encoding major capsid protein) and g11 (encoding 

tail tape measure protein) are significantly higher than ptAI values of other GTA genes  

(Dunn’s test, p-values < 0.05, Benjamini-Hochberg correction). Notably, protein g5 is 

detected in the largest number of copies (145) per RcGTA particle than any other protein 

(Bardy et al., 2020), while proteins g12-g15 are present in a small number of copies (1-6) 

per RcGTA particle (Bardy et al., 2020). Given that genes encoding proteins needed in a 

larger number of copies have a higher degree of adaptation to the tRNA pool (Plotkin & 

Kudla, 2011), we hypothesize that the observed variation in ptAI values of GTA genes 

reflects the different number of GTA proteins in a GTA particle. Protein g11, however, is 

found in only 3 copies per RcGTA particle (Bardy et al., 2020) and therefore a demand 

for a larger copy number cannot explain its high ptAI values. 

Variation of ptAI values could also be due to physical location of the genes in the 

GTA head-tail cluster. Similar to the operons (Lim et al., 2011), genes in the RcGTA 

head-tail cluster are co-transcribed from a single promoter upstream of the cluster (Fogg, 

2019; Lang & Beatty, 2000). Because genes at the 3’ end of operons tend to have lower 

expression levels (Nishizaki et al., 2007), the low ptAI values of GTA genes g12-g15 may 

be due to their distant location from the promoter. 

Selection for translational efficiency is the strongest in Sphingomonadales’ genomes 

In addition to variability in ptAI values across different GTA genes, ptAI values 

of individual GTA genes vary substantially across the 208 genomes (Figure 1). To 

evaluate if these differences represent variation in selection pressure in distinct taxonomic 

groups, we initially examined the ptAI values of gene g5 that were grouped by 

alphaproteobacterial order. The g5 gene was chosen due to its high abundance of the 

encoded protein in RcGTA particles (more copies than all other structural proteins 

combined) and for being the only gene with the highest detected deviations from the 
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average genomic values for both ENC and ptAI. We found that ptAI values of the g5 

gene vary significantly among members of the four alphaproteobacterial orders (Kruskal-

Wallis rank sum test, p-value < 0.05) (Figure 2A). In particular, g5 genes from the 

Sphingomonadales’ genomes have significantly higher ptAI values than those from 

genomes of bacteria from other three orders (Mann-Whitney U test, p-value < 0.05, 

Benjamini-Hochberg correction). Twelve of the fourteen g5 genes with the highest 

overall ptAI values (> 90) (Figure 2A) also belong to the Sphingomonadales genomes. 

Beyond just g5 gene, all reference GTA genes, as a group, have higher ptAI values in 

Sphingomonadales than in members of the three other alphaproteobacterial orders 

(Mann-Whitney U test, p-value < 0.05, Benjamini-Hochberg correction) (Supplemental 

Figure S3). These observations suggests that in Sphingomonadales in particular, there is 

a strong selection for efficient production of GTA particles. Because Sphingomonadales 

are known to live in nutrient-depleted environments (Balkwill et al., 2006), we suggest 

that GTA production is especially beneficial in those habitats to exert strong selection for 

translational efficiency. 

The increase in translational efficiency of GTA genes is associated with a reduced 

energetic cost for production of the encoded proteins 

Among the GTA proteins in four alphaproteobacterial orders, Sphingomonadales’ 

GTA proteins also have the strongest skew in amino acid composition towards 

energetically cheaper amino acids (Figure 2B). To evaluate if selection for energy 

efficiency is linked to selection for translational efficiency, we examined the relationship 

between the ptAI values of GTA genes and the number of carbons in amino acid chains 

encoded by the Sphingomonadales GTA genes. We found that there is a significant 

negative correlation between them (Pearson R = -0.19, N = 636, p-value < 0.05). We 

propose that in Sphingomonadales benefits associated with production of GTA particles 

in nutrient-limited conditions led not only to the selection for translational efficiency, but 

also to the selection for use of energetically cheaper amino acids in the GTA genes. 

Fourteen gene families have translational efficiency trends similar to those of GTA 

genes 
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While the strength of selection for translational efficiency acting on GTA genes 

varies across gene and genomes, we found that the combinations of ptAI values across all 

reference GTA genes in a genome have similar trends across the 208 genomes. The 

similarity is significant in all pairwise reference GTA gene comparisons (Supplemental 

Figure S4), as determined using phylogenetic generalized least squares (PGLS) method. 

We conjecture that ptAI values of genes in the other loci of a GTA “genome”, as well as 

the host genes involved in GTA lifecycle, would exhibit similar trends to the ptAI values 

of reference GTA genes, allowing for discovery of yet unsuspected genes involved in 

 

Figure 2. Distributions of (A) ptAI values in the major capsid protein-encoding 

gene (g5) and (B) carbon content of amino acids in the g5 protein across four 

orders of the class Alphaproteobacteria. On both panels A and B, line within a box 

displays the median ptAI value for g5 representatives within an order. The boxes are 

bounded by first and third quartiles. Whiskers represent ptAI values within 

1.5*interquartile range. Dots outside of whiskers are outliers. The phylogenetic tree on 

the Y-axis is the reference phylogenomic tree (see Methods for details), in which 

branches are collapsed at the taxonomic order level. Dashed line in Panel A marks ptAI 

value of 90. 
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GTA lifecycle. To identify such unknown genes that may be co-expressed with GTA 

genes, we examined correlations of ptAI values between reference GTA genes and 3,477 

other gene families present in 208 alphaproteobacterial genomes. The PGLS analysis 

revealed 14 gene families, whose ptAI values correlate significantly with ptAI values of 

the reference GTA genes (Table 1).  

Table 1. Functional annotations of 14 gene families, whose ptAI values have a 

significantly similar trend to ptAI values of the reference GTA genes. 

Gene RefSeq ID of a 
Representative 
Protein 

RefSeq Record 
Annotation 

COG 
Category 

COG functional category 
description 

gafA WP_121690074.1 DUF6456-domain 
containing protein 

K Transcription 

addA WP_121690807.1 Double-strand break repair 
helicase AddA 

L Replication, 
recombination, and repair 

addB WP_121690808.1 Double-strand break repair 
protein AddB 

L Replication, 
recombination, and repair 

xseA WP_092770100.1 Exodeoxyribonuclease VII 
large subunit 

L Replication, 
recombination, and repair 

dinG WP_067681212.1 ATP-dependent DNA 
helicase 

KL Transcription; Replication, 
recombination, and repair 

hrpB WP_121690814.1 ATP-dependent helicase 
HrpB 

L Replication, 
recombination, and repair 

priA WP_121691035.1 Primosomal protein N' L Replication, 
recombination, and repair 

glnE WP_121690099.1 Bifunctional [glutamine 
synthetase] 
adenylyltransferase/[gluta
mine synthetase]-adenylyl-
L-tyrosine phosphorylase 

OT Molecular chaperones and 
related functions; Signal 
transduction mechanism 

ccmE WP_010971299.1 Cytochrome c maturation 
protein CcmE 

O Molecular chaperones and 
related functions 

ATP12 WP_092769070.1 ATP12 family chaperone 
protein 

O Molecular chaperones and 
related functions 

tonB WP_119082607.1 Energy transducer TonB M Cell 
wall/membrane/envelope 
biogenesis 

TPR WP_162687979.1 Tetratricopeptide repeat 
protein 

M Cell 
wall/membrane/envelope 
biogenesis 

smrA WP_010970599.1 Smr/MutS family protein S Function unknown 
crtB WP_121690324.1 Phytoene/Squalene 

synthase family protein 
I Lipid transport and 

metabolism 

 



 

 97 

One of 14 identified gene families is a homolog of gafA, which encodes a crucial 

transcription activator of GTA particles production in Rhodobacter capsulatus (Fogg, 

2019; Hynes et al., 2016). This gene is located outside of the RcGTA’s head-tail cluster, 

and therefore was not included in the set of reference GTA genes, but its discovery 

demonstrates the suitability of our approach to identify genes linked to the GTA lifecycle. 

Interestingly, gafA homologs were previously described only in the genomes of 

Rhodobacterales and some Rhizobiales (Fogg, 2019; Hynes et al., 2016; Shakya et al., 

2017). However, with different criteria in the OrthoFinder-based similarity searches, we 

were able to identify this regulator in 196 of the 208 genomes (94.7%), spanning all 

GTA-containing alphaproteobacterial orders. The evolutionary history of the gafA 

homologs is largely congruent with the reference phylogenomic tree (normalized quartet 

score of 0.87) and even more so with the phylogeny of the concatenated GTA reference 

genes (normalized quartet score of 0.92) (tree topologies are available at 

https://doi.org/10.6084/m9.figshare.20082749), suggesting that the gafA gene had co-

evolved with the GTA ‘head-tail’ cluster since the last common ancestor of RcGTA-like 

GTAs. 

The remaining 13 gene families belong to several functional categories of the 

Clusters of Orthologous Groups (COG) classification (Table 1). While proteins encoded 

by some of these genes can be postulated to be involved in GTA lifecycle (exemplified 

below by the addAB, xseA, and tonB genes), similarity of codon usage biases between 

other genes and reference GTA genes can be explained by their expression at similar 

environmental conditions (exemplified by three genes from ‘molecular chaperones and 

related functions’ COG category). 

 Protein products of the addA and addB genes form the heterodimeric helicase-

nuclease complex that repairs double-stranded DNA breaks by homologous 

recombination and is functionally equivalent to the RecBCD complex (Kooistra et al., 

1993). The knockout of the AddAB complex is associated with a deficiency in RecA-

dependent homologous recombination (Marsin et al., 2010). We hypothesize that the 

addAB pathway is involved in recombination of GTAs’ genetic material with the host’s 

genome.  
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 The main function of exodeoxyribonuclease VII large subunit (xseA), which is 

encoded by the xseA gene, is to form a complex with xseB and degrade single-stranded 

DNA to oligonucleotides. However, expression of xseA gene without xseB gene leads to 

cell death (Jung et al., 2015). Because we did not find any correlation of codon usage bias 

between the xseB gene and GTA genes, we speculate that instead of involvement in 

processing of GTA DNA, xseA gene product facilitates lysis of GTA producing cells and 

release of GTA particles. 

 The tonB gene encodes tonB energy transducer. TonB-dependent transporters are 

involved in transport of diverse compounds, including carbohydrates, amino acids, lipids, 

vitamins and iron (Blanvillain et al., 2007; Eisenbeis et al., 2008; Tang et al., 2012). 

Similar to the quorum-sensing regulated expression of the gene encoding GTA receptor in 

the non-GTA-producing cells of a Rhodobacter capsulatus population (Brimacombe et 

al., 2014), the tonB gene could also be regulated to be expressed in the non-GTA-

producing cells to aid the uptake of the nutrients released from the lysed cells via TonB-

dependent transporters. The tonB gene is currently detected only in members of 

Sphingomonadales order, suggesting that such nutrient uptake is most relevant in the 

nutrient-limited environments. 

Three genes from the ‘molecular chaperones and related functions’ COG category 

are less likely to be directly involved in GTA lifecycle, because GTAs already encode 

their own chaperones that assist GTA protein folding (Bardy et al., 2020). However, it is 

well known that chaperones tend to be highly expressed in bacteria at times of stress and 

facilitate the survival of cells in rapidly changing environmental conditions (Genest et al., 

2019). Because chaperones are essential in responding to the starvation-induced cellular 

stresses (Rockabrand et al., 1998), we conjecture that observed similarity in ptAI values 

of the reference GTA genes is due to their expression being triggered by the similar 

environmental conditions. 

To evaluate if the detected gene families interact with each other and with GTA 

genes, we have constructed the protein-protein interaction network of the 14 gene 

families, 12 GTA reference genes and 50 additional interactor proteins from the STRING 

database (Figure 3). Thirteen of the 14 families and all 12 reference GTA genes belong to  
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Figure 3. The protein-protein interactions among 12 GTA reference proteins and 

14 proteins putatively co-expressed with GTAs. Nodes represent individual proteins. 

Blue-colored nodes correspond to GTA reference proteins and red-colored nodes 

correspond to 14 putatively co-expressed proteins. Gray-colored nodes represent 

additional proteins found through the STRING functional enrichment analysis. The 

thickness of the edges is proportional to the STRING’s confidence score of protein 

interactions (varying between 0.4 [thin line] and 1.0 [thick line]). 
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two protein-protein interaction sub-networks (Figure 3), one of which contains all GTA 

reference genes, while the other is involved in a wide range of functions (Table 1). By 

carrying out the KEGG enrichment analysis, we found significant overrepresentation of 

four molecular pathways in the second protein-protein interaction network 

(Supplemental Table S1). Consistent with the 6 of the 13 gene families being assigned 

to the “replication, recombination, and repair” COG category, two of the KEGG 

pathways are ‘homologous recombination’ and ‘mismatch repair’, further corroborating 

involvement of identified genes in integration of the genetic material delivered by GTAs 

into recipients’ genomes. Two additional pathways, ‘carotenoid biosynthesis’ and 

‘terpenoid backbone biosynthesis’, are less likely to be directly involved in the lifecycle 

of GTAs. Production of secondary metabolites is known to be protective against stress 

factors (Gershenzon & Dudareva, 2007; Tyc et al., 2017), and carbon starvation leads to 

the upregulation of carotenoid biosynthesis pathway (Ram et al., 2020; Yang et al., 2015). 

Similar to the above-described genes encoding chaperones, we hypothesize 

thatexpression of ‘carotenoid biosynthesis’ and ‘terpenoid backbone biosynthesis’ genes 

is not related to GTA lifecycle, but is initiated by conditions that also activate production 

of GTAs. 

A replacement of the head completion protein in Sphingomonadales’ GTAs 

 Gene content of GTA head-tail clusters varies across alphaproteobacteria (Shakya 

et al., 2017). While some clusters do not contain homologs of all RcGTA genes, others 

include additional genes that are conserved across multiple clusters but have no known 

function (Kogay et al., 2019; Shakya et al., 2017). To predict whether any of these 

additional genes play a role in GTA production, we compared their ptAI values of genes 

found in at least 10 genomes to ptAI values of the reference GTA genes. One gene family, 

which is found only within GTA head-tail clusters of 11 genomes in one subclade of 

Sphingomonadales (GenBank accessions are available at 

https://doi.org/10.6084/m9.figshare.20082749), has a significant positive correlation with 

5 out of the 12 GTA reference genes (Supplemental Table S2). Interestingly, within 

Sphingomonadales GTA head-tail clusters this gene is located where the g7 gene, which 

encodes a head completion protein, is found in the RcGTA head-tail cluster 
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(Supplemental Figure S5). Only seven of the 55 Sphingomonadales genomes in our 

dataset have detectable homologs of the g7 gene. Among the remaining 48 genomes, 22 

contain a gene encoding a protein of unknown function in the “gene g7 locus”, while 26 

genomes don’t have any gene in that locus. 

The members of the identified gene family are substantially shorter than the 

RcGTA gene g7 and have a different secondary structure (Figure 4), precluding the 

possibility that the identified protein is simply too divergent for a detectable amino acid 

similarity. However, we found viral head completion proteins that have similar protein 

length and similar secondary structures to both GTA head completion protein and the 

identified gene family (Figure 4). We conjecture that the gene encoding the head 

completion protein was replaced in some Sphingomonadales by a gene encoding an 

analogous viral protein. 

Discussion 

 Our analyses of codon usage biases suggest that alphaproteobacterial GTA 

systems are under selection for an optimal translation of GTA proteins from GTA genes 

achieved by using codons with more readily available tRNAs. The strength of such 

selection for translational efficiency is the most pronounced (and therefore most easily 

detectable) in the major capsid protein gene, which is needed to be expressed to produce 

thousands of copies per GTA-producing bacterium. Additionally, the strength of the 

selection for translational efficiency varies across taxonomic groups, but is particularly 

prominent in Sphingomonadales order, whose members typically inhabit nutrient-limited 

conditions. We hypothesize that the observed variation in the selection strength depends 

on severity and duration of the nutrient scarcity experienced by a population capable of 

producing GTAs. On the one hand, a long-term exposure to nutrient-depleted conditions 

would trigger a more efficient and/or more frequent production of GTA particles, which 

would lead to a greater survival of communities with a better translational efficiency of 

GTA systems and thus a higher codon usage bias in the GTA genes. On the other hand, if 

GTAs are needed only in rare occasions due to the stable and abundant nutrient supplies, 

the selection for translational efficiency would be weak and would result in a lower 

codon usage bias. Combined with an observation that production of GTAs is triggered by  
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Figure 4. Secondary structures of head completion proteins from phages and 

GTAs. The Enterobacteria phage lambda gpW and Bacillus phage SPP1 (highlighted in 

red) are two representatives of viral head completion proteins with major differences in 

lengths and secondary structures. The secondary structures of R. capsulatus g2 (PDB ID 

6TUI_8), Enterobacteria phage lambda gpW (1HYW), and Bacillus phage SPP1 

(2KCA) proteins were retrieved from the PDB database. The secondary structures of the 

putative head completion proteins from Sphingomonadales were predicted 

computationally. The secondary structures are scaled with respect to the protein lengths, 

which are listed in parentheses next to the taxonomic names. 
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the nutritional stress (Westbye, O'Neill, et al., 2017), our findings that the selection is the 

strongest in alphaproteobacteria that inhabit nutrient-limited environments further 

underscore the earlier hypothesized importance of GTA systems in situations of nutrient 

scarcity (Kogay et al., 2020). 

 Additionally, the stronger selection for translation efficiency in GTA genes is 

associated with a larger decline in the carbon content of the proteins the genes encode. 

These findings suggest that benefits associated with GTA production are substantial 

enough to drive selection for both translational efficiency and low energetic costs of the 

translated proteins. We speculate that these modifications of GTA proteins allow the 

bacterial population under adverse conditions to increase both the speed of GTA particle 

production and the number of released GTA particles. 

 We hypothesized that genes that are located outside of the GTA head-tail cluster, 

but are involved in GTA lifecycle, including processing and integration of the GTA-

delivered DNA, would have signatures of selection for translational efficiency similar to 

those of GTA genes. Gratifyingly, our genome-wide screen for such patterns detected the 

direct GTA activator gene, gafA (Fogg, 2019). We also identified multiple genes not yet 

implicated in GTA lifecycle. Several of these genes are involved in recombination and 

mismatch repair, providing bioinformatic evidence for the hypothesis that GTAs facilitate 

HGT by distributing genetic fragments that become incorporated into recipients’ genomes 

via homologous recombination (Brimacombe et al., 2014). Involvement of other genes 

with similar selection pressures in GTA lifecycle is speculative and needs to be 

investigated experimentally. But the putative co-expression of xseA and tonB genes with 

GTA genes raises an intriguing possibility that, in addition to HGT, GTA production may 

provide an extra benefit in a nutrient-depleted environment: scavenging of scarce organic 

matter from GTA-producing cells. The lysis of the GTA-producing cells could be 

mediated by XseA and their debris could be imported as nutrients by the surviving cells 

via TonB-dependent transporters. 

 Alphaproteobacterial GTAs likely originated millions of years ago from a 

lysogenic phage, and since then they were mostly vertically inherited by many 

alphaproteobacterial lineages (Lang & Beatty, 2007; Shakya et al., 2017). However, 
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similar to the HGT influence onto many other regions of a typical bacterial genome 

(Soucy et al., 2015), it is very likely that over time GTAs experienced gene replacements 

via HGT (Shakya et al., 2017). Instances of HGT between GTAs and phages have been 

already documented (Hynes et al., 2016; Zhan et al., 2016). By examining the patterns of 

selection for translational efficiency, we identified another case of likely ancient gene 

exchange with viruses that resulted in the replacement of the gene encoding head 

completion protein in some Sphingomonadales. Curiously, the gene currently has no 

significant primary sequence similarity to any gene in GenBank. Many other unannotated 

ORFs in alphaproteobacterial head-tail clusters outside of Rhodobacterales (Shakya et 

al., 2017) may also have functional roles in their respective GTA regions. Notably, when 

alphaproteobacterial RcGTA-like genomic regions appear incomplete due to lack of 

many homologs to genes required for GTA production in R. capsulatus, it could be due 

our inability to recognize some genes due to their replacements with analogous genes. 

Because such incomplete RcGTA-like clusters are abundant in alphaprotebacteria 

(Shakya et al., 2017), GTAs could be morphologically diverse and even more widespread 

across alphaproteobacteria than we currently estimate (Kogay et al., 2019). 

Materials and Methods 

Dataset of representative alphaproteobacterial genomes with GTA head-tail clusters 

As an initial data set, we selected 212 representative alphaproteobacterial 

genomes previously predicted to contain GTAs (Kogay et al., 2020). The gene 

annotations of the genomes were downloaded from the RefSeq database (O'Leary et al., 

2016) in October 2020. GTA head-tail clusters (Lang et al., 2017) were predicted using 

the GTA-Hunter program (Kogay et al., 2019). Because GTA-Hunter identifies only 11 

out of the 17 genes in the RcGTA’s head-tail cluster and also requires genes to align with 

their RcGTA homologs by at least 60% of their length, some GTA genes were likely 

missed by GTA-Hunter. To look for these potential false negatives, additional BLASTP 

(Altschul et al., 1997) searches with the e-value cutoff of 0.1 were performed using 17 

RcGTA head-tail cluster genes as queries and protein-coding genes in 212 genomes as a 

database. Only matches located within the genomic regions designated as GTA gene 
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clusters by GTA-Hunter were kept. In four genomes, calculations of genes’ adaptation to 

tRNA pool (see “Evaluation of the adaptiveness of protein-coding genes to the tRNA 

pool” section below for details) did not converge. As a result, only 208 genomes were 

retained in the reported analyses (GenBank accessions are available at 

https://doi.org/10.6084/m9.figshare.20082749). 

Identification of gene families in 208 alphaproteobacterial genomes 

 Within each genome, protein-coding genes less than 300 nucleotides in length 

were excluded in order to reduce the stochasticity of codon usage bias values due to the 

insufficient number of codons. The remaining protein-coding genes were clustered into 

gene families using Orthofinder v2.4 (Emms & Kelly, 2019) with default parameters and 

DIAMOND (Buchfink et al., 2015) for the amino acid sequence similarity search. Only 

gene families detected in at least 40 genomes were retained to ensure statistical power. 

 Some alphaproteobacterial GTA head-tail cluster regions contain protein-coding 

ORFs that do not have significant similarity to the RcGTA homologs of the genes shown 

to be required for GTA production in RcGTA. Gene families of these ORFs were 

retrieved from the collection of gene families predicted for all protein-coding genes 

(regardless of their length) using Orthofinder v2.4 (Emms & Kelly, 2019) with default 

parameters and DIAMOND (Buchfink et al., 2015) for the amino acid sequence 

similarity search. Only gene families that are both located within the genomic region 

encoding GTA head-tail cluster and found in at least 10 genomes were retained. 

Reference set of GTA genes 

 Although RcGTA head-tail cluster contains 17 genes, genes g3.5 and g10.1 are 

less than 300 nucleotides in length, and genes g1 and g7 are not detected widely across 

analyzed genomes. Additionally, codon usage patterns of gene g9 were found to be very 

different from other GTA genes (see “Examination of similarity in adaptation to the 

tRNA pool among GTA genes” section below for details). Therefore, in our inferences 

about selection, we considered only 12 of the 17 GTA genes (Supplemental Table S3), 

which we designate throughout the manuscript as “GTA reference genes”. 
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 Amino acid sequences of GTA reference genes were aligned individually using 

MAFFT-linsi v7.455 (Katoh & Standley, 2013) and then concatenated into a single 

alignment. Each gene was treated as a separate partition in the alignment and the best 

substitution model for each gene was determined by ModelFinder (Kalyaanamoorthy et 

al., 2017). The maximum likelihood tree was reconstructed using IQ-TREE v1.6.7 

(Nguyen et al., 2015) and the support values were calculated via 1,000 ultrafast bootstrap 

replicates (Hoang et al., 2018). 

Reconstruction of the reference phylogenomic tree 

 Twenty-nine marker proteins that are present in a single copy in more than 95% of 

the 208 retained genomes were retrieved using AMPHORA2 (Wu & Scott, 2012). Amino 

acid sequences within each of the 29 marker families were aligned using MAFFT-linsi 

v7.455 (Katoh & Standley, 2013). The best substitution matrix for each family was 

determined by ProteinModelSelection.pl script downloaded from 

https://github.com/stamatak/standard-RAxML/tree/master/usefulScripts in October 2020. 

Individual alignments of the marker families were concatenated, but each alignment was 

treated as a separate partition with its own best substitution model in the subsequent 

phylogenetic reconstruction. The maximum likelihood tree was reconstructed using IQ-

TREE v1.6.7 (Nguyen et al., 2015) and the support values were calculated using 1,000 

ultrafast bootstrap replicates (Hoang et al., 2018). 

Evaluation of codon usage bias in protein-coding genes using “effective number of 

codons” metric 

For the retained genes in each genome, effective number of codons (ENC) 

(Wright, 1990) and G+C content variation at the 3rd codon position in the synonymous 

sites (GC3s) were calculated using CodonW (http://codonw.sourceforge.net). The null 

model of no codon usage bias was calculated as described in dos Reis et al. (dos Reis et 

al., 2004) using an in-house script (available in the FigShare repository; see below). For 

every gene, the deviation of its ENC from the null model was calculated using the in-

house script. Genes that have observed ENC higher than the expected were excluded 

from analyses. 

https://github.com/stamatak/standard-RAxML/tree/master/usefulScripts
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Evaluation of the adaptiveness of protein-coding genes to the tRNA pool 

The tRNA genes in each genome were predicted using tRNAscan-SE v 2.06, 

using a model trained on bacterial genomes (Chan et al., 2021; Lowe & Eddy, 1997) and 

the Infernal mode without HMM filter to improve the sensitivity of the search (Nawrocki 

& Eddy, 2013). tRNA gene copy number was used as the proxy for tRNA abundance, 

following the previously reported observation that the two correlate strongly (dos Reis et 

al., 2004; Duret, 2000). The adaptiveness of each codon (wi) to the tRNA pool was 

calculated using the stAIcalc program with the maximum hill climbing stringency (Sabi 

et al., 2017). The tRNA adaptation index (tAI) of each retained gene was calculated as the 

geometric mean of its wi values (dos Reis et al., 2003). Because the distribution of tAI 

values varies among genomes (LaBella et al., 2019) (Supplemental Figure S6), tAI 

values were converted to their relative percentile tRNA adaptation index (ptAI) within a 

genome. The ptAI values range between 0 and 100, and represent the percentage of 

analyzed genes in a genome that have a smaller tAI than a particular gene. 

Examination of similarity in adaptation to the tRNA pool among GTA genes 

 The ptAI values were retrieved for a subset of 13 GTA genes that are at least 300 

nucleotide in length and are widely detected across all taxonomic groups. The linear 

regression analysis of ptAI values between all GTA gene pairs was conducted using the 

phylogenetic generalized least squares method (PGLS) (Martins & Hansen, 1997). The 

reference phylogenomic tree was used to correct for the shared evolutionary history. The 

analysis was done using the ‘caper’ package (Orme, 2018) and l, d and k parameters 

were estimated using the maximum likelihood function. Because ptAI values of gene g9 

were not significantly correlated with the ptAI values of 8 out of the 12 other examined 

GTA genes at p-value cutoff of 0.001 (Supplemental Table S4), the gene g9 was not 

included into the reference set of GTA genes. 

Identification of genes with ptAI values similar to that of the GTA genes 

 For each gene family, the “within-genome” ptAI values were retrieved. For gene 

families with at least two paralogs, the ptAI values for all paralogs from a particular 

genome were replaced with their median ptAI value. 
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 To identify gene families that exhibit tRNA pool adaptation patterns similar to 

those of GTA genes, a linear regression model of ptAI values between these gene families 

and reference GTA genes was fit using the PGLS (Martins & Hansen, 1997). The PGLS 

analysis was carried out using the ‘caper’ package (Orme, 2018) and l, d and k 

parameters were estimated using the maximum likelihood function. The reference 

phylogenomic tree was used to correct for the shared phylogenetic history. For gene 

families found in at least 40 genomes, a gene family was designated to be associated with 

a GTA, if obtained fit of the model was statistically significant across all reference GTA 

genes. Because gene families found in less than 40 genomes were kept only if the genes 

are located within the genomic regions encoding GTA head-tail clusters (see the 

“Identification of gene families in 208 alphaproteobacterial genomes” section), a more 

relaxed criterion was adopted for such gene families: a gene family was designated to be 

associated with a GTA if the fit of the model was statistically significant across at least 

40% of reference GTA genes. If a significantly associated gene family contained 

paralogs, the PGLS analysis was repeated by using individual ptAI values across all 

possible combinations of paralogs (if the total number of combinations was < 1,000) or 

across random 1,000 combinations of paralogs (if the total number of combinations was 

> 1,000). This was carried out to ensure that the detected signal was not due to sampling 

associated with selecting the median ptAI value. 

 Genes with a significant similarity in trend of ptAI values were annotated via 

eggNOG-mapper v2.1 (Cantalapiedra et al., 2021) 

Protein-protein interaction of GTA genes and gene families with similar ptAI 

 To identify protein-protein interaction networks, reference GTA genes and genes 

from families with similar tRNA pool adaptation patterns were retrieved from the 

Sphingomonas sp. MM1 genome, chosen for it being the only genome that contains all 

genes from the GTA reference gene set and all 14 gene families listed in Table 1. The 

locus tags of the retrieved Sphingomonas sp. MM1 genes were used as queries against 

STRING database v 11.0b (last accessed July 2021) (Szklarczyk et al., 2021) with the 

medium confidence score cutoff and all active interaction sources. The retrieved protein-

protein interaction network was visualized in STRING using the queries and up to 50 
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additional interactor proteins, and displaying edges based on the STRING confidence 

scores. The KEGG pathways (Kanehisa et al., 2021) enrichment analysis was conducted 

via hypergeometric testing on the whole retrieved network, as implemented in STRING. 

Analysis of other protein-coding genes situated within GTA head-tail clusters 

 For gene families within GTA head-tail clusters, ptAI values were retrieved and 

compared to ptAI values of the reference GTA gene set using PGLS analysis as described 

above. For the only gene family with a significant association with GTA genes, the 

secondary structure of its proteins were predicted using Porter v5.0 (Torrisi et al., 2019). 

To retrieve available viral head completion proteins, the phrase ‘head-completion protein’ 

was used as a query against the UniProt database (accessed in August 2021) (UniProt 

Consortium, 2021). Among the 24 manually annotated (“reviewed”) matches from the 

Swiss-Prot sub-database of the UniProt database, only 2 viral matches (accession 

numbers P68656 and P68660) had length similar to the genes in the above described gene 

family. Both proteins belong to the l phage gpW family, and for Escherichia phage l 

protein 3D structure is available in PDB (Berman et al., 2000). The secondary structure of 

RcGTA’s g7 protein, structural viral homolog of RcGTA’s g7 from Bacillus phage SPP1 

(gp16) (Bardy et al., 2020) and head completion protein of phage l were retrieved from 

the PDB database (Berman et al., 2000) in August 2021. 

 In 48 Sphingomonadales genomes without a detectable homolog of RcGTA gene 

g7, the genomic space either between the homologs of the RcGTA genes g6 and g8, or, in 

genomes without g6 homolog, between homologs of the RcGTA genes g5 and g8, was 

searched for presence of open reading frames. 

Refinement of the tonB gene family using phylogenetic tree 

 To identify orthologs within the large tonB gene family, evolutionary history of 

the tonB gene family was reconstructed and evaluated. To do so, amino acid sequences of 

the tonB gene family were aligned using MAFFT-linsi v7.455 (Katoh & Standley, 2013). 

The phylogeny was reconstructed in IQ-TREE v1.6.7 (Nguyen et al., 2015) using the best 

substitution model (LG+F+R6) detected by ModelFinder (Kalyaanamoorthy et al., 2017). 

The tree was visualized using the iTOL v6 (Letunic & Bork, 2021). The phylogeny was 
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used to subdivide the family into two families, whereas the five genes on very long 

branches served as an outgroup (tree topology is available at 

https://doi.org/10.6084/m9.figshare.20082749). 

Calculation of energetic cost associated with production of the encoded proteins 

To quantify the energetic cost of proteins, the carbon content of their amino acids 

was used as a proxy and was calculated by counting the number of carbons in the amino 

acid side chains, as described in Kogay et al. (Kogay et al., 2020). The total number of 

carbons in each protein was normalized by the protein length. 

Retrieval and phylogenetic analyses of gafA homologs 

 Amino acid sequences of gafA homologs in 196 alphaproteobacterial genomes 

were detected via Orthofinder (gene family OG0001218). Only homologs found in single 

copy in a genome (194 in total) were retained for phylogenetic analysis. These homologs 

were aligned using MAFFT-linsi v7.455 (Katoh & Standley, 2013). The best substitution 

model (LG+F+R6) was determined by ModelFinder (Kalyaanamoorthy et al., 2017) and 

the maximum-likelihood tree was reconstructed by IQ-TREE v1.6.7 (Nguyen et al., 

2015) with the number of iterations to stop set to 500. The support values were calculated 

using 1,000 ultrafast bootstrap replicates (Hoang et al., 2018). Both GTA reference tree 

and reference phylogenomic tree were pruned to match the taxa in gafA phylogeny. The 

normalized quartet scores were calculated using ASTRAL v5.7.8 (Zhang et al., 2018). 

Data availability 

The following data are available in the FigShare repository under DOI 

10.6084/m9.figshare.20082749 (https://doi.org/10.6084/m9.figshare.20082749): 

accession numbers of 208 analyzed alphaproteobacterial genomes; accession numbers of 

the GTA regions identified in the analyzed genomes; accession numbers of genes in gene 

families across analyzed genomes; raw data related to tAI and ENC calculations; an in-

house script for ENC calculations; slopes and p-values of associations detected in PGLS 

analyses; accession numbers of the putative g7 proteins in Sphingomonadales genomes; 

multiple sequence alignments and phylogenetic trees of tonB and gafA gene families, 

concatenated phylogenomic markers, and concatenated GTA reference genes. 

https://doi.org/10.6084/m9.figshare.20082749
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Abstract 

Gene transfer agents (GTAs) are enigmatic elements that resemble small viruses 

and are known to be produced during nutritional stress by some bacteria and archaea. The 

production of GTAs is regulated by quorum sensing, under which a small fraction of the 

population acts as GTA producers, while the rest become GTA recipients. In contrast to 

canonical viruses, GTAs cannot propagate themselves because they package random 

pieces of the producing cell’s genome. In alphaproteobacteria, GTAs are mostly vertically 

inherited and reside in their hosts’ genomes for hundreds of millions of years. While 

GTAs’ ability to transfer genetic material within a population and their long-term 

preservation suggests an increased fitness of GTA-producing microbes, the associated 

benefits and type of selection that maintains GTAs are poorly understood. By comparing 

rates of evolutionary change in GTA genes to the rates in gene families abundantly 

present across 293 alphaproteobacterial genomes, we detected 59 gene families that likely 

co-evolve with GTA genes. These gene families are predominantly involved in stress 

response, DNA repair, and biofilm formation. We hypothesize that biofilm formation 

enables the physical proximity of GTA-producing cells, limiting GTA-derived benefits 

only to a group of closely related cells. We further conjecture that population structure of 

biofilm-forming sub-populations ensures that the trait of GTA production is maintained 

despite the inevitable rise of “cheating” genotypes. Because release of GTA particles kills 

the producing cell, maintenance of GTAs is an exciting example of social evolution in a 

microbial population. 

Importance 

Gene transfer agents (GTAs) are viruses domesticated by some archaea and 

bacteria as vehicles for carrying pieces of the host genome. Produced under certain 

environmental conditions, GTA particles can deliver DNA to neighboring, closely related 

cells. Function of GTAs remains uncertain. While making GTAs is suicidal for a cell, 

GTA-encoding genes are widespread in genomes of alphaproteobacteria. Such GTA 

persistence implies functional benefits but raises question about how selection maintains 

this lethal trait. By showing that GTA genes co-evolve with genes involved in stress 
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response, DNA repair, and biofilm formation, we provide support for the hypothesis that 

GTAs facilitate DNA exchange during the stress conditions and construct a model for 

how GTAs persist in biofilm-forming bacterial populations despite being lethal. 

Introduction 

Multiple bacteria and archaea produce Gene Transfer Agents (GTAs) – the 

viriforms whose function and mode of selection to maintain them remain unsolved 

(Kogay et al., 2022; Kuhn & Koonin, 2023; Lang et al., 2017). These domesticated virus-

derived elements are encoded by genes in their host’s genome and, when produced, 

resemble tailed double-stranded DNA (dsDNA) viruses (phages). In contrast to viruses, 

GTAs do not package the genes that encode them, and instead contain random fragments 

of the producing host’s genome (Kogay et al., 2022; Lang & Beatty, 2001). 

Experimentally, GTAs are most studied and characterized in the alphaproteobacteria 

Rhodobacter capsulatus (RcGTA) and Caulobacter crescentus (Gozzi et al., 2022; Lang 

& Beatty, 2000; Marrs, 1974), but they are also produced by several additional bacterial 

and archaeal species (Lang et al., 2012). Many more prokaryotes encode GTA-like genes 

(Fallon & Carroll, 2023; George et al., 2022; Lang & Beatty, 2007; Lang et al., 2002; 

Québatte et al., 2017; Shakya et al., 2017; Tamarit et al., 2018), and the presence of GTA-

like genes in almost 60% of publicly available alphaproteobacterial genomes (Kogay et 

al., 2019) suggests that GTA production is more widespread than currently appreciated. 

RcGTA production is a population-level phenomenon: it is triggered by nutrient 

depletion (Westbye, O'Neill, et al., 2017) and is regulated by quorum sensing (Leung et 

al., 2012). Only a small subset of the population acts as RcGTA producers; the remaining 

cells become recipients, by displaying specific polysaccharide receptors for RcGTAs 

adsorption (Brimacombe et al., 2013) and expressing competence genes (Brimacombe et 

al., 2015). Genetic pieces delivered by RcGTAs to a recipient cell can be integrated into 

the cell’s genome via homologous recombination (Brimacombe et al., 2014). 

The benefits of GTA production and of acquiring GTA-packaged DNA in a 

microbial population are not fully understood. Since their discovery, GTAs were 

hypothesized to mediate DNA repair (Marrs et al., 1977), and recently this hypothesis 
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was confirmed by experimental demonstration of GTA-mediated DNA repair via 

homologous recombination in C. crescentus (Gozzi et al., 2022). Moreover, facilitation of 

DNA damage repair appears to improve the survival of C. crescentus populations in 

nutrient limited conditions (Gozzi et al., 2022), possibly due to a reduction in mutational 

load. Beyond the repair of already existing genes, released GTA particles could enable 

exchange of beneficial traits in a microbial population (Lang & Beatty, 2000; McDaniel 

et al., 2010) and provide nutrients to surrounding cells as the programmed cell death 

phenomenon does (Allocati et al., 2015; Kogay et al., 2020), although these hypotheses 

remain to be experimentally verified. Despite these putative population-level benefits, 

GTA-producing cells lyse and therefore leave no progeny, making it impossible for 

selection that maintains GTA production to act on the level of individual cells. Better 

understanding of GTA production and reception cycle and of genes underlying it will 

likely help us elucidate ecological role of GTAs in microbial communities, and details of 

the population-level selection that preserves the trait. 

The RcGTA is encoded and regulated by at least 24 genes that are distributed 

across five different loci (Hynes et al., 2016). Seventeen genes are located in one locus 

that is commonly referred as the head-tail cluster (Lang et al., 2017) (Figure 1A). The 

locus encodes the majority of structural proteins required for the RcGTA particle 

assembly (Bardy et al., 2020). Products of many additional “host” genes are critical for 

the regulation of the RcGTA particle production, DNA uptake, and DNA integration. For 

example, the CckA-ChpT-CtrA phosphorelay system, which controls the cell cycle and 

DNA replication, modulates production of RcGTA particles and their release (Farrera-

Calderon et al., 2021; Mercer et al., 2012). Serine acetyltransferase (cysE1), which is 

required for biofilm formation, plays a critical role for the optimal receipt of RcGTAs 

(Sherlock & Fogg, 2022). Capsular polysaccharides, which serve as RcGTA receptors, 

are synthesized under control of GtaR/I quorum-sensing genes (Brimacombe et al., 

2013). Competence machinery proteins ComEC, ComF and ComM facilitate entry of 

DNA into cells (Brimacombe et al., 2015). Integration of the incoming genetic material 

into the host genome via homologous recombination is facilitated by DprA and RecA 

(Brimacombe et al., 2014). It is likely that products of multiple other “host” gene families 
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important for the proper functioning of GTAs remain to be discovered, and in this study 

we use a comparative genomics approach to search for such genes. 

Genes that are involved in the similar molecular processes, or co-expressed 

together, tend to co-evolve with each other (Clark et al., 2012; Steenwyk et al., 2022), 

and, vice versa, the protein-protein interactions can be unveiled by finding co-evolving 

genes that encode the interacting proteins (Brunette et al., 2019; Kim et al., 2004). The 

co-evolution among genes can be effectively identified via Evolutionary Rate Covariation 

(ERC) approach (Clark et al., 2012; Goh et al., 2000; Sato et al., 2005). Evolutionary rate 

covariation measures the degree of correlation of changes in evolutionary rates across the 

phylogenies of a pair of proteins, assuming that functionally related proteins have similar 

selection pressures, resulting in coordinated changes in substitution rates (Clark et al., 

2012; Steenwyk et al., 2022). Because GTA head-tail cluster has resided within GTA-

containing alphaproteobacterial genomes for at least 700 million years (Shakya et al., 

2017) and, as mentioned above, GTA production is tightly integrated into the molecular 

circuits of the GTA-carrying bacteria, evolutionary rates of gene families involved in 

GTA lifecycle are expected to correlate with the rates of the GTA genes. 

Head-tail cluster genes are easily detectable across genomes in a large clade of 

alphaproteobacteria (Lang & Beatty, 2007; Shakya et al., 2017) and therefore provide a 

rich dataset for comparative analyses of evolutionary rates. In this study, we examined 

the evolutionary rate covariation patterns of protein-coding genes encoded in 293 

representative alphaproteobacterial genomes that contain either complete or nearly 

complete GTA head-tail clusters. We found that GTA head-tail cluster genes co-evolve 

with 59 gene families, 55 of which have not been previously linked to GTAs. Thus, we 

dramatically expand the list of genes that could be important for GTAs’ functionality and 

hence could provide insights into GTAs’ role in bacterial populations. By combining our 

findings with the existing knowledge about GTAs, we propose a model that explains 

persistence of GTA production in bacterial populations. 

Results 

Alphaproteobacterial GTA genes co-evolve with each other 
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The ERC method was developed for and tested on eukaryotic genes (Clark et al., 

2012; Steenwyk et al., 2022) and, to our knowledge, has not been applied to bacterial 

genomes. Therefore, before using the approach to identify genes co-evolving with GTA 

genes, we evaluated it on GTA genes found in the 293 alphaproteobacterial genomes. 

Because genes in the GTA head-tail cluster have a common promoter (Fogg, 2019; Lang 

& Beatty, 2000) and the gene products are functionally related (i.e., produce a GTA 

particle that has DNA packaged into its head), we expected strong co-evolution among 

GTA genes. Indeed, we found that 51 out of 55 possible pairs of the 11 reference GTA 

genes (see Methods for definition) have significantly similar co-variation of evolutionary 

rates, as measured by the Pearson’s coefficient (p-value < 0.05 after Bonferroni 

correction). Each reference GTA gene co-evolves with at least 7 other reference GTA 

genes, with 6 of them co-evolving with all 10 other reference GTA genes (Figure 1B). 

These findings suggest that the ERC method adequately identifies co-evolving genes in 

alphaproteobacterial genomes.  

Co-evolving alphaproteobacterial genes encode functionally related proteins 

 Co-evolving genes of eukaryotes identified through ERC analyses were shown to 

be either functionally related or involved in similar biological processes (Clark et al., 

2012; Steenwyk et al., 2022). To examine how robustly the ERC method can identify 

functionally related gene pairs in our dataset of alphaproteobacterial genomes, we (i) 

evaluated rates of covariation within functional modules of the GTA head-tail cluster and 

(ii) examined a relationship between co-evolution and literature- and experiment-based 

functional inferences for a subset of gene families nearly universally found across GTA-

containing alphaproteobacteria. 

 GTA head-tail cluster encodes three modules that are responsible for distinct 

functional stages of GTA production: DNA packaging, head morphogenesis, and tail 

morphogenesis (Bardy et al., 2020; Hynes et al., 2016; Lang et al., 2017) (Figure 1A). 

Phage genes within the same functional class are more likely to interact with one another 

(Rajagopala et al., 2011). We found that the Pearson’s correlation coefficient is 

significantly higher (and, therefore, co-evolutionary signal is significantly stronger) for 

reference GTA genes within each module than between the reference GTA genes from 
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different modules (Mann-Whitney U-test, p-value = 0.002) (Figure 1C). These findings 

suggest that the strength of co-evolutionary signal measured by the ERC analysis 

 

Figure 1. Co-evolution of 11 reference GTA genes from head-tail clusters. (A) The 

head-tail cluster of the RcGTA, as encoded in R. capsulatus strain SB 1003 genome 

(GenBank accession CP001312.1; spanning locus tags RCAP_rcc01682 - 

RCAP_rcc01698). Each gene is represented by an arrow and is drawn proportional to its 

length (see scale bar). Genes shown in non-gray color correspond to the 11 GTA 

reference genes used in the ERC analysis. Reference genes from each functional 

module are depicted in a distinct color. (B) Co-evolution network of the reference GTA 

genes. Nodes represent genes and are connected by edges if there is a significant 

evolutionary rate covariation (Pearson’s R > 0 and p-value <0.05 after Bonferroni 

correction). (C) Comparison of the rate covariation strength in reference GTA genes that 

belong either to different functional modules (“Between Modules”) or to the same 

functional module (“Within Modules). Boxplots represent median values that are 

bounded by first and third quartiles. Whiskers illustrate data points that lie within 1.5 * 

interquartile range. Significance was measured using Mann-Whitney U-test. 
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correlates with the degree of physical and functional interactions among GTA genes.  

 Expanding our analysis beyond GTA genes, we examined protein-coding genes in 

a model marine bacterium Phaeobacter inhibens, which we chose as the representative 

GTA-containing alphaproteobacterium for three reasons: first, its genome encodes the 

largest number (1,370) of genes from 1,470 gene families nearly universally found across 

GTA-containing alphaproteobacteria; second, the information about the interactions of P. 

inhibens’ proteins encoded by 1,320 out of the 1,370 genes is available in the STRING 

database (Szklarczyk et al., 2021); and third, experimental relative fitnesses of P. 

inhibens’genes are catalogued in Fitness Browser (Price et al., 2018). Using the ERC 

analysis on the 1,320 genes, we identified 10,514 co-evolving gene pairs (Figure S1). 

The co-evolution network, in which nodes correspond to genes and edges between them 

designate the presence of significant evolutionary rate covariation (Figure S2), is 

significantly similar to both the network of the pairwise interactions of the encoded 

proteins and the network of fitness effects (p-value < 0.001, permutation test) (Figures 

2A and 2B). Moreover, co-evolving genes are more likely to belong to the same Clusters 

of Orthologous Groups (COG) category (assortativity = 0.096; p-value < 0.001, 

permutation test) (Figure 2C). These comparisons show that co-evolving genes that 

encode well-characterized proteins (defined as present in the STRING and COG 

databases) and a subset of genes needed for specific environmental conditions (as 

determined by the Fitness Browser database) indeed tend to encode functionally related 

proteins. For example, gene pairs with the two largest Pearson’s coefficients encode 

proteins that are involved in the same biological processes (Figure 3): imuB and dnaE2 

genes (Pearson’s coefficient r = 0.80) are located in the same operon and are involved in 

SOS-induced mutagenesis and translesion synthesis (Abella et al., 2004; Erill et al., 

2006), while addA and addB genes (Pearson’s r = 0.74) are known to assemble into the 

heterodimeric complex to facilitate homologous recombination and DNA repair (Kooistra 

et al., 1993; Saikrishnan et al., 2012).  

It is worth noting that some of the genes identified as co-evolving in our analysis 

are not designated as encoding interacting proteins in the STRING database. However, 

given incompleteness of our knowledge about functionality of proteins encoded in a 

bacterial genome, these genes may represent functional connections yet unidentified in 
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STRING. Indeed, ERC analysis has been used to uncover novel protein-protein 

interactions, especially between hypothetical proteins (Brunette et al., 2019; Forsythe et 

al., 2021; Raza et al., 2019). Here are two examples of proteins identified as co-evolving 

in our analyses and likely interacting based on what’s known about their functions, but 

not designated as such in the STRING database. The yfgC gene, which encodes a 

periplasmic metalloprotease involved in assembly of outer membrane proteins (Narita et 

al., 2013), co-evolves with both the lptD (Pearson’s r = 0.51) and bamB (Pearson’s r = 

0.51) genes (Figure 4). The YfgC protein plays a crucial role in the assembly of LptD, an 

outer membrane protein that participates in the lipopolysaccharide assembly (Narita et 

 

Figure 2. Strengths of correlations between the covariation evolutionary rate of 

genes and function of the proteins the genes encode, as measured by permutation 

tests. (A) Comparison of the co-evolution network and the PPI network of Phaeobacter 

inhibens. The distribution in brown corresponds to distances between the PPI network 

and 1,000 co-evolution networks in which edges were randomly shuffled. The dashed 

red line indicates the Jaccard index from the non-shuffled network comparison. (B) 

Comparison of the co-evolution network and the fitness effects network of Phaeobacter 

inhibens. The distribution in brown corresponds to distances between the network of 

fitness effects and 1,000 co-evolution networks in which edges were randomly shuffled. 

The dashed red line indicates the Jaccard index from the non-shuffled network 

comparison. (C) Positive assortativity between co-evolution and COG functional 

category assignment. The distribution in brown corresponds assortativity coefficient 

values for 1,000 networks in each COG labels were randomly shuffled. The dashed red 

line indicates the assortativity coefficient of the non-shuffled network. 
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al., 2013). The YfgC also interacts with the β-barrel-assembly machinery (BAM) 

complex, which consists of four lipoproteins, including BamB, and facilitates the 

assembly and integration of proteins into the outer membrane (Han et al., 2016; Narita et 

al., 2013).  

GTA genes co-evolve with at least fifty-nine other gene families 

By analyzing 1,470 gene families almost universally present among the 293 

representative GTA-containing alphaproteobacteria, we identified 59 gene families that 

co-evolve with at least 5 reference GTA genes (Table S1) (see Methods for selection 

criteria).  

Notably, four of the 59 gene families - encoding tail fiber protein (DUF2793), 

competence proteins (comEC and comF), and DNA-protecting protein that facilitates 

homologous recombination (dprA) (Table 1) - have already been shown to play 

important roles in the RcGTA lifecycle (Brimacombe et al., 2014; Brimacombe et al., 

2015; Hynes et al., 2016). Because tail fiber proteins are a part of the RcGTA particle and 

thus physically interact with other RcGTA proteins (Hynes et al., 2016), DUF2793’s co-

 

Figure 3. Covariation of evolutionary rates for two gene pairs with the largest 

Pearson’s coefficients. Each dot represents the normalized branch length of the 

proteins shown on x- and y-axes. Blue line depicts the linear regression line. The value 

of Pearson’s R is shown on each panel. 
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evolution with other structural GTA genes is expected. The protein products of the 

remaining three genes (ComEC, ComF, and DprA) are required for the acquisition of 

DNA delivered by RcGTAs, and interact physically only with DNA molecules 

(Brimacombe et al., 2014; Brimacombe et al., 2015). This finding demonstrates that the 

ERC approach indeed could predict genes functionally linked to the GTA lifecycle.  

The remaining 55 gene families are involved in various functions (Tables 1, 2 and 

S1). While 33 of the 55 gene families (Table 2) offer exciting opportunities for future 

research into GTA lifecycle, 22 gene families (Table 1) can be either directly linked to 

the GTA lifecycle by being involved in DNA repair or are likely to be under similar 

selection pressure as GTA genes due to shared ecological importance (stress response, 

biofilm formation, oxidative respiration, and cofactor biosynthesis), as elaborated below.  

Three of the 22 genes – mutY (encoding a glycosylase), phrB (encoding a DNA 

photolyase), and tatD (encoding an exonuclease) – play roles in repair of DNA damage 

induced by various oxidative agents and UV light (Chen et al., 2014; Kim & Sundin, 

2001; Krokan et al., 1997). Glycosylase actively modulates homologous recombination 

(Spek et al., 2002), which could be important for facilitating integration of GTA-derived 

 

Figure 4. Covariation of evolutionary rates for two gene pairs with no evidence of 

interactions for their protein products in the STRING database. Each dot represents 

the normalized branch length of the proteins shown on x- and y-axes. Blue line depicts 

the linear regression line. The value of Pearson’s R is shown on each panel. 
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genetic material into the recipient’s genome (Gozzi et al., 2022; Marrs, 1974). Photolyase 

and tatD exonuclease do not directly participate in homologous recombination, but are 

involved in DNA repair process (Chen et al., 2014; Gozzi et al., 2022; Kim & Sundin, 

2001) and thus are likely to be under the similar selection pressure as GTA genes.  

Table 1. Twenty-six gene families that co-evolve with reference GTA genes and 

discussed throughout the manuscript. 
Gene name Representative 

GenBank 
accession No. 

Functional Annotation@ 

DUF2793 ADE83936.1 tail fiber protein1 
comEC ADE86092.1 competence protein 

comF ADE83962.1 competence protein F 

dprA ADE86822.1 DNA-protecting protein DprA 

phrB ADE86685.1 deoxyribodipyrimidine photo-lyase 

mutY ADE83991.1 A/G-specific adenine glycosylase 

tatD ADE85006.1 TatD-related deoxyribonuclease family protein 

mazG ADE85524.1 MazG family protein 

ydiU ADE85462.1 protein of unknown function UPF0061 

hrpB ADE86856.1 ATP-dependent RNA helicase HrpB 

ccmA ADE85530.1 heme exporter protein A 

cycH ADE86047.1 cytochrome c-type biogenesis protein CycH 

ATP12 ADE84099.1 ATP12 chaperone protein family 

pdxA* ADE86420.1 4-hydroxythreonine-4-phosphate dehydrogenase 

coaE* ADE83834.1 dephospho-CoA kinase 

hemD* ADE87233.1 uroporphyrinogen-III synthase 

ribD* ADE86804.1 riboflavin biosynthesis protein RibD 

folk*# ADE87043.1 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine 
pyrophosphokinase 

moeA*# AAV95421.1 molybdenum cofactor biosynthesis protein A 

moaC*#$ ADE86569.1 molybdenum cofactor biosynthesis protein C-2 

moeB$ ADE84219.1 molybdenum cofactor biosynthesis protein B-1 

mnmE ADE83829.1 tRNA modification GTPase TrmE 

tilS QNR64972.1 tRNA lysidine(34) synthetase TilS 

SUA5 ADE84169.1 Sua5/YciO/YrdC/YwlC family protein 

dusA ADE85522.1 tRNA-dihydrouridine synthase A 

tadA ADE86235.1 tRNA-specific adenosine deaminase 

@As provided in the GenBank records, except when a reference is provided 
*Biosynthesis of cofactors (KEGG pathway ko01240) 
#Folate biosynthesis (ko00790) 
$Sulfur relay system (ko04122) 
1Hynes AP et al. 2016. Functional and evolutionary characterization of a gene transfer agent's multilocus 
“genome". Mol Biol Evol 33:2530-2543. 
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Two genes (mazG and ydiU) identified in our screen are involved in stress 

Table 2. Thirty-three gene families that co-evolve with reference GTA genes, but 

without known connection to the GTA production cycle. 
Gene name Representative 

GenBank 
accession No. 

GenBank Functional Annotation 

prmC QNR62505.1 peptide chain release factor N(5)-glutamine methyltransferase 
bioC ADE83961.1 conserved hypothetical protein 

mhpC ADE84522.1 hydrolase, alpha/beta fold family 

miaA ADE85369.1 tRNA delta(2)-isopentenylpyrophosphate transferase 

- ADE86839.1 protein-L-isoaspartate O-methyltransferase-2 

phnP ADE85005.1 metallo-beta-lactamase family protein 

ispDF ADE85540.1 bifunctional 2-C-methyl-D-erythritol 4-phosphate 
cytidylyltransferase/2-C-methyl-D-erythritol 2,4-cyclodiphosphate 
synthase 

glmU ADE85246.1 bifunctional UDP-N-acetylglucosamine 
diphosphorylase/glucosamine-1-phosphate N-acetyltransferase 

yfgZ ADE86835.1 glycine cleavage T protein-2 

yhiN ADE84019.1 HI0933-like protein 

- ADE87182.1 conserved hypothetical protein 

pcnB ADE83954.1 CCA-adding enzyme 

yfiH ADE86534.1 protein of unknown function DUF152 

- ADE86535.1 protein of unknown function DUF185 

alr ADE85319.1 alanine racemase 

rspA ADE86886.1 mandelate racemase/muconate lactonizing enzyme family protein 

ppiD ADE86084.1 peptidyl-prolyl cis-trans isomerase D 

aroE ADE83833.1 shikimate 5-dehydrogenase 

glnE ADE86144.1 glutamate-ammonia-ligase adenylyltransferase 

rns ADE84242.1 ribonuclease T2 family protein 

gluQ ADE85705.1 glutamyl-Q tRNA(Asp) synthetase 

MA20_39615 ADE85459.1 protein of unknown function DUF985 

ptpA ADE86851.1 protein-tyrosine-phosphatase 

rne ADE85895.1 ribonuclease E 

ptr1 ADE86148.1 oxidoreductase, short-chain dehydrogenase/reductase family 

queG ADE86491.1 4Fe-4S ferredoxin, iron-sulfur cluster binding protein 

tadB ADE84271.1 type II secretion system protein 
- ADE84017.1 NAD-dependent epimerase/dehydratase family protein 
nnrD ADE85417.1  YjeF-related protein family 
pepA ADE86425.1 leucyl aminopeptidase-2 
- ADE84176.1 peptidase, S58 family 
pepN ADE84605.1 aminopeptidase N 
MA20_18095 ADE84243.1 alcohol dehydrogenase, zinc-binding domain protein 
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response. The product of the mazG gene modulates the programmed cell death in 

Escherichia coli and regulates intracellular level of ppGpp, the universal ‘alarmone’, 

which was previously implicated in the regulation of GTAs production (Gross et al., 

2006; Westbye, O'Neill, et al., 2017). The ppGpp molecule is involved in a cellular 

response to a variety of stress conditions, including nutritional stress. The product of the 

ydiU gene mediates UMPylation of bacterial chaperones, improving bacterial fitness 

under the stressful environmental settings (Yang et al., 2020).  

Twelve genes identified in our analyses have relevance to biofilms. The hrpB 

gene, which encodes ATP-dependent RNA helicase, has been shown to be important for 

biofilm formation and adhesion on surfaces (Granato et al., 2016). The ccmA gene, cycH 

gene, and a gene from COG5387 family (ATP12) are involved in oxidative respiration, 

which promotes bacterial survival in the biofilms (Martin-Rodriguez, 2022; Schinner et 

al., 2020). Moreover, as a group, 59 co-evolving gene families are enriched in three 

metabolic pathways relevant to biofilms: cofactor biosynthesis, folate biosynthesis and 

sulfur relay system (hypergeometric test, p-value < 0.05, Bonferroni correction) (Table 

1). Two genes from the ‘cofactor biosynthesis’ pathway (moeA and moaC) are involved 

in the molybdenum cofactor biosynthesis. Both metabolism of folate and molybdenum 

cofactors are important for biofilm formation (Andreae et al., 2014; Wong et al., 2018). 

The sulfur relay pathway is involved in the tRNA modifications (Leimkuhler et al., 

2017), which are implicated in fitness of bacteria within a biofilm (Schinner et al., 2020). 

Notably, five additional genes that encode tRNA modification enzymes (mnmE, tilS, 

SUA5, dusA, tadA) are inferred to co-evolve with GTA genes (Table 1).  

Discussion 

 By showing that GTA head-tail cluster genes, and especially genes within the 

same functional module of the cluster, tend to co-evolve with each other, and by 

examining function-coevolution relationship among proteins encoded in a model marine 

bacterium, we demonstrated that the ERC method is an effective approach to uncover 

functional relationships among protein-coding genes in bacteria, extending the method’s 

applicability beyond eukaryotes. Applying the method to GTA-encoding 

alphaproteobacterial genomes that span >700 million years of evolution (Shakya et al., 
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2017), we detected a significant evolutionary rate covariation of GTA head-tail cluster 

genes with 59 protein-coding genes. Multiple genes in this dataset are involved in stress 

response, DNA repair, homologous recombination, and biofilm formation. These 

functions are consistent with the accumulating experimental and computational evidence 

about GTA production, regulation and function in R. capsulatus and C. crescentus, and 

with previous hypotheses and models of GTA production triggered under environmental 

stress (Gozzi et al., 2022; Westbye, O'Neill, et al., 2017), GTAs being involved in DNA 

repair in recipient cell (Gozzi et al., 2022; Kogay & Zhaxybayeva, 2022), and, most 

recently, of GTA production occurring in biofilms (Sherlock & Fogg, 2022). Our 

discovery that 12 biofilm-implicated genes co-evolve with GTA genes further highlight 

the potential importance of biofilm settings for GTA production. 

 Alphaproteobacteria in general, and GTA-producing R. capsulatus and C. 

crescentus in particular, are known to form biofilms (Rossy et al., 2019; Sherlock & 

Fogg, 2022; Zhang et al., 2019). Biofilms provide a microbial community with benefits 

that cannot be achieved by the individual cells, such as protection against antibiotics 

(Stewart & Costerton, 2001) and viral infections (Simmons et al., 2020; Vidakovic et al., 

2018). Despite either shown or hypothesized benefits of GTA-disseminated DNA to the 

recipient cells (Gozzi et al., 2022; Lang et al., 2017; Westbye, Beatty, et al., 2017), zero 

relative fitness of the lysed GTA-producing cells implies that the trait of encoding GTAs 

can only be favored by selection when the benefits of receiving GTAs are confined to 

either clonal or very closely related cells that also possess the genes encoding the suicidal 

GTA production trait. Encoding genes for synthesis of specific polysaccharide receptors, 

which facilitate the adsorption of GTAs (Brimacombe et al., 2013) and co-regulating the 

receptor production in one fraction of a population with GTA production in another 

fraction of a population, can limit GTAs’ targets only to clonal cells or very closely 

related species. Additionally, success of homologous recombination declines 

exponentially with the increase in genomic sequence divergence (Vos, 2009; Vulic et al., 

1997), further restricting the usefulness of GTA particles for DNA repair to closely 

related cells. 

 Within such groups of closely related cells, GTAs can be viewed as “public 

goods”. However, any public goods system faces an inevitable rise of cheaters (Smith & 
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Schuster, 2019), and a population of GTA producers would be susceptible to cheaters that 

would not produce GTA particles but still have surface polysaccharides that serve as GTA 

receptors. Consistent with these conjectures, we observe both the pseudogenization and 

complete loss of GTA systems in multiple alphaproteobacterial lineages (Kogay et al., 

2019; Lang & Beatty, 2007; Shakya et al., 2017). Pseudogenized GTA gene clusters may 

represent recently emerged cheater lineages, while the absence of GTA gene clusters 

could be a result of cheater takeover in a species and consequent loss of GTA genes due 

to the deletion bias (Mira et al., 2001). (It should be noted that, in both cases, the loss of 

GTA production in these lineages could also be attributed to acquisition of alternative 

molecular mechanisms to cope with nutritional stress and DNA repair, or inhabiting 

niches where GTA production costs outweigh its benefits.) Mathematical modeling 

showed that maintenance of GTA production trait can be difficult in mixed populations of 

GTA producers and cheaters, at least under some conditions (Redfield & Soucy, 2018). 

Yet, despite the likely appearance of cheaters and an observation of recurrent GTA loss in 

multiple lineages, the GTA production trait has been persisting in alphaproteobacteria for 

hundreds of millions of years (Shakya et al., 2017), suggesting that some kind of 

population-level selection is successful. However, details of how such selection operates 

remain unknown. 

 One possible solution for an “altruistic” trait to persist in a population over time is 

to have the population segregated into small sub-populations, an evolutionary scenario 

first modeled by Wilson (Wilson, 1975) and subsequently shown to be equivalent to 

multi-level selection models that emphasize close relatedness of sub-population members 

(Lehtonen, 2016; Price, 1970). Under this model, the cheaters arise stochastically and 

therefore are found in many but not all sub-populations. Notably, sub-populations without 

cheaters outcompete sub-populations with cheaters by having overall higher total 

productivity due to benefits of the public goods produced by the altruistic trait. We 

hypothesize that GTA systems persist over time because GTA production occurs in such 

spatially structured populations. We further hypothesize that it is biofilms that facilitate 

the division of GTA-producing populations into isolated sub-populations. A biofilm 

would ensure that clonal or closely related cells are in spatial proximity, plus they would 

protect the GTA-producing sub-population from being invaded by other cells, including 
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cheaters. Dense packing of cells would also ensure that the released GTA particles are not 

dispersed in the environment and reach their recipients (Sherlock & Fogg, 2022). 

Biofilms would also trap the organic debris of the lysed GTA-producer cells within the 

biofilm (Bayles, 2007). DNA of these lysed cells could be used as a part of a biofilm 

matrix (Bayles, 2007), enhancing the sub-population isolation and protection from 

environmental hazards (Devaraj et al., 2019). Other environmental and cellular debris 

could increase localized nutrient availability. Previous experimental work on biofilms 

supports some of our conjectures. In the GTA-producing Caulobacter crescentus the 

biofilm structure promotes clonal cells to reside in proximity (Rossy et al., 2019). Biofilm 

formation is also increased during the ecological competition, providing microbes with 

the protection to resist invasion by different strains (Oliveira et al., 2015). 

 Building on the current knowledge and previous models of GTA evolution and 

function, we propose the following model of selection acting on a structured, biofilm-

forming bacterial population and maintaining GTA production (Figure 5). When a 

population experiences starvation, nutritional stress increases the generation of reactive 

oxygen species, which induces DNA damage (McBee et al., 2017). In a structured 

population, the fate of each sub-population (i.e., of individual biofilms) depends on the 

genetic make-up of its cells. In a sub-population of GTA producers (GTA+ cells), a small 

fraction of cells is “sacrificed”, and their DNA is delivered to the remaining cells or 

hoarded as part of the biofilm matrix, while the cellular debris are utilized as additional 

nutrients. The resources are protected from invaders by the biofilm structure. As a result, 

the sub-population counteracts the negative effects of nutrient scarcity and DNA damage, 

and thus experiences, at worst, only a small population decline due to the lysed GTA+ 

cells. However, if cheaters arise within the biofilm boundaries, the composition of such 

sub-population under multiple episodes of nutritional stress will change to a higher 

fraction of GTA non-producers (GTA- cells), as these types of cells will not be lost due to 

lysis during GTA production and yet will experience all benefits of the public goods 

released by GTA+ cells. Eventually, the sub-population will lose GTA production trait. In 

a sub-population of GTA- cells, mutational load due to DNA damage and limited 

nutrients will result in a decline of the sub-population size. Therefore, GTA+ sub-

populations will have higher relative fitness in comparison to GTA- sub-populations, 
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resulting in the larger overall number of GTA+ cells in the combined population. Thus, 

the GTA production trait will be maintained in the population as a whole.  

 

Figure 5. The proposed model of between-group selection that preserves the trait 

of GTA production in a bacterial population of closely related cells. See Discussion 

section for detailed description. 
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Although bits of experimental evidence used in the above model come mostly 

from the research on GTAs in Rhodobacter capsulatus and Caulobacter crescentus, we 

hypothesize that our model is applicable to other GTA-containing alphaproteobacterial 

species, because the detected co-evolution patterns span multiple diverse 

alphaproteobacterial clades.  

Materials and Methods 

Identification of 293 representative alphaproteobacterial genomes with GTA regions 

 Initially, 1,642 alphaproteobacterial genomes and annotations of their protein-

coding genes were retrieved from the NCBI’s Assembly and RefSeq database (accessed 

June 2022) (O'Leary et al., 2016) (Table S2). In these genomes, GTA regions were 

predicted using GTA-Hunter program with default parameters (Kogay et al., 2019). 

Because GTA-Hunter looks only for 11 out of the 17 genes of the RcGTA’s head-tail 

cluster, the remaining GTA genes were identified via BLASTP searches (E-value < 0.1) 

(Altschul et al., 1997), using as queries the curated set of GTA regions from (Kogay et al., 

2019). Only BLASTP matches that are located within the GTA-Hunter-predicted GTA 

regions were added. Using this procedure, GTA regions were identified in 701 genomes. 

 To avoid presence of multiple highly similar GTA regions in downstream 

analyses, the 701 genomes were clustered into 392 Operational Taxonomic Units (OTUs) 

using the Average Nucleotide Identity (ANI) cutoff of 95%, calculated via fastANI v1.1 

(Jain et al., 2018). Within each OTU, GTA regions were examined for “completeness”, 

defined as having 14 out of the 17 head-tail cluster genes (genes g1, g3.5 and g7 were 

excluded because they are not easily detected across GTA-contaning alphaproteobacterial 

clades (Shakya et al., 2017)). Incomplete GTA regions were discarded. This criterion 

reduced the number of OTUs to 293. Within each of the 293 OTUs, only one, randomly 

selected, genome and its GTA region were retained for subsequent analyses (Table S3). 

Reconstruction of the reference phylogenomic tree 

From the set of 120 marker genes widely used for phylogenomic taxonomy (Parks 

et al., 2018), 84 gene families were detected in a single copy in at least 95% of the 293 
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genomes using AMPHORA2 (Wu & Scott, 2012). Amino acid sequences of each of these 

84 gene families were aligned using MAFFT v7.505 with the ‘linsi’ option (Katoh & 

Standley, 2013). The alignments were concatenated, and the best substitution model for 

each alignment and the optimal partition scheme were established via ModelFinder 

(Kalyaanamoorthy et al., 2017). The maximum-likelihood phylogeny was reconstructed 

using IQ-TREE v2.2 (Minh et al., 2020). The tree was rooted using the Emcibacterales 

and Sphingomonadales taxonomic orders, using the previously observed branching order 

of the Alphaproteobacteria as a guide (Kogay et al., 2019; Shakya et al., 2017). 

Selection of reference GTA genes 

The amino acid sequences of the 14 GTA genes from the GTA regions of the 293 

genomes were retrieved and aligned using MAFFT v7.505 with the ‘linsi’ option. 

Phylogenetic trees were reconstructed from each alignment using IQ-TREE v2.2 (Minh et 

al., 2020) under the best substitution model identified by ModelFinder (Kalyaanamoorthy 

et al., 2017). Each tree was compared to the reference tree using the normalized quartet 

scores calculated in ASTRAL v5.7.8 (Zhang et al., 2018). Eleven GTA genes that 

exhibited a high congruency with the reference phylogeny (quartet score > 0.8) (Figure 

S3) were designated as “reference GTA genes” and are referred as such throughout the 

manuscript. 

Identification and functional annotation of gene families in 293 GTA-containing 

genomes 

Gene families were defined as orthologous groups identified in Broccoli v1.2 

(Derelle et al., 2020), using DIAMOND (Buchfink et al., 2015) for protein similarity 

searches and the maximum-likelihood method for phylogenetic reconstructions. Gene 

families that are present in a single copy in at least 50% of the 293 GTA-containing 

genomes (1,470 in total) were retained for further analyses. 

To assign COG functional annotations to the gene families, one randomly selected 

representative from each family was used as a query against the eggNOG database v5.0.2 

and processed through eggNOG-mapper v2.1.9 workflow (Cantalapiedra et al., 2021). 

For gene families found to be co-evolving with the GTA region (see below), additional 
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annotations were sought out using PaperBLAST (accessed in December 2022) (Price & 

Arkin, 2017) and CD-searches against CDD database v3.20 (accessed in December 2022)  

(Lu et al., 2020). 

Inference of evolutionary rate covariation 

Amino acid sequences of each gene family and each reference GTA gene were 

aligned using MAFFT v.7.505 with the ‘linsi’ option (Katoh & Standley, 2013) . For gene 

families that are not found in all 293 genomes, the absent taxa were pruned from the 

reference tree using functions from the ete3 package (Huerta-Cepas, Serra, et al., 2016). 

For each gene set, the topology of taxa relationships was constrained to the reference 

phylogeny and branch lengths were estimated via IQ-TREE v2.2 (Minh et al., 2020), 

using the best substitution model suggested by ModelFinder (Kalyaanamoorthy et al., 

2017). The trees were rooted using relationships in the reference phylogeny as a guide. 

Covariations of evolutionary rates among 1,470 gene families and 11 GTA 

reference genes were examined rates using the CovER pipeline, as implemented in 

PhyKIT v1.11.12 (Steenwyk et al., 2021; Steenwyk et al., 2022). Within the pipeline, the 

following steps were carried out. For each pair, their trees were pruned to retain only 

shared taxa. All trees were corrected for the differences in mutation rates and divergence 

times among taxa; this was accomplished by dividing the length of each branch by the 

length of the corresponding branch of the reference tree. Branches with the normalized 

length > 5 were removed from further analyses, and the retained branch lengths were Z-

transformed. For every pair, Pearson correlation coefficient was calculated. A pair of 

genes was designated as co-evolving, if the Pearson correlation coefficient was positive 

and had p-value < 0.05 after Bonferroni correction for multiple testing. 

The above-described co-variation analysis was carried out on three datasets: 

among 11 GTA reference genes (11 x 10/2 = 55 comparisons), between GTA genes and 

1,470 gene families (11 x 1,470 = 16,170 comparisons), and among 1,320 gene families 

present in one representative GTA-containing genome, Phaeobacter inhibens (1,320 x 

1,319/2 = 870,540 comparisons). The P. inhibens analysis resulted in 10,514 co-evolving 

gene pairs (Figure S1), and the information was assembled into a co-evolution network, 

in which nodes represent 1,320 gene families and edges depict 10,514 co-evolution 
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relationships. To annotate nodes in the Phaeobacter inhibens’ co-evolution network with 

functional categories, the sub-network of 1,040 of 1,320 gene families with an 

unambiguous COG assignment was extracted. The COG functional annotations of genes 

were assigned as labels. 

To minimize the number of false positives and to shorten the list of candidate 

gene families that co-evolve with GTA genes, the following criteria were applied in 

addition to Pearson’s R > 0 and Bonferroni-corrected p-value < 0.05: A gene family was 

required (i) to co-evolve with at least 5 GTA reference genes and (ii) to be above the 95th 

percentile in the of 1,470 gene families ranked by both p-value and Pearson’s R for at 

least 5 GTA reference genes. Under these criteria, 59 gene families were retained for 

further analyses. 

Reconstruction of protein-protein interaction network in Phaeobacter inhibens 

 Amino acid sequences of the 1,320 above-described Phaeobacter inhibens genes 

were used as queries against the STRING database v11.5 (Szklarczyk et al., 2021), with 

the high confidence score cutoff and all available sources. This search resulted in 8,612 

interacting protein-protein pairs. The information was assembled into a Phaeobacter 

inhibens protein-protein interactions (PPI) network, in which nodes represent 1,320 genes 

and edges depict 8,612 PPIs. 

Reconstruction of co-fitness network in Phaeobacter inhibens 

 Phaeobacter inhibens’ gene pairs with similar fitnesses across a wide range of 

different experimental conditions were retrieved from the Fitness Browser (Price et al., 

2018) (accessed August 2022). Gene pairs were designated as co-fit if they either had a 

co-fitness value > 0.75, or they had a co-fitness value > 0.60 and were conserved in other 

bacterial species (Price et al., 2018). This search resulted in 569 co-fit gene pairs. The 

information was assembled into a Phaeobacter inhibens co-fitness network, in which 

nodes represent 1,320 genes and edges depict 569 co-fitness associations. 

Comparison of networks and identification of subnetworks 
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 The similarity between the Phaeobacter inhibens co-evolution network with 

either PPI or co-fitness networks was assessed by calculating Jaccard index (Jaccard, 

1912). The null distribution of Jaccard indices was created by randomly re-shuffling of 

the evolutionary rate covariation network 1,000 times. 

 Tendency of nodes to connect the nodes from the same COG category was 

measured by an assortativity coefficient, which was calculated for the Phaeobacter 

inhibens co-evolution network of 1,147 genes with an unambiguous COG assignment 

using igraph v1.3.5 (Csardi & Nepusz, 2006). The permutation test for assortativity was 

performed by random shuffling of COG labels 1,000 times. 

 All networks were visualized using igraph v1.3.5 (Csardi & Nepusz, 2006). 

KEGG pathways enrichment analysis for 59 genes that co-evolve with GTAs 

 Each of the 59 gene families was assigned a KEGG Orhology (KO) label using 

BlastKOALA (Kanehisa et al., 2016). Significantly enriched pathways were identified by 

the hypergeometric test (p-value < 0.05 with Bonferroni correction for multiple testing), 

as implemented in the clusterProfiler package v4.4.4 (Wu et al., 2021). 

Data availability 

The genomes used in this study are publicly available via NCBI Assembly 

(https://www.ncbi.nlm.nih.gov/assembly) database. The accession numbers of these 

genomes are listed in Table S2. The following datasets, which were derived from the 

genomes, are available in the FigShare repository (DOI 10.6084/m9.figshare.23929551): 

multiple sequence alignment of GTA genes; unconstrained and constrained phylogenetic 

trees of GTA genes; concatenated alignment of phylogenomic markers and reconstructed 

reference phylogenomic tree; amino acid sequences of 1,470 gene families; constrained 

phylogenetic trees of 1,470 gene families; covariation of evolutionary rates for all 

performed pairwise gene comparisons; Phaeobacter inhibens’ co-evolutionary network 

and its subnetwork of nodes with unambiguous GOG assignment, protein-protein 

interaction network, fitness network, and a list of COG functional category assignments 

for nodes. 

https://www.ncbi.nlm.nih.gov/assembly
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Abstract 

Morphological and genetic features strongly suggest that gene transfer agents 

(GTAs) are caudoviricete-derived entities that have evolved in concert with cellular 

genomes to such a degree that they should not be considered viruses. Indeed, GTA 

particles resemble caudoviricete virions but, in contrast to caudoviricetes (or any viruses), 

GTAs can encapsidate at best only part of their own genomes, are induced solely in small 

subpopulations of prokaryotic host cells and are transmitted vertically as part of cellular 

genomes during replication and division. Therefore, the lifecycles of GTAs are analogous 

to virus-derived entities found in parasitoid wasps, which have recently been recognized 

as non-virus entities and therefore reclassified as viriforms. We evaluated three distinct, 

independently exapted GTA groups for which the genetic basis for GTA particle 

production has been established. Based on the evidence, we outline a classification 

scheme for these viriforms. 

Introduction 

 In 2021, the International Committee on Taxonomy of Viruses (ICTV) ratified a 

taxonomic proposal to formally accept a new operational definition of the term “virus” 

(Koonin et al., 2021; Kuhn et al., 2020; Walker et al., 2021). Consequently, the most 

current version of the International Code of Virus Classification and Nomenclature 

(ICVCN) states that viruses are 

“ … a type of MGEs [mobile genetic elements] that encode at least one protein 

that is a major component of the virion encasing the nucleic acid of the respective 

MGE and therefore the gene encoding the major virion protein itself; or MGEs 

that are clearly demonstrable to be members of a line of evolutionary descent of 

such major virion protein-encoding entities” (ICVCN Rule 3.3) (International 

Committee on Taxonomy of Viruses, 2022; Kuhn et al., 2020). 

This definition also formalized the postulate that some MGEs, long understood by 

the general virology community to be distinct from viruses, are indeed distinct. At the 
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time, the ICTV had already classified viroids and satellite nucleic acids in taxa separate 

from viral taxa (in families/genera with names that end with suffixes -viroidae/-viroid and 

-satellitidae/-satellite, respectively, as opposed to -viridae/-virus) (International 

Committee on Taxonomy of Viruses, 2022), and these elements were logically placed into 

the perivirosphere rather than the orthovirosphere (Koonin et al., 2021; Kuhn et al., 

2020). 

The adoption of the new virus definition brought into question the taxonomic 

standing of one official virus family, Polydnaviridae. Indeed, entities classified into this 

polyphyletic family fundamentally deviate from MGEs fulfilling the virus definition 

because “polydna” particles encapsidate multiple segments of circular double-stranded 

DNAs that, however, do not encode the entire “polydna” genomes. Instead, the genomes 

are permanently endogenized into the “polydna” host (i.e., parasitoid wasp) genomes and 

inherited vertically. The resultant non-mobile nonviral entities are used by the wasps to 

deliver immunomodulatory genes into insects that serve as prey for the wasps (Drezen et 

al., 2017; Herniou et al., 2013). “Polydna” entities are likely evolutionarily derived from 

various groups of insect viruses, including nudivirids (Darboux et al., 2019; Drezen et al., 

2017; Gauthier et al., 2018; Petersen et al., 2022; Strand & Burke, 2020; Theze et al., 

2011), but, because they have lost the ability to replicate and instead have been fully 

exapted by their wasp hosts, they have left the virosphere altogether (Koonin et al., 2021; 

Koonin & Krupovic, 2018). Consequently, in 2021, the ICTV recognized “polydna” 

entities as representatives of a new MGE category distinct from viruses called 

“viriforms” (Koonin et al., 2021; Kuhn et al., 2020; Walker et al., 2021), and reclassified 

Polydnaviridae as (still polyphyletic) Polydnaviriformidae (Kuhn et al., 2021; Walker et 

al., 2022). In the ICVCN, viriforms are defined operationally as 

“ … a type of virus-derived MGEs that have been exapted by their organismal 

(cellular) hosts to fulfill functions important for the host life cycle; or MGEs that 

are derived from such entities in the course of evolution” (ICVCN Rule 3.3) 

(International Committee on Taxonomy of Viruses, 2022; Kuhn et al., 2020). 

Importantly, the following comment was added to the Rule 3.3: 
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“Gene transfer agents (GTAs) and the MGEs previously classified in the family 

Polydnaviridae are considered to be viriforms in classification and nomenclature” 

(International Committee on Taxonomy of Viruses, 2022; Kuhn et al., 2020). 

Notably, there are no discernible evolutionary relationships between GTAs and 

polydnaviriformids. The term “viriform”, similar to the term “virus”, is an umbrella term 

for certain MGEs with comparable lifecycles and properties; it is currently applied to six 

realms of MGEs that are not evolutionary related to each other. 

 Based on the properties of entities referred to as “GTAs” in the literature 

(reviewed in (Lang et al., 2017; Lang et al., 2012) we define GTAs as viriforms with the 

following features: 

1. GTAs use caudoviricete ancestor-derived proteins (established either via 

significant similarity of at least some GTA proteins to caudeviricete proteins or by 

image-based evidence of caudovirion-like particles) to form caudovirion-like 

particles; 

2. GTAs encapsidate mostly random pieces of host DNA (established 

experimentally); 

3. GTA genomes are fully endogenized in host genomes, often across multiple loci 

(established experimentally and via genomic examination); 

4. GTA genomes are not/cannot be fully packaged into particles due to limited 

particle head size (established via comparison of the packaged DNA length and 

size of GTA loci); 

5. GTA genomes are mostly vertically inherited and GTAs co-diversify with their 

hosts (established via congruence between phylogenies of host and GTA genes); 

and 

6. DNA encapsidated in GTA particles is delivered to other cells (established 

experimentally). 

Having these attributes, GTAs have lost the ability to replicate and have become fully 

exapted by their cellular hosts. They are produced under specific conditions (e.g., nutrient 



 

 162 

depletion (Westbye, O'Neill, et al., 2017)) and mediate horizontal gene transfer (HGT), 

typically among cells of the same species. 

 The first GTA discovered, of the alphaproteobacterium Rhodobacter capsulatus, 

was described in 1974 by Barry Marrs (Marrs, 1974). Since that time, distinct functional 

GTAs have been described in other alphaproteobacteria, a sulfate-reducing 

deltaproteobacterium, a methanogenic archaeon, and a spirochete that infects domestic 

pigs (Bertani, 1999; Guy et al., 2013; Humphrey et al., 1997; Rapp & Wall, 1987). 

Additionally, clusters of genes homologous to those encoding the R. capsulatus GTA are 

found in many alphaproteobacterial genomes, suggesting a wider prevalence of GTA 

production than presently appreciated (Kogay et al., 2019; Lang & Beatty, 2007; Lang et 

al., 2002; Shakya et al., 2017). Indeed, some of these bacteria produce functional GTAs 

(Biers et al., 2008; Nagao et al., 2015; Tomasch et al., 2018). 

 The recent ICTV recognition of viriforms and the formal establishment of 

Polydnaviriformidae provides an opportunity to initiate a systematic classification of 

GTAs. Here we outline initial steps to establish such a formal taxonomic scheme for GTA 

viriforms, focusing specifically on GTAs experimentally documented as being produced 

by cells and performing gene transfer—and for which the genetic basis of particle 

production has been established. Simultaneously, we have also officially proposed this 

taxonomic scheme to the ICTV for the 2022–2023 proposal cycle. 

Nomenclature of Gene Transfer Agents and Associated Taxa 

 Per ICTV rules, virus names are written in lower case (except if a name 

component is a proper noun), without italics in any part of the name (even if a host 

species name is part of the name), and ending in the term “virus”, which in virus name 

abbreviations is “V”. Examples are measles virus (MeV) and Ebola virus (EBOV). The 

nomenclature of already classified viriforms (polydnaviriformids) follows these rules, 

with “virus” being replaced by “viriform” and the abbreviation “V” being replaced with 

“Vf” (e.g., “Glyptapanteles liparidis bracoviriform” is abbreviated “GlBVf”). We suggest 

applying these general rules to GTAs, but with “viriform” being replaced by “gene 

transfer agent” due to the long-established use of this phrase and “Vf” being replaced 
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with “GTA”. Therefore, the gene transfer agent produced by Rhodobacter capsulatus 

would be called “Rhodobacter capsulatus gene transfer agent” and abbreviated as 

“RcGTA”, consistent with the established use of this abbreviation in the literature. 

 Rules for viriform taxon naming have been established by the ICVCN. 

Specifically, 

“[t]he formal endings for taxon names of viriforms are the suffixes "‑viriformia" 

for realms, "‑viriforma" for subrealms, "‑viriformae" for kingdoms, 

"‑viriformites" for subkingdoms, "‑viriformicota" for phyla, "‑viriformicotina" for 

subphyla, "‑viriformicetes" for classes, "‑viriformicetidae" for subclasses, 

"‑viriformales" for orders, "‑viriformineae" for suborders, "‑viriformidae" for 

families, "‑viriforminae" for subfamilies, and "‑viriform" for genera and 

subgenera” (ICVCN Rule 3.26) (International Committee on Taxonomy of 

Viruses, 2022; Kuhn et al., 2020) 

and 

“[a] species name shall consist of only two distinct word components separated by 

a space. The first word component shall begin with a capital letter and be identical 

in spelling to the name of the genus to which the species belongs. The second 

word component shall not contain any suffixes specific for taxa of higher ranks. 

The entire species name (both word components) shall be italicized” 

(International Committee on Taxonomy of Viruses, 2022). 

We suggest adding the infix -gta- prior to the taxon-specific suffixes for immediate 

recognition of GTA-specific taxa (e.g., -gtaviriform). 

Gene Transfer Agents can be Assigned to at Least Three Major Clades 

 Based on functionally and genetically characterized GTAs, at least three major 

GTA clades can be delineated. 
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Alphaproteobacterial type I GTAs 

 The best characterized GTA of this clade is RcGTA, produced by R. capsulatus 

(Pseudomonadota: Alphaproteobacteria: Rhodobacterales: Rhodobacteraceae). We 

designate RcGTA here as the founding member of one major GTA clade, the 

alphaproteobacterial type I GTAs. For many years since its discovery (Marrs, 1974), 

RcGTA was the only known GTA. Now we know that homologous GTAs are produced 

by other bacteria from the order Rhodobacterales: Dinoroseobacter shibae 

(Dinoroseobacter shibae gene transfer agent [DsGTA]) (Tomasch et al., 2018), Ruegeria 

pomeroyi (Ruegeria pomeroyi gene transfer agent [RpGTA]) (Biers et al., 2008), and 

Rhodovulum sulfidophilum (Rhodovulum sulfidophilum gene transfer agent [RsGTA]) 

(Nagao et al., 2015). Additionally, genes encoding RcGTA-like GTAs are conserved in 

most genomes in the order Rhodobacterales and in many genomes of the 

alphaproteobacterial orders Caulobacterales, Sphingomonadales, Parvibaculales, and 

Hyphomicrobiales (formerly Rhizobiales) (Kogay et al., 2019; Lang & Beatty, 2007; 

Lang et al., 2002; Shakya et al., 2017). 

 RcGTA and RcGTA-like GTA genes are similar in sequence to those of viruses 

classified in the uroviricot class Caudoviricetes (Duplodnaviria: Heunggongvirae) 

(Shakya et al., 2017). These GTAs are transmitted vertically from a bacterial parent to 

progeny during cell division (Lang & Beatty, 2007; Shakya et al., 2017), similar to 

propagation of temperate viruses (“prophages”). However, in contrast to temperate virus 

genomes, the set of genes required for production of the GTA particle (the GTA 

“genome”) is not necessarily localized in one region of the host genome. In the case of 

RcGTA, known structural and regulatory genes are scattered across five loci in the R. 

capsulatus genome (Hynes et al., 2016), cumulatively spanning approximately 20 

kilobases (kb) (Figure 1 and Supplementary Table S1). Moreover, cellular regulatory 

genes are involved in controlling GTA particle production (Westbye, Beatty, et al., 2017), 

adding another factor that makes the GTA genome difficult to differentiate from its host’s 

genome. 

RcGTA particles resemble virions of caudoviricetes (Yen et al., 1979) and have 

been structurally characterized at high resolution (Bardy et al., 2020). RcGTA particles 
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have head diameters of 38 nm and tail lengths of 49 nm. A small percentage of RcGTA 

particles have T = 3 quasi-icosahedral heads, but the capsid shape of most particles is 

oblate, as they lack the five hexamers of capsid protein needed to form genuine 

icosahedral heads. Because of the small head size, RcGTA particles can only package 

double-stranded DNA of approximately 4 kb in length (Yen et al., 1979). The DNA is 

also encapsidated at 10–25% lower density than typical caudoviricetes (Bardy et al., 

2020). Both RcGTA particle production and acquisition of the GTA-packaged DNA by 

other host cells in the population are controlled by the same cellular regulatory systems 

(Westbye, Beatty, et al., 2017). Only 0.1–3.0% of cells produce GTA particles (P. C. M. 

Fogg et al., 2012; Hynes et al., 2012), whereas the remaining cells produce a GTA 

receptor (Brimacombe et al., 2013).  

 Compositionally, structural proteins encoded by RcGTA and RcGTA-like GTAs 

are biased towards amino acids that are energetically cheaper to produce (Kogay et al., 

2020). To date, such a bias has not yet been associated with viruses. Based on this 

difference in amino-acid composition, GTA proteins can be distinguished from their viral 

homologs using a machine-learning approach, which is implemented in the publicly 

available GTA-Hunter program (Kogay et al., 2019). 

 In a comprehensive evolutionary analysis of homologs of the large subunit of the 

DNA packaging terminase enzyme (TerL, encoded by the g2 gene in the RcGTA 

genome), RcGTA and RcGTA-like GTAs form a clade closely related to, but distinct 

 

Figure 1. Genome of Rhodobacter capsulatus gene transfer agent (RcGTA). Genes 

(arrows) are depicted to scale, in their locations in the host genome (R. capsulatus). 

Exact coordinates of the RcGTA genes, their locus tags, and their functional annotations 

are listed in Supplementary Table S1. 
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from, duplodnavirians (Esterman et al., 2021). To illustrate the relationships of 

alphaproteobacterial type I GTAs to each other and to their closest viral homologs, we 

reconstructed evolutionary histories of their TerL proteins and the HK97-like major 

capsid proteins (HK97-MCP, encoded by the g5 gene in the GTA genome, is the hallmark 

protein that defines the virus realm Duplodnaviria (Koonin et al., 2020)). Consistent with 

an earlier analysis (Esterman et al., 2021), RcGTA and RcGTA-like GTAs formed a clade 

closely related to, but distinct from, caudoviricetes (Figure 2), with a few exceptions that 

are likely artefacts of phylogenetic reconstruction. 

Specifically, in the TerL phylogeny (Figure 2A), all viral homologs except one 

(Caulobacter virus Sansa) are separated from GTA proteins (with a solid bootstrap 

support of 81%). Caulobacter virus Sansa groups with one GTA sequence from a 

bacterium of the order Sphingomonadales (with a low bootstrap support of 50%), 

whereas all other GTAs of Sphingomonadales bacteria group together (with a strong 

bootstrap support of 96%). We hypothesize that the phylogenetic placement of the 

Caulobacter virus Sansa TerL is due to the long-branch attraction artefact (Felsenstein, 

1978). We searched for a maximum-likelihood tree in which caudoviricete- and GTA-

derived TerLs were required to group separately from each other and compared that tree 

to the tree depicted in Figure 2A. We found that the likelihoods of the two trees are not 

significantly different (approximately unbiased [AU] test; p-value = 0.555), confirming 

that the placement of the Caulobacter virus Sansa sequence within the GTA sequences is 

unreliable. 

 In the HK97-MCP phylogeny (Figure 2B), GTAs and most caudoviricetes are 

separated by a branch with 63% bootstrap support. Several caudoviricetes that group 

within GTAs are located on long branches, are situated outside of well-supported groups 

of GTAs from several alphaproteobacterial orders and have very low bootstrap support 

for their placements. It is therefore likely that the positions of these viral homologs are 

unreliable. To test this hypothesis, we identified a maximum-likelihood phylogeny among 

trees in which GTAs and caudoviricetes were required to be separated by a branch. The 

likelihoods of this tree and the phylogeny shown in Figure 2B are not significantly 

different (AU test; p-value = 0.534). Therefore, these viruses are likely positioned in 

different places in trees reconstructed from different bootstrap replicates, which would  
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Figure 2. Maximum Likelihood phylogenies of (A) large terminase (TerL) subunits 

and (B) HK97 major capsid protein (HK97-MCP) sequences of 

rhodogtaviriformids and their closest known caudoviricete homologs. 

Alphaproteobacterial type I gene transfer agent (GTA) (rhodogtaviriformid) lineages are 

shown in orange. Caudoviricete lineages that are nested within GTA lineages are shown 

in dashed black lines. Other caudoviricete lineages are shown in solid black lines. 

Bootstrap support values are shown only for selected branches. Scale bars represent 

substitutions per site. DsGTA, Dinoroseobacter shibae gene transfer agent; GTA, gene 

transfer agent; RcGTA, Rhodobacter capsulatus gene transfer agent; RpGTA, Ruegeria 

pomeroyi gene transfer agent; RsGTA, Rhodovolum sulfidophilum, gene transfer agent. 
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lead to their artificial (and poorly supported) basal positions with the GTA homologs on 

the tree shown in Figure 2B. 

 In the Figure 2 trees, GTA branches have shorter lengths than their caudoviricete 

counterparts, conforming with the reported slower evolutionary rate of GTAs compared 

to viruses (Shakya et al., 2017). Additionally, on both phylogenetic trees, GTAs from 

alphaproteobacteria of different orders form separate groups with very high support, 

corroborating vertical inheritance of most GTA genes (Lang & Beatty, 2007; Lang et al., 

2002; Shakya et al., 2017). 

 Together, these results justify the classification of RcGTA and three RcGTA-like 

GTAs in a common viriform taxon: family Rhodogtaviriformidae (from Rhodobacterales, 

infix -gta-, and family-specific suffix -viriformidae). Given limited dataset size (i.e., just 

four GTAs), it is challenging to establish quantifiable criteria for demarcating taxonomic 

relationships among the four GTAs. In the future, when more GTA sequences become 

available for analyses, a criterion based on percent sequence similarity among shared 

genes should be considered. For now, based on the evidence of co-evolution of these 

GTAs and their specific hosts, we argue that at least four rhodogtaviriformid genera, each 

for GTAs of bacteria classified in distinct genera included in Rhodobacterales, ought to 

be established: 

• Dinogtaviriform (named after DsGTA host genus Dinoroseobacter, infix -gta-, 

and genus-specific suffix -viriform) to include one new species, Dinogtaviriform 

tomaschi (species epithet to honor GTA researcher Jürgen Tomasch, who was 

instrumental in the discovery of DsGTA) for DsGTA (Supplementary Table S2); 

• Rhodobactegtaviriform (named after RcGTA host genus Rhodobacter, infix -gta-, 

and genus-specific suffix -viriform) to include one new species, 

Rhodobactegtaviriform marrsi (species epithet to honor GTA researcher Barry 

Marrs, who first discovered GTAs and coined the term “gene transfer agent”) for 

RcGTA (Supplementary Table S1); 

• Rhodovulugtaviriform (named after RsGTA host genus Rhodovulum, infix -gta-, 

and genus-specific suffix -viriform) to include one new species, 

Rhodovulugtaviriform kikuchii (species epithet to honor GTA researcher Yo 
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Kikuchi, who was instrumental in the discovery of RsGTA) for RsGTA 

(Supplementary Table S3); and 

• Ruegerigtaviriform (named after RpGTA host genus Ruegeria, infix -gta-, and 

genus-specific suffix -viriform) to include one new species, Ruegerigtaviriform 

cheni (species epithet to honor GTA researcher Feng Chen, who was instrumental 

in the discovery of RpGTA) for RpGTA (Supplementary Table S4). 

Alphaproteobacterial type II GTAs 

 There was a lag between discovery of these elements and their recognitions as 

bona fide GTAs. Phage-like particles, originally referred to as bacteriophage-like 

particles (BLPs), that contained heterogenous DNA from Bartonella host genomes were 

first characterized in Bartonella henselae (Anderson et al., 1994), and noted to be similar 

in structure to particles produced by B. bacilliformis (Umemori et al., 1992). These B. 

bacilliformis particles were subsequently shown to also contain heterogeneous genomic 

DNA fragments, but attempts to demonstrate their gene transfer ability were not 

successful (Barbian & Minnick, 2000). Functionality of the particles produced by 

Bartonella for gene transfer (Bartonella gene transfer agent [BaGTA]) was eventually 

demonstrated by work on B. henselae (Pseudomonadota: Alphaproteobacteria: 

Hyphomicrobiales: Bartonellaceae) (Guy et al., 2013). BaGTA genes were initially 

proposed to be located within a single cluster of 11–13 genes spanning approximately 14 

kb (Guy et al., 2013). However, a subsequent screen for genes essential for BaGTA 

functionality identified a total of 29 genes located within a larger (approximately 79-kb-

long) region (Québatte et al., 2017) (Figure 3 and Supplementary Table S5). Homologs 

of BaGTA genes (BaGTA-like GTAs) were found in the genomes of multiple species of 

Bartonella (Berglund et al., 2009; Guy et al., 2013; Tamarit et al., 2018). BaGTA genes 

are located near an active virus-derived origin of replication and next to genes encoding 

secretion systems (Guy et al., 2013). As a result, the region of the genome containing 

BaGTA and these secretion-system genes are amplified and packaged more often than 

other genomic regions (Guy et al., 2013; Québatte et al., 2017). These findings led to the 

hypothesis that BaGTA and BaGTA-like GTAs have been maintained due to their 

mediation of HGT of secretion-system and toxin genes, thereby enabling Bartonella 
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bacteria to adapt to diverse hosts (Guy et al., 2013). However, actual GTA-mediated 

DNA transfer among bacterial cells has only been demonstrated for B. henselae (Guy et 

al., 2013). There, BaGTA production is restricted to a distinct subpopulation of fast-

growing cells, which comprise about 6% of the total population (Québatte et al., 2017), 

and the uptake of BaGTA-packaged DNA was proposed to be limited to cells undergoing 

division (Québatte et al., 2017).  

There are some discrepancies in the literature regarding the structure of BaGTA 

particles, suggesting some bacteria might release additional phage-like particles. The B. 

henselae particles were originally reported as particles without tails or with short non-

contractile tails with a head diameter of 40 nm (Anderson et al., 1994). The head 

diameter of the B. bacilliformis particles was originally measured at 40 nm (Umemori et 

al., 1992) and subsequently 80 nm (Barbian & Minnick, 2000). Those of B. grahamii 

were reported as possessing long non-contractile tails and icosahedral heads of 50–70 nm 

or 80 nm and tails of 100 nm (Berglund et al., 2009). Although BaGTA particles are 

potentially able to package the entire main structural gene cluster of 11–13 genes, they 

 

Figure 3. Genome of Bartonella gene transfer agent (BaGTA). Genes (arrows) are 

depicted to scale, in their locations in the host genome (B. henselae). Exact coordinates 

of the BaGTA genes, their locus tags, and their functional annotations are listed in 

Supplementary Table S5. 
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cannot package all 29 genes required for BaGTA production due to a capacity of 14 kb 

(Anderson et al., 1994; Guy et al., 2013; Lang et al., 2017). 

 In the TerL phylogeny, BaGTA-like homologs are separated from almost all 

caudoviricetes by longer branches (with 100% bootstrap support; Figure 4A). Two 

caudoviricete homologs (Sulfitobacter phage pCB2047-C and Sulfitobacter phage NYA-

2014a) group together and are nested within the BaGTA-like group (with 84% bootstrap 

support). We hypothesize that the terL gene was horizontally transferred from GTAs to 

these caudoviricetes, with similar HGT events documented between RcGTA-like GTAs 

and caudoviricetes infecting bacteria of the Rhodobacterales (Zhan et al., 2016). In the 

HK97-MCP phylogeny, BaGTA homologs are located on shorter branches than their 

caudoviricete counterparts and are separated from caudoviricete homologs with 100% 

bootstrap support (Figure 4B). Phylogenomic analyses suggest that Bartonella GTAs 

have co-evolved with their hosts (Tamarit et al., 2018). 

 Together, these results justify the classification of BaGTA and BaGTA-like GTAs 

in a common viriform taxon, family Bartogtaviriformidae (from Bartonella, infix -gta-, 

and family-specific suffix -viriformidae). For now, we argue that at least one 

bartogtaviriformid genus ought to be established: Bartonegtaviriform (named after 

BaGTA host genus Bartonella, infix -gta-, and genus-specific suffix -viriform) including 

one new species, Bartonegtaviriform andersoni (species epithet to honor GTA researcher 

Burt Anderson, who first discovered BaGTA particles (Anderson et al., 1994)) for 

BaGTA. 

GTAs of spirochaetes 

 A GTA originally called virus of Serpulina hyodysenteriae 1 (VSH-1) was 

identified in Brachyspira (formerly Serpulina) hyodysenteriae (Spirochaetota: 

Spirochaetia: Brachyspirales: Brachyspiraceae) (Humphrey et al., 1997). In accordance 

with the nomenclature rules established here, we suggest renaming this GTA to 

Brachyspira hyodysenteriae gene transfer agent (BhGTA). The structural gene cluster 

responsible for production of BhGTA particles—i.e., the BhGTA “genome”—is 16.3 kb 

in length (Matson et al., 2005) (Figure 5 and Supplementary Table S6) 
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Figure 4. Maximum Likelihood phylogenies of (A) large terminase (TerL) subunits 

and (B) HK97 major capsid protein (HK97-MCP) sequences of 

bartogtaviriformids and their closest known caudoviricete homologs. 

Alphaproteobacterial type II gene transfer agent (GTA) (bartogtaviriformid) lineages are 

shown in blue. Caudoviricete lineages are shown in black. Two nearly identical 

caudoviricete lineages that are nested within GTA lineages are shown in dashed black 

lines. A bootstrap support value is shown only for the branch separating GTA and 

caudoviricete sequences. Scale bars indicate substitutions per site. BaGTA, Bartonella 

gene transfer agent; GTA, gene transfer agent. 

 



 

 173 

BhGTA particles have a head diameter of 45 nm and a flexible non-contractile tail 

of 65 nm (Humphrey et al., 1997). Like other GTAs, BhGTA is unable to package and 

transfer its entire genome, given the limiting capacity of 7.5 kb (Humphrey et al., 1997; 

Matson et al., 2005). Restriction enzyme digests of the packaged DNA and the range of 

marker genes that can be transferred by BhGTA particles suggest that they package any 

region of the B. hyodysenteriae genome (Humphrey et al., 1997) without an obvious bias 

for the genomic region that encodes BhGTA. The induction of BhGTA particle 

production by DNA-damaging agents, such as mitomycin C and antibiotics, results in 

large-scale lysis of cells (Stanton et al., 2008). However, the proportion of B. 

hyodysenteriae cells in a population that naturally produce and release BhGTA particles 

has not been quantified. BhGTA particles are capable of transferring antimicrobial 

resistance genes within the bacterial population (Stanton et al., 2008), pointing at possible 

selective advantages of maintaining the capability of BhGTA particle production.  

 Homologs of genes in the BhGTA genome were found in the genomes of other 

members of the genus Brachyspira, but there is no gene synteny in their organization 

(Motro et al., 2009). Unlike in rhodogtaviriformids and bartogtaviriformids, an 

endolysin-encoding gene is the only gene in the BhGTA genome that has a significant 

sequence similarity to caudoviricete genes in the National Center for Biotechnology 

Information (NCBI) Reference Sequence (RefSeq) database (accessed in May 2022). 

Some genes encoding the BhGTA particle proteins were experimentally validated 

 

Figure 5. Genome of Brachyspira hyodysenteriae gene transfer agent (BhGTA). 

Genes (arrows) are depicted to scale, in their locations in the host genome (B. 

hyodysenteriae). Exact coordinates of the BhGTA genes, their locus tags, and their 

functional annotations are listed in Supplementary Table S6. 
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(including endolysin), and the particles structurally resemble those of caudoviricetes 

(Matson et al., 2005). Therefore, the absence of their homologs in the viral RefSeq 

database is likely due to the limited sampling of the virosphere.  

 In the endolysin phylogeny, the Brachyspira homologs group together and are 

separated from all caudoviricetes by a long branch (with 100% bootstrap support; Figure 

6A). Additionally, the B. hyodysenteriae genome encodes a single copy of an identifiable 

terL gene, which is located outside of the currently delineated BhGTA genome. 

Homologs of this terL gene are also present in a single copy in genomes of other 

Brachyspira bacteria that encode BhGTA-like MCPs. These homologs are highly 

conserved, with pairwise amino-acid identities of 81–100%. In a phylogenetic tree, the 

Brachyspira TerLs are separated from all caudoviricete TerLs by a longer branch (with 

100% bootstrap support; Figure 6B). Although the role of this TerL homolog in the 

BhGTA lifecycle has not been experimentally validated, the presence of the encoding 

gene as the only identifiable terL in the Brachyspira genomes, its high degree of 

conservation within the Brachyspira genus and its divergence from the related 

caudoviricete sequences support its potential involvement in the packaging of DNA into 

the BhGTA particles. Based on comparison of Brachyspira GTA and host genes, GTAs 

have co-diversified with Brachyspira (Motro et al., 2009). Together, these results justify 

the classification of BhGTA and BhGTA-like GTAs in a common viriform taxon, family 

Brachygtaviriformidae (form Brachyspira, infix -gta-, and family-specific suffix -

viriformidae). For now, we argue that at least one brachygtaviriformid genus ought to be 

established: Brachyspigtaviriform (named after BhGTA host genus Brachyspira, infix -

gta-, and genus-specific suffix -viriform) to include one new species, 

Brachyspigtaviriform stantoni (species epithet to honor GTA researcher Thaddeus 

Stanton, who first discovered BhGTA particles (Humphrey et al., 1997)) for BhGTA. 

Independent origins of the three GTAs 

 Genes from the genomes of these three GTAs are either not homologous or too 

divergent to have significant sequence similarity in BLASTP searches of the encoded 

proteins. For example, pairwise amino-acid identity of TerLs, which is one of the most 

conserved GTA and caudoviricete proteins, is 14–20% among RcGTA, BaGTA, and  
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Figure 6. Maximum Likelihood phylogenies of (A) endolysin and (B) the putative 

large terminase (TerL) subunits of brachygtaviriformids and their closest known 

caudoviricete homologs. Brachyspira gene transfer agent (GTA) lineages are shown in 

purple. Caudoviricete lineages are shown in black. A bootstrap support value is shown 

only for the branch separating GTA and caudoviricete sequences. Scale bar indicates 

substitutions per site. BhGTA, Brachyspira hyodysenteriae gene transfer agent; GTA, 

gene transfer agent. 
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BhGTA. Nevertheless, an iterative clustering-alignment-phylogeny procedure (Wolf et 

al., 2018) established the homology among known TerL proteins that include RcGTA, 

BaGTA, and putative BhGTA TerLs (Esterman et al., 2021). The evolutionary history of 

RcGTA-like, BaGTA-like, putative BhGTA-like TerLs, and their closest known 

caudoviricete homologs (Figure 7) demonstrates that GTA-like TerLs appear in three 

distinct clades within viral TerLs. Based on this phylogenetic evidence, we propose that 

these three GTA clades are a result of three independent exaptation events. Therefore, just 

like viruses (which are classified in at least six unrelated realms), GTA viriforms are 

polyphyletic.  

Discussion 

 Based on the evolutionary differences between GTA and caudoviricete genes 

encoding well-conserved proteins and on morphological differences of GTA particles, we 

propose three families for these GTAs. The greatest number of functionally confirmed 

and putative GTAs are in the alphaproteobacterial type I clade, which, for now, is 

proposed to be a family Rhodogtaviriformidae that includes at least four genera. The 

members of this family are currently restricted to a single cellular order 

(Rhodobacterales). The TerLs and MCPs of these RcGTA-like GTAs and 

alphaproteobacterial type II GTAs (Bartogtaviriformidae) are clearly distinguishable 

from each other and their caudoviricete homologs and evolve at a slower rate (Figure 2 

and Figure 4) (Esterman et al., 2021; Shakya et al., 2017). The spirochaete GTAs 

(Brachygtaviriformidae) are more difficult to distinguish from caudoviricetes due to a 

lack of available viral representatives in GenBank for all but one experimentally 

validated BhGTA gene. Nevertheless, both the experimentally validated BhGTA 

endolysin and the putative BhGTA TerL and their Brachyspira homologs also form a 

well-supported cluster distinct from caudoviricete lineages; moreover, 

brachygtaviriformid TerLs evolve at a slower rate than their spirochete homologs (Figure 

6B). As in the case with the experimentally validated RcGTA, the “genome” of BhGTA is 

also likely dispersed across multiple loci. 
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 Analyses of environmental samples and genome sequences suggest the existence 

of a large number of GTAs, especially those related to the rhodogtaviriformids (Biers et 

al., 2008; Yunyun Fu et al., 2010; McDaniel et al., 2010; Zhao et al., 2009). In a genome-

 

Figure 7. Maximum Likelihood phylogeny of the large terminase (TerL) subunits 

of three major clades of GTAs and their closest known caudoviricete homologs. 

This tree includes all TerL homologs from Figures 2A, 4A, and 6A, using their color 

coding. Bootstrap support values are shown only for the branches separating three GTA 

clades and their closest caudoviricete sequences. Scale bar indicates substitutions per 

site. GTA, gene transfer agent. 
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wide screen of 1,423 alphaproteobacterial genomes, 57.5% were found to encode 

RcGTA-like “genomes”, which are often annotated as either intact or incomplete 

prophages (Kogay et al., 2019). The great majority of RcGTA-like genes in 

alphaproteobacterial genomes are associated with bacteria for which a GTA-based gene-

transfer activity has not been documented, and it is possible that some of these RcGTA-

like genes may not be expressed to produce functional particles. Therefore, we have 

restricted our proposal to those GTAs that have been shown to be functional. However, 

we speculate that at least some (and perhaps many) of these GTA-like gene clusters will 

be shown to produce functional GTAs that will need to be classified.  

 Based on the evolutionary history of TerL proteins (Figure 7), it is likely that the 

proposed three GTA families had distinct caudoviricete progenitors. Eventual deduction 

of the relatives of these progenitors may make it possible (or necessary) to include these 

GTA families in the virus class Caudoviricetes, thereby creating an overarching taxon for 

distinct MGEs (viruses and viriforms). Since the exaptation events, however, the three 

families have evolved as part of the host genomes (Esterman et al., 2021; Lang & Beatty, 

2007; Lang et al., 2002; Shakya et al., 2017), in the case of the rhodogtaviriformids for 

hundreds of millions of years (Shakya et al., 2017). As a result, GTAs effectively became 

a component of cellular genomes, integrated into cellular regulatory circuits that also 

control processes such as motility, quorum sensing, extracellular polysaccharide 

synthesis, and biofilm formation (Lang et al., 2017; Pallegar et al., 2020; Shimizu et al., 

2022). There is also mounting evidence that GTA genes experience selective pressures to 

be maintained in their host genomes (Kogay et al., 2020; Lang et al., 2012). Although the 

fitness benefits associated with GTA production remain to be elucidated, the time is now 

ripe to have the known GTAs officially recognized and classified as specific viriforms. 

We recognize this step as the initiation of a taxonomic framework that undoubtedly will 

rapidly expand and change in the future.  

Materials and Methods 

 To identify alphaproteobacterial type I GTAs, we searched for RcGTA-like 

sequences in 1,248 complete alphaproteobacterial genomes extracted from the NCBI 

RefSeq database (accessed in October 2020) using GTA-Hunter (Kogay et al., 2019). We 
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identified 503 genomes that contained at least six RcGTA homologs in the same genetic 

neighborhood and had both g2 (encoding TerL) and g5 (encoding HK97-MCP) genes. To 

remove redundancy, we clustered genomes into the operational taxonomic units (OTUs) 

using an average nucleotide identity threshold of 95%. From all genomes within an OTU, 

we selected one genome with the largest number of GTA genes. This strategy resulted in 

290 representative GTAs selected for further analysis. We identified the closest viral 

homologs of the TerL and HK97-MCP proteins from these GTAs by conducting a 

BLASTP search (Altschul et al., 1997) of the RefSeq database (accessed in March 2021) 

(O'Leary et al., 2016), using TerL and HK97-MCP proteins from representative GTAs as 

queries, an e-value cutoff of 0.001, and query coverage of at least 50%. Retrieved viral 

homologs with identical amino-acid sequences were removed from further analyses. For 

both proteins, we aligned amino-acid sequences of GTA and virus homologs using 

MAFFT v7.455 with -linsi option (Katoh & Standley, 2013). We reconstructed 

phylogenetic trees using IQ-TREE v2 (Minh et al., 2020), identifying the best 

substitution models using the built-in ModelFinder (Kalyaanamoorthy et al., 2017). The 

selected models were LG+F+R9 and LG+F+R7 for TerL and HK97-MCP datasets, 

respectively. Branch support values were assessed using 1,000 ultrafast bootstrap 

replicates and a hill-climbing nearest-neighbor interchange search for optimal trees 

(Hoang et al., 2018). Additionally, for both protein phylogenies, we reconstructed a 

phylogenetic tree in IQ-TREE v2 (Minh et al., 2020) using a tree search that was 

constrained by requiring all GTAs and all viruses to be separated by a branch. We 

compared the resultant trees in unconstrained and constrained searches using the AU test 

(Shimodaira, 2002), as implemented in the IQ-TREE v2 program. 

 To identify alphaproteobacterial type II GTAs, we used the BaGTA TerL and 

HK97-MCP sequences (accession numbers WP_034448260.1 and WP_011181178.1, 

respectively) as queries in a BLASTP search against the 57 complete Bartonella genomes 

extracted from the RefSeq database (accessed in May 2022). We restricted our search 

only to matches for which BaGTA TerL and HK97-MCP homologs are in the same 

genomic neighborhood (defined as being within 5 kb of each other). In genomes with 

multiple matches to the query protein, we retained only the homolog with the highest 

BLASTP bit score. We clustered 57 genomes using a 95% average nucleotide identity 
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(ANI) threshold and randomly selected one TerL and HK97-MCP representative from 

each cluster for phylogenetic analysis. We identified caudoviricete homologs by 

conducting a BLASTP search (e-value cutoff of 0.001, and query coverage of at least 

50%) against viral RefSeq database (accessed in May 2022). We performed phylogenetic 

reconstructions as described above for alphaproteobacterial type I GTAs. The selected 

best substitution models were LG+R6 and LG+G4 for TerL and HK97-MCP datasets, 

respectively. 

To identify GTAs of spirochaetes, we used BhGTA’s MCP sequence (GenBank 

accession number WP_012671344.1) as a query in a BLASTP search (with an e-value 

cutoff of 0.001 and query coverage of at least 50%) against the 13 complete Brachyspira 

genomes extracted from the RefSeq database (accessed in May 2022). We used TerL of 

B. hyodysenteriae (GenBank accession number WP_012671469.1) and endolysin protein 

of B. hyodysenteriae (GenBank accession number WP_012671356.1) as queries in a 

BLASTP search (with an e-value cutoff of 0.001 and query coverage of at least 50%) 

against the same set of 13 genomes. For endolysins, we only retained matches that co-

localized within the BhGTA region on the chromosome. We clustered 13 genomes using a 

95% ANI threshold and randomly chose one TerL and endolysin representative from each 

cluster for phylogenetic analyses. We identified caudoviricete homologs by doing 

BLASTP searches (e-value cutoff of 0.001 and query coverage of at least 50%) against 

the viral RefSeq database (accessed in May 2022). We performed phylogenetic 

reconstructions as described above for the alphaproteobacterial type I GTAs. The selected 

best substitution models were VT+F+R3 and WAG+R6 for TerL and endolysin datasets, 

respectively. 

To reconstruct the phylogeny that includes all three clades of GTAs, we combined 

all TerL homologs extracted in the above-described procedures into one dataset. We 

aligned the TerL sequences using MAFFT v7.455 with -dash option (Rozewicki et al., 

2019) and trimmed the obtained alignment using ClipKIT with -gappy option (Steenwyk 

et al., 2020). We computed the phylogenetic tree using IQ-TREE v2 (Minh et al., 2020) 

as described above with the LG+F+R10 substitution model selected by ModelFinder. We 

rooted the tree using a larger TerL phylogeny presented in (Esterman et al., 2021). 
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We visualized all phylogenetic trees in iTOL v6 (Letunic & Bork, 2021). 

Data availability 

All data used in this manuscript were retrieved from publicly available GenBank 

databases, as described in the Methods. The accession numbers of database records used 

in the phylogenetic analyses can be found in alignments that are included in the 

Supplementary Data. 
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Despite that GTA genes share ancestry with viruses, they can be clearly 

differentiated from each other by phylogenetics and comparative genomics analyses. 

Reconstructing phylogenetic trees and examining genetic neighborhoods are generally 

computationally demanding tasks, and the development of GTA-Hunter software, 

introduced in chapter 2, substantially improves the efficiency of detecting GTA clusters. 

By examining 1,423 alphaproteobacterial genomes using the GTA-Hunter, we found that 

a majority of these genomes contain GTA clusters. These findings are consistent with 

results from the earlier studies, confirming that GTAs are widely encoded by 

alphaproteobacterial species (Lang & Beatty, 2007; Lang et al., 2002; Shakya et al., 

2017). Do all these predicted GTAs maintain their functional capabilities? More detailed 

examination of these GTA clusters reveals a common occurrence of pseudogenization and 

the loss events of GTA genes that are essential for the proper production of GTAs. This 

suggests that at least some GTA clusters are very unlikely to be functional. Interestingly, 

even closely related genomes contain heterogeneous GTA clusters. For example, despite 

that Brucella species have high genomic identity with each other (more than 99% of 

Average Nucleotide Identity (Jain et al., 2018; Konstantinidis & Tiedje, 2005)), they 

exhibit different pseudogenization/loss patterns in GTA genes (Figure 1). It raises an 

intriguing possibility that strains with incomplete or partially pseudogenized GTA 

clusters represent emergent lineages of ‘cheaters’ that do not produce GTA particles due 

to the inactivation of GTA genes, as we discussed in the chapter 5. Additional analyses 

are needed to examine the pseudogenization rate of GTA genes relatively to other gene 

families within various closely related species. It will allow to better understand whether 

selection pressure favors pseudogenization of GTA genes in different taxonomic groups. 

Furthermore, multiple clades have convergently lost GTA genes, suggesting that 

under some ecological conditions GTAs are useless or deleterious and can get purged 

from the genomes. In fact, a strong mutational bias toward deletions in bacteria 

profoundly shapes their genomic architecture, eliminating junk DNA in relatively short 

periods of time (Mira et al., 2001). Interestingly, we did not detect presence of GTAs in 

endosymbiont genomes (Kogay et al., 2019). Indeed, endosymbionts generally undergo 
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the process of Muller’s ratchet by accumulating deleterious mutations due to the genetic 

drift, losing even beneficial phenotypic traits in the process (Moran, 1996). However, 

some of the latest studies suggest that endosymbionts may actually produce GTA 

particles (Fallon & Carroll, 2023; George et al., 2022). This inconsistency might stem 

from the fact that GTA-Hunter relies on the notable bias towards amino acids that are 

predominantly encoded by GC-rich codons, whereas genomic composition of 

endosymbiotic genomes is highly AT-biased (Clark et al., 1999). The main benefit of 

producing GTAs within populations of endosymbionts might be to escape the Muller’s 

ratchet by increasing the recombination rate. This hypothesis can be computationally 

evaluated by examining the recombination rate in potentially GTA-producing 

endosymbiotic species relative to those that do not encode them.  

 

Figure 1. Distribution of GTA genes in ten representative Brucella species. The 

patterns of presence, absence and pseudogenization of GTA genes are mapped to a 

phylogenomic tree that was reconstructed from a concatenated alignment of 2,061 

marker genes. Genes g1 and g3.5 were excluded, as they are generally not identified 

outside of Rhodobacterales order due to their short length and high substitution rate. 

The unit of the scale bar is the number of substitutions per site. 
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The considerable progress toward better understanding of GTAs was made over 

the last five decades. Although only dozens of GTAs were experimentally confirmed, it is 

clear that more GTAs will be discovered and validated in the future. However, the 

lingering question that largely remains unanswered is the extent to which GTAs are 

produced in the natural environments. This gap in knowledge can be potentially 

addressed by studying metaviromes that were collected and sequenced from different 

environmental habitats. Interestingly, the collected metavirome samples generally contain 

prokaryotic DNA (Hurwitz & Sullivan, 2013; Kristensen et al., 2010). Partially this could 

be attributed to contamination and limitations of the virome collection protocols. 

However, some of the microbial DNA in metaviromes could be due to GTAs, as they can 

pass through the filters that retain microbial cells and can protect DNA from nuclease 

treatment. Indeed, the study of the soil virome suggests that ~25% of the assembled reads 

could be coming from GTAs (Trubl et al., 2018). Thus, the systematic analysis of 

properly collected metavirome samples is a promising approach to advance our 

knowledge about GTA production in Nature. 
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