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ABSTRACT

Turbomachinery is an essential technology in the transfer of mechanical work to or from

a fluid stream. Forming a cornerstone component in nearly all electrical energy production

and air transportation propulsion systems, turbomachinery also accounts for significant en-

ergy transfer due to its omnipresence in fluid handling, including water pumping and pro-

cess machinery. As system designers look towards optimized arrangements that enhance

system flexibility to highly variable conditions, increase the density of energy transfer, and

reduce the amount of lost work, the performance and operability demands on turbomachin-

ery components continue to increase. For turbocompressors, a turbomachinery subtype that

transfer work to a fluid, the flowfield can be classified into two flow regimes, demarcated

by a stability boundary representing an operational limit. For aerodynamic loadings above

this stability limit, the flowfield is highly complex, exhibiting a broad range of temporal

and spatial features, limiting work transfer and increasing entropy production. The blade-

level instabilities, referred to as rotating stall, are the result of deleterious flowfield features,

sensitive to perturbation, which have grown with aerodynamic loading.

Based on the thesis that critical destabilizing flow structures exhibit coherent response

to periodic excitation and can be usefully organized via tuned periodic forcing, the work

presented herein emphasizes the dynamical behavior of a representative compressor flow-

field under periodic transients and the difficulty in extracting useful information on flow-

field response in the post-stall regime. A new analysis approach is developed that enables

better understanding of the rotating stall process, providing guidance for the use of data-

driven tools and new approaches for control development. Emerging decomposition and

operator-based analysis approaches are borrowed from dynamical system modeling to aid

in deducing the coherent structures, their unforced behaviors, and critical forcing frequen-

cies. In this work, linear stability analysis and resolvent analysis are used to identify the

underlying flow structures contributing to the onset of instability. Through a demonstrated

surrogate model for compressor stability, a conceptual framework and practical approach
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are developed, such that the unsteady response of turbomachinery flows can be leveraged

to achieve wider operability and enhance the transfer of usable work.
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Chapter 1

Introduction and Overview

Time-varying flowfields are a fact of life for turbomachinery blade rows. The unsteadiness

comes from many sources with roots in design, manufacture, assembly, installation, and of

course operation. Historical and modern design approaches rely on assuming a represen-

tative crypto-steady flow process, i.e. one that is steady within the frame of reference of

the bladerow1. However, the limiting flowfield behaviors are anything but crypto-steady,

instead, they are often characterized by significant unsteady features.

The research presented herein is motivated by a simple question I have asked myself

regularly during aerodynamic design and development work on wide-range turbocompres-

sors:

Are there scenarios where imposed periodic flowfield fluctuations would be

beneficial to turbocompressor aerodynamic performance and range?

There is, of course, a companion question concerning scenarios where imposed periodic

flowfield fluctuations would be detrimental. Together, these questions form a broad, over-

arching research topic regarding the response of turbocompressor flowfields to periodic
1The crypto-steady approach arises from the assumptions that are made for bounding the design process.

It presupposes that the ideal flow in the frame of reference of the blade row is steady and that the up and
downstream boundaries are uniform in the azimuthal direction. These assumptions are far from true. How-
ever, it allows the aerodynamic design process to proceed with relative ease and has formed a cornerstone of
turbomachinery aerodynamic modeling and design for many decades.
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excitation and how to leverage this in the design process. The research presented here

offers a conceptual and computational framework as initial steps towards answering these

questions.

The turbocompressor design challenge is a balancing act, trading off many competing

factors that pull a design in different directions, all with the goal of affordably achieving the

design objectives within some risk tolerance. The design tradeoff matrix is populated by

structural considerations (such as life, durability, reliability, and material capability), man-

ufacturing considerations (such as manufacturability, required tolerancing for aerodynamic

and structural considerations, tooling choices, repeatability in mass-production, and time to

manufacture), system considerations (such as packaging, integration, control, overall cost,

and in some instances aesthetics), and aerodynamic considerations (such as efficiency, op-

erability, stability and stability margin, and range) amongst others. As developments are

made, the design tradeoff matrix adjusts to balance risk. For example, if new approaches to

blading lead to higher efficiency potential, the gains may be used to adjust the aerodynamic

design such that mechanical risks are lower while achieving the same efficiency as before

instead of boosting the machine efficiency. The way in which research developments are

integrated into products depends heavily on the weights within the tradeoff matrix.

1.1 Impact Breadth

The breadth of societal reliance on turbomachinery is extraordinary, ranging from water

pumps and industrial processes to energy supply systems responsible for more than 93%

of all electrical energy [6], such as wind, hydroelectric, and nuclear, to gas turbines for

power and propulsion. The World Energy Outlook 2022 [7] projects global energy con-

sumption to rise by ∼ 25% through year 2050 and turbomachinery is at the heart of most

energy processes today. As the core mechanism for transferring energy from a rotating

shaft to a fluid, turbocompressors are indispensable in power generation, energy transfer,
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transportation, heating and cooling, and material conveyance industries.

Of critical importance to the performance of turbocompressor systems, and thereby the

thermodynamic cycle and energy consumption, is the efficiency of the energy exchange

process, defined by η =
Ẇusable,out

Ẇtotal,in
= 1− T0Ṡgen

Ẇtotal,in
, for a turbocompressor, where the differ-

ence in usable and total work transfer is due to entropy production. High efficiency systems

carefully manage the entropy production relative to the work input. Energy consumption,

however, is not the only metric turbocompressors are evaluated against; power density and

operational flexibility are critical compressor traits that are often traded against efficiency

in the design matrix to meet operational requirements. Enhancing the component-level

potential of a turbocompressor through efficiency, operability, or energy transfer density

improvements can yield larger system gains due to the ability to rebalance the system and

associated losses, either directly enhancing component performance levels and the cascad-

ing system benefits or adjusting the underlying tradeoff matrix, such that systems can run

more efficiently across the entire duty cycle [8].

1.2 Framing The Underlying Turbocompressor Problem

The fundamental purpose of a turbocompressor is to move flow across a resistance, achieved

by transferring mechanical work from a rotating shaft to a continuous stream of fluid via

a change in angular momentum. The angular momentum of the fluid is increased by flow

turning in the relative frame, accomplished with a rotating row of blades2, that produces

tangential force. Managing the aerodynamic contributions to the tangential force is the

underlying turbocompressor problem, similar to lift enhancement. A representative com-

pressor characteristic is shown in Figure 1.1, which relates the pressure rise capability of

the compressor to the flow rate via the non-dimensional pressure rise coefficient Ψ = ∆Pt−s
ρU2

and flow coefficient, Φ =
Cm,in
U

, where ∆Pt−s is the pressure rise across the compressor, ρ

2The blade row-based angular momentum transfer provides distinction from other types of compression
processes. From this point, turbocompressor and compressor are used interchangeably.
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is the density, Cm,in is the velocity parallel to the rotational axis at the inlet, and U is the

mean blade speed. The idealized compressor characteristic assumes flowfield invariance

from blade to blade3, and it can be considered that a peak pressure rise point constitutes the

stability boundary, whereby all flows to the left of the peak represent unstable operating

points and those to the right are stable operating points [1, 9]. Several system resistance

curve are overlaid, with their intersection to the right of the compressor pressure rise peak

forming stable operating points for the system.

As system resistance increases, such as closing a throttle valve, the resistance curve

steepens, moving the intersection point leftward and closer to the stability boundary. The

location, both in terms of flow and pressure rise, of the peak compressor pressure rise is the

combined result of growing of deleterious flowfield features, i.e. secondary flows, as the

demanded pressure rise is increased. Once the intersection point passes the peak pressure

rise capability, the compressor begins to experience a form of global instability.

Surge and rotating stall are the two most prevalent fluid dynamic instabilities which

limit useable compressor performance map width, illustrated in Figure 1.1, due to induced

deleterious aerodynamic and mechanical forces. Rotating stall is characterized by reduced

overall pressure rise and localized asymmetric pulsating flow, while surge involves a more

global axisymmetric pulsation of the compression system flow and pressure rise. Since

the 1955 seminal publication on rotating stall and surge by Emmons et al [10], this topic

has continued to be of significant research interest over the years as presented by Day

in his 2015 review paper [11]. Although there exist a significant amount of information

on the topic, derived via experimental, computational, and theoretical means, the body of

knowledge is currently incomplete from a technological perspective.

The multi-dimensional rotating stall instability is more complex than surge and is thus

of primary interest. Echoing current understanding, rotating stall formation follows one

3The nature of the flowfield is perhaps more accurately considered to be crypto-steady for the idealized
characteristic. Under the crypto-steady assumption, the flowfield is considered blade-periodic in the relative
frame, but is time-dependent in the absolute frame.
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Figure 1.1: Compressor operability is limited at low mass flows by the growth of propagat-
ing disturbances.

of two common paths: modal-type stall and spike-type stall, identified by the initial dis-

turbance wavelengths and associated growth rates. Modal stall formation is more well-

known and is observable in both the bladed, as well as blade-less components of turbo-

compressors. Measurements of modal stall reveal long wave-length disturbances that start

as small-scale perturbations, which grow slowly to form fully-developed rotating stall. Due

to the slow growth, modal stall formation is typically easier to manage using closed-loop

control techniques. In contrast, the more common spike-type stall formation is identi-

fied by the development of characteristic pressure spikes and its rapid formation covering

much smaller wavelengths (on the order of a single passage width). Spike-type formation,

observed in axial compressor blading and also in centrifugal compressor vaned diffusers,

typically presents significant closed-loop control challenges [12, 13, 14] due to its rapid

formation. Developing a deeper understanding of the stalling behavior of compressors is

thus not only required for more effective control schemes, but also for improved aero-

mechanical designs in general.
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1.2.1 Dynamical System Modeling

Dynamical system modeling of stall and surge is not new to turbocompressors. A brief

review is provided here for context and to help position the research developments of this

thesis. Following early work on rotating stall and surge, starting with Emmons et al. [10],

Moore [15] and then Moore and Greitzer (MG) [1] developed the commonly-used analytic

dynamical system model for a turbocompressor, referred to as the Moore-Greitzer model

(MG). A low-order model, the MG framework was built on the first-principle behavior of

a single stage, but it enables capturing most operational compression system behaviors to

first order [16]. Since MG is based on first principles, it can, and has provided insight into

the underlying physics [17, 18, 19], and subsequently extended to meet various enhanced

needs and capabilities(e.g. [14, 20, 21, 22, 23, 24]). A quasi 2-dimensional model, the MG

framework resolves the time dynamics in the through-flow and azimuthal directions, with

azimuthal variations captured via characteristic frequencies and amplitudes of the system,

often of very low order. As a result, the MG model is well suited to identifying modal-type

rotating stall development, but lacks the fidelity of local physical parameters to capture the

short-wavelength spike-type stall [25, 26, 14].

The MG model is built on an assembly of critical elements in a prototypical compres-

sor flow path (Figure 1.2), namely an inlet, the compressor, a plenum, and a throttle to

provide variable system resistance. Closure of the model requires the input of the axisym-

metric compressor operating characteristics in both the stable and unstable regions of the

operating map. Of course, if the compressor behavior was known in the unstable region,

no model would be necessary. However, the unsteady behavior is typically unknown and

the axisymmetric characteristic is commonly estimated using a cubic representation, which

is both mathematically convenient and qualitatively similar to observed performance [1],

shown in Figure 1.3. Note that a positively-sloped compressor operating curve demon-

strates undesirable behavioral characteristics.

At the simplest level, the MG formulation is a set of conservation equations: axial
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Figure 1.2: Modeled domain of the Moore-Greitzer model [1]
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Figure 1.3: Idealized compressor map with stable region (solid) unstable region (dashed)
and system characteristics (dash-dot) shown. The intersection of the system and compres-
sor characteristics is a dynamical system fixed point. Stability is determined via the slope
of the compressor characteristic.
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momentum and mass conservation in the plenum, written as

lcΦ̇ = ψc(Φ + φη|η=0)−Ψ−mφ̇|η=0 −
1

2a
(2(φ̇η + φηθ)) (1.1)

lcΨ̇ =
1

4B2
[Φ−ΦT (Ψ)] (1.2)

where, Φ is the mean flow, φ is its fluctuation, Ψ is the pressure drop across the throttle

(resistance or throttle characteristics of Figure 1.3 or 1.1), Ψc is the compressor pressure

rise coefficient (compressor characteristic of Figure 1.3 or 1.1), lc refers to the inlet duct

length, B refers to the compression system lag parameter, m and a refer to component time

lags, and subscripts refer to derivatives in the axial (η) and azimuthal (θ) direction. Moore

and Greitzer retained only the first Fourier mode of the azimuthal flow perturbation (φ),

resulting in the system of equations,

Ψ + lcΦ̇ =
1

2π

∫
ψc(Φ + z1e

iθ + z∗1e
−iθ), (1.3)

lcΨ̇ =
1

4B2
[Φ−ΦT (Ψ)], (1.4)(

m+
1

a

)
ż1 =

−i
2a
z1 +

1

2π

∫
ψc(Φ + z1e

iθ + z∗1e
−iθ)e−iθ, (1.5)

for momentum conservation, mass conservation, and first mode amplitude (z1), respec-

tively. Later researchers retained additional modes [9, 26] and observed improved match-

ing with experimental results. However the single-mode approach of MG captures the

necessary dynamics sufficiently for this discussion [9, 16].

Exercising the model at intersection points located left of the stability boundary reveals

the dynamical behavior of the unstable modes. Coller [9] identified the requirements for

onset of rotating stall, which is limited to a non-negative compressor characteristic slope,

and surge, which places an additional requirement that depends on the compression system

lag parameter (B) and the slope of the resistance. To balance the pressure rise-flow rela-

tionship required by the system resistance, it is necessary for the compressor to experience
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(a) Rotating Stall
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(b) Surge

Figure 1.4: Examples of the instability modes of rotating stall (a) and surge (b) with a time
history trace shown in red. The final position, marked with a star, is fixed for the stall case
(a) and remains time dependent for the surge case (b).
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a circumferential variation in flow rate, which is constrained via the modal representation.

Conceptually, this means that each blade in the blade row experiences different flow rates

and provides variations to the pressure rise such that their sum is compatible with the sys-

tem resistance. Often, the MG model is exercised with only a single Fourier mode for

circumferential variation but research has shown that additional modes can help improve

matching with experimental data [9, 14]. A key assumption for MG is that the flow varies

in a circumferentially-continuous behavior. As the flow varies, the pressure rise of the com-

pressor follows the imposed axisymmetric characteristic at the local level [1]. Inherently

with the low-frequency Fourier modes, this enforced circumferential variation represents

long-wavelength, modal-type rotating stall development.

The low-order model was developed to describe observed behavior inform future be-

havior based on a first-principles analysis. While the required compressor characteristic

input contains the detailed aerodynamic effects, both on and off-design, the limited detail

in the model yields it incapable of informing the development of optimal 2D or 3D flow

fields, or their basic response to excitation. It does, however, have the ability to provide

useful assessments from a global control perspective [14, 12], even with time-dependent

controls, provided that the operational characteristics of the components input to the mod-

els be sufficiently accurate descriptions of the physical systems in the influence of control.

While the MG model can be solved as a set of differential equations as indicated above,

Paduano [26] extended this to a state-space modeling approach, of the form

∂x

∂t
= Ax, (1.6)

facilitating the inclusion of control in the modeling. Using the state space form, the dy-

namics, captured via eigenvalues and eigenvectors, are readily apparent using conventional

linear algebra techniques, yielding the clear identification of global behaviors such as the

aforementioned stable and unstable fixed points, along with the limit cycle behavior of

surge.
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One notable extension to Paduano’s state-space form of the MG model was introduced

by Spakovszky [20], who created a modular framework such that a system could be as-

sembled from the behaviors of each component, rather than re-writing the entire system

equations for each different configuration. Spakovszky linearized the system perturbations

around the nominal operating state and showed that this modular, linearized approach was

able to properly capture the behaviors of the system under various perturbations. This lin-

earized, modular approach represented a step change in resolution for the MG framework.

Since the behavior of each component was modeled, an assessment of the contributions

each component had on stability or instability could be made, helping to identify desirable

elements or combinations of characteristics that were beneficial from a control and/or op-

erability standpoint. However, component performances were still inputs to the model and

thus the augmented MG framework cannot provide insight into pathways to achieve the de-

sired component-level characteristics or address the interactions of control approaches on

the flowfield and resulting changes to the component characteristics. Thus, the next con-

ceptual step for the dynamical system modeling approach is to consider both the sources of

the characteristic shapes, which has been the study of researchers and designers alike for

nearly a century, and how the component performance characteristics can be manipulated

and improved via excitation or control, which is a restatement of the overarching research

question for this work.

1.3 Periodic Forcing and Control

Stall, separation, and vortex shedding are familiar topics in fluid mechanics and play a

critical role in the onset of instability for turbocompressors. This section considers no-

table developments relevant to the periodic forcing of turbocompressor flowfields. Starting

first with vortex shedding from 2D cylinders with confinement and forcing, analogous to

the wake developed for off-design turbocompressor operation, then considering isolated
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airfoils in the post-stall regime with periodic shedding, which is analogous to the flow

conditions during a rotating stall event, valuable conceptual developments are emphasized.

1.3.1 Cylinder Vortex Shedding

The cylinder in cross flow represents a canonical flow with vortex shedding that has been

very extensively examined (e.g. [27, 28, 29, 30]) revealing the complex underlying be-

havior. In a broad range of Reynolds numbers, periodic vortex shedding occurs due to

instabilities in the shear layers and is dependent on the mean velocity, and the separation

distance between the shear layers [29]. The characterization of cylinder vortex shedding

and strategies for controlling this behavior provide one stepping stone to more complex

vortex shedding configurations.

Rees and Wilby’s [31] experimental work shows that as a cylinder is confined, its vortex

shedding frequency response is dependent on the flow regime, defined by Reynolds num-

ber. At high Reynolds numbers, suitable for application to the present work, confinement

increases the frequency of vortex shedding, appearing as an added stiffness in the fluid.

Richter and Naudascher [32] showed that confinement decreased the fluctuating compo-

nent of the drag, however, the fluctuation in lift coefficient saw much larger amplitudes in

specific flow regimes [32, 28]). As discussed by Zdravkovich [29], vortex shedding fre-

quency is dependent on the distance between shear layers. The presence of the side walls

constricts the wake region, reducing the distance between shear layers, and driving up the

frequency of vortex shedding. For a turbocompressor passage, as flow rate is reduced, the

flow angle into the blading increases (relative to the through-flow direction), likely causing

a larger separation region. However, the change in relative flow angle combined with the

adjacent blade has the effect of confining flow separation and providing a potential lever to

control the frequencies of natural vortex shedding.

Given the simplicity of the 2-dimensional cylinder in cross flow arrangement, a number

of studies have also been conducted into methods to control separation and vortex shed-
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ding. Munday and Taira [5] used an oscillatory blowing scheme to control the behavior of

the vortex shedding and were able to reduce cylinder drag. Their work revealed a range

of lock-on frequencies where the cylinder vortex shedding locked on to the forcing at a

singular frequency, demonstrating a measure of control for the drag on the cylinder and the

wake frequency behavior (see Appendix B for more discussion). Outside of the lock-on

frequencies, the wake was found to lock on to sub- and super-harmonics of the forcing fre-

quency, but with limited influence or control of the drag. Lock-on, in which the flowfield

synchronizes with a driven frequency that may be separate from the natural fluid frequen-

cies, offers substantial benefits in the form of a robust control approach since forcing at

specific frequencies is not required, rather the flowfield can be forced in the vicinity of the

natural resonant frequencies with similar response behaviors observed.

1.3.2 Periodic Excitation of Isolated Airfoils Operating Post-Stall

The pre and post-stall behavior of isolated airfoils has been extensively studied [33, 3, 34]

to characterize and provide control schemes for enhancing performance. Steady control

mechanisms for post-stall behavior (e.g. blowing and/or suction schemes) have been ex-

tensively studied. While there have been some promising developments (e.g. [35]) therein,

many are energy intensive and impractical for implementation with turbomachinery. Al-

ternatively, periodic excitation has offered enhanced performance and reduced drag with

relatively minor energy penalty. Note that generally, an isolated airfoil post-stall is expe-

riencing a large-scale separation that does not reattach. This is less likely to be the case

for turbocompressor blading, where the required system dynamics have forced the system

into rotating stall, rather than or prior to full-annulus blading stall, which is a character-

istic of surge (Section 1.2.1). However, as emphasized in Appendix A, 2D rotating stall

offers conceptual similarities with dynamic stall behaviors, thus the flowfield dynamics in

the post-stall and dynamic stall environments offer helpful insights.
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Periodic Excitation

Periodic excitation has been used as a means of substantially increasing post-stall behav-

iors, as demonstrated by Wu et al. [2], Seifert et al. [36], and Wu et al. [37] (amongst

others: [38, 39, 40, 41, 42, 43]), where the time-mean lift of an airfoil was substantially

improved via periodic forcing of the boundary layer near the leading edge (Figure 1.5). Wu

et al. [37] theorized that lift enhancement via periodic forcing required a chain of related

mechanisms: instability, receptivity, resonance, and nonlinear streaming. The concept is

that the flow must not only be unstable4, but also have a response mechanism around the

instability (receptivity), such that proper forcing can cause amplification of a coherent flow

structure (resonance) within the flowfield, and then non-linear interactions convert periodic

coherent structures into changes in the time-mean flow (either via streaming or Reynolds

stress production [44] or potentially deterministic stress production [45]). As described

by Wu et al., internal, or flowfield-based resonance requires a periodic feature within the

flow and some mechanism for disturbances to feed back to themselves in phase. The feed-

back, in phase, is what provides the potential for periodic forcing use as means of control,

since this can both amplify the control inputs and organize the disturbance via the lock-in

behavior.

Building on Wu’s mechanism chain theory, a key element for post-stall control is the

frequencies associated with local shear layer instabilities at the leading and trailing edges,

and the relationship to airfoil global shedding frequency, as discussed directly by Wu in

follow-on work [2] and observed by Symon [46]. It is notable that the frequency of shear

layer instability is much higher than the large-scale vortex shedding of the airfoil. Wu

[2] and then Symon et al. [46] were able to identify a resonating lock-in frequency range

where the leading and trailing edge vortex shedding are modulated with a single forcing

input, thus providing a source for control, analogous to the cross-flow cylinder studies with

4Unstable refers to the general flowfield behavior as time-varying, which has some distinction from a
dynamical systems definition of instability with regard to exponential growth. A flow can be globally stable,
e.g. rotating stall, but locally unstable.
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Figure 1.5: CFD results of time-mean lift coefficient as a function of airfoil angle of attack
compared to experiment (adapted from Wu et al. [2]). Unsteady forcing has markedly
improved the time-mean performance.

similar lock-on frequency sensitivity.

Wu elected to force the flowfield on the scale of the shear layer instability. Providing

control input at this level enabled smaller amplitudes and lower energy, in accordance with

the amplitudes and structures of the periodic features. The fluid resonance provided a high-

gain scenario, where the minor inputs greatly altered the resulting flow state. Through

leveraging the broad range for frequency lock-in of the shear layer instabilities, periodic

forcing at specific frequencies created a strong stationary lifting vortex through rapid and

sequential merging of the shed vortices in the shear layer, leading to improvements in time-

mean lift behavior. In Wu, the captured lifting vortex created a flow that reattached prior

to the trailing edge, leading to much lower amplitude variation in the observed lift and

substantially increased resultant lift, underscoring that tailored control of critical causal

flow features can reveal significant benefits (Figure 1.5).

Colonius and Williams [43] surveyed control approaches for cascade vortex shedding

and wake control. Their work identified optimal control frequencies around the natural

vortex shedding frequency, similar to the approach of Wu ([2]) and highlighted by work

that looked into actuation at frequencies up to that of the shear layer instability [38, 40, 39].

Although the shear layer is a primary source of instability, Ruju et al.[38], Cieprka [40],

15



Greenblatt [39], and Wu [2] all showed that higher-frequency excitation was ineffective at

enhancing the lift, but experienced marked improvements with oscillatory blowing around

ω+ = 1, where

ω+ =
ωexcite

ωnatural shedding
. (1.7)

Yeh and Taira [47] investigated the control of separated 2D airfoil with harmonic span-

wise shaping by performing a linear stability analysis. For their case, two distinct frequen-

cies regimes appeared - a lower-frequency region tied to wake vortex shedding and a higher

frequency region associated with shear layer instability. Forcing was implemented near the

leading edge, in a receptive region of the flow. Yeh and Taira selected frequencies to ma-

nipulate the shear layer behavior and their results showed significant improvements in drag

coefficient, Cd (reduced by as much as 50%), coupled with remarkable improvements in

lift coefficient, Cl (increased by up to 50%), yielding very large increases in Cl/Cd (nearly

170% in some cases). The mechanism Yeh and Taira identified for enhancement was iden-

tical to that of Wu, further supporting Wu’s theory for control. In particular, both research

groups utilized the coupling of the shear layer roll-up and the vortex shedding to enhance

lift post-stall.

Taira et al. [41, 48, 42] numerically studied the post-stall behavior and potential for

control of finite length airfoils, where strong tip vortices interact with the main-span flow,

removing nearly all of 2-dimensional core flow and much of the similarity with 2D flow-

field instability mechanisms. The three-dimensional tip vortices can act as a stabilizer for

the mean flow over the airfoil, extending the stable behavior to higher loading levels. The

finite-length airfoil also exhibited an additional operating regime, demonstrating aperiodic-

ity that isn’t experienced with purely 2-D airfoils and their binary operating modes: steady

flow or periodic unsteady behavior.

For the 3D geometry, Taira et al.’s approach for control was to engage the fundamental

vortex shedding directly through synthetic jets mounted near the airfoil trailing edge. Re-

sults indicated that periodic forcing in frequencies from 0.1 < ω+ < 10, and the resulting
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vorticity dynamics, lead to substantive increases in mean lift, nearly doubling the baseline

case with no control flow. Two specific frequencies were identified where the lift increase

was maximized ω+ = 0.75 and ω+ = 1.1. Curiously, these two control frequencies, while

quite close in value, resulted in different lift behaviors, with the former resulting in an oscil-

latory lift behavior that corresponded with the control frequency and the latter locking into

a lift behavior at twice the control frequency, demonstrating a clear frequency-dependent

preferential behavior for lock-in.

From a broader perspective, it can be observed in the Taira et al. work ([41] that the

flowfield structure and behavior shifts significantly as the configuration changes from the

2D, or nearly so, to the 3D cases, where the aspect ratio, AR = l/c (where l is the airfoil

length, and c is the chord) is of O(1). Many turbomachinery applications experience blade

aspect ratios, AR = h/c (where h is the blade height, and c is the chord), in the range of 1

- 5, where Taira et al. demonstrate significant variability in the behaviors observed. Blade

aspect ratio is a design variable that has received research attention for many years as new

understanding, modeling, and experimental techniques become available ([49, 50, 51]). As

aspect ratio decreases, end-wall flows, analogous to the tip flows of the isolated airfoil,

add a stabilizing behavior enabling higher loading capacity, providing new aerodynamic

challenges due to the complex 3D flow of low-aspect ratio stages. Modern aero-engine

designers are continually pushing for higher engine bypass ratios and increased overall

pressure ratio, leading to smaller engine cores targeting higher stage and subsequent blade

loadings with lower aspect ratios for the stages [52]. Clearance flows, strong 3D effects,

and endogenous periodic forcing are the critical challenges facing aero-engine aerodynam-

icists in the future [52], reinforcing the need to unravel the complex dynamics of unsteady

flowfield response for further performance enhancement.
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1.4 Time Mean of Periodic Energy Exchange In A Turbo-

compressor Passage

Turning now to periodic behavior in turbocompressors, the response of the flowfield within

the passage to periodic forcing can be considered on different hierarchical levels. A distinc-

tion is neceessary - the time-mean flowfield of a turbocompressor passage under periodic

forcing due to bladerow interactions has been intensively studied (e.g. [53, 54, 45, 55]).

Adamczyk’s average-passage model [45, 56] offers a strong framework for considering the

deterministic stresses that are developed as known flowfields experience periodic excitation

with the passing of adjacent blade rows. Thus, the deterministic stresses that arise due to

bladerow interactions can be considered augmentations of an existing base flow. Herein,

the focus is on manipulating the base flow through periodic excitations. Thus, the aver-

age passage model and the interactions of any underlying forcing and flowfield sensitivity

of the base flow with adjacent bladerows, thus yielding deterministic stresses, are left for

follow-on work.

Without delving into the detailed passage flow physics, one can consider the response

of a passage control volume and whether energy exchange can be effected via periodic

unsteadiness. Nakhjiri [57] offered an intriguing approach, considering a time-averaged

control volume analysis (energy and angular momentum) for the unsteady flow through

internal combustion (IC) engine turbocharger components. The adapted approach decom-

posed the unsteady fluctuations at the inlet and exit boundaries, which has been generalized

here for turbomachinery by assuming that boundary massflow and total enthalpy are repre-

sented as Fourier series with a common period, T:

ṁ =
∑

mne
i2πnt
T , (1.8)

ht =
∑

hne
i2πnt
T , (1.9)
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where mn is the amplitude of the mass fluctuations for frequency n and hn is similarly

the amplitude of total enthalpy fluctuations. m0 and h0 are the time-mean values of mass

flow and enthalpy. Nakhjiri determined the period, T , with the IC engine’s rotational speed.

However, T need not have such a constraint and may instead be considered the period of

the lowest-frequency unsteady component. For the sake of this adaptation, frequencies are

assumed as integer multiples of this fundamental for both mass and enthalpy fluctuations.

Following [57], the time-averaged energy equation applied to an adiabatic control vol-

ume is

−Psh =
1

T

∫ T

0

ṁhtdt|ex −
1

T

∫ T

0

ṁhtdt|in (1.10)

where the over bar indicates a time-mean value. The steady and fluctuating pieces can be

Reynolds decomposed as x = x̄ + x̃ The time-mean contributions of enthalpy flux can be

extracted, leading to

−Psh = ṁ[ht] + 〈 ˜̇mh̃t〉 (1.11)

where the square brackets indicate the difference in time mean quantities from inlet to exit,

[x] = x̄out − x̄in and the angle brackets refer to the difference of time-mean boundary flux

for the fluctuating components, 〈x〉 =
∫
T
x̃ex −

∫
T
x̃in.

Note that the common periodicity imposed, either directly as in this case and Nakhjiri

[57] or indirectly by appropriate selection of T given the periods involved, yields that the

only terms remaining in the integral are unsteady terms of the same frequency. The result

of (1.11) is informative, indicating that the energy transfer can be increased or decreased

by the relative phase of the unsteady components of massflow and enthalpy fluctuation at

the boundaries of the control volume.

Optimal phasing is dependent on the sign of the time-mean energy flow ([ht]). If the

time-mean energy flows into the control volume (compressor or pump), the optimal ar-
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rangement has the massflow and enthalpy fluctuations occurring with no phase delay at

the exit (i.e. a positive cross-correlation), and with a phase delay of π at the inlet (neg-

ative cross-correlation). Maximizing energy flowing out of the control volume (turbine)

requires the opposite phases at exit and inlet (π and 0, respectively). Generally, this result

is unsurprising, as the control volume represents a means to account for energy exchange.

Specifically, however, two key aspects of the unsteady energy exchange can be identified:

• Given constant time-mean mass flow and enthalpy at the boundaries, large-amplitude

unsteadiness can increase the energy exchange process if properly phased.

• To maximize energy exchange, a phase shift of π is required in either the mass flow

or enthalpy at exit versus inlet, but not in both quantities. The need for a phase shift

suggests that a transfer function-type conceptualization may be appropriate.

The practicality of producing a significant phase shift in massflow without the as-

sociated phase shift in enthalpy rise can be considered by examining the behavior of a

one-dimensional diffuser under periodic inlet total pressure fluctuations. Following the

approach of Greitzer et al. [58], as diffuser area ratio is increased while retaining low

frequency unsteadiness, the diffuser acts as an amplifier, increasing the fluctuation in mass-

flow. For a fixed area ratio, as frequency increases, the massflow fluctuation falls. The

reduction in massflow response to increases in frequency corresponds to inertial lag of the

mass within the diffuser. At high frequencies, most of the variation in total pressure is

used for accelerating the fluid, with phase lag approaching π/2. The inertia of the fluid

in the diffuser acts to damp out fluctuations as the driving frequency increases, creating a

self-limiting scenario. Taken in the limit to very high frequencies, the achievable phase lag

is only π/2, while the fluctuating amplitude is nearly zero, yielding the potential benefits

identified with (1.11) as practically unrealizable.
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1.5 Beneficial Unsteadiness In Low Pressure Turbines

Research on low pressure turbines has shown that endogenous periodic unsteadiness can

improve the time-mean performance of highly-loaded airfoils in turbomachinery as com-

pared to the steady-flow case [59, 60, 61]. One theory, as described by Haselbach et al. [59]

, is that ‘becalmed’ regions, which followed turbulent wake-generated spots, can withstand

strong adverse pressure gradients, and therefore are capable of suppressing flow separa-

tion that would otherwise occur in steady flows. The ‘becalmed’ regions are created by

the passage of wake-related phenomena impacting the boundary layer vortex shedding and

separation [62]. Thus, vulnerable regions of the boundary layer are excited at a sufficient

time interval such that separation is avoided and performance is improved. An open ques-

tion is to know where and at what frequency of excitation is necessary and sufficient to

enable enhanced performance through management of the loss-producing processes.

As observed in the LPT work of Haselbach et al. [59] and others, an environment with

unsteady, periodic forcing enabled higher stage loadings and delayed separation. These ob-

servations motivated the following questions that further articulate the long-term goals this

research contributes to: rather than manage the stage loadings and instabilities after the

fact, can unsteadiness, either endogenous or exogenous, be leveraged towards moving the

conventional stage loading limits, increasing the energy exchange potential? If unsteadi-

ness and positive unsteady response are traits for exploitation in the design process, what

necessary understanding is required for leveraging these concepts?

1.6 Summary and Outline

Design and analysis in the crypto-steady realm reveal that unavoidable secondary flows

grow and are connected to the development of destabilizing flow structures as blade load-

ing increases and operation moves closer to the stability boundary. Similarly, from a dy-

namical systems analysis perspective, the desirable traits of component performance can
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be identified, but the results are often optimistic due to the onset of spike-type rotating

stall, which forms rapidly and is thus hard to control or predict. This research is motivated

by the seemingly simply question of whether introducing periodic flowfield excitation can

improve the time-mean flowfield, and thus energy transfer within a turbomachinery blade

row, perhaps also aiding stability management and control.

The use of periodic forcing was reviewed for flowfields over a cyclinder, 2-, and 3-

dimensional airfoils, post-stall. Wu et al. [37] frame the needs for effective periodic ex-

citation as: instability, receptivity, resonance and streaming. From the 2D studies, it was

found that forcing the shear layer near the unforced frequency of vortex shedding offered

a means of control that leveraged fluid dynamic resonances (via instabilities and recep-

tivity) to amplify the control inputs, leading to organized flow behaviors and improved

performance from streaming (the generation of Reynolds stresses) in targeted areas. The

3D airfoil study of Taira et al. [41] demonstrated that while the underlying mechanisms

are the similar, three-dimensionality in the flow structures can complicate the forcing and

identification of the instabilities.

With this background knowledge in-hand, three research objectives were identified as

necessary building blocks to address an inquiry into effective use of periodic forcing in

turbocompressor flowfields:

• Determine causal connections between the observed dynamical stability and the

mechanisms at play (Chapters 2, 3, 4, 5);

• Establish a conceptual framework and technique for characterizing the unsteady

flowfield response to periodic excitation, with the goal of linking critical flow mech-

anisms to their frequency response (Chapters 3, 4, 5);

• Determine whether coherence exists the in pre- and post-stall flowfield response to

periodic excitation that can be leveraged for enhanced compressor performance and

operability (Chapters 3, 4, 5).
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This thesis is organized as follows:

Chapter 2 reviews the development of the 2D linear cascade used as a representative

surrogate for analysis of stability and rotating stall of more complex 3D geometries.

The steady and unsteady performance, and the development of rotating stall are con-

sidered with both steady and unsteady CFD.

Chapter 3 introduces a the passage-based view, a passage-based control volume anal-

ysis, yielding temporally resolved tangential force, pressure rise, and mass flow for

individual passages. The passage-based view offers an alternative perspective on the

cascade pre- and post-stall behavior, allows a comparison of the transient rotating

stall cycle experienced by the passage to the axisymmetric and time-mean perfor-

mance characteristics, and offers a view into the exponential growth and decay of

rotating stall perturbations.

Chapter 4 develops the use of linear stability analysis with the surrogate compressor

flowfield. Linearized about a nominal flowfield, stability analysis evaluated across

the operating map reveals the underlying flow structures responsible for the onset of

instability and rotating stall.

Chapter 5 applies the emerging technique of resolvent analysis to the surrogate 2D

flowfields, highlighting frequencies and flowfield structures with optimal forcing and

response characteristics offering potential for excitation of single-mode behaviors.

Chapter 6 combines the results of Chapters 2, 3, 4, and 5 to build a strategy for design

and control of the surrogate turbocompressor model using fluid resonance to alter the

dynamic state, emphasizing pathways to leverage these foundational blocks in future

research and design.
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Chapter 2

Turbocompressor Surrogate Model

Although rotating stall in modern turbo-compressors is a multi-dimensional phenomenon,

its essence has been experimentally observed in both stationary annular (e.g. [63]) and

linear compressor cascades [64, 65, 66], offering simpler arrangements from which to de-

compose and elucidate the principal behavior of this complex instability. Hoying [67] was

one of the first researchers to use CFD simulations on a 2D compressor cascade to extend

fundamental understanding of the mechanics of rotating stall. Hoying’s work provided

guidance on the selection of physical and numerical modeling parameters which can im-

pact the reliability of such a simulation. Additional insights based on numerical simulation

of rotating stall in 2D cascades were given by Ghorbanian et al. [68] and Amanifard [69].

These earlier 2D cascade CFD simulations of rotating stall showed a modal-like formation

process. Pullan et al. [13], using unsteady CFD simulation of a 2D linear cascade, showed

that spike-type rotating stall is tied to a passage leading edge separation and subsequent

upstream propagation of a shed vortex, demonstrating that spike-type stall can also be sim-

ulated in such a simple arrangement. High local incidence, that causes excessive leading

edge blade loading, is responsible for subsequent leading edge boundary layer separation.

Kiss [66] built on the contributions of Pullan et al., showing the same characteristic vor-

tical structures in a 2D linear cascade experiment as were observed in the unsteady CFD
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simulations of spike-stall formation.

2.1 Geometry and CFD Model

For this work, a 2D linear cascade constructed from the near-tip blade element of a subsonic

axial-compressor rotor blade, as shown in Figure 2.1b. This is a very simplified extract

from the actual 3D annular geometry and its implied flow field. Based on the work of

Pullan et al. [13] and Hoying [67], it was rationalized that such a 2D model can represent

essential stall formation mechanisms and subsequent evolution to fully-developed rotating

stall without getting lost in the details of interacting 3D phenomena. This is not to imply

that these details are not important for the general problem of rotating stall development

and control. The blade element, with maximum thickness of 5% chord length and scaled

to a chord length of 0.1m, was set to a stagger angle of 52.85◦, with a solidity of 1.0.

CFD simulations were executed in Numeca’s FINE/Turbo environment with a multi-

block structured Reynolds Averaged Navier-Stokes (RANS) solver employing a second

order centered scheme for spatial discretization, and for time-dependent runs (URANS)

using a Runge-Kutta time-marching scheme with the dual time stepping approach intro-

duced by Jameson [70]. Numeca’s CPU booster, a convergence accelerator, was also im-

plemented. For the operating conditions considered the nominal chord Reynolds number

was on the order of 2.75 × 105, and the flow was assumed fully turbulent with turbulence

closure achieved via the Spalart-Allmaras (SA) one-equation model [71]. For many turbo-

machinery applications, the SA model has proven to be robust and reliable when compared

with two-equation turbulence models [72]. The incremental time step was chosen such that

∼ 14 steps were required for flow to convect along the blade. Rotating stall is a relatively

slower process than that of vortex shedding, and the time step provided sufficient resolu-

tion to capture flowfield structures qualitatively similar to those observed in Pullan et al.

The fastest-moving stall cells took ∼ 50 time steps to transfer from one blade to the next.
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(a) Representative compressor rotor.

(b) Constructed cascade.

Figure 2.1: Three-dimensional geometry of representative compressor (a) with slicing
plane for 2D blade section extraction shown in yellow. The resulting 2D geometry (b),
assembled with solidity = 1.0.

Halving or quartering the timestep did not alter the rotating stall behavior.

2.1.1 Model Domain and Boundary Conditions

Several computational domains were created to study sensitivity to periodic extent. Three

different periodic sectors are considered herein: a single-passage passage model, a 15-blade

cascade periodic sector, and a 7-blade cascade periodic sector shown in Fig. 2.2a. Note that

the cascades all have the same solidity, stager, and profile. Periodic boundary conditions

are applied to simulate physical effects that may occur over longer time scales including

propagating instabilities. Short downstream and upstream extensions were constructed to
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(a) Computational domain for linear cascade, rotated 90◦clockwise.

(b) Computational mesh for surrogate model.
w

(c) Surrogate model leading edge mesh
detail.

Figure 2.2: Selected views of the finite volume mesh.
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limit numerical convergence difficulties.

The number of blades modeled, and their periodic extent provide an implicit lower limit

on disturbance wavelengths the model can capture. A small azimuthal domain will filter

out longer wavelength modal instabilities. Thus, the decision of how many blades to model

trades off instability wavelength resolution with computational and post-processing time.

For this work, a 7-blade configuration was deemed able to resolve critical blade-loading-

based stall formation and its subsequent behavior. Note that the selection of modeled az-

imuthal period also has implications for the overall cascade response. Once established,

a single (or multiple) propagating stall cell will exist within the modeled domain. When

periodic-slice modeling is applied to annular cascades, the effect of these stall cells is mul-

tiplied by the periodicity of the domain. Thus, as an example, a 1/4 domain model presup-

poses that there exists phenomena on a 4n basis (with n an integer multiple) and constrains

the response to contain such structures, regardless of whether the cascade would experi-

ence that given periodicity. The relatively small periodic domain modeled herein therefore

has the potential to over-emphasize the consequences of propagating stall on the operat-

ing characteristic through an n multiplying effect, and thus motivates exploring whether a

larger blade count (the 15-blade periodic sector) significantly alters the location of instabil-

ity formation on the performance characteristic.

The cascade was modeled as a stationary blade row. At the inlet, a constant tangential

velocity was applied, independent of the flow rate. Additionally, the upstream total pressure

and temperature are specified, with sea level standard values used as a reference, upon

which the kinetic energy of the constant inlet tangential velocity is added. This approach

allows the through-flow (axial) velocity to vary in accordance with the cascade response

to outflow boundary conditions, creating boundary behavior analogous to what a single

rotor may experience. The outflow boundary condition is modeled as a discharge throttle

or resistance characteristic, defined as
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Pback = Po + (Pm − Po)(ṁ/ṁm)2, (2.1)

where Pback is the outlet-boundary-average pressure applied to the boundary, Po corre-

sponds to the boundary pressure at zero massflow, while Pm andmm are static pressure and

massflow, respecitly, for a reference mass flow condition on the resistance characteristic.

This type of boundary condition limits numerical instabilities when mass flow is reduced.

Reference values were manipulated to generate the cascade performance characteristic.1

The mesh for the domain was created using Numeca’s IGG-Autogrid structured hexa-

hedral mesh generator with identical O4H block-structured meshes for each blade. Total

2D mesh size for the 7-blade cascade is ∼ 0.5M cells for the finest mesh, with select views

shown in Figure 2.2.

2.1.2 System Time Scales and Performance Characterization Param-

eters

Modeling rotating stall necessitates a review of the critical system timescales. The fixed

inlet tangential velocity, U , provides a sensible reference point with parallels in turbocom-

pressors as a local wheel speed. From this, a cascade rotating stall formation time for the

passage can be estimated as a blade-to-blade convection time,

τR =
s

U
, (2.2)

where s is the blade spacing. Correspondingly, a domain convective time can be estimated

as

τC =
axial length

axial velocity
=
c · cos(γ)

U/tan(α)
≈ c · sin(γ)

U
, (2.3)

1For the stationary cascade, Po must be below the inlet total pressure to provide for a stable system
arrangement.
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with γ the cascade stagger angle from the throughflow direction, c the blade chord, and

flow angle, α, similar to the stagger angle. Changes in flow quantities during a stalling

event depends on the ratio of these two time scales, which is a reduced frequency,

fred =
τR
τC

=
1

σsin(γ)
, (2.4)

where σ is the blade solidity,

σ =
c

s
. (2.5)

The magnitude of fred isO(1), implying a highly unsteady process. This approach can also

be extended to a periodic domain as

fred,domain =
NcycτR
ZτC

=
1

σsin(γ)
. (2.6)

For a periodic domain, coveringNcyc blade pitches, s, withZ a measure of domain through-

flow extent in blade axial chord units. Z is expected to be ∼ 3− 5, to account for upstream

and downstream computational domain extensions. In this way, NcycτR becomes a char-

acteristic rotating stall passing time for the domain, or equivalently defines a translational

perturbation filtering frequency. Similarly, the domain has a convective response time of

ZτC , or an associated convective frequency filter. Choosing Ncyc ≥ 7 is considered suffi-

cient to capture the first spatial harmonics of instability inception.

A dimensionless time was used to plot time series data and is defined as

tb =
t

τR
. (2.7)

Each unit increment in tb corresponds to a blade passing period.

The cascade performance is characterized using the following derived parameters. A
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normalized tangential force,

ζ =
Ftan
Ftan,SP

, (2.8)

where Ftan is the integrated effect of pressure and shear stresses on blade surfaces projected

in the tangential (blade-to-blade) direction and Ftan,SP is the maximum tangential force of

the 7-bladed steady-state RANS results. The local flow coefficient is defined as

φl(z, θ, t) = cot(α) =
Cax
U
, (2.9)

where α is the nominal incoming flow angle, andCax is the mean axial velocity. An average

flow coefficient,

φ(t) =

∫∫
A

φl(z, θ, t) dA, (2.10)

is determined via surface integration on the control volume inlet surface, A; for the overall

domain, this corresponds with the inlet boundary. The passage pressure recovery is defined

as

cp =
Pex − Pin
ρU2

, (2.11)

with Pex and Pin are the area-averaged static pressure for the passage control volume outlet

and inlet, respectively. In addition to spatial averaging, for non-steady state behaviors, the

performance parameters are time-averaged in the case of true unsteady flow and iteration-

averaged in the case of pseudo-unsteady time marching iterations towards a steady-state.

2.2 Overall Performance Characteristic

Cascade aerodynamic performance was evaluated for the three generated domains using

a steady modeling approach2 over a range of throttle conditions to produce characteristic

curves of force and exit pressure with varying inlet flow angle or relative mass flow.

2Herein a ‘steady’modeling approach refers to a pseudo-time marching towards time-invariance. These
models are not time-accurate, but iterate over pseudo-timesteps.
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2.2.1 Steady RANS Modeling

Figure 2.3 shows simulated exit static pressure and tangential force characteristics based on

steady RANS modeling for the selected periodic sectors. The steady CFD results depend

on the applied resistance characteristic, revealing a critical throttle setting beyond which the

solution is cyclical with marginal reduction in residuals once the cyclic state is achieved.

The cyclic behavior is significantly smaller for the single-blade sector relative to the 7- and

15-bladed sectors. For comparison with the unsteady results and the non-fluctuating steady

results, an iteration-mean of the cyclic behavior is estimated and plotted in Figure 2.3. The

iteration-mean pressure recovery and force of the cyclic behavior are a significant departure

from the continuous, monotonic behavior of the steady, iteration-invariant solutions. Con-

vergence, represented as the massflow and massflow error per iteration, is shown in Figure

2.4 for cases on the left and right side of the critical throttle setting, which demarcates the

stability boundary. Points on the left experience a periodic variation in the flow rate and

marginal reduction in the residuals over time (not shown), which can be attributed to the

time dependency of the flowfield.

The plotted characteristics from Figure 2.3 are similar to actual turbocompressor char-

acteristics from test campaigns and two observations are made. First, the 7-bladed and

15-bladed periodic cascade sectors ‘stall’, determined via maximum pressure rise, nearly

at the peak-pressure rise, zero-slope condition exhibited by the single-passage case. This

suggests that the blade loading responsible for instability is strongly tied with the dominant

loss mechanisms, and is consistent with short wave-length rotating stall formation as de-

scribed in the literature [73, 13, 11, 66]. Second, the 7-bladed and 15-bladed sectors stall at

very similar critical flow coefficients, with a more gradual post-stall pressure drop for the

latter. The single passage periodic case does not allow the necessary degree of freedom for

the flow to azimuthally adjust, a requirement for capturing a circumferentially-propagating

instability.

Grid dependence in the stable operating region was minimal, with average y+ on the
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(a) Exit Pressure.
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(b) Force.

Figure 2.3: Pressure and force results from steady-state cfd results for 1, 7, and 15-blade
periodic-sector cascade models.
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Figure 2.4: Mass flow convergence for steady solutions in pre- (solid) and post-stall
(dashed) flow regimes. Last 2500 iterations shown.

blade surfaces of 0.5 for the finest mesh, and then ~∼ 1 and∼ 2 for the two coarser meshes

considered (total sizes ∼ 0.125M and 0.03M, respectively). Figure 2.5 compares the pres-

sure and torque of the coarsest, intermediate, and finest meshes. The coarsest mesh, which

is 1
16

th the size of the finest mesh used, develops a time-dependence in the steady solu-

tion at a marginally lower flow rate than the intermediate and finest meshes. Modeling the

post-stall, cyclical regime with a steady solver introduces additional pathways for numer-

ical contamination of the solution. Steady results show higher sensitivity of the solution

to mesh resolution in the post-stall regime, however, it is not clear what weight should be

placed on this sensitivity. While all 3 mesh resolutions are able to capture the transition

of the flowfield from a stable state, which is robust to perturbations, to an unstable state,

and thus sensitive to disturbances, the intermediate and coarse meshes required disturbance

seeding to avoid a blade-periodic flowfield. Seeding was applied using simple initial condi-

tions constructed with no tangential component, as apposed to aligning the initial flow with

the blades. Once a propagating disturbance was established on a given mesh for a specific
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Figure 2.5: Force results for steady-state cfd on fine, intermediate, and coarse 7-blade
periodic-sector cascade meshes.

throttle setting, this solution was then used as a disturbance seed for subsequent runs under

different boundary conditions. For the coarse and intermediate meshes, the lowest stable-

flow points were started with and without a disturbance seed to identify the conditions under

which the solution was able to damp out the propagating disturbance. The finest mesh did

not require disturbance seeding. Flow points near the stability boundary were considered

with both blade-periodic and disturbance-seeded initial conditions to determine if a region

of hysteresis existed. For the steady modeling, all throttle conditions considered with the

finest mesh converged to the same flow state (steady or cyclical) independent of the initial

conditions. Only results for the finest mesh are presented in the following sections.

2.2.2 Unsteady RANS Modeling

The 7-bladed periodic sector cascade was simulated with URANS and the resulting char-

acteristics are compared in Figure 2.6 with those of RANS. With URANS modeling, stall

is developed at a lower throttle setting compared to RANS, but overall, similar character-
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istics are exhibited between the two models. Sensibly, steady RANS modeling is unable to

properly capture the detailed transient from steady flow to rotating stall, but the post-stall

behaviors appear to correlate between the two models. Both reveal the existence of a single

stall cell, but with different propagating speed and phase. Thus, depending on the mod-

eling objectives, the simpler, less expensive steady RANS approach may be an acceptable

substitute for the more time-intensive URANS modeling. This is an interesting observation

which may have practical implications deserving of further exploration.

2.3 Rotating Stall Formation

Rotating stall formation was captured for the 7-blade periodic cascade with URANS CFD.

The initial conditions were chosen near the point of instability based on the steady model-

ing. At time t = 0, the throttle condition was changed such that rotating stall was inevitable

and the simulation run until periodic rotating stall conditions were achieved. Prior work

has often used restaggered blading to trigger a non-blade-periodic disturbance that grows

to rotating stall [13, 66]. While advantageous for certain studies, specific triggering can

elucidate a more rapid development of the critical structures than may normally occur.

Herein, using an approach similar to that of Hoying [67], the downstream throttle was ad-

justed via a Heaviside step change from a nominal downstream boundary condition and

then held fixed. With this approach, flowfield perturbations arise due finite-precision com-

puting causing slight variations in the flowfield from blade-to-blade and leading to stall

formation by amplifying these infinitesimal disturbances.

For qualitative comparison with existing literature, CFD pressure probes were placed

1/2 chord upstream of the leading edge for each blade, aligned with the blade stagger. The

temporal CFD probe measurements are shown in Figure 3.4c from formation to established

rotating stall, plotted against dimensionless time, tb. The pressures for each blade are

offset by the inlet dynamic pressure to provide a reference scale, with the first and last
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Figure 2.6: Pressure and force results from steady-state and time-dependent cfd results for
7-blade periodic-sector cascade models.
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blade periodically repeated for clarity. As noted by Kiss [66], the pressure signatures in

stationary cascades display the inverse behavior from what is observed in rotors due to the

frame in which rotating stall is occurring.

Based on the observed pressure measurements, the formation process can be separated

into 4 phases: 1. an initial phase where the flowfield in the domain appears axisymmet-

ric, 2. a rotating instability or plateau phase, where multiple smaller scale instabilities

are propagating from blade to blade and slowly growing, 3. a transition phase, where a

negative pressure spike is developed, and finally 4. fully established rotating stall, with a

time-periodic pattern. Comparing the speed of propagation to the inlet tangential velocity

reveals similarities with the formation process described by Camp and Day [73], who noted

that initial disturbances of short-wavelength rotating stall development moved at speeds

between 60 − 80% rotor speed . During the instability phase, the backward speed of the

disturbances is ∼ 20% the inlet tangential velocity, whereas the fully established phase

is ∼ 35%. When projected into a rotating system of equivalent conditions, these would

correspond with disturbances moving at ∼ 80% and ∼ 65% rotational speed, respectively.

Snapshots of vorticity and pressure at selected times indicated in Figure 2.7 are shown

in Figure 2.8, illuminating the formation process. The initial throttling leads to near-

uniform reduction in flow, increasing the inlet flow angle and incidence. Small pertur-

bations, estimated with an initial period of approximately 5τR, combine and grow rapidly,

forming lower frequency traveling disturbances with local incidence levels sufficient to

cause localized separation on the blade suction side (snapshots P1 and P2). The blade-to-

blade transfer mechanism of these localized separations is consistent with the early sketches

of Emmons [10]. The speed of disturbance growth slows, creating a plateau phase in the

formation process during which multiple passages experience disturbances simultaneously.

Once a disturbance has reached sufficient size to alter the trajectory of a neighboring

disturbance, a second high-speed growth phase is encountered, illustrated in snapshots P3-

P7. During this phase of development, the following disturbance retards the propagation
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Figure 2.7: CFD pressure probe measurements during rotating stall formation, shown offset
for clarity.
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(a) Vorticity where red contours correspond to counter-clockwise rotation.

(b) Static pressure where darker colors correspond to lower pressures.

Figure 2.8: Snapshots of the vorticity (a) and pressure (b) during rotating stall formation at
points indicated in Figure 2.7.

of the leading disturbance until they combine into a single disturbance characterized by an

upstream vortex and associated negative spike signature of the pressure. The final snapshot,

P8, shows the spilled upstream vortex behavior consistent with fully-developed 2D stall

shown in the literature.

2.4 Surrogate Model Summary

Using developments from prior work that focused on the onset of rotating and transla-

tional instabilities, a surrogate 2D model was developed to isolate aspects of the onset of

spike-type instability experienced within complex 3D turbocompressor flowfields. The be-
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havior of the surrogate 2D cascade, considered with several azimuthally periodic domains,

was modeled with steady RANS and URANS simulations in the pre-stall, post-stall, and

stall-formation operating regimes. Overall results are consistent with the development of

instabilities within the literature for 2D cascades, further supporting the surrogate model

as a means to adequately capture the salient flow physics for instability development and

propagation.

The most common periodic modeling approach for CFD, which models a single passage

using periodic boundary conditions, was found to suppress the onset of instability due to the

periodic flow constraints. Alleviating the strength of this boundary condition, by including

multiple passages in the domain, allowed instabilities to develop and propagate in both

the ‘time-marching’to steady-state RANS and URANS modeling. It was observed that

7-bladed periodic sector cascade modeled with the ‘time-marching’to steady-state RANS

solver adequately captured overall rotating stall characteristics and the onset of instability

sufficient for rapid design development, although the detailed flowfield from steady-state

modeling in the post-stall regime is inadequate for control system development.
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Chapter 3

The Passage-Based View

3.1 A passage-based analysis of rotating stall

To facilitate a more detailed investigation of the rotating stall process, a control volume en-

compassing a single blade passage, among the 7 modeled, was constructed (Figure 3.1a).

The control volume was bounded in the azimuthal direction by the suction and pressure

surfaces of two adjacent blades, and bounded in the through-flow direction by tangential

surfaces corresponding to farthest locations forward and rearward of the blade. Due to the

stagger angle and blade thickness, these do not correspond directly with the leading and

trailing edges of the blade row. Individual control volumes were constructed for each of

the blade passages in the modeled domain, such that the propagation and relative behavior

of each passage can be considered together. The passage control volume analysis of the

unsteady CFD data allows one to determine the instantaneous flow rate, force contribution,

and pressure recovery of the passage, enabling a view of the passage trajectory through

the flow-force, flow-pressure, and flow-recovery spaces during rotating stall and other tran-

sients.
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(a) Passage control volume.
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(b) Time history for 7 passages.

Figure 3.1: Passage control volume (a) and time history of all 7 passages through multiple
stall cells (b). Normalized force (solid lines) and massflow (dotted lines) shown offset for
clarity, summed at bottom.
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3.1.1 Stall Formation With All Passages

With the passage control volume data, the cascade behavior during rotating stall formation

can now also be viewed from the framework of overall performance characteristics. Figure

3.2 shows the conditions of the modeled cascade in aggregate at each time step during

formation, overlaid the unsteady and steady characteristics discussed in Section 2.2 and the

initial and final throttle characteristics. The rotating instability phase, described in Section

2.3 is apparent in Figure 3.2 as an intermediate plateau the cascade quickly converges

towards and then eventually diverges from as the severity of the disturbance grows rapidly

to form the characteristic spikes while the cascade experiences further reduction in pressure

rise.

From the dynamical systems perspective outlined by Moore and Greitzer [1], as the

mean flow of a turbocompressor is reduced via changes in throttle setting, the intersection

point of the continuous axisymmetric (e.g. blade-periodic flow) compressor characteris-

tic with the throttle characteristic transitions from a stable fixed-point to an unstable fixed

point, leading to rotating stall and/or surge when crossing the transition point. Coller [9]

showed that interactions of the stall and surge Hopf bifurcations in the post-stall region can

lead to a number of different behaviors, depending on the two characteristics of the sys-

tem. One such behavior, qualitatively similar to that of the stall formation observed above,

consists of the flow - pressure rise development converging to a limit-cycle surrounding

the unstable fixed-point, followed by a spiraling inwards towards the fixed-point, before

eventually diverging and finding a new equilibrium point with rotating stall. The system

dynamics in Figure 3.2 suggests that the plateau condition is a limit cycle centered at an

unstable fixed point on the axisymmetric characteristic where the resistance characteristic

crosses (as discussed in Section 1.2).

A second, lower throttle setting, located in the stable operating regime, was also used

to initialize the flowfield. The results of the more stable initial conditions (ICs) were quali-

tatively similar to those of the near-stability limit ICs. The flow quickly adjusts and follows
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(a) Exit pressure plotted against flow coefficient.
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(b) Force coefficient plotted against flow coefficient.

Figure 3.2: Pressure and force results during formation for the overall computational do-
main.
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Figure 3.3: Domain mean inlet flow coefficient for instability formation starting at two
different throttle positions (Inset: φ-ζ space showing attraction to the same intermediate
unstable point.

a similar trajectory as the higher-throttle ICs into the plateau phase (see Figure 3.3 inset).

The plateau phase, evident in Figure 3.3, sees relatively small cyclic variation in the do-

main mean flow coefficient for both initial conditions. Following a behavior similar to that

described by Coller for a compression system, the amplitude of mean-flow variation di-

minishes, follow by a rapid change in the overall flow coefficient as rotating stall becomes

fully developed.

As mentioned in Section 2.2, the single-blade periodic domain does not allow suffi-

cient flexibility to develop large-scale circumferential disturbances, such as rotating stall.

This inflexibility, however, enables the single-blade domain to provide an estimate of the

axisymmetric characteristic in the post-stall region, as evidenced by the proximity of the

single-blade throttle curve intersection point with the fixed point of the plateau phase in Fig-

ure 3.2a. The fixed-point pressure deviates from the intersection point and throttle curve

due to pressure recovery that occurs between the passage control volume exit and the do-

main exit. Section 3.3 considers how an estimated post-stall flowfield from the single-blade
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periodic model might be leveraged with additional analysis tools.

Considering first the passage mass flow, expressed via flow coefficient (φ) as a function

of time, shown in Figure 3.4a, where φ for each passage is shown. The maximum deviation

experienced by any passage from the mean of all passages (black curve) can be extracted

and is shown in Figure 3.4b as a percentage of the mean flow, clarifying the formation

phases discussed in Section 2.3. The plateau region does not experience reversed flow in

the passage, whereas for fully-developed rotating stall the maximum φ deviation is greater

than the cascade mean. The periodic cycles in φ deviation correspond with disturbances

passing from one blade to the next, and in practice will vary based on the number of stall

cells and number of blades. As discussed in Section 2.1.1, the choice of 7-blade periodicity

has the potential consequence of magnifying the impact stall has on the performance char-

acteristic in the post-stall regime. Passage exit pressure is shown for all passages in Figure

3.4c, highlighting the lack of organization during the plateau as translating disturbances

are growing and interacting. Figures 3.4a and 3.4c can be combined into a flow-pressure

space, revealing the trajectory of the passages during the formation process, Figure 3.5. For

clarity, the trajectory of only a single passages is shown.

3.1.2 Time-Periodic Rotating Stall

Focusing now on the time-periodic behavior of established rotating stall, the two-dimensional

geometry of the study case yields rotating stall that presents a regular, repeating pattern.

The time series of normalized force contributions (solid lines) from each of the 7 passages

is shown in Figure 3.1b, with their sum shown at the bottom. The forward propagating ro-

tating stall cell is evident in the data. Also shown in Figure 3.1b is the history of normalized

massflow (dotted lines).

To avoid the introduction of spurious data in the post processing analysis of periodic

cases, the data is truncated to encompass only a single period. The force history from one

of the control volumes was considered, shown in Figure 3.6, revealing the strong periodic
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(b) Maximum φ deviation.
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(c) Passage exit pressure.

Figure 3.4: Rotating stall formation viewed from a passage perspective for flow coefficient
(a) maximum flow deviation (b) and exit pressure (c). Cascade mean is shown in black for
(a) and (c).
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Figure 3.5: Trajectory of a single passage in φ-force space for rotating stall formation

limit-cycle behavior of fully established rotating stall. A small portion of the signal, shown

in red in Figure 3.6, is compared to the full signal using a cross correlation algorithm to

determine the periodic sectors, with identified sectors starting at each red symbol.

3.1.3 Single Passage Trajectory In Flow-Force Phase Space

Balancing the passage response to disturbance propagation with the downstream throttle

characteristic leads to the stable, limit-cycle passage behavior for rotating stall. A single

period of the limit cycle was extracted from the URANS CFD and will be referred to as

‘deep stall’, the reasons for which will become apparent. In an attempt to capture the time-

periodic behavior of the plateau phase of formation, a second scenario has been found by

using steeper throttling characteristics. Herein referred to as ‘mild stall’, this operating

point, while not on the transient trajectory of the formation process, will be shown to have

qualitative features similar to the observed plateau phase and offers potential insight into
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Figure 3.6: Period-finding algorithm results: repetitions of the red signal snippet are found
at each symbol.

the instability growth mechanisms. The trajectory for deep stall is shown in Figure 3.7 and

for mild stall in Figure 3.8. Along with the flow-force space and the flow-pressure space

trajectories, the passage-based view enables a local pressure recovery to be determined

(Equation 2.11), offering a different perspective on the process. Note that the following

figures include steady RANS results as reference for individual passage behaviors.

For both mild and deep stall, the process start is determined as the time a stall cell from

a neighboring passage begins to influence the behavior of the studied passage. Under mild

stall conditions, the stall cycle starts with excessive incidence leading to a large leading

edge vortex. For deep stall, as described by Pullan et. al, a stall vortex passes from blade

to blade in front of the leading edge with the flow reversed in the passage. This stall vortex

creates a negative incidence in the case of deep stall. The passage-based view facilitates

decomposing the rotating stall process into 4 distinct phases, highlighted in Figures 3.8 and

3.7: developing stall phase, stalled phase, recovery phase, and finally the static or stable
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(b) Cascade single-passage exit pressure.

0.2 0.0 0.2 0.4 0.6 0.8
φ [-]

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

c p
 [-

]

(c) Cascade single-passage pressure recovery,

Figure 3.7: Single-passage time-traces for deep rotating stall with 7-blade steady CFD
results shown for reference.
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(a) Cascade single-passage force.
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(b) Cascade single-passage exit pressure.
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(c) Cascade single-passage pressure recovery.

Figure 3.8: Single-passage time-traces for mild rotating stall with 7-blade steady CFD
results shown for reference.
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phase. The developing stall phase is identified by rapid change in the force, with small

changes in the passage flow. As stall occurs, the flow rate begins to decrease more signif-

icantly, followed by a rapid reduction in force. The eventual increase in flow rate signals

the stall recovery phase, which ends with the stable phase, corresponding to near-blade-

periodic operating conditions. The time-mean of the entire cycle, shown as yellow ’X’s in

Figures 3.8 and 3.7, represents the operating point for the overall cascade as it undergoes

rotating stall. The time-mean of the stable phase, shown as magenta ’X’s in Figures 3.8

and 3.7, reveals that the stable portion of the cycle resides on or near the axisymmetric

characteristic.

Observations can be made about the rotating stall process from the passage-based per-

spective of the unsteady results, considered in Figures 3.8 and 3.7 and compared to the

steady CFD results and identified axisymmetric characteristics. It is noted that the stable

portion of the stall cycle correlates with the time-mean pressure rise. Deep stall experiences

a lower mean pressure rise, with the stable portion of the cycle occurring at a lower pres-

sure and higher flow rate than it does for the stable portion of mild stall. The developing

portion of deep stall follows the axisymmetric characteristic until a critical point is reached,

where the flow rate begins to decrease rapidly. This behavior is similar to transients ob-

served prior to surge in Moore-Greitzer modeling [1] when initial conditions are not close

to the stability limit. The point of departure from the axisymmetric characteristic of deep

stall corresponds with the stable operating portion of the mild stall cycle, which is located

quite close to the axisymmetric characteristic. In contrast, the mild stall cycle temporarily

follows the characteristic to higher flows and then returns to the same nominal condition,

before departing the characteristic with a rapid decline in flow rate. Summarizing, as the

passage is perturbed, the flowfield follows the axisymmetric characteristic until the flow

rate is reduced beyond the axisymmetric stability limit, at which point it embarks on a stall

growth and recovery process.

Referring to Figure 3.9 for mild stall, selected views of the flowfield for a single passage
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(a) Snapshots of vorticity magnitude at operational points shown in (b) for arrow-indicated
passage. Red contours are counterclockwise, while blue contours are clockwise.
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(b) Operational points shown in (a) for arrow-indicated passage

Figure 3.9: Snapshots of single-passage flowfield (a) for points indicated in (b) under mild
stall conditions.
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are shown that correspond to identified points on the rotating stall trajectory of Figure 3.9b.

The passage under study is indicated via the arrow of Figure 3.9a. As stall grows in the

neighboring passage passage (Figure 3.9a image b), a large leading edge vortex is formed

(Figure 3.9a images c and d) in the studied passage that deflects flow from entering the

passage, causing a change in relative flow angle on the subsequent blade. The relative rise

in flow angle initiates the process of leading edge vortex growth on the neighboring blade

(Figure 3.9a image e), propagating the disturbance from blade to blade (Figure 3.9a image

f). This behavior conforms with the patterns hypothesized and discussed in [11, 10] and

observed in other computational models [13]. The severity of the disturbance depends on

the applied boundary constraints to the system and the system characteristics.

It is noted that flowfield views at critical points during mild stall reveal structures analo-

gous to those observed in dynamic stall for isolated airfoils, such as described by Mulleners

and Raffel [3]. See Appendix A for a more detailed discussion. With the isolated airfoil,

a large leading edge vortex develops as the angle of attack increases, resulting in a tem-

porary increase in lift before separation occurs (for the cascade, this can be seen in points

a-c in Figure 3.9b). For the cascade studied here, the presence of the adjacent blade wall

disrupts the development of the vortex-induced velocity field, leading to flow adherence on

the adjacent blade, effectively blocking the passage, and diverting flow to the next passage.

Deep stall, characterized by a large vortex upstream of the leading that passes from

passage to passage, presents a very different trajectory when viewed from the passage per-

spective, shown in Figure 3.10. With the strong reversed flow and upstream vortex, the

adjacent passage flowfield contributes more significantly to the stall development within

a given passage. Although it may appear surge-like in behavior, the trajectory plotted is

for only 1 of the 7 passages modeled. In turbo-compressor terms, the machine will not

experience such flow rate variations, only the individual passages. Prior to a given passage

stalling, the large vortex upstream of the leading edge induces a negative incidence and

reduces the force developed within the passage (observed in Figure 3.10a images b and c).

55



(a) Snapshots of vorticity magnitude at operational points shown in (b) for arrow-indicated
passage. Red contours are counterclockwise, while blue contours are clockwise.
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Figure 3.10: Snapshots of single-passage flowfield (a) for points indicated in (b) under deep
stall conditions.

56



Note in Figure 3.10a that images c and d correspond to nearly the same flow state, trans-

lated by one passage, whereas under mild stall, Figure 3.9a, images b and e correspond to

flow states that are translationally invariant. The large upstream vortex of the deep stall

conditions cause stall to propagate more rapidly than mild stall as the subsequent passage

flowfield is degraded earlier in the stall process. The period for deep stall is ∼ 56% that of

the mild stall case, matching observations of the stall formation process and the experiences

of forming and developed rotating stall, as discussed by Camp and Day [73].

Considering again the parallels of rotating stall with dynamic stall of an isolated airfoil,

Mulleners and Raffel [4] found that the period of enhanced lift corresponds with the rate of

change of the angle of attack (see Appendix A for more detailed discussion). During mild

stall (Figure 3.9), a given passage experiences a period of increased force that corresponds

with the early stages of flow deflection from the neighboring passage, prior to the given

passage stalling. Under the deep stall conditions, where the stall is both more severe, as

indicated by the strong reversed flow, and translating faster, the passage no longer experi-

ences a temporary increase in force (or flow turning) since the upstream vortex induces a

lower incidence angle and a fundamentally different mechanism. Thus the single-passage

trajectory provides a means to distinguish between mild or developing stall, which expe-

riences a rapid increase in force, and deep or established stall, which experiences a rapid

decrease in force.

As seen in Figure 2.3, steady-state RANS modeling is sensitive to the onset of flow-

field instability. The bulk parameters observed in Figure 3.7 appear to match reasonably

well, raising hope that critical flow structures associated with the propagating disturbance

resolved using time-marching URANS are apparent in the the steady-state results as well.

Figure 3.11 compares ‘instantaneous ’flowfield snapshots of the closest iteration-mean op-

erating point from steady RANS modeling to that of the deep stall URANS results. The

flowfield from steady-state CFD contains much more vortical content and clearly does not

capture the detailed flow physics observed in the unsteady results. Thus, although steady
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Figure 3.11: Snapshot of vorticity for RANS (top) and URANS deep stall (bottom).

modeling with the 7-blade domain was able to capture the performance characteristics and

onset of instability it is unable to accurately describe the post-stall flowfield with the fi-

delity necessary to develop tailored post-stall management approaches. However, using a

multi-blade steady state model may provide an economical means to determine the likely

onset of instability during the design iteration process.

3.2 Rotating stall destruction

From a dynamical system perspective, unde r high throttle settings, the passage acts as a

disturbance amplifier until the performance deficit from the disturbance is sufficient to form

a stable system operating point (i.e. rotating stall) or an unstable point (surge). Due to the

tangential flow, once introduced, disturbances are amplified with each subsequent passage

until a limit cycle is achieved (Figure 3.4). It follows then that the passage must also act as

an attenuator when the throttle is reset to a stable condition. In a manner similar to forma-

tion, the destruction of rotating stall was investigated via URANS CFD. Initial conditions

were selected near the instability point, with the flowfield initialized with a rotating stall

cell. At time t = 0, the throttle condition was changed such that the intersection point
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was on the axisymmetric portion of the performance characteristic, causing rotating stall to

disappear. The simulation was run until stable flow conditions were achieved.

The overall domain results are shown in Figure 3.12, which include the time-trace for

a single passage. From a passage-based analysis, the maximum φ deviation is shown in

Figure 3.13 which indicates an initial slow, linear reduction phase, followed by a rapid

reduction in the disturbance magnitude. During the destruction process, the peak pressure

points attained, with associated flows, closely follow the throttle characteristic, indicated

in Figure 3.12. Once the cascade mean exit pressure has reached the back pressure of the

stable phase of rotating stall, reversed flow ceases, and an exponential decay in disturbance

occurs, with the cascade quickly returning to blade-periodic, steady behavior. The passage

control volume analysis enables extraction of estimated growth and decay time constants

for disturbances in the cascade, facilitating control system development.

3.3 Applications and guidance to data-driven approaches

The rich dynamic behavior of rotating stall and the onset of instabilities as-modeled by CFD

present an enticing dataset for applying established and developing data-driven techniques,

such as proper orthogonal decomposition (POD), dynamic mode decomposition (DMD),

and spectral POD (SPOD)1.These techniques are applied to find coherent spatial and, for

DMD and SPOD, correlated frequency-sorted temporal patterns or modes within the data

that allow the complex flowfield to be ideally reconstructed or described with a small subset

of dominant patterns and temporal evolutions [74, 75].

Observations from the passage-based control volume analysis of rotating stall help to

frame the challenges and potential pitfalls of applying these data-driven techniques:

1. Fully-developed rotating stall, from the passage flowfield perspective, represents a
1Note that spectral POD requires numerous snapshots of the dynamic event, which are then spectrally

decomposed. For a low-frequency event, such as rotating stall, where a reasonable temporal (high-frequency)
resolution is required, SPOD can be computationally expensive to obtain sufficient data for. SPOD modes
are optimal modes, as they are build from DMD analysis of ensembles of data.
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(a) Exit pressure.

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

φ [-]
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

ζ [
-]

7-Blade Steady Fine CFD
Domain-mean Trajectory
7-Blade Unsteady Fine CFD

(b) Flow coefficient.

Figure 3.12: Pressure and force results during destruction for the overal computational
domain.
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Figure 3.13: Rotating stall destruction viewed from a passage perspective for maximum
flow deviation.

non-sinusoidal limit-cycle behavior around a time-mean flow point. The continu-

ously evolving flowfield never passes through the time-mean flow conditions, which

are established to satisfy system requirements [1]. The cyclic nature of the rotat-

ing stall flowfield presents a significant challenge for decomposition techniques that

target linear combinations of modal behaviors built from a time-mean, as the mathe-

matical modes may lose their physical interpretation.

2. Each passage experiences a temporary stall event, caused by stall in the neighboring

passage, that disrupts the orderly operation of the passage on or near the axisymmet-

ric performance characteristic (e.g. Figures 3.1b, 3.7b, or 3.8b ). Thus, rotating stall

flowfield decomposition should focus on studying the time-evolving process as a re-

sponse and recovery to large-scale perturbation, rather than assuming it is a cyclic

process.

3. The rotating stall formation process studied herein starts with small-scale perturba-

tions which experience an initial exponential growth period. To properly capture the

underlying dynamics of this short-duration phenomenon, a composite dataset from

multiple passages is required, with the passage-based view offering insight into the

required domain and sampling frequency necessary.
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3.4 Passage-Based View Summary

The CFD domain outlined in Chapter 2 facilitated the introduction of a new analysis ap-

proach: the passage-based view, which constructs a control volume around a bladed pas-

sage. This new approach was motivated by the desire to explore turbocompressor passage

behavior during rotating stall relative to the axisymmetric characteristics, with the goal to

characterize the process and identifying any potential leverage points for unsteady excita-

tion. The passage-based view was used to investigate the rotating stall formation process

from a stable, blade-periodic state and the stall destruction process, from rotating stall to a

stable, blade-periodic state.

Analysis of the stall formation process revealed several phases of growth, including

both exponential and linear disturbance growth periods. After the initial throttle adjust-

ment, the passages all quickly acclimated to a new nominal flow condition in the post-stall

regime, centered on a the unstable axisymmetric characterstic, however, this condition was

not robust to flowfield perturbations, with cyclic growth until the deviations grew large

enough to merge, forming the rotating stall cell. A similar behavior was occasionally ob-

served while exercising the Moore-Greitzer model [1] from Chapter 1, where the flow ad-

justs to a point on the axisymmetric performance characteristic, and then instability growth

causes a non-axisymmetric flowfield, which represents a stable state for the compressor-

resistance system. Another similarity with the MG model is the behavior of the cascade

for mild and deep rotating stall. Deep stall experiences a much larger limit cycle than mild

stall does, evoking similar concepts as surge and stall, yet for the passage domain rather

than the compression system.

Analysis of the passage behavior during the time-periodic 2D rotating stall highlighted

the passage trajectory relative to the stable characteristic. The passage flowfield experi-

ences stall as a transient event, initiated due to perturbation from a neighboring passage.

Following the transient, the passage returns to the stable axisymmetric characteristic where

it remains until a disturbance of significant magnitude is able overcome the stable point’s
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resilience to perturbation, restarting the transient event. Thus, to improve the passive re-

silience of a bladerow to rotating stall requires a strategy where the cascade is made more

robust relative to perturbations across the operating characteristic. Since the operating point

of the passage returns to the characteristic, increasing the energy required to initiate rotating

stall will damp smaller perturbations and delay the onset of rotating stall.
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Chapter 4

Linear Stability Analysis

4.1 Overview and method

Linear stability analysis provides a critical first step towards quantifying the response of a

turbocompressor flowfield to periodic forcing. The linear stability of fluid systems has a

rich history, much of which has been focused on turbulence, turbulent transition, and the

self-sustaining nature of turbulence ([76, 77, 78, 79] . Only recently has linear stability

analysis seen increased attention in applied engineering applications from the fluid dynam-

ics community [80, 81, 82, 83] . However, linear stability analysis (also referred to as

spectral decomposition [75]) represents an essential element in classifying the behavior of

a dynamical system (i.e. 1.6).

4.1.1 Background

Given a general dynamical system, whose time-evolution can be described by a linear oper-

atorA, studying the time-evolution of small-scale perturbations allows the characterization

of the system behavior. If perturbations are amplified, the system is considered unstable

as the disturbances will continue to grow. Similarly, if perturbations are attenuated, the

system is considered stable. The incompressible Navier-Stokes (NS) equations, along with
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the continuity equation,

ρ∂tu + ρu · ∇u = −∇p+∇ · µ∇u + f, (4.1)

0 = ∇ · u, (4.2)

describe the non-linear dynamical behavior for the fluid systems under study herein. Two

development approaches are considered: the first assumes that the flow is either laminar or

perturbations don’t respond to the underlying momentum redistribution due to stochastic

fluctuations (Reynolds stresses); the second approach posits that the Reynolds stresses are

an intrinsic flowfield element and influence the development of any perturbations.

To apply linear stability analysis to the non-linear system, the Navier-Stokes equations

are linearized around a nominal flow state. The nominal flow can either be a ‘base’ flow or

a ‘time-mean’ flow, with the former being a solution to the steady NS equations, whereas

the latter is not. Using a Reynolds decomposition to separate the flow into nominal and

perturbed components,

u(t) = ū + û(t), (4.3)

where ū represents the nominal flow, (4.1) and (4.2) can be rewritten as

ρ∂tû = − ρû · ∇ū− ρū · ∇û− ρû · ∇û

−∇p̂+∇ · µ∇û + f̂ +

{
− ρū · ∇ū−∇p̄+∇ · µ∇ū + f̄

}
,

(4.4)

0 = ∇ · û +

{
∇ · ū

}
. (4.5)

Equations (4.4) and (4.5) can be rearranged and grouped as

∂û

∂t
= L(u, p̂) +N (u, f̂), (4.6)

where L and N are the linear and nonlinear terms, respectively. It is assumed that the per-
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turbations are small, such that only terms linear in û are significant in the initial evolution

of û. The linearized NS equations are thus found by omitting the non-linear terms, such as

ρû · ∇û, finally leading to

∂û

∂t
= L(u, p̂), (4.7)

or, in discrete form with the continuity equation,

B
∂v̂

∂t
= Lv̂, (4.8)

where

B =

1 0

0 0

 (4.9)

v̂ =

û

p̂

 . (4.10)

Note that for a base flow, which is invariant in time (e.g. nearly all laminar flow cases),

the terms of (4.4) in curly brackets sum to zero1. However, for a time-mean flow (e.g.

turbulent flow cases), the curly brackets represent Reynolds stresses and bring about a

closure problem where one must decide whether the Reynolds stresses should appear as

linear terms or non-linear terms, the choice and implications of which are addressed in

Section 4.1.3.

For stability analysis, it is beneficial to transition to the frequency domain via the

Laplace transform in time of (5.2), which leads to the eigenvalue problem

L

{
B
∂v̂

∂t
= Lv̂

}
=⇒ λBv = Lv, (4.11)

1The curly brackets of (4.5) are always zero for incompressible flows.
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where v is the Laplace transform of v̂ and λ has replaced the traditional Laplace vari-

able. Note that a similar result is achieved by assuming that the perturbation has a complex

exponential behavior, û = ueλt, where λ = σ + ωj and u is a presumably coherent

flow structure. Linear stability analysis studies the spectral properties of the eigenvalues,

which describe the temporal behaviors and frequency of the associated eigenvectors, that

the spatial coherence of the modes. The real part of the eigenvalues provide insight into the

long-time stability of a corresponding eigenvector or mode: stable flows will have σ < 0

and unstable flows will have σ > 0. The imaginary part of the eigenvalues indicate the

oscillatory frequency for each associated eigenvector. It is noted here that linear stability

analysis is based on linearization of the non-linear Navier-Stokes equations. As such, un-

stable eigenmodes will grow exponentially, but will reach a size where the linearization

is no longer valid and non-linear terms start to play a significant role. However, in such

cases, additional information about the fluid system may provide insight into whether the

instability growth will continue, or be constrained.

4.1.2 Method

Linear stability analysis, described by (4.11), is based on the spectral decomposition of the

linear operator L, which depends on the nominal flowfield state about which the stabil-

ity analysis is conducted. As discussed in Chapter 2, nominal flowfields were computed

using Numeca’s (now Cadence’s) FINE/Turbo structured CFD solver on grids that were

determined using Numeca’s autogrid structured grid generator. To facilitate rapid analysis

of varied geometric arrangements and mesh configurations, a computational tool, FaStaRT

(Fast Stability and Resolvent Tool, Appendix C) was created to convert mesh and results

data from the CFD General Notation System (CGNS, a standard data interchange format)

into the linear operators necessary for stability analysis and later resolvent analysis. The

CGNS files from Numeca’s solver contain point data at cell corners, for location (x, y, z)

and flowfield data (u, v, w, P, ρ, T, µ). Details of this tool and process are discussed in
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Appendix C, with an example on a relevant canonical flow provided in Appendix D. The

local linear operator,

L` =

(·)ρ · ∇ū+ ρū · ∇(·)−∇ · µ(∇(·) +∇T (·)) −∇(·)

∇(·) 0

 , (4.12)

is applied to each element using a finite element analysis (FEA) approach, which was found

to minimize the potential for numerically degenerate cells from contaminating the stability

and resolvent results when compared with finite volume formulations more common in

CFD (Appendix C). The local matrices are combined to form the overall linear operator for

which the eigenvalues are found. In two cartesional dimensions, the overall linear operator

has the final form of

L =


A D G

B E H

C F Z

, (4.13)
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where

Operators on ûx

A =
{
µ̄∇2(·) + 2 ∗ ∇x(µ̄)∇x(·) +∇y(µ̄)∇y(·)

}
/ρ− ūx∇x(·)− ūy∇y(·)− (·)∇x(ūx),

B =− (·)∇x(ūy) +∇x(µ̄)∇y(·),

C =−∇x(·)/ρ,

Operators on ûy

D =− (·)∇y(ūx) +∇x(µ̄)∇x(·),

E =
{
µ̄∇2(·) +∇x(µ̄)∇x(·) + 2 ∗ ∇y(µ̄)∇y(·)

}
/ρ− ūx∇x(·)− ūy∇y(·)− (·)∇y(ūy),

F =−∇y(·)/ρ,

Operators on p̂

G =−∇x(·)/ρ,

H =−∇y(·)/ρ,

Z =0.

The individual operatorsA → H are quite sparse, as is the linear operator L. Two observa-

tions can be made: The first is that the off-diagonal terms corresponding to the linearized

non-linear terms, i.e. B and D, can cause L to be asymmetric. Asymmetry causes the

eigenvectors of L to be non-normal, the implications of which will be discussed in Chapter

5, but for now it is sufficient to note that normal gradients in velocity (velocity shear) and

viscosity cause asymmetry. The second item to note is that through the continuity and the

pressure Poisson equations, one can reduce the eigenvalue problem from that of a large,

sparse matrix, to a small, dense matrix 1/9th the size. For small and moderate-sized prob-

lems, there may be some computational benefit to this alternative approach which was not
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employed here. However, the important information is that the system only has 1/3rd the

eigenvalues expected of the full operator L.

On solid walls, a no-slip boundary condition was applied (ûw = 0) along with a zero

normal pressure gradient (∇np̂ = 0). Inlet boundary conditions forced perturbation ve-

locity and pressure to zero (ûin = p̂in = 0), whereas outlet conditions were zero-normal-

gradient conditions (∇np̂ = ∇nû = 0). To manage computational resource usage while

still providing sensible descritization, the modeled domains were kept relatively small, with

boundaries close to the studied geometry. The overall domain extents are quite similar in

configuration to those found in multi-stage CFD simulations and represent common analy-

sis domains. Choice of domain also curates the types of instabilities that will be captured.

A common bluff-body instability is found in the wake structure (see Appendix D, or [84]),

which demonstrates significant growth downstream of the body in the form of the Karman

vortex street. Selecting a small domain intrinsically implies that these common convec-

tively unstable downstream wake structures, such as those seen in Zhang et al. [84], are

of lessor importance. Outside of the scope of this work, the stability of these structures as

processed by subsequent blade rows remains an open question. Studies into applying the

boundary conditions revealed that stability analysis results were robust with regard to the

specific implementation of the inlet and exit boundaries, as long as the boundary conditions

described herein were applied. Resolvent analysis (Chapter 5), was much more sensitive

to the boundary condition implementation details. Eigenvalues and eigenvectors were cal-

culated using ARPACK’s implicitly restarted Arnoldi method solver in the scipy scientific

python toolkit [85, 86] and SLEPc’s Krylov-Shur method solver [87].
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4.1.3 The Time-Mean Flowfield And Reynolds Stresses

The closure problem arises from taking the time-mean of a turbulent fluctuating flowfield,

leading to the so-called Reynolds stresses (RS). If the time-mean, defined as

ḡ = lim
T→∞

1

T

∫ T

0

g(t), (4.14)

is taken of the Reynolds decomposed NS equations, (4.4), and standard ensemble averaging

rules are used, a fluctuating term

ρû · ∇û =

{
− ρū · ∇ū−∇p̄+∇ · µ∇ū + f̄

}
. (4.15)

remains. The Reynolds stresses can be interpreted as additional stresses within the flow-

field that are necessary to close the steady NS equations for the observed time-mean flow.

These additional stresses are the result of the turbulent fluctuations and associated mixing

processes. Reynolds and Hussain [88] suggested that linear stability analysis may need

to include the effects of Reynolds stresses if there was significant separation in length

and timescales between large-scale perturbations and small-scale turbulent fluctuations.

Reynolds and Hussain modeled the RS contributions via an eddy viscosity approach, ar-

guing that this approach was valid if the periodic perturbations did not alter the turbulent

energy or time scales. Del Alamo and Jiminez [79] also found success employing eddy

viscosity to properly capture the linear behavior of perturbations in turbulent channel flow

in an arrangement where the length scales of turbulence were much smaller than those of

the coherent structures. Studies investigating the self-sustaining nature of turbulence in

channel and pipe flow, such as McKeon and Sharma [78], intentionally omit the Reynolds

stress from the linear forcing of the perturbation while retaining the effect of the Reynolds

stresses in the nominal flow as a means to identify the underlying drivers for continued

turbulent fluctuations. In contrast, turbulent channel flow stability studies, eg. [79], which
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include the eddy viscosity in the linear terms, show that the turbulent velocity profile is

indeed stable due to the bulk effect the turbulent mixing has on the momentum diffusion.

Thus, the instabilities that McKeon and Sharma identify are those that contribute to the self-

sustaining turbulent fluctuations, which when en masse, provide the necessary momentum

diffusion for a stable turbulent velocity profile.

Taken all together, for the stability analysis of turbulent flows such as those in turbo-

compressors, it is expected that flowfield instability will require perturbations which can

overcome the effective dissipation of small-scale turbulence and mixing. Thus, the focus

will be on determining how the spectral decomposition changes with cascade operating

point, while including the effect of Reynolds stresses via eddy viscosity in the linear op-

erator, Lµt . In Section 4.2.2 comparisons are made between stability results with (Lµt)

and without (L) eddy viscosity inclusion, emphasizing that eddy viscosity exclusion iden-

tifies structures responsible for turbulent energy production, whereas inclusion identifies

the structures responsible for global instabilities. In the case of forcing for flow control,

discussed in Chapter 6, natural resonances can be leveraged for enhanced momentum dif-

fusion.

4.2 Stability Analysis Of The 2D Cascade Flowfield

The stability of the the 2D cascade was analyzed at several different operating points along

the performance characteristic, indicated in Figure 4.1. The operating points were chosen

to cover a range from the axisymmetric regime, through global instability onset, to the post-

stall regime. Stability analysis was conducted on a periodic single-passage domain. The

single-passage domain was chosen for stability analysis since the periodic boundary condi-

tions offer a means of stabilization to the stage, allowing the CFD to converge beyond the

stability limit without creating strong time-dependent flows, thus forming one approach to

identifying the idealized axisymmetric characterisic in the post-stall regime. Additionally,
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Figure 4.1: Selected Stability Analysis Points Compared With Steady and Unsteady CFD
Results.

along the axisymmetric characteristic, each passage is a periodic replica of the passage next

to it. Without blade-to-blade variation in the nominal flow field between the passages, sta-

bility modes spanning multiple blades will not occur except in blade-periodic arrangements

that can be captured with a single-passage domain.

The CFD setup and boundary conditions were the same as described in Chapter (2).

For cases beyond the stability limit, small-scale periodic time-dependency was observed in

the solution in the shear layers near the leading edge. In these instances, a time-dependent

solution was computed and then many periods of oscillation were averaged to produce a

time-mean state about which the stability analysis was conducted. Several variations of the

computational mesh and domain extent were explored, with the goal of increasing resolu-

tion near and along the blade, without substantial increases in computational cost associated

with solving the eigenvalue problem. A sampling of meshes tested is shown in Figure 4.2.

The results included herein use the mesh configuration of Figure 4.2d, and consider the

sensitivity of the overall (eigenvalue) and detailed (eigenvector) results as mesh resolution

is varied. The finest mesh yielded a slight change of the single passage CFD results for op-

73



erating points 4, 5, 6, and 7. For these conditions a leading edge separation bubble exists,

as does separation near the trailing edge. The increase in near-wall resolution led to lower

pressure recovery for operating points with appreciable separation.

For stability analysis, the aim is identifying the spectrum (eigenvalues) of the operator

L (or Lµt) . From a practical standpoint, only the the eigenvalues with largest-valued real

parts, σ, are of interest, as these correspond with the unstable modes (σ > 0) or the slowest

decaying modes (σ < 0, but |σ| is small). Eigenvalues with more-negative real components

(σa < σb) correspond to modes that decay faster (mode a). Thus, for a given frequency, ω,

or frequency range, the goal is to find the eigenvalue with largest σ, as that eigenvalue and

mode will dominate stability at or near that frequency.

The eigenvalues identified via the stability analysis can be scaled using a nominal sys-

tem frequency. Discussed in Chapter 2, a natural velocity scale for this problem is the

inlet tangential velocity, U, which was a constant and represents a blade speed. Another

physically relevant choice is the averaged inlet velocity magnitude, a sensible choice for

isolated airfoils. Since the inlet velocity magnitude changes with operating condition, the

inlet tangential velocity was used, which is of the same order as the inlet velocity mag-

nitude. Similarly, the natural length scale is the blade chord2. Together, the velocity and

length scales provide a reference frequency,

fref =
c

U
, (4.16)

yielding normalized eigenvalues

λn = σn + iωn =
σ + iω

2πfref
. (4.17)

Note that ωn takes the form of a Strouhal number.
2For 3D turbomachinery applications, there are alternative length scales that may be more relevant.
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(a) (b)

(c) (d)

Figure 4.2: Single-passage meshes explored for use in stability and resolvent analysis. Cell
centers are shown as points, intra-block connections in blue, inter-block connections in
red, periodic connections in green, where the periodic repetition direction is vertical. Flow
enters from the left boundary and exits on the right boundary. Every 8th cell is shown for
(a) and (b), where every 16th cell is shown for (c) and (d).
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4.2.1 Sensitivity to Mesh Resolution

Stability analysis results for operating point 1 (of Figure 4.1) are shown in Figure 4.3 for

several different mesh resolutions. The structured mesh created with Numeca’s Autogrid

includes 5 grid levels, providing a simple means to vary the resolution with the mesh struc-

ture presented (Figure 4.2d). The 5 grid levels are identified herein as Coarse, Intermediate,

Fine, SuperFine, and UltraFine, in order of increasing resolution. The Coarse mesh con-

tains ∼ 3, 000 cells for the 2D simulation. Each mesh refinement increases density by 4x,

leading to the finest mesh containing∼ 800, 000 cells. Due to the periodic boundary condi-

tions imposed, the number of nodes in the mesh is similar to the number of cells, resulting

in an operator, L or Lµt , of order 2.4 million x 2.4 million for the UltraFine mesh, 2D

incompressible case.

Calculating eigenvalues for large matrices is computationally expensive, even if the

matrices are quite sparse. In practice, a balance must be made between the time it takes to

calculate the spectrum and the information the spectrum can provide. The process imple-

mented in FaStaRT uses the same mesh for both CFD and stability analysis. As the mesh

is refined, both the nominal flowfield resolution and the the capacity of the mesh to resolve

small-scale instabilities are improved, leading to a scenario where both the solution and the

frequency resolution are changing with the grid size. To isolate the mesh refinement from

the mesh-based changes in the velocity field, CFD results from the finest mesh were inter-

polated onto the coarser meshes. More specifically, the finest mesh is subsampled at the

locations of the coarser meshes since the nodes are coincident. For cases where the meshes

do not align directly, the fine mesh can be interpolated at the node locations. Figure 4.3

reveals an initial strong dependence of the spectrum on the mesh resolution for the coarse

and intermediate mesh levels. With continued mesh refinement, the general structure of the

eigenvalues experiences less variability, starting first with the lowest frequencies and then

at subsequently higher frequencies with additional resolution.

The stability analysis results shown in Figure 4.3 emphasize that the mesh can act as an
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Figure 4.3: Spectral decomposition results of operating point 1 for several mesh resolutions
with interpolated flowfield from the finest mesh over a broad range (a) and focused on a
lower-frequency, smaller amplifications range (b), as shown in (a).
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(a) Leading edge. (b) Quarter-chord. (c) Leading edge. (d) Quarter-chord.

Figure 4.4: Velocity profiles at 2 locations: slightly downstream of the leading edge on the
suction side of the blade (a, c) and at the quarter-chord location, also on the suction side of
the blade (b, d). The leading edge location coincides with the laminar separation bubble for
operating points 3, 5, and 7. Different operating points are compared in the left two figures
(a, b) and different mesh resolutions are shown in the right two figures (a, b).

instability filter, where significant attenuation in modes is observed at increasing frequen-

cies3. For example, the Intermediate level mesh begins a rapid roll-off in mode amplifica-

tion around ωn = 20, whereas the Fine level mesh experiences similar low-pass filtering

starting near ωn = 40 (note there is a factor 2 in the mesh spacing between Intermediate

and Fine level meshes). The SuperFine mesh level with interpolated UltraFine flowfield

was selected as the focal resolution for study, as this mesh provided sensible flowfield

resolution (Figure 4.4) and spectral decomposition sensitivity (Figure 4.3) while manag-

ing resource availability. The UltraFine results are compared with the SuperFine and Fine

level meshes in the next sections to gauge the ability of these coarser meshes to capture the

salient features of the analysis with less computational burden.

In many cases, the set of eigenmodes is a mix of modes that are physical in nature

and modes which are based on resonances within the meshed domain, and thus depend on

the domain, the boundary conditions, and the mesh [89]. This is particularly true for the

coarser meshes. Since the only source of instability is the blade and associated shear lay-

ers, modes of concern, i.e. those which are physical and may cause instability, are expected

3High-frequency attenuation is commonly exploited during early-phase design-level CFD to yield con-
verged results that need not resolve the finest flowfield details.
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Figure 4.5: Blocks that define the region where modes of concern are most likely to appear
(red).

to exist near the blade suction side and downstream. Using this expectation, non-physical

modes were identified as having more than 2.5% of their kinetic energy outside of 4 criti-

cal blocks in the mesh. While not absolute, the empirically identified cuttoff of 2.5% was

chosen based on examination of the mode shapes to help identify modes of concern and

the common block placement relative to the blade of the ‘O4H’block topology employed.

The blocks, indicated in Figure 4.5, are those that surround the blade, encompass the wake

region and suction side of the blade, and the exit block. Modes with significant energy con-

tent outside of these blocks are likely to include spurious or mesh-based modes that are of

little interest. Using the criterion outlined, the data of Figure 4.6 are separated into physical

(colored) and non-physical (gray) symbols. As the mesh is refined, the representation of

the physical behaviors improves, rapidly suppressing the mesh contributions to the modes,

leaving only the physical modes near the stability demarcation line.

To provide a better understanding of the ’non-physical’ modes, the mode shapes of two

modes are shown in Figure 4.7. The modes themselves are complex, as they are cyclic with
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Figure 4.6: Spectral decomposition results of operating point 1 for several mesh resolutions
with interpolated flowfield from the finest mesh. Non-physical modes have been grayed out

time. In the mode plots, the real portion of the mode is shown, but note that the mode is

cyclical, so portions of the mode do not appear in the image, as the real part of the mode

is zero in those locations. The plotted modes correspond with ωn = 15 and ωn = 30

for Fine and SuperFine meshes, respectively, and are identified in Figure 4.6. With each

mesh refinement the spurious modal content is further damped by a factor 2 and doubles in

frequency, as observed in Figure 4.6.

4.2.2 Eddy Viscosity

A choice must be made for turbulent flows regarding whether perturbations respond to, or

‘feel’, the Reynolds stresses. For this work, when included, the Reynolds stresses appear in

the linear operator via an eddy viscosity term (discussed in Section 4.1.3). Figure 4.8 shows

contours of turbulent viscosity ratio, νt/ν, for operating points 1, 3, 5, and 7, which can

be used as a proxy for regions of significant Reynolds stress and demonstrate the change

in the wake region size with operating point. Note that the turbulent viscosity ratio is zero

in the viscous sublayer, by definition. In addition to the stresses developed due to shear
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(a) Fine
ωn = 15

(b) Superfine
ωn = 30

Figure 4.7: Example mode shapes for selected non-physical modes in Figure 4.6 demon-
strating widespread spurious model content. Contours of mode tangential-velocity (y-
velocity) are shown on a symmetric scale. Since the modes are cyclic, color contours
only display the real-part of the complex-valued modes.

flows near the blade surface, a background level of free stream turbulence is assumed that

is consistent with best practices [90].

The spectrum with and without eddy viscosity are compared in Figure 4.9, where dis-

tinct differences are apparent between cases. As a dissipative term, disturbances in high-

viscosity regions are damped out by increased eddy viscosity. This corresponds to many of

the shear-driven modes along the blade surface boundary layer that are the source of tur-

bulent mixing and momentum diffusion qualities of the Reynolds stresses. What remains

are larger-scale inertial modes, and small-scale modes outside of the high-Reynolds-stress

regions. Shown in the next section, the small-scale modes are restricted primarily to the

leading edge and boundary layer regions. Note that the free-stream turbulence also acts to

damp the non-physical modes that exist.

Inclusion of the Reynolds stresses via eddy viscosity provides a sensible basis for sta-

bility analysis, provided that the perturbations do not alter the turbulent kinetic energy or
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(a) Operating point 1

(b) Operating point 5

(c) Operating point 3

(d) Operating point 7

Figure 4.8: Turbulent viscosity ratio for selected operating points.
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Figure 4.9: Comparison of stability analysis results with and with out inclusion of eddy
viscosity in the linear term.

time-scales [88, 79]. This restriction can inform a frequency limit for the eddy-viscosity-

augmented linear stability analysis (Lµt), estimated as follows. For the 2D airfoil, the

size of the largest turbulent eddies can be estimated based on the boundary layer thickness

[91, 92], and is in the range of O(δ). As the eddies convect along the surface at a speed

of 0.9V (where V is the freestream velocity) [91], the normalized characteristic frequency

can be found to be

ωn,cutoff =
0.9c

δ
, (4.18)

which provides a bound, beyond which the instabilities are likely to have direct interactions

with the turbulent structures. Measuring the boundary layer thickness at the quarter-chord

location, chosen as a representative location for relevant eddy size, indicates ωn,cutoff val-

ues between 25 and 100, depending on operating point. At relatively high, stable flows,

ωn,cutoff increases due to the thinning of the boundary layer, whereas the opposite is true at

low flows. For operating point 3 (Figure 4.1), where the flowfield transitions from crypto-

steady to rotating stall, the estimated limit, ωn,cutoff ≈ 50, is two orders of magnitude

greater than the destabilizing modes.
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4.2.3 Stability Analysis Across The Operating Map

Linear stability analysis was conducted for the operating points highlighted in Figure 4.1.

For clarity, only the odd numbered points are plotted in the ensuing sections. Figure 4.10

shows the sensitivity of the eigenspectrum of the linear operator Lµt , as a function of op-

erating condition for the UltraFine grid levels. Focusing first on the zoomed-in view of the

finest-mesh results, Figure 4.10a, and starting with operating point 1, all eigenvalues are

stable, as would be expected. As the stage moves towards and across the instability bound-

ary (increasing operating point number), identified via CFD in Chapter 2 as occurring near

operating point 3 with a period of approximately 5τR (or ωn = 0.2), the real parts of the

least stable eigenvalues at low frequency become less negative, transitioning to positive real

part at operating point 3. Although, the unstable or least-stable eigenmodes for operating

points 1, 3, 5, and 7 occur over a small frequency range, 0.28 < ωn < 0.56, the actual mode

shapes vary quite significantly, as seen in Figure 4.11.

Examination of Figure 4.10b reveals that as the stage is throttled, a damped instability,

identified via a local maxima in the eigenvalues near ωn ≈ 6 for operating point 1, and

ωn ≈ 3 for operating point 3, becomes less stable and of lower frequency. Comparing

the mode shapes from the peak of operating point 1’s local maxima (ωn ≈ 5.5, Figure

4.12d) with those of operating point 3 (ωn ≈ 3, Figure 4.15e), while also considering

the underlying velocity fields, indicates that these particular modes appear as a Kelvin-

Helmholz shear-layer modes associated with the blade wake (Figure 4.12), the extent of

which depends on the incoming flow angle. As the flow rate is reduced, increasing the

relative flow angle, the size of the wake region grows - reducing the associated frequency

of the wake mode.

Increasing the relative flow angle from point 1 causes the leading edge blade loading

to increase, forming a laminar separation bubble (LSB). The onset of instability for the

2D cascade coincides primarily with the strengthening of the leading edge loading and

subsequent weakening of the suction surface boundary layer downstream of the LSB. The

84



0 10 20 30 40 50 60 70 80
Normalized Frequency, ωn [-]

4

3

2

1

0

1

2

3

4

No
rm

al
ize

d 
Am

pl
ifi

ca
tio

n,
 σ

n
 [-

]

Detail Image

Point 1, Lµt
, UltraFine

Point 3, Lµt
, UltraFine

Point 5, Lµt
, UltraFine

Point 7, Lµt
, UltraFine

(a) Large spectrum view.

0 5 10 15 20 25
Normalized Frequency, ωn [-]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

No
rm

al
ize

d 
Am

pl
ifi

ca
tio

n,
 σ

n
 [-

] Point 1, Lµt
, UltraFine

Point 3, Lµt
, UltraFine

Point 5, Lµt
, UltraFine

Point 7, Lµt
, UltraFine

(b) Detailed spectrum view.

Figure 4.10: Spectral decomposition results of operating points 1, 3, 5, and 7 for Ultra-
Fine mesh resolution. Gray symbols represent modes likely to contain significant spurious
numerical content.
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(a) Operating Point 7.
ωn = 0.57

(b) Operating Point 5.
ωn = 0.56

(c) Operating Point 3.
ωn = 0.3

(d) Operating Point 1.
ωn = 0.45

Figure 4.11: Mode shapes of the least stable (operating point 1) and unstable (operating
points 3, 5, and 7) for UltraFine mesh resolution, visualized with contours of tangential ve-
locity (y-velocity). Although the frequencies are quite similar, the mode shapes are notably
different.
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flowfield near the leading edge becomes unstable by operating point 3 due to strong shear

near the leading edge, the formation of a sizable separation bubble, and the weak boundary

layer. The resulting unstable mode, Figure 4.11c, is primarily associated with the first 1/3rd

of the blade suction side. At operating point 5, the natural wake mode extends partway up

the suction side of the blade and the unstable mode, Figure 4.11b, represents an interme-

diate mode shape between the leading edge mode of operating point 3 and the combined

leading-trailing edge mode of operating point 7. The wake mode of operating point 5, Fig-

ure 4.12b, is now marginally stable. At operating point 7 the wake mode and leading edge

mode have locked together on a common frequency (Figures 4.11a and 4.12a). The lock-in

frequency of the unstable modes for points 5 and 7 represent appear to be determined as

a balance between the lower-frequency leading edge mode and the shear layer separation

of the wake, which drives the characteristic vortex shedding frequency [29]), and becomes

less sensitive to flow angle as flow rate is reduced. Thus, for base operating points at flow

rates lower than point 3, the unstable mode is a combined leading-trailing edge mode along

the suction surface of the blade.

Summarizing, for a given flow condition beyond stability, the flow is subject to two

related unstable modes. Near the transition from stable to unstable (point 3), the unstable

mode is associated primarily with leading edge loading and the LSB. For points further

into the unstable region of the map, the unstable modes fully involve the suction side of the

blade and separated wake. The rapid growth of the unstable mode will cause the LSB and

separated region to increase in size along with further weakening the boundary layer until

the blade-to-blade dynamics causes the disturbance to pass to an adjacent blade. The insta-

bility of the flowfield surrounding the blade for blade-periodic operating conditions in the

post-stall region will cause individual blades to undergo such a growth process. The stag-

gered nature of a turbocompressor blade row causes the blade-to-blade transfer of rotating

stall. As the disturbance size grows beyond a small perturbation, the instigating flowfield

transferred from blade-to-blade becomes more similar to that of operating point 5 and be-
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yond, with instabilities that involve the full blade and wake region. Due to the large growth

rate for the unstable mode of operating point 3 (or 5 or 7), these instabilities experience

exponential growth on time scales much shorter than the blade-to-blade transmission time.

This evolution path is consistent with Pullan et al.’s description of the onset of spike-

type rotating stall, which outlined the process as starting with excessive incidence (leading

edge loading), followed by a rapid intensification (strong mode amplification) and leading

edge vortex creation and finally upstream spillage [13]. Using linear stability, the contri-

bution of the wake dynamics to further disturbance growth becomes more clear. Support

for the identified combined leading edge/trailing edge mode can be seen in the P1 panel of

Figure 2.8a, or in Pullan et al. [13] and Ghorbanian et al. [68]. Based on the linearized

stability analysis alone, with eddy viscosity included (Lµt), the location of rapid instability

onset is predicted to be quite close to that determined via unsteady multi-blade CFD, of-

fering new avenues for predicting onset of spike-type rotating stall and providing hints for

stall management.

4.2.4 Stability Analysis Across The Operating Map With Mesh Reso-

lution

The unstable dynamics identified with the UltraFine mesh offer promising opportunities for

enhancing the design process. However, the computational effort of computing eigenvalues

for significant mesh sizes presents a formidable cost. To explore the ability of coarser

mesh resolutions to identify the same dynamics, Figures 4.13, and 4.14 show the sensitivity

of the eigenspectrum of the linear operator Lµt , as a function of operating condition for

the SuperFine, and Fine grid levels, respectively (for comparison with Figure 4.10). It

is observed that generally, the finer meshes experience fewer unstable modes since their

resolution is sufficient to capture the necessary flowfield gradients and higher frequency

eigenmodes, which, for the coarse meshes are effectively aliased onto lower frequency
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(a) Point 7, ωn ≈ 0.57
(unstable)

(b) Point 5, ωn ≈ 1.8
(stable)

(c) Point 3, ωn ≈ 3.0
(stable)

(d) Point 1, ωn ≈ 5.5
(stable)

Figure 4.12: Wake stability modes of the UltraFine mesh for operating point 1 (d), oper-
ating point 3 (e), operating point 5 (b), and operating point 7 (a), visualized with contours
of tangential velocity (y-velocity). The mode corresponding to the largest real-part for
operating point 5 is shown in (a). The domain is repeated periodically for clarity.
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modes4.

Comparing the results from both the SuperFine mesh (Figure 4.13a) and the Fine mesh

(Figure 4.14a) to that of the UltraFine mesh (Figure 4.10a), similar overall trends are ob-

served: all three meshes indicate that operating point 3 is the most unstable operating point

and provide a similar growth rate for the lowest non-zero-frequency eigenmode. The Su-

perFine and Fine meshes both experience instability at nearly double the frequency of the

UltraFine mesh. Overall, the SuperFine mesh resolves nearly identical modes to that of

the UltraFine, albeit with limited global higher-frequency resolution as evidenced by the

roll-off in mode amplitude near ωn = 60. Comparison of the unstable mode for the coarser

meshes at operating point 3 in Figure 4.15, (SuperFine Figure 4.13) and Fine Figure 4.14)

to those of the UltraFine mesh (Figure 4.11c), show that the strongest response is at the

leading edge unstable modes at point 3 are almost identical to that found with the UltraFine

mesh.

As seen in the many eigenvalue comparisons (e.g. Figure 4.3b), coarser meshes tend to

have less stable modes than finer meshes, potentially leading to more conservatism if used

to predict instability margin. The diminished stability of the coarse meshes can also be

used to help identify possible flow structures that may contribute to instability. Referring to

Figure 4.14, it is observed that there are high-frequency modes that also cross the stability

boundary despite the eddy viscosity inclusion in the modeling. These are likely caused

by aliasing of significant flowfield features that are poorly resolved with the mesh spacing

since the unstable spectral content does not appear in the SuperFine or UltraFine meshes.

Investigation of these modes (Figure 4.16) reveals that the mode shape is entirely contained

within the boundary layer region near the leading edge, representing Kelvin-Helmholz in-

stabilities due to the shear layer over a laminar separation bubble (LSB)5. As noted in

Section 4.2, small-scale oscillations were present in the shear layers near the leading edge

4The coarseness of the mesh can be construed as a form of noise floor that obscures modes below a certain
resolution - see Appendix D.

5Note that fine near-wall meshes have been able to successfully capture laminar separation and reattache-
ment with RANS turbulence modeling [93]
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(a) Large spectrum view.
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(b) Detailed spectrum view.

Figure 4.13: Spectral decomposition results of operating points 1, 3, 5, and 7 for SuperFine
mesh resolution. Gray symbols represent modes likely to contain significant spurious nu-
merical content.
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Figure 4.14: Spectral decomposition results of operating points 1, 3, 5, and 7 for Fine mesh
resolution. Gray symbols represent modes likely to contain significant spurious numerical
content.
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(a) Operating point 3
Fine

(b) Operating point 3
Fine

(c) Operating point 3
SuperFine

(d) Operating point 3
SuperFine

(e) Operating point 3
UltraFine

(f) Operating point 3
UltraFine

Figure 4.15: Instability modes of the Fine mesh (a and b), SuperFine mesh (c and d),
and UltraFine mesh (e and f) for operating point 3. A line of zero y-velocity is shown in
magenta, marking the recirculation zone of the separation bubble.
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(a) Operating point 3, ωn ≈ 100.
Vorticity.

(b) Operating point 3, ωn ≈ 100.
Turbulent viscosity ratio.

Figure 4.16: High frequency mode of the Fine mesh for operating point 3 (ωn ≈ 100).
Figure (a) shows vorticity contours of the mode, with the zero y-velocity line (dashed
magenta line) used to indicate the recirculation zone. Cell centers are also indicated. Figure
(b) shows the turbulent viscosity. Contour lines of vorticity magnitude are shown. The
extent of the mode is likely limited by the increase in turbulent viscosity and the mesh
spacing. Refined meshes do not show instabilities at this frequency.

for flow rates below the stable flow, necessitating time-averaging the results for use in sta-

bility analysis. The growth of the laminar separation bubble, which can act like disturbance

amplifiers due to recirculation within the bubble, is due to the reduction in flow rate due to

throttling. Yeh et al. [94] studied the amplification behavior of LSBs over an isolated air-

foil, finding sensitivity to upstream perturbations and strong convective amplification due

to Kelvin-Helmholz instabilities.

4.2.5 Stability Analysis Without Eddy Viscosity

The eigenvalues calculated without eddy viscosity (L) are shown in Figures 4.17, 4.18, and

4.19. From a general perspective, the same trends can be seen as with the eddy viscosity

cases (Lµt). However, without the extra damping from eddy viscosity, the modes are more

prone to instability and are higher in frequency. This outcome is expected, as the inherent

instabilities in the velocity profile are balanced by the turbulent momentum diffusion [78,
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79]. The Fine-level mesh without eddy viscosity experiences similar mode aliasing as seen

previously. Numerical instability modes starting near ωn = 15 grow with frequency and are

similar to those in Figure 4.16, but occur at a much lower frequency. A similar behavior is

observed with the SuperFine mesh, starting near ωn = 70. Mesh refinement has the effect

of dispersing the relatively weaker shear layer instabilities into non-normal eigenmodes,

which are damped via molecular viscosity over long time periods. The short-time domain,

discussed in Chapter 5, reveals the interactions of these non-normal modes over short times

leads to local amplifications and current theories on the self sustaining nature of turbulence

[78, 79].

The onset of instability without eddy viscosity follows similar modal developments

since the base flows are the same for both cases (Figure 4.20) - the size of the momentum

deficit in the wake region grows with operating point, causing the associated frequencies

to decrease. Concurrently, the extent of the leading edge separation is growing and the

suction surface boundary layer is becoming thicker and weaker due to the adverse pres-

sure gradient. Without eddy viscosity, communication between trailing edge and leading

edge instabilities experiences less damping. The resulting combined modes occur more

readily and the unstable modes for all operating points occur at higher frequencies (e.g.

ωn ≈ 3.5 vs ωn ≈ 0.3 for point 3). In contrast, eddy viscosity inclusion decreases the

potential for amplification via additional mass and increased damping, lowering the fre-

quency. With eddy viscosity, the leading edge and near-blade regions dominate the un-

stable modes. Away from the blade, turbulent mixing (represented with eddy viscosity)

damps out potential destabilizing modal content and reduces the frequency of excitation.

As frequency increases, the mode shapes with and without eddy viscosity become quite

similar for both the UltraFine and SuperFine mesh levels.

In Section 4.2.2, a cutoff frequency, ωn,cuttoff , was estimated to offer guidance on a

threshold where the perturbation frequency would have likely interactions with the turbu-

lent fluctuations, influencing whether to include or exclude the eddy viscosity effects in the
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Figure 4.17: Spectral decomposition results of operating points 1, 3, 5, and 7 for Fine mesh
resolution without eddy viscosity.
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Figure 4.18: Spectral decomposition results of operating points 1, 3, 5, and 7 for SuperFine
mesh resolution without eddy viscosity.
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Figure 4.19: Spectral decomposition results of operating points 1, 3, 5, and 7 for UltraFine
mesh resolution without eddy viscosity.

98



(a) Operating point 7,
ωn ≈ 0.95
(unstable)

(b) Operating point 5,
ωn ≈ 2.5,
(unstable)

(c) Operating point 3,
ωn ≈ 3.5
(unstable)

(d) Operating point 1,
ωn ≈ 5.5
(stable)

Figure 4.20: Stability modes of the UltraFine mesh without eddy viscosity for operating
point 1 (d), operating point 3 (c), operating point 5 (b), and operating point 7 (a), visualized
with contours of y-velocity. The domain is repeated periodically for clarity.
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stability modeling. Based on a comparison of the UltraFine results with and without eddy

viscosity, the stability modes beyond ωn ≈ 7.5 are nearly the same, indicating that the eddy

viscosity is not playing a strong role in shaping the modes, only in the damping applied.

The frequencies for the critical unstable modes of Lµt are near ωn = 0.5 and depend heav-

ily on regions of the flow where the turbulence time scales are expected to be quite short in

relation to the stability dynamics, further supporting the inclusion of eddy viscosity in the

linear operator for this case.

4.3 Stability Analysis Summary

The stability analysis of the 2D cascade flow, acting as a surrogate for more complex 3D

turbocompressor flowfields was conducted across a range of operating conditions and mesh

resolutions. This approach, conducted for the first time on representative turbocompressor

flowfields across the operating map, offers new insight into the underlying dynamical be-

havior of the flowfield and concurrence with developed understanding of the basic rotating

stall formation mechanisms. A two-pronged analysis approach was introduced here which

offered insights into the underlying instability mechanisms and highlighted the ability to

identify targeted flow areas for control system development. The two-pronged approach is

based on including and excluding the Reynolds stresses in the linear operator via an eddy

viscosity model and arises as a result of the relative frequency of expected turbulent fluc-

tuations compared to the characteristic frequencies of the stability modes. In cases where

the mode frequencies are low relative to expected turbulent fluctuations, the effect of the

turbulent mixing processes on momentum diffusion is sufficiently captured via the eddy

viscosity approach, as any small perturbations at low frequency will have limited influence

on the high-frequency turbulent fluctuations. However, as these frequencies become closer,

their impacts are no longer separable and their interactions fall into the non-linear terms of

the Navier-Stokes equations.
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In Chapter 2, the initial perturbations that lead to rotating stall were observed at ωn ≈

0.2. Stability analysis, conducted on a single-passage domain and including the Reynolds

stresses in the analysis, was performed across the operating domain and showed a transi-

tion from stable to unstable at operating point 3, which is consistent with the flow tran-

sition observed with the 7-bladed CFD model. Note that the single-passage CFD model

was stable in both steady and unsteady modeling approaches at operating point 3. The cor-

responding mode frequency that transitioned from stable to unstable found with stability

analysis, ωn ≈ 0.3, corresponded sensibly with the initial perturbation growth observed

with the 7-bladed unsteady CFD. When taken together, the stability analysis results, based

on single-passage CFD of a representative surrogate model, were able to indicate the flow

conditions which would lead to a spike-type rotating stall.

Linear stability analysis has demonstrated the ability to identify slowly decaying and

unstable modes in a surrogate turbocompressor flowfield. The associated frequencies of

these modes offers new insight into potential control strategies and has direct application

to identifying critical frequencies that might excite destabilizing structures over long time

frames. The short-time regime will be considered with resolvent analysis in the next chap-

ter. Assessment of the stability analysis results for various mesh refinement levels revealed

that linear stability analysis can be applied on coarser meshes with similar success. In

the surrogate model case, the results from the finest mesh were sampled on the coarser

meshes to better resolve the flowfield. However, subsampling and interpolation may not be

necessary in all cases.

An unexpected avenue of future research combines frequency-domain CFD modeling

and stability analysis. Recent developments in turbomachinery CFD see the increased used

of a pseudo-unsteady turbomachinery CFD modeling technique that casts periodic exci-

tations into the frequency domain, one such approach is the non-linear harmonic method

[72]. Typically, the frequencies considered are based on integer multiples of a characteristic

blade passing frequency. However, additional frequencies can be included in the model-
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ing, perhaps yielding improvements to the frequency domain results. An extension of the

work done herein is the use of stability analysis, and as will be seen, resolvent analysis,

to identify critical frequencies that could be included in non-linear harmonic modeling,

particularly since the destabilizing frequencies may not be integer multiples of blade pass-

ing frequencies (the common modeling choice). Knowing a-priori critical fluid-system

frequencies offers new approaches to evaluating blade-row coupling and the time mean

behavior of a flowfield with marginal stability.
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Chapter 5

Resolvent Analysis

5.1 Overview and Method

Resolvent analysis [95, 96, 97, 78, 77] may be considered an evolution of linear stability

analysis that includes not only the long-time instabilities present in the flowfield, identified

via linear stability analysis, but also short-time instabilities that can be associated with the

interaction of non-normal eigenmodes and self-excitation. Mathematically, the resolvent

operator, defined in Equation (5.4), is a linear operator that describes how a dynamical

system amplifies complex inputs (i.e. harmonic inputs with or without growth or decay).

Analysis of the operator, similar to analyzing the eigenmodes of the linear operator L with

linear stability analysis, provides insight into the system and enables identification of the

most responsive system modes. A key feature of resolvent analysis is the identification

of input/output mode pairs, offering the ability to identify specific flow structures to ex-

ploit with control. Much of the prior focus of resolvent analysis has been on identifying

self-excitation mechanisms for turbulence [98, 78, 95] and improvements in turbulence

modeling [99]. Thus far, applications to engineering challenges have been limited [47].

Herein, resolvent analysis is used with two objectives: to augment understanding of the

underlying mechanisms for rotating stall formation in turbocompressors, and to identify
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promising forcing-response pairs that can be leveraged for control.

5.1.1 Background

Resolvent analysis follows a similar formulation to stability analysis, but reconsiders the

terms in Equation (4.6), reproduced here as

∂û

∂t
= L(u, p̂) +N (u, f̂), (5.1)

Instead of omitting the non-linear and forcing terms, as with linear stability analysis, re-

solvent analysis retains these as potential forcings to the linear system in an input-output

dynamical systems framework. Taking the discrete form of (5.1) for the linear terms,

B
∂v̂

∂t
= Lv̂ +N (u, f̂), (5.2)

and then taking the Laplace transform,

L

{
∂v̂

∂t
= Lv̂ +N (u, f̂)

}
=⇒ λv = Lv + g, (5.3)

where v is the Laplace transform of v̂, g is the Laplace transform of N (u, f̂), and λ

has replaced the traditional Laplace variable, transfers the N-S equations to the frequency

domain. Note again, as with stability analysis, the same outcome can be found by assuming

the perturbations to have the form û = ueλt, with potential nonlinear and external forcing

perturbation terms of the form f̂ = feλt, and then casting these into the Navier-Stokes

equations, recalling that λ = σ + ωj and the underbar refers to a to-be-determined spatial

coherence. Rearranging equation (5.3) leads to

(λB− L)v = g

H−1v = g

or
v = (λB− L)−1g

v = Hg

(5.4)
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where H = (λB − L)−1 is considered the resolvent operator of the Navier-Stokes linear

operator in an input-output form and should not be confused with H of Chapter 4. Based

on the same foundational formulation from linear stability analysis, the resolvent operator

has the nominal flow embedded within its structure and describes the harmonic flowfield

response, v, to harmonic inputs or forcing g, which can be either endogenous or exogenous.

Explicitly,H is a mapping of input to output for a given λ.

The objective for resolvent analysis, as implemented, is to investigate the embedded

transformation properties within H, identifying the input forcing mode(s) that lead to the

largest response mode(s). Singular value decomposition (SVD), a ubiquitous linear algebra

technique, offers a means to decompose the linear mapping of an operator (such asH) into

separate transformations [100]. The SVD ofH is

H = USV∗, (5.5)

where U and V are the left and right singular vectors of H, respectively, and S are the

singular values. Note that the singular vectors are ortho-normal and thatH−1 = VS−1U∗.

With this decomposition, Equation (5.4) becomes,

v = USV∗g or U∗v = SV∗g (5.6)

using the property that U∗U = I, where I is the identity matrix. The inputs, g are lin-

early mapped onto the right singular vectors,V∗, which correspond with the principle input

directions of H. Each principle input direction is amplified by its corresponding singular

value and the result is mapped back onto the output via the left singular vectors, U. The

magnitude of the singular value corresponds with the gain of each mode pair. For max-

imum gain, the forcing should match the form of the right singular vector corresponding

to the largest singular value. In that scenario, the response will be the corresponding left

singular vector. Symon [101] showed that when there is only a single dominant eigenmode
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and forcing near its eigenfrequency, the left singular vectors (the output modes) correspond

with the eigenvectors of the forward-in-time operator, and the right singular vectors (the in-

put modes) correspond with the eigenvectors of the backward-in-time, or adjoint operator.

If the temporal forcing behavior, λ, is chosen as an eigenvalue of L, the resolvent opera-

tor is ill-defined since the terms in parentheses in Equation (5.4) sum to zero, resulting in

infinite amplification.

5.1.2 Method

Resolvent analysis herein consists of evaluating the SVD of the resolvent operatorH, which

is unique for each value of λ. Thus for any λ considered, a new operator must be formed

from λ,B, and L. The requisite L and B matrices are created via FaStaRT, as described

in Section 4.1.2. A common approach for resolvent analysis of incompressible flows is to

cast the Navier-Stokes equations onto a divergence free basis (e.g. [78]), eliminating the

pressure term, since it is not an independent parameter. An alternative approach [77, 101],

is to restrict the forcing and response in 2D via

HQ = CT(λB− L)−1C = CTHC, (5.7)

where

C =

1

0

. (5.8)

Importantly, the inversion of (λB − L) for H embeds the continuity equation before the

domain is restricted, otherwise conservation of mass would not be enforced. Recalling from

Section 4.1.2 that the discrete 2D incompressible Navier-Stokes equations can be reduced

to that acting on a single velocity component, there are multiple approaches to performing

resolvent analysis via a smaller dense linear operator. However, the computational cost of

Equation (5.7), which requires matrix inversion of L, or other approaches which reduce the
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size of L at the expense of matrix density and matrix inversion is excessive, particularly

when the size of L becomes large (e.g. O(1m× 1m)).

Two numerical methods lead to significant speed-up in calculating the SVD of the re-

solvent for incompressible flows: the first is avoiding the matrix inversion in the process,

which is described in the following paragraph, and the second is using seeded, randomized

SVD to calculate the singular values and vectors following the algorithm introduced by

Ribeiro et al. [102]. With randomized SVD, a small-sized test matrix Ω (Ω ∈ Rm×n where

n� m) is acted upon by the resolvent operator, that yields a sketch matrix, S,

S = HΩ. (5.9)

The randomized test matrix is seeded by amplifying areas of high velocity gradient, which

are more likely to have associated energetic structures [102] and yield a better sketch ma-

trix. The sketch matrix is QR decomposed to arrive at an orthonormal basis onto which the

fullH dynamics are projected. From this projection, a low rank approximation of the SVD

can be determined. Instead of calculating the full SVD, the randomized approach provides

significant computational savings.

Recalling from Section 4.1.2 that L and B are sparse, and as such, H−1 is sparse

whereas, H is dense. However, as noted in Section 5.1.1, the SVD of H−1 = VS−1U∗,

thus inversion is not required, so long as the forcing and response can be restricted to just

the velocity space without compromising adherence to the conservation of mass. If only

the inverse resolvent operator is considered (H−1), which itself has not been inverted, then

for the maximal gain combinations, the smallest singular values are sought.

Restricting Forcing and Response

For incompressible flows, the density is invariant with time, leading to a positive semi-

definite matrix B, with zeros in rows corresponding to the continuity equations to enforce
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the constant density condition. It is this decoupling of pressure from density, and thus

temperature, that causes a need to restrict forcing to only velocity components (since the

pressure is dependent on the velocity field). The need to restrict forcing can also be seen

from a practical standpoint. The physical system is limited in frequency response by the

mass of the system. Since the response time of the system is much slower than the forcing

period, as forcing frequency increases towards infinity the forcing will begin to appear as

noise to the system. As such, it is expected that the gain from inputs to outputs will become

zero in the limit of frequency. Considering the resolvent operator, the limit can be described

as

lim
λ→∞

(λB−A) = λB =⇒ lim
λ→∞
H =

B−1

λ
. (5.10)

If B is positive definite, the values of H and thus the singular values trend toward zero,

matching expectation. However, semi-positive definite B is not invertible and the largest

magnitude terms inH will continue to increase with forcing frequency.

To remedy the non-physical behavior without inverting the matrices, a weighting is

applied. With positive semi-definite matrix B, as-described, the incompressible continuity

equation (corresponding to the bottom 1/3rd of L and B for 2D flows, as-implemented)

can be scaled by an arbitrary constant, q, without impact to the eigenvalues or vectors of L.

This arbitrary scaling is equivalent to

Q(λBv = Lv), (5.11)

where

Q =


1 0 0

0 1 0

0 0 q

. (5.12)

Forcing and response is restricted to the velocity components by replacing C in Equation
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(5.7) with Q, leading to

H−1Q = Q(λB− L)Q or HQ = Q−1(λB− L)−1Q−1 = Q−1HQ−1. (5.13)

The arbitrary constant, q, is chosen such that Q−1 ≈ C, in the sense that C eliminates the

pressure forcing and response contributions to the resolvent operator, and thus q must be

quite large and is chosen to be two orders of magnitude larger than max(|L|).

Energy Weighting

The SVD finds optimal modes in an l2 norm sense [100], while a natural choice for con-

sidering the development of perturbations is from an energy standpoint [76]. Following

Schmid [76] and Yeh [94] an energy norm between two vectors can be defined as

〈q1,q2〉 =

∫
Ω

EdΩ, (5.14)

where E is the energy density. For the incompressible flows considered herein, the energy

density depends only on the kinetic energy, and thus, the energy norm can be written simply

as

〈q1,q2〉 = q∗1Wq2, (5.15)

where W is a weight matrix, accounting for both the necessary energy weighting (density

in this case) and the spatial integration of the numerical scheme. Transforming the resolvent

operator,H, with

H 7→ Hw = W1/2HW−1/2, (5.16)

allows the energy norm to be computed using the SVD [103, 94]. The weight matrix,W,

is combined with Equation (5.13) to calculate the incompressible resolvent in sparse form.
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Boundary Conditions Restrictions

Mathematically, the SVD is finding the eigenvalues and eigenvectors of HH∗ and H∗H

for the left and right singular vectors, respectively, where the eigenvalues are the square of

the singular values. Physically, the SVD is finding solutions to the forward-time (H) and

backward-time (adjoint, H∗) equations simultaneously1. Due to the simultaneous solution

and the proximity of the boundaries to flowfield features of interest, it is important that

the boundary conditions are well-behaved in both the forward- and backward-time direc-

tions. While stability analysis was found to be robust with regard to boundary condition

implementation, the backward time aspect of resolvent analysis proved more difficult.

Under forward-time conditions, perturbations (û and p̂) are forced to zero at the inlet,

while at outlets ∇n (û and p̂) = 0 is enforced. Ideally, in backward time, perturbations

are forced to zero at the domain outlet (the inlet in backward-time) and at the domain in-

let are constrained via ∇n (û and p̂) = 0 (the outlet in backward-time). Positioning these

boundary conditions within ghost cells just outside the domain of L creates the desired for-

ward and backward boundary condition behavior and enables close boundary positioning

and smaller computational domains than would otherwise be possible. The approach is

discussed in more detail in Appendix C.

5.2 Optimal Forcing and Temporal Discounting

The use of SVD with the energy norm finds input-output pairs with the highest amplifica-

tion, considered optimal from the sense of maximum energy amplification. Forcing near

the complex eigenfrequencies of the system will lead to substantial amplification by forcing

natural system resonances. Commonly, a harmonic frequency sweep is conducted, evalu-

ating the response over many frequencies with zero gain in the forcing. To properly inform

1If the λ corresponds to a point where only single eigenmode is being excited, rather than multiple non-
normal modes, i.e. λ is close to an isolated eigenvalue, the leading left singular vector corresponds to the
eigenvector of the forward-time operator for that eigenvalue, and the right singular vector corresponds to the
eigenvector of the adjoint operator for that eigenvalue [101]
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the frequency range, a linear stability analysis must be conducted to identify both the fre-

quency range of interest and whether there are unstable modes to consider. Introduced by

Janovic [104] and further explored by Yeh [47, 94], the concept of temporal discounting is

considered, which stems from evaluating the time dynamics of an unstable system via the

Bromwich integral. The approach is to discount the dynamics, that is, to consider a trans-

formed system evolving faster than the most unstable eigenvalue. In terms of the resolvent

operator,

H = (λB− L)−1 =
(
ωjB− (L− σB)

)−1
, (5.17)

where σ is the discounting parameter and ω is the frequency. From this evolving system

reference frame, the dynamics of the now-stable system are evaluated. In practice, rather

than perform a frequency sweep along the line with σn = 0, i.e. purely harmonic forcing,

the frequency sweep is conducted assuming the forcing is growing at a faster rate than the

most unstable mode. This ensures that the time dynamics are properly identified at each

frequency, since zero-mean forcing may excite a mode that is not dominant, purely by

proximity to the forcing gain.

To clarify the conceptual understanding by way of example, consider two linear opera-

tors, An and Ann defined as

An =


0.2 + 1.1j 0 0

0 −.05 + 3j 0

0 0− .3 + 2.5j

 (5.18)

Ann =


0.2 + 1.1j 4 10

0 −.05 + 3j 0

0 0− .3 + 2.5j

 , (5.19)
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where Ann is a non-normal operator with the same eigenvalues as An. These two operators

have one unstable mode (ωn = 1.1) and 2 stable modes (ωn = 2.5, 3.0) and it is expected

that the unstable mode should dominate the response near the associated frequency. The

eigenvalues are shown graphically in Figure 5.2. Figure 5.1a displays the response of

operator An to forcing along constant gain lines. Evaluating their response (i.e. conducting

resolvent analysis) to forcing along a zero-mean curve (σn = 0) suggests that the highest-

frequency mode is the most responsive, and provides the most energetic amplification,

whereas both the lower frequency modes have lower responses. However, evaluating the

discounted frequency response shows the reverse to be true and the unstable mode will drive

response behavior. Yeh et al. [94] showed that the discounting approach was able to capture

the dominant time dynamics for such a system, even when forced with a zero-mean input.

Repeating the experiment with the non-normal operator, Ann, Figure 5.1b, demonstrates

how non-normality leads to mode interactions. The response mode at ωn = 2 is an order of

magnitude higher for the non-normal mode case, due to the coupled-excitation of multiple

non-normal eigenmodes at this frequency. Further, it can be seen that although the middle-

frequency eigenmode has the highest decay rate, the discounted frequency response of the

non-normal operator shows substantial contributions at that particular frequency, where

the normal operator experiences diminished response when compared with the lowest and

highest frequencies.

To gain a clearer picture of the effects of normality vs non-normality, the frequency

sweep can be conducted at many different gain levels, providing a contour map of response

(leading singular value) with forcing, Figure 5.2. Normal eigenmodes do not interact, thus

the response is inversely proportional to how far the forcing is from the eigenvalue, leading

to gain contour levels forming concentric rings about the eigenvalues (Figure 5.2a). For

non-normal eigenmodes, the response depends on interactions between modes, and can

lead to substantial amplification far away from individual eigenvalues (Figure 5.2b).

Temporal discounting can be considered a means to evaluate the system dynamics over
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(a) Normal Operator Response (b) Non-normal Operator Response

Figure 5.1: Example resolvent analysis of normal (a) and non-normal operators (b), when
evaluated with harmonic forcing (solid, red) and discounted forcing (dashed, black).

(a) Normal Operator Response

(b) Non-normal Operator Response

Figure 5.2: Example resolvent analysis response map of normal (a) and non-normal opera-
tors (b). Eigenvalues are shown as blue circles. Red line corresponds to sinusoidal forcing
response of Figure 5.1 and black dashed curve corresponds to a frequency sweep of the
discounted unstable operator.
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(a) Normal Operator Response (b) Non-normal Operator Response

Figure 5.3: Example resolvent analysis of normal (a) and non-normal operators (b) with
several temporal discounting values.

a characteristic time,

τ =
1

σ
, (5.20)

offering the potential to explore dynamical behaviors over very short times. As σ becomes

more positive, τ is reduced and the growth in forcing occurs much faster than the dynam-

ics of the system. In a normal system, Figure 5.3a, although the response is diminished,

the frequency of maximum amplification does not change. However, with a non-normal

system, Figure 5.3b, the frequency response becomes an aggregate of all the dynamics in

the system, as evidenced by the shift in peak response as σn grows. Studying the response

of non-normal fluid systems, Yeh et al. [94] found that although considering very short

time intervals with large σ lead to interesting system dynamic considerations, the temporal

behavior of the system was dominated by the modes corresponding to the largest σ values.

A final element for optimal forcing is the proximity of the second singular value to the

first. If the singular values are substantially separated in magnitude, it indicates a strong

modal dominance [100]. However, if the singular values are of similar magnitude, the

modes do not exhibit strong preference and are not unique [105]. Framed differently, when

the modes have similar singular values, the non-uniqueness of the forcing and response

modes makes discerning the dynamical behavior difficult due to uncertainty in the forcing
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(a) Normal Operator Response (b) Non-normal Operator Response

Figure 5.4: Example resolvent analysis of normal (a) and non-normal operators (b) with
the first 3 singular values shown.

and response. The first, second, and third singular values for the example operators are

shown in Figure 5.4. Notably, since the modes of the normal operator do not interact, the

singular values are the proximity of the forcing to the eigenvalues, as evidenced by the

distinct continuation (crossing) of the individual mode curves in Figure 5.4a. Only in the

proximity of the lowest eigenfrequency is there substantial, O(10x), separation between

the first and second mode. However, for the case of the non-normal modes, their interac-

tion has led to the existence of a dominant, combined mode across much of the spectrum,

demonstrating significant separation between the first two modes in Figure 5.4b.

5.3 Resolvent Analysis For Different Operating Points

The goals of resolvent analysis herein are twofold: describing how natural perturbations in

the flow become amplified during short time periods and identifying promising input-output

forcing pairs to leverage for control purposes. At its foundation, resolvent analysis applied

herein is based on the linearization of the dynamical equations about a nominal flow point.

Thus, substantial amplification via forcing may quickly invalidate the linearization due to

both changes in the base flow state and non-linear terms contributing to the dynamics.

115



5.3.1 Resolvent Analysis: Onset of Instability

Considering now the first objective, which is to understand how perturbations within the

flow may amplify and lead to global unsteadiness, discounted resolvent analysis was con-

ducted for the Fine and SuperFine mesh levels along constant σn = 0.6 and σn = 0.20 lines,

for Lµt and L, respectively. Chosen to allow direct comparison,σn = 0.6 and σn = 0.2 are

based on the maximum R(λ) for all SuperFine and Fine operating points. Selecting a dis-

counting parameter that is greater than the highest real part of the system eigenvalues means

that unless there are exceptional interactions between modes, all gain values are expected

be less than 1.0 because gain is relative to the forcing system, which is growing faster than

any of the modes of the system. In light of the computational load for resolvent analysis,

two approaches were taken for each of the mesh-viscosity pairs. The first used large fre-

quency steps to cover a broader range, up to ωn = 25, missing some of the detail when

several eigenvalues were present in a small band (e.g. ωn < 5). The second approach de-

creased the step size but only swept up to ωn = 5. Note that above ωn ≈ 15, the Fine-mesh

L stability results contain non-physical/aliased modes with positive real parts greater than

the temporal discounting, meaning that the gain profiles in this region do not necessarily

reflect the temporal behavior of the system.

Starting first with a resolvent operator built using the linear operator Lµt , which in-

cludes eddy viscosity, Figure 5.5 compares the resolvent results for the Fine mesh over

several operating points along the surrogate turbocompressor operating characteristic. The

leading singular values are rarely an order of magnitude greater than the second singular

value, indicating that the leading forcing/response modes are not strongly separated from

the secondary modes for most frequencies.

• Operating point 1: For values of ωn > 15, the curves of first and second singular

values begin to reveal normal-mode type behaviors (e.g. Figure 5.4a). A review of

the first and second forcing/response modes shapes in this region (ωn = 14) confirms

that the most energetic mode corresponds with a shear-layer mode along leading
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edge suction surface and in the wake region, while the second-most energetic mode

is a second shear layer mode along the pressure surface of the blade. These modes

are orthogonal modes. As frequency increases, the wake modes are more heavily

damped and lose prominence in the response, giving way to more shear lay modes

along the blade surface.

• Operating point 3 and 5: Above ωn ≈ 15,the curves of first and second singular

values begin to coalesce into a common curves. As seen with operating point 1, the

primary mode is a shear layer mode near the suction side of the leading edge in the

high shear region. A review of the second and third forcing/response modes in this

region (ωn > 15) confirms significant geometric content associated with the mesh

resolution and consistent with the non-physical modes shown in Figure 4.7.

• The large spike at zero frequency corresponds with the zero-frequency eigenvalues.

These arise due to the interpolation of the UltraFine results onto the coarser meshes

and are caused by velocity distributions that are difficult to support with coarser

mesh resolutions. It was found that omitting the interpolation step removed the zero-

frequency modes at the expense of capturing the wake modes. Through interpolation,

the coarser meshes were able to capture the wake dynamics more similarly to the Ul-

traFine mesh since the velocity field was mostly the same. However, in areas with

sharp gradients, such as near the leading edge, the interpolation was poor, leading to

the zero-frequency modes.

• The unstable mode of operating point 3 offers the highest response, which is to be

expected based on the eigenvalue review of Chapter 4. Resolvent analysis shows

an increased response at frequencies above the unstable mode up to a frequency of

ωn ≈ 2. Although several damped wake modes were evident at such frequencies,

the combined behavior identified via analysis is continued suction-side shear layer

modes near the leading edge.
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While similar, the SuperFine resolvent results (Figure 5.6) show a slight difference in

the frequency behavior of all operating points. Beyond the unstable frequency, a more grad-

ual decline in response is observed, where the response modes slowly transition from com-

bined leading edge/trailing edge modes to shear-layer modes near the separation bubble.

Maximum amplification for operating point 3 again occurs at the least stable eigenmode.

The response to forcing for ωn > 10 becomes almost uniform with frequency, suggesting

response is driven by strong non-normality. It will be shown that this plateau represents the

eigenmodes associated with the shear layer instabilities that arise near the leading edge due

to high incidence.

The resolvent forcing and response modes for operating point 3 at ωn = .6, correspond-

ing to near-peak amplification, are shown in Figure 5.7. The response modes are consistent

with the destabilizing developments described in Chapter 4, offering another view of the

process. However, when the response modes are combined with the optimal forcing modes,

a more detailed description of the leading structures for stall onset is provided. Referring

to Figure 5.7, the response mode is a vortical structure that covers the high shear region

of the leading edge. The forcing mode also spans the separation bubble region, indicat-

ing that this instability is self-feeding and optimally forced by perturbations to the leading

edge flowfield that once started will continue to grow. Comparison with the unstable modes

from linear stability analysis (Figure 4.15) suggests that this response mode is indeed very

similar to the unstable eigenmode identified via stability analysis.

Resolvent analysis results for the Fine mesh at higher frequencies present a leading sin-

gular value that is mildly distinct (1 < s1/s2 < 10). A review of these mode shapes reveals

that the geometric modes in the mesh, visible in Figure 4.7, do not show up in the primary

response mode. In fact, comparison of the forcing and response modes for the Fine and

SuperFine meshes (Figure 5.8) show very similar modal structures, providing a measure of

confidence in using the Fine mesh for rapid assessments of the forcing/response pairs. For

the flowfield investigated with the surrogate 2D model, the high frequency instabilities are
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(a) Full frequency range.

(b) Improved resolution low frequency range.

Figure 5.5: Resolvent analysis results for Fine mesh with σn = 0.6.
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(a) Full frequency range.

(b) Improved resolution low frequency range.

Figure 5.6: Resolvent analysis results for SuperFine mesh with σn = 0.6.
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centered around the leading edge shear region. Since the production of turbulent kinetic

energy up to this point in the flowfield is low, the linear operator with eddy viscosity (Lµt)

captures these modes as well.

The resolvent analysis results for the SuperFine mesh without eddy viscosity (linear

operator L) are shown in Figure 5.10 (with Fine results displayed in Figure 5.9). Stability

analysis indicated that the disparity in modes between L and Lµt diminishes after ωn = 7.5.

Resolvent analysis results show a similar response to forcing beyond the same frequency

for both linear operators. For all of the unstable operating points, the analysis results shows

strong responses to forcing along the blade suction surface, in accordance with the set

of unstable modes. The mode shapes coincide with areas where high eddy viscosity are

observed, Figure 5.11. Extrapolating the results of del Alamo et el. [79] and McKeon et

al. [78], these observed stability modes and resolvent response behaviors coincide with the

instabilities causing turbulent fluctuations.

5.3.2 Resolvent Analysis: Potential Forcing For Control

The linear stability results of Chapter 4 highlighted that the leading edge loading, and

subsequent shear layer and separation bubble development as the stage is throttled from

operating point 1 towards operating point 7 are the primary drivers for instability of the

surrogate turbocompressor model studied herein. Resolvent analysis identifies optimal en-

ergy amplification forcing-response mode pairs. The response modes represent regions

where periodic forcing may cause resonance and, at the least, causes an organized, co-

herent response. In 2D the organized periodic forcing results in vortical response modes,

which, by their nature, have a level of resiliance to perturbation.

Briefly considering the potential for resolvent analysis to be used in the design of a

stability control scheme, a simple study of several forcing frequencies was completed, with

the optimal forcing-response pairs shown in Figure 5.12 for operating point 5. From a

control standpoint, the objective is first to provide sufficient momentum diffusion through
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(a) Forcing, SuperFine mesh. (b) Response, SuperFine mesh.

(c) Forcing, SuperFine mesh. (d) Response, SuperFine mesh.

Figure 5.7: Resolvent modes for largest gain of operating point 3, at ωn = 0.6 with theSu-
perFine meshes. Contours of vorticity are shown with colors indicating alternating sign of
vorticity.
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(a) Forcing, Fine mesh, ωn = 30. (b) Response, Fine mesh, ωn = 30.

(c) Forcing, SuperFine mesh, ωn = 30. (d) Response, SuperFine mesh, ωn = 30.

Figure 5.8: Resolvent modes for Fine and SuperFine mesh, ωn = 30. Contours of tangen-
tial (y) velocity are shown.
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(a) Full frequency range.

(b) Improved resolution low frequency range.

Figure 5.9: Resolvent analysis results for Fine mesh with σn = 0.2 and linear operator L.
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(a) Full frequency range.

(b) Improved resolution low frequency range.

Figure 5.10: Resolvent analysis results for SuperFine mesh with σn = 0.2 and linear oper-
ator L.
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(a) Vorticity contours, symmetric scale.
(b) Turbulent viscosity ratio, with contour
lines of vorticity.

Figure 5.11: Resolvent analysis results for SuperFine mesh with σn = 0.2 and ωn = 1.2
for operating point 7. The resolvent response modes calculated by omitting eddy viscosity
coincide with the regions of high eddy viscosity indicating that the unstable, high-response
modes supply the necessary Reynolds stresses to balance momentum equations.

ω
n

=
15

ω
n

=
30

ω
n

=
60

Figure 5.12: Resolvent modes for operating point 5 for several frequencies, determined
with the SuperFine mesh. As frequency increases, the extent of the forcing and response
mode decreases.
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resonance-based mixing to suppress the onset of instabilities and then second, to provide

flow structures which may be more resilient to perturbations. For the study, 3 frequencies

were considered - ωn = 15, 30, 60. As frequency is increased, the flowfield extent over

which the response mode extends decreases. For ωn = 15, the response extends nearly the

length of the blade; at ωn = 45, the response is approximately 1/4th the blade, extending

over the region of instability identified at operating point 3; for ωn = 60, the response

extends over the separation bubble region. Optimal forcing follows a similar trend. The

optimal forcing is periodic and arcing away from the blade leading edge along the induced-

flow streamline in such a way that oscillations in the fluid coming around the leading edge

will excite a Kelvin-Helmholz instability along the suction-side shear layer.

Combining these results with the lessons of Chapter 4, the following observations are

made:

1. The high-shear region near the leading edge is the primary source of instability for

the bladed passage under study.

2. The velocity gradient, separation bubble, and weakened boundary layer along the

suction surface all contribute to the development of destabilizing modes, leading to

flowfield breakdown.

3. Beyond a frequency of ωn = 7.5, the response to forcing determined from resolvent

analysis nearly plateaus, with operating points 3, 5, and 7 all presenting similar mode

shapes centered around the high-shear region.

4. The plateau frequency range for forcing at the leading edge appears to extend quite

high, with all optimal modes anchored to the leading edge of the blade and arcing

upstream along the induced-turning streamline.

Resolvent analysis provides the potential for new information and insight into periodic

forcing and fluidic control schemes by providing not only the projected response to per-

turbations, but also optimal forcing locations to achieve the desired response. Chapter 6
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outlines a strategy for combining linear stability analysis and resolvent analysis for control

system development.

5.4 Resolvent Analysis Summary

Resolvent analysis was conducted on a 2D cascade flow across over several operating con-

ditions and mesh resolutions. This emerging approach was applied to the onset of insta-

bilities and the precursors of rotating stall, offering a new vantage point, additional infor-

mation, and support for insight into the underlying response to endogenous forcing and

the basic rotating stall formation mechanisms. The two-pronged approach, introduced in

Chapter 4, was further investigated using resolvent analysis. It was found that the instabil-

ity modes and resulting optimal response, determined without including the base Reynolds

stresses in the linear operator, was coincident with the region of maximal eddy viscosity,

a proxy for the necessary balancing force of the Reynolds stresses. This result serves to

highlight that the instability modes identified without eddy viscosity are those that support

the ongoing turbulent fluctuations.

Using the eddy viscosity-augmented linear operators Lµt and examining the optimal

forcing-response pairs served to illuminate the underlying amplification mechanisms re-

sponsible for rapid onset of instabilities of the surrogate turbocompressor model. For fre-

quencies with maximal gain at operating points 3, 5, and 7, the unstable eigenmodes are

the source of the large amplification observed in the resolvent analysis. Optimal forcing

modes for these cases was found with to significantly overlap the companion optimal re-

sponse modes, creating the potential for self-excitation due to the leading edge separation

and recirculation. The unstable nature of the leading edge modes makes initial excitation

inevitable, with self-excitation serving to amplify the response.

In Chapter 4, it was noted that the normal velocity gradient causes the linearized Navier-

Stokes operator to become non-normal. This result was observed with the development of
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numerous eigenmodes at frequencies above ωn = 7.5 that were non-orthogonal and caused

by the high-shear region near the suction side of the leading edge. A continuum of response

modes of increasing frequency and reducing wavelength was found, all with similar gain

when forced. For the leading-edge shear-layer modes, optimal forcing extended from the

leading edge upstream, following an arcing trajectory determined by the induced turning

of the blade. Resolvent analysis offers new insight into control strategies and approaches

by identifying optimal forcing-response mode pairs.
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Chapter 6

A Strategy For Design and Control With

Fluid Resonance

The turbocompressor aerodynamic design problem can be generalized as one that attempts

to manage the behavior of a 3D flowfield via imparted forces at the blade and endwall

surfaces, with the aim to achieve performance and range goals of the compression stage.

Discussed in Chapter 1, the design tradeoff matrix is dense with competing interests. How-

ever, stability, usable range, and very often efficiency are chief requirements that must be

met. These goals are challenged by either direct surface diffusion considerations, as in the

case of the 2D cascade and certain classes of compressor, or indirectly by surface diffusion

in the development of secondary flows that grow as the blade loading distribution is skewed

with throttling. With the development and application of new tools to assess the potential

for instability and identification of optimal forcing in turbocompressor and general flow

fields, a potential strategy is considered.

6.1 Control With Resonance

During the aerodynamic or control system design process, it is necessary to identify what

obstacles exist between where the design is now versus where it should be, relative to the
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requirements or specifications. These obstacles are the critical elements to address during

design iteration. As the aerodynamic challenge grows, the complexity and inter-connected

nature of the obstacles also increases. Identifying critical flowfield elements and the proper

geometric parameters to manage those can be a difficult task in the crypto-steady realm

[106]. The additional flexibility introduced with periodic forcing and the resulting flowfield

response can make this difficult task much more arduous. Stability analysis coupled with

resolvent analysis offer the potential to add significant clarity to the challenge of identifying

critical flow structures responsible for the onset of instability in turbocompressor bladerows

and stages and illuminating potential approaches to dynamically modify the underlying

deleterious flowfield elements.

6.1.1 Identification Of The Limiting Flowfield Features

Stability analysis of the surrogate model revealed that the critical modes crossing from

stable to unstable were low frequency modes, of large wavelengths, and significant mass

involvement. This conclusion was independent of whether the eddy viscosity was included

within the linearized operator, but was a conclusion found much more quickly by using

coarser meshes and the eddy viscosity approach. Studying the evolution of the stability

modes prior to and into instability (Chapter 4), it was determined that instability occurred

at the confluence of two related, but independent flowfield elements. The wake mode,

associated with shear layers of the trailing low-momentum zone falls in frequency as the

cascade is throttled due to the slow growth of the wake with reductions in flow. Similarly,

a separation at the leading edge forms and grows rapidly with throttling, yielding a quickly

falling natural frequency. When these two damped modes lock on together, a combined

leading edge-wake convective Kelvin-Helmholz instability causes rapid intensification of

perturbations, leading to flow separation from the aft portion of the blade. The separation

then proceeds up the blade as a consequence of the weak suction-side boundary layer.

Resolvent analysis confirmed that the most energetic response modes are indeed Kelvin-
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Helmholz shear layer modes along the suction side of the blade, starting at the leading edge.

The optimal forcing for these response modes corresponds with a region extending from

upstream to approximately 50% chord, creating the likelihood for strong amplification (see

Figure 5.12).

6.1.2 Identifying Optimal Modes For Control

Following identification of the critical flow structures responsible for instability, it is nec-

essary to determine if any of the natural modes can be amplified via resonance to mitigate

undesirable flowfield features. In the case of the 2D surrogate model, the increase in re-

quired flow turning around the leading edge as the stage is throttled causes an excessive

adverse pressure gradient, resulting in a leading edge separation bubble. Following the

separation bubble, continued flow turning along the blade creates a thick boundary layer.

Management of these flowfield features has been explored for isolated airfoils at high an-

gles of attack. A classic approach is through momentum injection, as the weak boundary

layer is unable to overcome the adverse pressure gradient. Momentum injection can both

energize the boundary layer and enhance turbulent mixing along the shear layer.

Here, the use of resonant structures to rapidly intensify and augment turbulent mix-

ing and momentum diffusion is considered with the objective to delay the onset of local

instabilities, thereby delaying the onset of global instability in the form of rotating stall.

Operating point 5 was chosen as the nominal flow point about which to attempt flow sta-

bilization, with the goal of allowing the cascade to reach maximum pressure rise prior to

instability. Reviewing the leading resolvent forcing-response pairs, shown in Figure 6.1,

reveals many candidates across a spectrum of frequencies that have the potential to excite

desirable flow structures near the leading edge. As shown in the resolvent frequency sweep

for the Lµt cases, Figure 5.10, modes at higher optimal frequencies have sufficient sep-

aration between the first and second modes to avoid uncertainty in the forcing-response

pair.
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Figure 6.1: Resolvent modes for operating point 5 for several frequencies. As frequency
increases, the extent of the forcing and response mode decreases.
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In many practical situations, the forcing must be limited to on-wall or near-wall forcing,

as these offer the only viable locations to apply forces to the fluid1. In two dimensions, the

potential for forcing locations is quite limited. Based on an assessment of the optimal

forcing locations in Figure 6.1, forcing at the leading edge of the blade was chosen. Two

different excitation frequencies were selected, which varied over their chord-wise extent:

ωn = 30 and ωn = 60. The higher frequency forcing exhibited a response closer to the

leading edge of the separation bubble and a much smaller chord-wise extent of response

prior to being damped, whereas the lower frequency demonstrated forcing throughout the

separated region.

6.2 Forced Response

Using the selected location and frequencies for forcing, the computational mesh was mod-

ified to provide a domain inlet at the leading edge of the blade. The extent of this inlet

was relatively small, ∼ 4% blade thickness, shown in Figure 6.2. To model the forcing,

an oscillatory velocity boundary condition was implemented where the velocity direction

was set normal the solid wall and a sinusoidal velocity profile applied. The RMS velocity

was ∼ 15% that of the freestream velocity, resulting in ∼ 0.4% peak-to-peak variation in

passage flow rate. Note that in the vicinity of injection, the flow has accelerated around the

leading edge of the blade creating much higher local velocities (refer to velocity profiles

in Figure 4.4). Contours of velocity magnitude are shown in Figure 6.2. Similar to the

previous single-passage modeling, URANS CFD modeling was completed with the S-A

turbulence closure, which has proven to be sufficient at capturing salient time-dependent

behaviors [109, 110].
1As discussed by Wu [37], acoustic-vortex resonance offers a means for control with acoustic forcing.

While not always directly practical, this approach has been demonstrated in several instances without the
stability/resolvent framework [107, 108]. The stability/resolvent framework offers a rapid means to identify
critical frequencies and provide a description for the phenomena observed experimentally
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Figure 6.2: Leading edge slot location for harmonic forcing of the flowfield near the LE
separation bubble shown with contours of velocity magnitude [m/s].

6.2.1 Overall Results

Operating point 5 was modeled with several forcing frequencies, ranging from ωn = 5

to 60. With a resistance characteristic implemented for the outlet boundary condition,

monitoring the time-mean flow offers insight into the flow turning and pressure recovery

behavior of the cascade under forcing. The change in flow rate is graphed as a function

of forcing frequency in Figure 6.7, where the flow response shape is reminiscent of the

lock-on behavior seen with periodic control studies, such as for a cylinder in cross flow

(Appendix B). The maximum increase in flow rate occurred with forcing in the range of

22.5 ≤ ωn ≤ 30. It is hypothesized that the peak flows are achieved with forcing when the

response mode frequencies are sufficiently high to avoid harmonic excitation of the destabi-

lizing lower-frequency modes and impart enough momentum exchange in the targeted flow

region, while being sufficiently low that their response region is broad enough to properly

manage the separation and strong shear near the leading edge through a larger response

structure. A similar conclusion can be drawn from the results presented by Yeh. et al. for

a fully separated airfoil [47], where higher frequency forcing, targeted at the separation
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Figure 6.3: Change in flow rate through single-passage domain with forcing via leading
edge oscillitory blowing.

point, was less effective than lower-frequency forcing with larger response structures. The

ωn = 30 case was chosen for further study, although from an implementation standpoint,

it is expected that lower-frequency forcing may prove easier to integrate into a robust ap-

proach. Operating points 1 through 7 were modeled under ωn = 30 forcing, with notable

improvements to the overall, time-mean performance of a single passage, shown in Figure

6.4. For the surrogate model, the pressure rise maximum occurs, in large part, due to the

growth of the wake region and lack of flow turning as a result. Forcing with ωn = 30

slowed the growth of the wake region and eliminated the leading edge separation. Forc-

ing at higher frequencies, such as ωn = 60, does not appear to have a substantial impact

on the downstream flowfield and did not provide the same improvement in leading edge

separation or the overall performance of the cascade.

Snapshots of the time-dependent flowfield at operating point 5 are shown in Figure

6.5 for both the ωn = 30 and ωn = 60 forcing, revealing the oscillatory vortex structure

matching the expected response mode. The main objective, however, was to reduce the

size of the separated zone near the leading edge for the target operating point, as this was

deemed critical to managing the onset of instability. The time-history for several forcing

periods was averaged to determine the time-mean behavior of the single-blade model with

forcing. Velocity magnitude results are shown in Figure 6.6 for operating point 5 and

ωn = 30, compared with the baseline unforced case, also time-averaged, where the size
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Figure 6.4: Forced response URANS CFD operating points (hexagons) with a single-
passage domain compared with stability analysis operating points (triangles) computed
with steady and unsteady CFD.

of the separation has been significantly reduced. From the velocity contours, it is also

apparent that the velocity gradient has been reduced for the case relative to the unforced

case, reducing the underlying driver to amplify disturbances.

6.2.2 Modeling With The 7-Blade Domain

The 7-bladed domain, introduced in Chapter 2, was modified to include leading edge forc-

ing for all blades2. Boundary conditions and modeling selections were consistent with the

forced single-blade domain presented in Section 6.2. Time-averaged results of the forced

flowfield for the 7-bladed domain are compared with the single-bladed domain with and

without forcing and the prior unforced 7-bladed domain results in Figure 6.7. For direct

comparison the same operating condition was computed with forcing turned off, demon-

2It is noted that forcing with every blade may not be necessary, since the forced flowfield will act to damp
out perturbations. While not studied herein, it is expected that the more effective the forcing is to delay
instability onset, the less likely it will be needed on every blade. A tradeoff will likely occur between overall
effectiveness of the control approach and the difficulty to implement the control approach. Such a forcing
would be analogous to having a cascade where there was a period variation in the blade geometry
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(a) Leading edge forcing, ωn = 60. (b) Leading edge forcing, ωn = 30.

Figure 6.5: Comparison of normalized vorticity with resonant mode forcing at ωn = 60 (a)
and ωn = 30 (b) for operating point 5. With forcing, the vortical structures are entrained
and follow the wall due to the Coanda effect, aiding in the necessary near-wall mixing.

(a) Leading edge forcing, ωn = 30. (b) Baseline case with no forcing.

Figure 6.6: Comparison of velocity magnitude (a) with and (b) without forcing for operat-
ing point 5. The zero y-velocity contour is shown in magenta, indicating that with forcing
the size of the recirculation zone has been significantly reduced.
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Figure 6.7: Forced response URANS CFD operating point (circle) with a 7-bladed domain
compared to the same domain without forcing (upright triangle) and single-passage domain
results of Figure 6.4.

strating the difference between forcing and un-forced behavior for the 7-blade cascade.

6.3 Summary

In this chapter, a proposed approach for utilizing the tools developed herein has been out-

lined. Starting with the combined stability analysis and resolvent analysis, the critical flow

structures causing instability and limiting cascade pressure rise were identified. The resol-

vent modes were then canvased, looking for response flow structures with the potential to

alter the underlying instability-inducing flowfield features. In this instance, the objective

was enhanced momentum diffusion via augmented mixing. Shear layer instabilities were

leveraged via periodic forcing near the leading edge to manage the size and extent of the

leading edge separation, short-circuiting one of the two critical flow structures contribut-

ing to global instability. The magnitude of response varied across the range of forcing

frequencies studied, revealing a strong preference for forcing near ωn = 30. Resolvent

analysis modes near this frequency show strong response behavior over a region including
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the separation bubble and continuing downstream weakened boundary layer.

The potential of this approach was demonstrated through URANS modeling of the

forcing behavior with a single passage model, confirming that the recirculation zone was

markedly reduced and periodic forcing yielded a more robust operating characteristic. To

confirm the delayed onset of separation, flowfield forcing was applied to the 7-blade com-

putational model and evaluated with URANS at a previously unattainable pressure rise-

flow rate combination. When forcing was turned off under otherwise identical conditions,

rotating stall developed.
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Chapter 7

Summary and Conclusions

This research was motivated by the seemingly simple question of whether periodic flowfield

excitation can improve the time-mean flowfield, and thus energy transfer within a turboma-

chinery blade row. Three research objectives were identified as necessary to address such

an inquiry:

• Determine causal connections between the observed dynamical stability and the

mechanisms at play (Ch: 2, 3, 4, 5);

• Establish a conceptual framework and technique for characterizing the unsteady

flowfield response to periodic excitation, with the goal of linking critical flow mech-

anisms to their frequency response (Ch: 3, 4, 5);

• Determine whether coherence exists in pre- and post-stall flowfield response to pe-

riodic excitation that can be leveraged for enhanced compressor performance and

operability (Ch: 4, 5, 6).

These objectives were synthesized into 3 interrelated research questions, which provide a

foundation for tackling this complex problem:

1. What is the temporal response of the secondary and/or coherent flow structures to

periodic excitation for a blade row under stable conditions?
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2. How does the temporal response of the secondary and/or coherent flows to periodic

excitation vary with blade loading (or equivalently, constant-speed throttling)?

3. What links, if any, exist between the secondary and/or coherent flow of the pre-stall,

stable regime, and the unstable post-stall regime?

These research questions center on characterizing the dynamical response behavior of a

complex fluid system over varying operating conditions. Prior hierarchical dynamical mod-

eling of turbomachinery systems was outlined in Chapter 1. First, the overall compression

system model introduced by Moore and Greitzer was outlined, introducing the concepts

of global stability and rotating stall, the latter of which acts as a relief valve by matching

system characteristics by allowing circumferential variation in the compressor operating

points. The overall system provided a means to demarcate the stable and unstable regions

from a compressor operability standpoint. Second, the modular overall system modeling

approach of Spakovsky is considered, which breaks the compression system into the indi-

vidual components and is built as an extension to the Moore and Greitzer modeling. Res-

olution of the system dynamical behavior is improved since sensitivities to the individual

component performance behaviors are included in the modeling, allowing stability-critical

components and sensitivity to their performance to be determined. The work presented

herein represents the next step into the dynamical behavior of the compression system. By

directly studying the detailed flowfield of a compression system, the critical flow struc-

tures responsible for instability and reduced stability margin can be identified and through

appropriate measures addressed, mitigated, or exploited for enhancement.

The critical flow structures within a turbocompressor can be quite complex and 3-

dimensional. To focus this research, a surrogate 2D model was developed that retains

the necessary elements to capture aspects of rotating stall (Ch. 2). The behavior of a

2D cascade, considered with several azimuthally periodic domains, was modeled with

steady RANS and URANS simulations in the pre-stall, post-stall, stall-formation, and stall-

destruction operating regimes (Ch. 2 and 3). These datasets facilitated the introduction of
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a new perspective for analysis: the passage-based view (Ch. 3), which constructs a control

volume around a bladed passage. Using the passage-based view to analyze established ro-

tating stall on the 2D cascade highlighted the limit-cycle behavior of the stall process and

the trajectory an individual passage takes relative to the axisymmetric operating character-

istics of the cascade and the cascade time-mean.

Detailed investigation into the stall formation process from blade-periodic stable con-

ditions to rotating stall clarified the generalized understanding of spike-type stall inception

to include different phases of disturbance growth, including both exponential and linear

regions. A similar observation is made for stall destruction. The following points are em-

phasized:

1. During time-periodic 2D cascade rotating stall, a passage flowfield experiences stall

as a transient event due to perturbation from a neighboring passage. Following the

transient, the passage returns to the stable axisymmetric characteristic where it re-

mains until the next disturbance of significant magnitude is able overcome the stable

point’s resilience to perturbation, restarting the transient event.

2. When not locally experiencing the transient rotating stall event, passage operation

temporarily returns to the axisymmetric characteristic. Creating a cascade that is

resilient to rotating stall formation requires a strategy whereby the resilience to per-

turbation is improved across the stable pressure rise characteristic.

3. Using individual passage control volumes to assess the transition of the passage aero-

dynamic characteristics and the vortical flow structures during the stall cycle provides

a novel view of the limiting mechanisms and their trajectory through the flow-force

or flow pressure space, which may prove useful for future control strategies.

4. A 7-bladed periodic sector cascade modeled with a ‘time-marching’to steady-state

RANS solver adequately captured overall rotating stall characteristics and the onset

of instability sufficient for rapid stage design development, though the detailed flow-
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field from steady-state modeling in the post-stall regime is inadequate for control

system development.

5. The transient from a stable to an unstable throttling condition has been modeled with

URANS and, when combined with the passage-based view, sheds new light onto

the rotating stall formation process, emphasizing the importance of managing early

exponential growth period.

6. The transition from stable, blade-periodic flow to rotating stall traverses periods

of slow, linear growth and periods of rapid, exponential disturbance growth. The

passage-based view enables characterizing the time constants of these growth and

decay periods.

7. The passage-centric view provides clarity on the fluid dynamics of forming and estab-

lished rotating stall, informing the application of modern and developing data-driven

diagnostic tools for novel control development.

Linear stability analysis (Ch. 4) was adapted to turbocompressor flows and applied

to the surrogate model flowfield under several operating conditions. A time-mean flow

serves as the basis for the stability analysis, which only solves the requisite steady Navier-

Stokes equations with the inclusion of the non-linear Reynolds stress terms. Herein, two

approaches have been considered - first, global instabilities act on timescales much longer

than the turbulent variations, and thus perturbations respond directly to the Reynolds stresses,

which are captured using an eddy viscosity model. A second approach considers that

global instabilities act on timescales similar to the turbulent structures responsible for the

Reynolds stresses, and therefore do not respond directly to the stresses.

Linear stability analysis results shows the transition to global instability corresponds

with the onset of instability as-indicated by the first approach, which includes the effects

of Reynolds stresses via an eddy viscosity model. The second stability analysis approach

emphasizes areas of local instability which were ultimately responsible for producing the
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Reynolds stresses, and offered significant insight in approaches for control through exci-

tation of these local instabilities. For the 2D surrogate model, the transition to global (or

long-time) instability corresponds with the formation of two separate flowfield features.

The first is a region of local strong shear near the leading edge and along the suction side of

the blades and the second is the blade wake region. It was found that transition to instabil-

ity is precipitated by the leading edge separation growing sufficiently that local instabilities

are able to excite the wake mode, causing a global transition to unstable conditions. The

large-scale instability occurs at relatively low frequency, which is nearly the same as that

of the first exponential growth period of early-stage rotating stall inception (seen in Ch 3).

Comparison of the stability behavior across multiple operating conditions reveals a strong

sensitivity to the base flow state. As the flow rate crosses the transition point to instability,

unstable modes appear.

Resolvent analysis (Ch. 5), considered an extension of stability analysis to short-

time-duration, was introduced to turbocompressor flows via the surrogate model for both

Reynolds stress scenarios. Resolvent analysis provides the optimal input forcing velocity

field to achieve an output field for a given forcing frequency. The difference between linear

stability analysis and resolvent analysis is that closely-located eigenmodes that are non-

orthogonal can yield a short-duration disturbance amplification in an otherwise stable flow.

The resolvent analysis yielded results further supporting the conceptual understanding of

rotating stall inception. A recirculation zone is created near the leading edge due to the

nominal flow state. Owing to its ability to feed back disturbances, the recirculation zone

can act as a perturbation amplifier, which when coupled with the eigenfrequencies of the

wake mode, can rapidly intensify, causing strong vortex creation and separation. Together,

linear stability analysis and resolvent analysis have yielded a more complete description of

the rotating stall inception process. The second scenario, in which the base flow Reynolds

stresses do not directly influence the perturbations, was also considered. These results

demonstrated that the strong shear regions of the base flow are unstable and yield signif-

145



icant local amplification, which drives mixing and Reynolds stress production. Through

stability and resolvent analysis, the natural resonances of the flowfield can be identified

and leveraged to achieve delayed stall onset by changing the response of the flowfield to

perturbations.

When considering the translation of instability forming mechanisms to the improve-

ment of nominal flowfield behavior through periodic excitation, several engineering ques-

tions arise regarding the viability of forcing:

4. What are the critical frequencies needed for excitation? (i.e. what are the frequencies

required for excitation of desirable flow structures)

5. Where can the flowfield be excited? (i.e. what are the areas of possible excitation)

6. Where should the flowfield be excited? (i.e. what are the areas of possible excitation)

Answers to these questions provide the foundation for an effective control approach.

For specific applications, additional practical questions that build on this foundation are re-

quired for engineering design. Introduced here (Ch. 6), the coupling of resolvent analysis,

linear stability analysis, and the two Reynolds stress considerations offers a clear poten-

tial pathway to exploit fluid resonance for enhanced behavior. Through targeted super-

excitation of instabilities or excitation of damped resonance modes of the base flow, a new

base flow can be realized that experiences enhanced stability (Ch. 6). Using the surrogate

model as a foundation, linear stability and resolvent analysis-driven decisions were used to

identify and force the flowfield, which demonstrated enhanced resilience to stall develop-

ment. To facilitate the application of linear stability and resolvent analysis to engineering

flows, a tool, which takes general CFD results data in the form of CFD General Notation

System (CGNS) files as input and produces linear stability and resolvent analysis results,

has been created (detailed in Appendices C, D).
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Appendix A

Rotating Stall Similarities With

Dynamic Stall

A.1 Dynamic Stall Background

As the angle of attack (AOA) of airfoil is increased, a critical (stalling) angle is reached

beyond which the flowfield around the airfoil breaks down, resulting in a major loss of lift

and increased drag. However, if the same airfoil is dynamically pitched upwards 1, the

critical stalling angle can be markedly increased, resulting in a temporary increase in lift

without significant drag penalty ([111, 33, 112, 113, 114]), shown in Figure A.1a from [3].

As McCroskey [34] notes, the subsequent stall that does occur with a dynamically stalled

airfoil is typically “more severe and more persistent” than static stall. As will be shown in

Section 3.1, the dynamic stall phenomenon has direct parallels with the observed behavior

of rotating stall in a compressor blade row.

Figure A.1 from Mulleners ([3]) shows that, under dynamic stall, small vortical struc-

tures are developed along the shear layer on the suction side of the airfoil. Wall vorticity

1Dynamic pitching can take various forms; the most common are oscillatory pitching (with AOA(t) =
AOAmean+A cos (ωt)) and ramp-then-hold (whereAOA = AOAstart+At until a target AOA is achieved,
after which the angle is held constant)
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(a) Lift and moment coefficients for
static and dynamic stall

(a) (c)

(e) (f)

(h) (l)

(b) Sketches of the dynamic stall cycle

Figure A.1: Dynamic stall cycle of an isolated airfoil depicted through lift (top) and mo-
ment (bottom) coefficients (left) against angle of attack (from Mulleners [3]). With the fluid
behavior sketched on the right (adapted from Mulleners [4]). Dynamic movement of the
airfoil is able to extend to much higher angles of attack before significant lift degradation as
compared to the static angle behavior. Note that the letters left and right do not correspond
to one another here.

flux is increasing early on, leading to continued strengthening of the vortical structures and

lift enhancement ([2], points a-c in Figure A.1a). Instability in the shear layer results in

viscous interactions causing continued merging until a large-scale leading edge vortex is

formed at high angle of attack ( [2, 3], point d in Figure A.1a). This vortex continues to

grow in strength until entrained flow eventually pinches the leading edge vortex off the

airfoil, transitioning from a developing stall mode to a fully stalled mode [3]. If the airfoil

is oscillating, a recovery cycle is initiated, which ends when the flow is reattached. The

recovery cycle is not strongly dependent on the airfoil geometry or the reduced frequency

of oscillation ([112], [4]). Instead, two developments are necessary for recovery: first, the

stalled flow needs to convect over the upper surface of the airfoil, and second, the bound-

ary layer needs to re-establish the vorticity flux ([115]). The characteristic time for these

processes is the chord-based free-stream convection time.
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Mulleners subdivided the dynamic stall process into two regimes based on the growth

rate of the shear layer height (Figure A.2b, from [4]). Shear layer growth rates were cor-

related with airfoil pitching angular velocity at the steady state critical stalling angle, re-

vealing a dependence of the initial slow-growth, high-lift phase on rate of angular change

(Figure A.2a, from [4]) 2 . The fast-growth phase of the shear layer, characterized by a

significant reduction in lift and increases in drag, is only correlated with the time for the

flow to convect over the airfoil surface and is of O(1).

A.2 Rotating Stall as Dynamic Stall With Oscillatory Air-

foil Motion

The flowfield views at critical points in mild stall reveal structures similar to those observed

in dynamic stall for isolated airfoils. With the isolated airfoil (Section 1.3.2), a large leading

edge vortex develops as the flow angle relative to the blade continues to increase. With the

strong vortical flow comes a necessary pressure gradient. However, in the presence of

the adjacent blade wall, the flow curvature necessary to sustain the vortical flow pressure

gradient is unachievable,which results in the adherence of the flow to the adjacent blade,

effectively blocking the passage, rapidly diverting flow to the next passage.

This newly created connection with the isolated airfoil provides a useful framework to

consider potential opportunities for leveraging the dynamical stall behavior. For dynamical

stall of an isolated airfoil, the flowfield experiences a temporary period of enhanced lift

without a large increase in drag, offering enticing potential. Mulleners [4] correlated the

time period of delayed stall and enhanced lift to the angular velocity of the airfoil as it

passes the steady stability limit. An analogous parameter in cascades can be determined

2Though not directly discussed in Mulleners ([4]) , one might consider that Mulleners’ parameter, α̇ssc
U∞

,
is the ratio of an airfoil speed parameter (α̇ssc) to the freestream velocity (U∞). For comparison with other
airfoils, it may be worthwhile to explore whether this is more informative with a sinαss term as well, which
would account for the leading edge velocity in the streamwise direction.
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(a) Domain residence times (defined in A.2b) as a function
of angular velocity

(b) Height of the shear layer with normalized time.

Figure A.2: Decomposing the dynamic stall event into two distinct phases[4]
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based on the rate of flow angle change.

For the mild stall case, a flow angle probe was placed 1/2 chord upstream of a central

blade during a stall cycle. The flow angular velocity is determined from the discrete time

derivative (via central differencing), shown in Figure A.3, and reveals that the change in

flow angle occurs more rapidly than the data from Mulleners (see Figure A.2), suggesting

that the time period of enhanced lift (∆t1) under rotating stall, without accounting for the

change in vortical behavior, is diminished. The deduced ’instantaneous effective unsteadi-

ness’, α̇ssc
U∞

, value of ~0.045 is similar to values Mulleners examined, suggesting that mild

stall conditions represent the potential for experiencing temporary lift enhancement in the

absence of neighboring blades.

Deep stall presents a very different flowfield development, shown in Figure 3.10. With

strong reversed flow, the adjacent passage flowfield contributs more significantly to the stall

development within a given passage. Note in Figure 3.10a that images c and d correspond

to nearly the same flow state, translated by one passage, whereas under mild stall (Figure

3.9a images b and e correspond to flow states that are translationally invariant. Deep stall

conditions cause stall to propagate more rapidly than mild stall as the subsequent passage

flowfield is degraded earlier in the stall process. The period for deep stall is ~56% that of

the mild stall case (matching the experiences of forming and developed rotating stall, as

discussed by Day [11]). Similarly, an evaluation of the deduced ’instantaneous effective

unsteadiness’, α̇ssc
U∞

reveals a value of ~0.9, nearly two orders of magnitude higher than the

cases of Mulleners [4], and suggesting that the potential for lift enhancement via dynamic

stall under these conditions is unlikely to exist.
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(a) Mild stall flow angle variation during rotat-
ing stall.
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(b) Mild stall flow angle rate variation during
rotating stall.
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(c) Mild stall flow angle rate variation versus
flow angle during rotating stall.
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(d) Enlarged A.3c near the onset of instability
(red dashed line).

Figure A.3: Upstream flow angle variation for mild stall for comparison with A.2a from
Mulleners [4]
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Appendix B

Observations Regarding Lock-On and

Resolvent Analysis

The lock-on of a forced fluid system has been studied in many different applications over

the years. Resolvent analysis offers insight into why lock-on occurs and the range of po-

tential lock-on. Symon [101] investigated the cylinder in cross flow as an example case

for resolvent analysis by exploring subcritical, critical and supercritical Reynolds numbers.

A similar case is presented via analysis with FaStaRT in Appendix D, with representative

resolvent forcing plot shown in Figure B.1. In this case, the response is dominated by a sin-

gle mode associated with the least stable eigenvalue that corresponds with vortex shedding

mode.

Symon’s resolvent analysis results at Recrit show the largest amplitude of the forcing

modes in both transverse and streamwise directions occur in the near wall region aft of the

cylinder centerline. The streamwise forcing mode is localized to the region surrounding the

cylinder with very little content along the streamwise symmetry plane. The mode presents

an anti-symmetric phasing across the streamwise symmetry plane, whereas the transverse

forcing mode is symmetric. These outcomes are logical responses to the global instability

of the shear layers and the resultant motions. The streamwise forcing mode has the highest
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Figure B.1: Resolvent forcing for a subcritical cylinder in crossflow.

amplitude in the region where boundary layer separation occurs, suggesting this region

may be an optimal selection from a control standpoint. The transverse mode amplitudes

are maximized in the wake region, just behind the cylinder, with amplitude rapidly falling

around the cylinder towards the leading side.

From a control strategy standpoint, Munday and Taira found that they had to use much

larger amplitude forcing in the neighborhood of the separation when employing wall-

normal direction forcing, as compared to wall-tangential forcing. This is consistent with

the resolvent results of Symon, as the wall-normal mode is of very low amplitude at the

location forcing was considered. Thus, it would be expected, based on resolvent analy-

sis, that where forcing was applied, the transverse (wall-tangential) forcing would be the

most effective strategy. Symon showed that although the mode shapes shifted slightly, the

global mode pattern was robust across a range of Reynolds numbers. Munday and Taira’s

investigation occurred at a higher Reynolds number than the modes presented by Symon.

However, on a qualitative basis, the combination of experimental forcing and resolvent
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Figure B.2: Drag augmentation via oscillatory tangential blowing as a function of normal-
ized blowing frequency (Reproduced from Monday and Taira [5] , Figure 8, with permis-
sion of AIP Publishing).

analysis suggests that resolvent analysis can provide sensible guidance on locating and

orienting controlling flows.

Considering next the range of lock-on frequencies. Review of the resolvent gain plot

(Figure B.1) for the cylinder reveals a strong response near the critical eigenfrequency.

Here, the response modes are strongly separated, leading to a dominate flowfield response

with a single mode, which is the cylinder vortex shedding mode. As frequency is increased,

the gain falls and the separation of the leading mode also falls, resulting in both a reduction

in response and less dominance in the response modes. The frequency range over which

a single mode stands out offers the range over which the flowfield has the potential to

lock onto that mode. It remains possible that secondary modes can also be locked into,

should there be little separation and the modes be sufficiently normal, so as not to excite

the higher-gain mode.
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Appendix C

FaStaRT Development

C.1 Motivation

Linear stability analysis and resolvent analysis are emerging tools valuable to the fluid

dynamicist. These analysis approaches rely on a base flow, upon which the analyses are

build. However, these tools are not readily available in commercial packages, requiring a

custom construction for each mesh arrangement. As geometries become more complex, the

customization work becomes more difficult. Since the work studied herein was expected to

cover several mesh arrangement and potentially multiple geometries, it became necessary

to create a flexible tool that would rapidly create the necessary operators for linear stability

analysis and resolvent analysis, regardless of mesh configuration or block structure.

A common interchange format exists for transferring CFD information between tools:

the CFD General Notation System (CGNS). The CGNS format is a structured framework

for transferring the significant information needed and generated with CFD modeling.

However, it is a framework and relies on those that are creating the files to fill in the neces-

sary information.

The goal for the developed tool, the Fast Stability and Resolvent Tool (FaStaRT) was to

be able to quickly transition from computations run in an existing CFD environment (often
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commercial), utilizing all of the capabilities there for best-practice CFD, into the necessary

matrix operators for linear stability and resolvent analysis. The scope was expanded to

also handle running stability analysis (managing the eigenvalue solving process), resolvent

analysis, and post processing the resultant stability and resolvent forcing/response modes.

C.2 Detailed overview of process and capabilities

The CFD work detailed within this document utilized Numeca’s (now Cadence’s) suite of

tools for modeling turbomachinery and general fluid flows. A focus has been on using

structured block meshes for the speed of meshing and computation. Numeca’s toolset

includes a highly capable tool for creation of high-quality structured meshes around the

fully 3D blading of turbomachinery components. Running CFD with Numeca produces a

CGNS file1. As-run, the CGNS files produced include the XYZ locations of the cell nodes

(corners of the finite volumes), the cartesian velocity components, temperature, pressure,

density, and if modeled with turbulent flow, turbulence model quantities. For the Spalart-

Allmaras turbulence closure, the turbulent viscosity ratio is included in the output. What

is not included are any of the cell-specific data, such as volume, face area, face normals,

etc. that would be useful for computing a finite volume or finite element model necessary

for stability and resolvent analysis. Connectivity, for structured meshes, is implied via the

ordering of ijk indexing and transfer matrices that dictate how blocks interface, noting that

each block can have its own ijk orientation, thus the maximum k face may align with the

maximum j face of the adjacent block and cannot be assumed2. A general flow chart of the

process encompassed by FaStaRT is shown in Figure C.1.

1Numeca’s tools can calculate a time average, producing a new CGNS file representing the time average
from time-history of datapoints, also saved in CGNS format

2Note that frequently the transfer matrix was found to be incorrect
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Figure C.1: Process flow within the FaStaRT tool.
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C.3 Notes on boundary conditions

Linear stability analysis and resolvent analysis can be incredibly computationally expen-

sive. A key driver is the overall size of the domain and number of datapoints required in

the matrices that are ultimately created. To properly capture the high-frequency modes,

it is necessary to utilize a fine mesh, particularly in areas with significant velocity gradi-

ents. Oftentimes, the required scale for stability analysis is finer that required for most

engineering-level calculations. As experienced working with the surrogate 2D geometry

(see Chapter 4, there is a disparate need to resolve significantly different length scales for

stability analysis, resulting in a very large mesh, with a significant number of eigenvalues.

Herein, the finest mesh of the single-passage surrogate model was ∼ 800k cells, leading

to linear operators, L ∈ R2.4Mx2.4M . Thus, any superfluous domain need not be included,

if at all possible. One approach is to utilize boundaries that are close to the blading. This

approach is common in turbomachinery due to the close-coupling of multiple blade rows

and the need for multiple reference frames.

Conducting resolvent analysis via the singular value decomposition effectively solves

the forward and backward time solutions simultaneously, identifying the modes of largest

amplification. The backward time approach is approximated through the transpose of the

linear operator, requiring that the boundary conditions need to represent the proper bound-

ary type when transposed. A test case with finite differencing sheds light onto some of

the challenges associated with this approach. The test case will consider a 1D domain and

look at calculating the spatial derivative using cell-centered locations, which is similar to a

finite volume approach. For this case, the left-hand boundary will be fixed at zero and the

right-hand boundary will have the first derivative zero. The LHB can be implicitly forced

to be zero by assuming the existence of a ghost cell outside the domain that has a value

opposite to that of the boundary cell. Similarly, the RHB can be implicitly forced to have

zero slope by assuming the existence of a ghost cell outside the domain with the same

value as the boundary cell. With centered differencing applied, choosing distances such
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that the coefficients are whole numbers, and indexing incrementally from the left side, the

differencing matrix will be

Df =



1 1 0 0 0 0

−1 0 1 0 0 0

0 −1 0 1 0 0

0 0 −1 0 1 0

0 0 0 0 −1 1


. (C.1)

Taking the transpose of the difference matrix, which reverses the differencing direction,

leads to

Db =



1 −1 0 0 0 0

1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 1 0 −1 0

0 0 0 0 1 1


, (C.2)

where the LHB has changed from one that implicitly forced the parameter to be zero at the

boundary to one that implicitly forces the slope to be zero. A similar transformation has

occurred at the RHB. Thus, the natural transpose optimally changes the boundary type for

use in stability and resolvent analysis, with some caveats.

Commonly for linear stability analysis the inlet boundary condition for perturbations is

a homogeneous Dirichlet type, where the perturbations are forced to zero. At the exit, it is

assumed that perturbations may exists and should not be forced to zero value. Instead, a

homogeneous Neumann-type boundary is commonly imposed. For the backwards in time

case, the opposite is desirable. The exit boundary is fixed with a homogeneous Dirichlet

type as it is now the inlet, and similarly the inlet domain ideally is constrained with a

homogeneous Neumann-type. This convention works well in the resolvent analysis with

the exception of wall-bounded flows, where the velocity must be forced to zero in both
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forward and backward time directions.

Considering the above test case, an implicit specification for the velocity at the bound-

ary will likely lead to erroneous behaviors in the resolvent analysis since the applied veloc-

ity boundary condition will be of Neumann type. To circumvent this problem, perturbation

velocity calculations can instead be made at the nodes, rather than the cell centers. How-

ever, a node-based specification also comes with its own challenges, as the graceful inver-

sion of boundary condition type does not happen with values calculated on the boundary.

To force a boundary node to zero, the node is typically removed from the operator, since

it is invariant and would likely lead to zero-valued eigenvalues. However, without these

nodes in the matrix, the transpose will no longer lead to the inverse boundary type. As a

remedy to the linear operator’s transpose offering undesirable boundary condition qualities,

a ghost cell is assumed adjacent to the inlet and exit boundaries. Within this ghost cell, the

boundary conditions are applied so as to recover the behavior of the transpose. A finite

element approach, where each cell represents an element, with the cell nodes acting as the

cell corners, was implemented as the discretization scheme for FaStaRT.
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Appendix D

FaStaRT Verification Cases

Several test cases were constructed to verify various portions of the FaStaRT process, from

block construction, mesh connections, periodic arrangements, dealing with degenerate cells

that are commonplace with the O4H block topology, and more complicated boundary con-

figurations. These test cases were chosen to offer similar arrangements to those in the open

literature, such as a wall-bounded rear-facing step, or represent basic flowfields with ap-

plication to turbomachinery (such as a channel diffusion or cylinder in cross flow). The

overall workflow (outlined in Appendix C) starts with a structured-mesh CFD calculation,

the results of which are fed into FaStaRT where stability analysis and resolvent analysis are

conducted.

The following verification case, for sub-critical flow over a cylinder, was used to test

many aspects of the tools, as it is topologically similar to the linear cascade case, and is

provided as an example of the output from FaStaRT for a case with expected results.

D.1 Cylinder in crossflow

The onset of vortex shedding from a cylinder in transverse flow represents a canonical case

in transition to flow instability. The geometry considered is a periodic array of cylinders,

where a single cylinder is modeled with periodic boundary conditions. The mesh (Figure
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(a) Coarse mesh showing every 4th

cell.
(b) Velocity magnitude normalized by inlet

velocity.

Figure D.1: Mesh and velocity field for the cylinder in crossflow case (Re = 45). Note that
top and bottom boundaries can be either mirror or periodic BCs.

D.1a) was constructed with a similar block arrangement to that of the airfoils studied.

A laminar simulation (Figure D.1b) was conducted with inlet boundary conditions set to

achieve ReD = 45, which is just below the Reynolds number for transition [].

Several mesh resolutions were studied, with eigenvalues shown in Figure D.2. The

dominant least-stable mode (Figure D.3), which corresponds with vortex shedding, was

clearly visible in all mesh levels. As the mesh is refined, lower-level modes and patterned

eigenmode structures become evident, emphasizing that insufficient resolution can act as a

noise floor, obscuring potentially useful modal content.

Resolvent analysis results (a forcing sweep in Figure D.4 and the optimal forcing-

response modes in Figure D.5) are consistent with results in the literature (e.g. [101] ),

noting that this case represents a constrained cylinder, due to the periodicity, and slight

adjustments to the modes are expected.
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(a) Coarse Mesh (b) Fine Mesh (c) SuperFine Mesh

(d) Overlaid

Figure D.2: Stability analysis results for the sub-critical cylinder in cross flow (Re = 45)
for several mesh resolutions shown independently (a, b, c) and overlaid (d).
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(a) X-velocity
(b) Y-velocity

Figure D.3: Velocity components for the least stable eigenmode.

Figure D.4: Resolvent sweep for 3 mesh resolutions with σn = 0.0.
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(a) Forcing, X-velocity. (b) Response, X-velocity.

(c) Forcing, Y-velocity. (d) Response, Y-velocity.

Figure D.5: Resolvent modes for maximum-gain frequency.
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