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Abstract 

Intra-tumoral heterogeneity and the presence of a phenotypically diverse cell population 

within a single tumor represents a major hurdle in the understanding of tumor 

progression and dynamics, and complicates the effective diagnosis and management of 

this disease. One of the ways by which tumors gain intra-tumoral variation is through the 

acquisition of phenotypic or lineage plasticity, whereby tumor cells evolve away from the 

lineage of origin and gain altered profiles. These alterations may impart specific survival 

benefits to different subpopulations of cells, enabling them to proliferate faster, migrate 

away from the site of the primary tumor or evade drug-induced elimination, amongst 

others. Phenotypic plasticity and alterations of transcriptional profiles can be driven by 

either extrinsic signals or intrinsic cell autonomous mechanisms. Work presented in this 

thesis across three chapters has uncovered several molecular drivers altering cell-state 

plasticity in breast cancer, and their resulting effects on tumor development and 

progression. Lineage plasticity, driven by the transcription factor SOX10, allows breast 

tumors of the luminal lineage expressing lower Estrogen Receptor (ER) levels to gain 

basal-like characteristics, resulting in the evolution of these luminal-like tumors into a 

more basal-like subtype. Activation of Protein Kinase A (PKA) curtails cellular plasticity in 

a mouse mammary tumor model, preventing epithelial-mesenchymal transition (EMT) 

and metastasis, ultimately improving prognosis and survival. Eribulin treatment induces 

transcriptional reprogramming of breast tumor cell lines, forcing them to undergo 

mesenchymal-epithelial transition (MET). Together, these findings help to elucidate how 

cellular plasticity contributes to intra-tumoral heterogeneity of breast tumors, and how 

phenotypic diversity influences the progression, metastasis, and chemotherapy response 

of breast cancer. While these results have identified specific agents that act to promote 

phenotypic plasticity, the exact mechanisms by which they act, and the steps necessary 

for lineage evolution to occur are only partially understood. This work provides a 

foundation for further inquiry into the mechanisms driving phenotypic plasticity and 

resulting tumor heterogeneity, with the ultimate goal of developing better strategies to 

overcome this disease.  
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Chapter 1: Introduction 

 

1.1 Overview of the problem 

Tumor heterogeneity represents a significant hurdle in the diagnosis and management of 

cancer. Heterogeneous clonal populations within a single tumor may exhibit variations in 

gene expression, phenotypic features, and harbor different oncogenic mutations1, 

providing them with unique tumorigenic and metastatic potential. Additionally, diverse 

cell populations may respond differently to various drug treatments, thus affecting clinical 

outcomes and contributing to chemotherapy resistance and tumor relapse2,3. While 

genetic mutations are known to contribute significantly to the emergence of a 

heterogeneous tumor4,5, non-genetic factors have also been shown to play a role in intra-

tumoral diversity6,7. Cellular plasticity, in which cancer cells alter their phenotypic identity 

by transdifferentiation and altered gene expression, has been implicated as a possible 

driver of non-genetic heterogeneity8. Understanding how cellular plasticity gives rise to 

heterogeneous tumors will provide better insights into how heterogeneous tumors 

develop, metastasize, and respond to treatment. 

 

1.2 Tumor heterogeneity 

One of the challenges in the management of cancer as a disease is its heterogeneity. 

Unlike other diseases such as Type I diabetes, which can be managed by the 

administration of insulin9, or anaphylactic reactions which can be alleviated by 

epinephrine injections10, there is no single cure or treatment that will be effective in 

eliminating all forms of cancers. Differences between and within tumors ensure that the 

disease presents differently in different patients, thus necessitating the use of a wide 

variety of treatments in an attempt to control this disease11. This heterogeneity also 

results in differing rates of development and metastasis12, further complicating cancer 

management. Tumor heterogeneity can be categorized into 2 levels, inter-tumoral 

heterogeneity and intra-tumoral heterogeneity. 
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1.2.1 Inter-tumoral heterogeneity 

Inter-tumoral heterogeneity refers to differences between tumors in different patients, 

or even between primary and secondary tumors. Tumors originating in the same organ 

can appear morphologically or histologically distinct, and even express different genes 

and biomarkers. In an effort to reduce the complexity of diagnosis and guide treatment 

decisions, tumors can be grouped into several different classifications or subtypes. The 

most common method of classifying solid tumors is the TNM Classification. This method 

uses information regarding the size of the tumor (T), whether the cancer has spread to 

the nearby lymph nodes (N), and whether it has metastasized to a distant site (M), in 

order to determine the stage of the disease in the patient. The TNM classification assigns 

each tumor into one of 5 stages, with the lowest stage, stage 0, indicating carcinoma-in-

situ, which is a pre-cancerous lesion, while stage IV indicates metastatic cancer which has 

spread to at least 4 lymph nodes and to at least one secondary site13. This classification is 

commonly used in multiple carcinomas, such as oral, breast, gastric, and lung, and is 

useful for determining the course of treatment, and predicting outcomes14. 

 

An alternative to the TNM classification is the Barcelona Clinic Liver Cancer (BCLC) staging, 

which is specific for tumors originating in the liver. This classification system uses 

information regarding the size of the tumor, general health of the patient, and liver 

function, to assign the patient tumor into one of 5 stages. Stage 0 refers to a small tumor 

of less than 2cm and normal liver function, while stage D refers to a large tumor with 

sever liver impairment. Specific treatments are recommended for each stage of this 

disease, with tumor resection recommended for stage 0 patients, and the  kinase inhibitor 

sorafenib recommended for stage C patients15. 

 

Besides using tumor stage to classify malignancies, tumors can also be stratified into 

subtypes based on gene expression. This method of classification uses large gene 

expression datasets from thousands of patient tumors to group tumors based on 

similarities in their gene expression profiles16–18. For example, glioblastoma, an aggressive 
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brain and spinal cord cancer, can be subdivided into 4 intrinsic subtypes, classical, 

mesenchymal, proneural, and neural. The classical subtype is associated with 

amplification of EGFR, the mesenchymal subtype showed reduced NF1 and increased 

mesenchymal marker expression, the proneural subtype displayed high PDGRFA 

expression with mutations in IDH1, and the neural subtype typically showed high 

expression of neural markers such as NEFL and GABRA118.  

 

1.2.2 Intra-tumoral heterogeneity 

Variations of different clonal subpopulations within a single tumor is referred to as intra-

tumoral heterogeneity. Each subpopulation within a heterogeneous tumor displays 

distinct gene expression and phenotypic profiles, which confers unique properties to each 

subpopulation, allowing them to grow at different rates19, respond differently to drug 

treatments20, and preferentially travel to different organs as they metastasize21.  

 

Distinct cell populations within a heterogeneous tumor may contain unique genetic 

mutations. In renal cell carcinoma, up to 69% of somatic mutations associated with this 

disease were found to be unique, and not shared across all regions of the tumor. Unique 

inactivating mutations in various tumor suppressor genes such as SETD2, PTEN, and 

KDM5C were also found in separate regions of a single tumor22. In colorectal cancers, 

consistent c-Kras mutations and TP53 deletions were found in adenocarcinomas, but 

these mutations were only found in discrete regions of adenomas23, suggesting that these 

tumors initially display some degree of genetic heterogeneity, but the continued 

proliferation of the c-Kras mutated subclone results in the progression of the disease to 

the carcinoma stage. 

 

Alternatively, intra-tumoral heterogeneity may take the form of phenotypic variability. 

Unlike permanent genetic aberrations, this type of heterogeneity involves differences in 

gene expression profiles of different clonal subpopulations within the tumor, allowing 

cells to easily transition into different cell states or phenotypes24. Phenotypic 
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heterogeneity in the form of the epithelial-mesenchymal transition (EMT) is thought to 

contribute to metastasis25, but EMT heterogeneity has also been shown to help 

determine organotropism or preference of different tumor cells to colonize different 

organs21. Phenotypic heterogeneity may also facilitate drug resistance, as tumor 

subpopulations express different genes that may predispose them to avoid drug-induced 

elimination26. 

 

Metabolic plasticity between tumor cells also allows different tumor populations to grow 

at different rates. Mathematical modeling of metabolic heterogeneity within solid tumors 

suggests that, as tumors grow, hypoxia within the center of the tumor mass changes the 

metabolism of the tumor cells, leading to glycolysis and acidification, while cells on the 

tumor periphery remain metabolically normal19. The switch from aerobic respiration to 

anaerobic glycolysis thus slows down the growth of cells within the central tumor mass. 

These cells also develop acid resistance and gain a more aggressive and invasive 

phenotype in an attempt to escape the hypoxic environment. This ultimately influences 

treatment, as the metabolically normal cells are more readily eliminated with cytotoxic 

agents, allowing the cells with the more aggressive phenotype to be selected for during 

the treatment process19. 

 

Heterogeneity within a single tumor may complicate tumor diagnosis and management. 

Biopsies obtained from a small area of the tumor may provide insights into tumor 

phenotypes in the local area of the biopsy but may not represent the complexity of the 

tumor as a whole27. Samples obtained from biopsies may also be used to identify certain 

biomarkers that may potentially be used as drug targets or predict outcomes of 

treatment, however the selected drug may be successful in targeting only a select 

population of tumor cells27.  
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1.3 Breast cancer heterogeneity and subtypes 

Breast cancer is a complex disease with significant inter-tumoral variation and intra-

tumoral heterogeneity, necessitating that these tumors be diagnosed and managed in 

different ways. Due to inter-tumoral diversity, breast tumors can be categorized into 

different groups or subtypes16, in order to better understand how individual tumors may 

be different from others. Classification of breast tumors into subtypes also helps to 

determine the best course of treatment and aid in other diagnostic and prognostic 

predictions28–30. 

 

Clinical classification of breast cancer is aided by the expression of specific surrogate 

protein markers within the tumor. These are referred to as histological or 

immunohistochemistry (IHC) subtypes, where IHC is commonly used to quantify the 

expression of estrogen receptor (ER), progesterone receptor (PR), HER2/Neu, and Ki6731. 

Based on the expression of these markers, breast tumors are classified into 4 subtypes: 

luminal A, luminal B, Her2 positive, and basal-like32.  

 

The luminal A subtype consist of tumors that are ER and PR positive, with low Ki67 

expression, indicating lower proliferative potential, and negative for HER2/neu31. 50-60% 

of all breast cancers fall under this classification, making it the most common subtype32. 

Treatments recommended for this subtype is antiestrogen therapy such as tamoxifen, to 

target the ER expressing population33. This subtype also has the best prognosis, with 

tumors presenting as lower grade, patients having higher survival and lower relapse rate, 

and less than 10% of patients developing secondary metastasis34. 

 

The luminal B subtype makes up 15-20% of all breast cancers32, and consist of tumors that 

are ER and PR positive, with higher Ki67 expression indicating better proliferative 

potential, and similar to luminal A, Her2/neu negative31. This subtype may express lower 

levels of ER and is more aggressive than the luminal A subtype. Tumors also present as 

higher grade, thus patients diagnosed with this subtype tend to have worse prognosis and 
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higher relapse and metastasis rates34. Typical treatments for the luminal B subtype also 

include the antiestrogen therapies, as the ER positive expression suggest that these 

tumors may benefit from inhibiting this receptor35. 

 

The Her2 positive subtype consists of tumors that have high expression of human 

epidermal growth factor receptor-2 (HER2), commonly due to amplification of this gene32. 

Additionally, 40% of tumors in this subtype harbor mutations in p5336, and about half also 

express low levels of ER32. Her2 positive tumors make up 15-20% of breast cancers, and 

treatment mainly involves targeting Her2, with drugs such as Trastuzumab proving to be 

effective against this subtype37. These tumors are also more aggressive, with patients 

facing poor prognosis of only 12% 10 year survival rate32. 

 

The basal-like subtype, also known as triple-negative breast cancer (TNBC) make up the 

smallest percentage (8-10%) of all breast cancer. This subtype is the most aggressive, with 

high rate of brain and lung metastasis38. Tumors in this subtype do not express ER or PR, 

and do not display Her2/neu amplification, thus making them triple-negative breast 

cancers, with additional Krt5 expression, a basal-marker, determining the basal-like 

nature of this subtype32. Common treatments used for basal-like or TNBCs are 

neoadjuvant chemotherapeutics followed by surgical resection of the tumor and 

additional adjuvant chemotherapies to prevent tumor recurrence. 

 

Besides histological based subtypes, molecular gene expression profiles have also been 

used to determine breast cancer classification. Instead of using surrogate marker 

expression to classify tumors, the molecular or intrinsic subtypes use a larger gene 

expression signature to group breast tumors into 4 main subtypes, basal-like 

(corresponding to the basal-like or TNBC IHC subtype), Erb-B2+ (corresponding to the 

Her2 positive IHC subtype), normal-breast-like, and luminal epithelial/ER+16. Additionally, 

the luminal epithelial/ER+ subtype can also be further subdivided into luminal A and 

luminal B17 (corresponding to the luminal A and luminal B IHC subtypes respectively). 
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Intrinsic subtypes are more commonly used to stratify breast cancers in non-clinical 

research settings, however a smaller signature of 50 genes, also called the PAM50 gene 

set, may be used by clinicians to classify tumors based on these intrinsic subtypes39. 

Clinical outcomes for these subtypes also mirror the IHC subtype, with the basal-like 

subtype exhibiting the worst prognosis, followed by the Erb-B2+ subtype17. 

 

Even though subtype stratification may help to determine prognosis and potential drug 

targets, significant intra-tumoral heterogeneity also exist in breast tumors, resulting in 

potential misdiagnosis and emergence of drug resistance. Heterogeneity in ER expression, 

specifically in some luminal B tumors, suggest that tamoxifen treatment may not be 

effective in eliminating a majority of the clonal subpopulations within the tumor. As low 

as 1% ER expressing nuclei is sufficient to classify tumors as ER/PR+ luminal tumors40, with 

limited evidence to suggest that antiestrogen therapy will be successful in managing 

tumors with such low ER expression35. Furthermore, ER staining of biopsies may not 

reflect the extent of ER heterogeneity within the tumor, potentially resulting in errors in 

estimating ER expression in the tumor. 

 

Intra-tumoral heterogeneity in HER2/neu amplification has also been observed41. 

Heterogeneity in Her2 expression in different areas of a single tumor has been reported, 

with IHC staining discrepancy of 1-50% between different regions of the tumor 42. Some 

tumors showing regional or spatial Her2 variability were found to also exhibit genetic 

heterogeneity43, defined as HER2/neu amplification ratio of greater than 2.2 in 5-50% of 

tumor cells44. This heterogeneity has important clinical implications, as patients with high 

Her2 heterogeneity were found to have a shorter disease-free survival than patients with 

relatively homogeneous Her2 expression43. 

 
Intra-tumoral heterogeneity in TNBC may take the form of variability in gene expression, 

most notably in differing upregulation of basal-markers45. Genetic heterogeneity in TNBC 

involving variability in EGFR and CCDN1 amplification has also been reported46. High intra-
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tumoral heterogeneity in TNBC has been shown to correlate with increased metastasis 

and poor metastasis-free survival46. 

 

1.4 Causes and consequences of tumor heterogeneity 

Considering the important role tumor heterogeneity plays in the diagnosis and treatment 

of cancer, it is important to understand both how intra-tumoral variability arises and how 

it influences disease progression. Tumor development is commonly viewed as an 

evolutionary process47, where cells that gain increased proliferative capabilities are able 

to multiply faster than neighboring populations, allowing them to outcompete other cells 

for resources. This mirrors Darwinian selection and evolution, in which species which gain 

a survival advantage are selected for by the environment over time48, thus leading to the 

existence of the diverse array of flora and fauna that we see today. Similarly, natural 

selection of different tumor cells that have gained some survival advantage, whether 

genetically or phenotypically, contributes to the diversity of clonal subpopulations 

observed in a heterogeneous tumor. 

 

1.4.1 Genetic sources of heterogeneity 

Genetic mutations have long been considered an important contributor to genetic 

diversity, both in Darwinian evolution and in intra-tumoral heterogeneity49. Cancer often 

begins with mutations in ‘gatekeeper’ genes, either activating a proto-oncogene or 

inactivating a tumor suppressor protein, which represents a crucial first step in oncogenic 

transformation50. Proliferation of the initial transformed cell would thus generate a clone 

of cells, all carrying the same ‘gatekeeper’ mutation. Additional mutations can then occur 

in these transformed cells, which then expand to form new sub-clones. Accumulation of 

different mutations in different sub-clones, and subsequent clonal expansion, thus results 

in multiple subpopulations that are genetically divergent from the initial transformed cell, 

leading to the formation of a diverse tumor cell population49,51. 
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Genetic heterogeneity has been observed in multiple cancers, including brain, breast, 

colon, esophagus, prostate, bladder, and myeloma27. The accumulation of genetic 

aberrations has been well studied in the tumorigenesis of colorectal carcinoma (CRC), 

where specific mutations in the APC, KRAS, SMAD4 and TP53 genes occur to transform 

and progress tumors from benign adenomas to metastatic carcinomas, in a process 

referred to as the adenoma-carcinoma sequence52. While these specific mutations 

characterize this disease and are largely present in most tumor cells, intra-tumoral genetic 

heterogeneity in CRC has also been observed. Loss of heterozygosity (LOH) in the APC and 

DCC locus has been described, and has been attributed to the discordance in the APC and 

DCC expression in 67% and 58% of cases respectively53. Point mutations in KRAS and TP53 

genes have also been observed, leading to genetic and functional heterogeneity of these 

genes within the tumor53. 

 

Histological differences within a tumor have been suggested as an indicator of genetic 

heterogeneity within CRC tumors54, however morphological heterogeneity itself may not 

be sufficient to predict the genetic variability within the tumor. Next-generation 

sequencing of both morphologically homogeneous and heterogeneous tumors show the 

presence of genetic variation in all tumors, regardless of morphological status55, 

suggesting that even histologically homogeneous tumors may harbor different genetic 

mutations. Genetic heterogeneity also complicates the diagnosis of CRC, as examination 

of single tumor regions results in errors estimating KRAS and BRAF expression in up to 

30% of cases54, suggesting that using tissues sampled across several regions of the tumor 

may be more accurate in estimating the extent of genetic mutations56. Finally, response 

to treatment can also be affected by the presence of genetic variations within the tumor. 

Failure to respond to Cetuximab, an anti-EGFR therapy normally administered to patients 

with KRAS wild-type tumors, has been associated with the presence of tumor 

subpopulations carrying KRAS mutations57, suggesting that small genetic variations within 

the tumor is sufficient to induce therapeutic failure, and identifying these mutations prior 

to treatment may be beneficial in predicting treatment response. 
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1.4.2 Non-genetic heterogeneity 

Tumor heterogeneity can also be caused by other, non-genetic factors. This includes 

epigenetic and metabolic differences, and the influence of the extracellular 

microenvironment58. Non-genetic heterogeneity involves differences in tumor cell 

properties and phenotypes that are not determined by genetic mutations. 

 

A well-known theory of how tumors gain non-genetic, phenotypic variability is by the 

activity of cancer stem cells (CSCs). CSCs are cells that have self-renewal capabilities, and 

are hypothesized to be responsible for tumor maintenance and progression, as they are 

able to differentiate into the various other cell phenotypes present within the tumor27. 

Studies that support the existence of CSCs suggest that tumors harbor only a small 

percentage of these CSCs, and the majority of the cells within the tumor are considered 

to have limited self-renewal potential. Transplantation of a phenotypically distinct, 

CD34+CD38-, subpopulation of human acute myeloid leukemia cells into mice successfully 

reconstitute the tumor in the animal model, while transplantation of other phenotypes 

failed, indicating that the tumor self-renewal capabilities are limited to CD34+CD38- 

cells59. Similarly, the CD44+CD24- subpopulation of breast cancer cells have been found to 

be enriched in tumor-repopulating cells, indicating that the tumor cells with this 

phenotype are self-renewing CSCs60. 

 

Since the majority of the tumor consists of non-repopulating cells, anti-cancer therapeutic 

agents are usually effective in eliminating the bulk of the tumor, while therapy resistant 

CSCs may survive treatment and cause tumor relapse61. Studies in glioblastoma multiform 

cells treated with temozolomide (TMZ), a DNA alkylating chemotherapeutic agent 

routinely used to treat this disease, showed that a small population of cells with CSC-like 

properties were able to repopulate the tumor after drug treatment by entering a 

quiescent state62. TMZ is able to induce cell-cycle arrest, thus targeting proliferating cells, 

and by entering a quiescent or dormant state, CSCs are able to escape TMZ-induced 

elimination, before differentiating into a more proliferative state once treatment has 
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ended62. CSCs have also been shown to escape drug-induced elimination by increasing 

invasive potential63, expressing drug efflux transporter proteins64, and improving DNA 

repair capabilities65. 

 

1.4.3 Phenotypic and lineage plasticity 

Although the CSC concept may suggest that only a small proportion of tumor cells are 

capable of differentiation, evidence suggest that cells with tumor-repopulating 

capabilities are in fact more abundant within the tumor population66. It is thus more 

useful to consider most tumor cells as phenotypically plastic, in which different 

subpopulations of cells have different degrees of ‘stemness’ and differentiation 

capabilities67. Phenotypic variations within a heterogeneous tumor is thus due to 

variations in gene expression profiles of these tumor subpopulations, which are not static, 

and can change depending on extrinsic cues and intrinsic cell-autonomous mechanisms27. 

This constant shift in the transcriptional state of tumor cells allows them to change their 

characteristics and differentiate away from their original lineage, thus taking on new 

phenotypic roles within the tumor68. 

 

Unlike the permanent heritable genetic mutations that underlie genetic heterogeneity, 

phenotypic and lineage plasticity are more transient and are thus thought to be non-

heritable in nature27. Gene expression changes are thought to be stochastic and unstable, 

resulting in daughter cells that may not fully recapitulate the parental phenotype. While 

this is largely true in that stochastic gene expression patterns may allow daughter cells to 

phenotypically drift away from the parental lineage, stable and heritable forms of 

phenotypic variation have also been described. Melanoma cells displaying transcriptional 

variability have been shown to reprogram into a more transcriptionally stable state upon 

drug treatment, resulting in the formation of a new drug-resistant subpopulation26, 

suggesting that, while not necessarily infinitely heritable, variability in gene expression 

patterns that define specific phenotypes may be stably inherited across several 

generations. 
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An example of a well-studied, relatively stable, and phenotypically plastic process is the 

epithelial-mesenchymal transition (EMT). In this process, epithelial cells lose apical-basal 

polarity, cell-to-cell contacts, and extracellular matrix attachment due to the dissolution 

of tight and adherens junctions and hemidesmosomes, allowing cells to gain a 

mesenchymal, invasive phenotype69.  Multiple genes have been identified to initiate this 

process, particularly the activation of transcription factors SNAIL, SLUG, TWIST and ZEB, 

resulting in the reduction of epithelial markers such as E-cadherin, Mucin-1, and 

cytokeratins, and an increase in mesenchymal genes such as N-cadherin, vimentin and 

smooth muscle actin69,70. EMT and the reverse process, mesenchymal-epithelial transition 

(MET) are important processes involved in tumor metastasis and chemotherapy 

resistance. Epithelial and mesenchymal heterogeneity within the tumor allows 

mesenchymal subpopulations of cells to escape the site of the primary tumor, and the 

transient and reversible nature of this process allows these invading cells to undergo an 

MET at a secondary site, thus permitting the colonization of distant tissues and organs. 

Mesenchymal-like cells are also thought to be more resistant to chemotherapy, as these 

cells tend to exhibit lower proliferative potential, thus preventing elimination by drugs 

that target fast-cycling cells71. 

 

1.4.4 Tumor heterogeneity and cancer therapy 

One of the consequences of tumor phenotypic heterogeneity is variability in the way 

tumor subpopulations respond to therapy. The presence of a heterogeneous population 

of cells within a tumor inevitably means that anti-cancer drugs may be more effective 

against certain populations more than others, as mentioned previously. Variation in gene 

expression patterns also allow cells to escape therapy in different ways. Transcriptional 

variability and high expression of resistance markers AXL, EGFR, and NGFR in 

subpopulations of melanoma cells have been shown to be predictive of vemurafenib 

resistance26. These cells appear to undergo a drug induced phenotypic change, where 

reduction in SOX10 activity, and activation of TEAD and AP-1 signaling pathways results 
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in cellular dedifferentiation and epigenetic reprogramming, thus giving rise to a new, 

stable, drug resistant cell state26. Drug-induced trans-differentiation and epigenetic 

reprogramming have also been shown to give rise to diversity in cisplatin-resistant cells, 

but only in phenotypically homogeneous cell populations, while resistance in 

phenotypically heterogeneous tumors appear to arise by drug-induced selection of a pre-

existing resistant subpopulation20. Intra-tumoral heterogeneity thus dictates the 

response of the tumor to a drug, but is itself influenced by the drugs, where selection of 

pre-existing resistant populations may decrease, while drug-induced phenotypic 

reprogramming may increase, cellular diversity. 

 

Drug treatments have also been shown to induce lineage plasticity in several tumor 

models. In prostate cancer, treatment with androgen receptor (AR)- targeted therapies 

have been shown to induce reprogramming of AR-positive prostate adenocarcinoma into 

an AR-negative, neuroendocrine-like state that is resistant to therapy72. Eribulin, a 

commonly used third-line therapy against breast cancer, have also been shown to alter 

the intrinsic subtype of breast tumors, where 33.3% of cases showed a different intrinsic 

subtype upon treatment and subsequent surgical resection as compared to the original 

subtype at diagnosis73. This again indicates the ability of therapeutic drugs to induce 

epigenetic reprogramming that may bring about phenotypic changes in tumors upon 

treatment. 

 

The emergence of drug resistant populations in heterogeneous tumors suggest that a 

single drug may not be sufficient in eliminating the tumor. One possible strategy to 

overcome this is by using combinatorial therapies that target multiple subpopulations of 

cells within tumors at the same time74. While this may eliminate more tumor 

subpopulations, rare drug resistant cells may still survive treatment, along with any cells 

that have undergone drug-induced phenotypic alterations resulting in resistance. Another 

possible strategy is to avoid administering the highest tolerable dose, and instead vary 

the dose of treatment to include high and low dose periods75. This would prevent the 
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complete elimination of the drug sensitive population, keeping the drug resistant 

population in-check, while also avoiding the emergence of a drug-dependent resistant 

cell state. An emerging strategy to avoid therapeutic resistance in heterogeneous tumors 

is to target or reduce heterogeneity itself76. Pre-treatment of tumor cells lines with 

histone deacetylase (HDAC) inhibitors prevents epigenetic reprogramming of a transient 

‘drug-tolerant’ population, thus preventing the emergence of drug resistance in these 

cells77. Reducing epithelial and mesenchymal heterogeneity may also be a viable option 

to avoid drug resistance and prevent metastasis, with the chemotherapeutic drug eribulin 

showing promise in this regard due to its ability to reduce EMT and promote MET in 

TNBC78. 
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Chapter 2: Luminal-to-basal plasticity allows low-ER tumors to acquire basal-like 

characteristics 

Adapted from “Lineage plasticity enables low-ER luminal tumors to evolve and gain basal-

like traits”, Mohamed et al 2023, Under review at BMC Breast Cancer Research and 

available on Biorxiv (https://www.biorxiv.org/content/10.1101/2022.11.25.517090v1) 

Data for Figures 1, 2, 3A, and 4A-D was collected by Sundis Mahmood and Kristen Muller 

Data analysis for Figures 5, 6 and 9E was performed by Min Kyung Lee and Gadisti Aisha Mohamed 

Experiments for Figures 3B-G, 4E-G, 7, 8, 9, and 10 were performed by Gadisti Aisha Mohamed 

Computational analysis in Figures 9 and 10 was performed by Owen Wilkins 

 

2.1 Abstract 

Stratifying breast cancer into specific molecular or histological subtypes aids in 

therapeutic decision-making and predicting outcomes16, however, these subtypes may 

not be as distinct as previously thought. Patients with luminal-like, estrogen receptor (ER)-

expressing tumors have a better prognosis than patients with more aggressive, triple-

negative or basal-like tumors. There is, however, a subset of luminal-like tumors with 

lower ER expression, which exhibit more basal-like features. We have found that breast 

tumors expressing lower levels of ER, traditionally considered to be luminal-like, 

represent a distinct subset of breast cancer characterized by the emergence of basal-like 

features. Lineage tracing of low-ER tumors in the MMTV-PyMT mouse mammary tumor 

model revealed that basal marker-expressing cells arose from normal luminal epithelial 

cells, suggesting that luminal-to-basal plasticity is responsible for the evolution and 

emergence of basal-like characteristics. This plasticity allows tumor cells to gain a new 

lumino-basal phenotype, thus leading to intra-tumoral lumino-basal heterogeneity. 

Single-cell RNA sequencing and analyses revealed SOX10 as a potential driver for this 

plasticity, which is known among breast tumors to be almost exclusively expressed in 

Triple Negative Breast Cancer (TNBC) and was also found to be highly expressed in low-

ER tumors. These findings suggest that basal-like tumors may evolve from the 

evolutionary progression of luminal tumors with low ER expression. 
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2.2 Introduction 

Breast cancer is a complex disease with multiple different biologic subtypes which have 

clinical implications on tumor development, prognosis, and treatment28–30. While 

traditional surrogate markers can be used to classify breast tumors into hormone-

receptor positive, HER2 amplified, and triple-negative subtypes, advancements in gene 

expression profiling have helped refine subtype stratification. Gene expression analyses 

across a diverse range of human breast carcinomas classified these tumors into four 

intrinsic subtypes: basal-like, Erb-B2+, normal-breast-like, and luminal epithelial/ER+16. 

Further refinement of these subtypes based on a larger sample size revealed that the ER-

positive luminal epithelial subtype could be further divided into 2 subgroups: luminal A 

and luminal B, with luminal A expressing higher ER levels than luminal B. These intrinsic 

subtypes differ in their clinical outcomes, with the basal-like subtype exhibiting the worst 

prognosis, followed by Erb-B2+17. A smaller signature of 50 genes, PAM50, may be used 

by clinicians to classify tumors based on these intrinsic subtypes39. 

 

In the clinical environment, immunohistochemistry (IHC) based determination of 

surrogate protein marker expression is utilized to classify breast carcinomas into four 

subtypes: 1) estrogen receptor (ER) and progesterone receptor (PR) positive, and Ki67 

low, 2) ER, PR, and Ki67 high, 3) HER2/neu amplified, and 4) ER, PR, and HER2 negative, 

or triple-negative breast cancer (TNBC)31. These IHC-based subtypes correspond to the 

intrinsic subtypes luminal A, luminal B, Erb-B2+, and basal-like17, respectively, providing 

biologic and clinically significant information used to guide treatment decisions31,40. 

Typically, patients with ER negative tumors, TNBC, and HER2/neu amplified, benefit from 

non-hormone-based forms of therapy: adjuvant or neoadjuvant chemotherapy for TNBC 

tumors, with the addition of anti-HER2 targeted therapy (i.e. Trastuzumab) for HER2/neu 

amplified tumors. Tumors are considered ER-positive when demonstrating 1% or greater 

ER expression40, and patients typically receive treatment with an antiestrogen agent (i.e 

Tamoxifen) or aromatase inhibitor (i.e. letrozole, anastrozole). This low cutoff for ER-

positive determination results in a heterogeneous group of tumors considered luminal-
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like, as tumors with less than 10% ER-positive cells may exhibit different characteristics 

by comparison to those with >10% ER-positivity. There are limited data on the overall 

benefit of endocrine therapies for patients with low level (1-10%) ER expression, but given 

the possible benefit, patients are eligible for endocrine treatment35. Some studies suggest 

the majority of breast cancers with low ER expression show molecular features that are 

more similar to ER-negative, basal-like tumors than to ER-positive, endocrine sensitive 

tumors79. It is therefore essential to understand the underlying biology of breast cancer 

with low ER expression, in order to recognize their prognostic significance and identify 

ideal treatment regimens. 

 

The normal mammary epithelium consists of cells from two different lineages: a luminal 

lineage characterized by the expression of Keratin 8 (Krt8), with more committed cells 

expressing ER and PR, and a basal lineage expressing Keratin 5 (Krt5) and/or Keratin 14 

(Krt14)80,81. These lineages are derived from a bipotent mammary stem cell (MaSC) 

progenitor in the embryonic stage, but are maintained postnatally by unipotent luminal 

and basal progenitors82–85. Despite this lineage restriction, several studies have revealed 

the potential for lineage plasticity in the adult mammary gland in non-homeostatic 

settings. For example, lineage plasticity of the luminal and basal compartment allows 

them to regain multipotency in the adult mammary gland with luminal-derived basal cells 

(LdBCs) emerging in response to hormone stimulation during pregnancy86, and basal cells 

repopulating mammary epithelium in response to injury or luminal cell ablation87. In the 

neoplastic setting, the luminal lineage has been identified as the cell of origin for BRCA1-

mutant basal-like breast cancers, suggesting its involvement in the development of TNBC-

like tumors typically observed in these patients88. Moreover, BRCA1 and p53 deletions in 

the mouse luminal compartment result in tumors resembling typical human basal-like 

tumors89. In addition, claudin-low breast tumors, a mesenchymal subset of TNBCs, may 

also be derived from the luminal lineage90. These findings point to lineage plasticity being 

a core feature in the process of mammary tumorigenesis whereby luminal tumor cells 

gain the ability to stray from their lineage-of-origin. The heterogeneity of ER expression 
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within luminal-like tumors provides a starting point to study subpopulations within ER-

positive tumors that may be more prone to plasticity and the acquisition of basal-like 

traits. 

 

In this chapter, my work uncovers that luminal tumors with low-ER expression represent 

a distinct subtype with a higher tendency to gain basal-like traits. These tumors arise from 

luminal cells undergoing luminal-to-basal plasticity, leading to the emergence of cells that 

exhibit a lumino-basal phenotype. This plasticity of luminal tumor cells and presence of 

lumino-basal heterogeneity within breast tumors likely plays a critical role in their overall 

aggressive traits, especially their ability to progress and gain metastatic propensity. 

 

2.3 Materials and methods 

Dartmouth-Hitchcock Medical Center pathology database search 

The pathology database (Cerner Millennium) at Dartmouth-Hitchcock Medical Center was 

retrospectively searched from January 2012 through August 2020 to identify all invasive 

breast cancer cases with low ER expression. Low ER expression was defined as a sample 

displaying 1-10% of cancer cells with ER expression by immunohistochemistry (IHC), 

according to the American Society of Clinical Oncology (ASCO) – College of American 

Pathologists (CAP) 2020 guidelines35. Pathology reports were reviewed to include all 

primary invasive breast cancers with low ER expression, and H&E and IHC slides were 

reviewed by a breast pathologist (KM). Pathologic characteristics were recorded from 

pathology reports and slide review and included tumor histologic type, tumor size, tumor 

grade (Nottingham combined histologic grade/modified Scarff-Bloom-Richardson grade), 

presence of ductal carcinoma in-situ (DCIS), lymphovascular invasion, axillary lymph node 

status, and response to neoadjuvant therapy, when administered. For patients with a 

pathologic complete response after neoadjuvant therapy, tumor characteristics were 

assessed on the pre-treatment core biopsy. A tumor was considered to exhibit basal-like 

histologic features when all of the following were present: solid sheets of tumor cells with 

a syncytial growth pattern, high-grade, pleomorphic cytological features, abundant 
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mitotic activity, tumor circumscription with pushing borders, prominent intra-tumoral 

and/or peripheral lymphocytic infiltrates, and tumor necrosis. Patient clinical features 

including age at diagnosis, treatment regimens, and follow-up status were recorded from 

electronic medical records.  

 

Determination of ER, PR, and HER2/neu expression 

ER, PR, and HER2/neu were performed on diagnostic core needle biopsies in all cases. 

Biomarkers were repeated on a subsequent surgical specimen at the request of treating 

clinicians in a minority of cases (n = 10). Immunohistochemical assays for ER and PR were 

performed on paraffin-embedded tissue sections fixed in 10% neutral buffered formalin 

for 6-72 hours using the polymer system technique with appropriate controls. The assays 

were performed according to the manufacturer’s instructions using Anti-ER (Cell Marque, 

249R-15-ASR, clone: SP1) and Anti-PR (Biocare Medical, ACA424B, clone: 16) antibodies. 

ER and PR were qualified (positive or negative) and quantified (% of tumor cells staining) 

by breast pathologists by “eyeballing” IHC stained slides. In addition, we evaluated for ER 

staining intensity (weak, moderate, or strong). HER2/neu analysis was performed using 

dual-probe FISH (Abbott Laboratories, PathVysion HER-2 DNA probe kit) to assess for gene 

amplification and results were interpreted in accordance with the ASCO/CAP HER2 testing 

guidelines91. 

 

Animal studies 

All animal experiment IACUC protocols were approved by the Dartmouth College 

Committee on Animal Care. MMTV-PyMT mice ((Tg(MMTV-PyVT)634Mul/LellJ mice on a 

C57Bl/6J background, strain #: 022974)92, Krt5-CreER mice (B6N.129S6(Cg)-

Krt5tm1.1(cre/ERT2)Blh/J, strain #: 029155)82, Krt8-CreER mice (Tg(Krt8-cre/ERT2)17Blpn/J, strain 

#: 017947)82, and Rosa26-mTmG reporter mice (B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-

tdTomato,-EGFP)Luo/J, strain #: 007676)93 were purchased from The Jackson Laboratory. For 

tamoxifen induced mammary epithelial labelling, tamoxifen (Sigma-Aldrich, T5648-1G) 

was prepared by dissolving in commercially available corn oil for 5 hours at 37°C to a final 
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concentration of 30mg/ml. Krt5-CreERT/Rosa26-mTmG /MMTV-PyMT mice were 

administered 150mg/kg (100µl of tamoxifen stock for a 20g mouse) of the tamoxifen 

stock 3 times per week at week 3, while Krt8-CreERT/Rosa26-mTmG /MMTV-PyMT mice 

were administered 150mg/kg of the tamoxifen stock, 3 times per week at weeks 5 and 6. 

Mice were euthanized and tumors were harvested once tumors reached a volume of 

1.5cm3, usually at weeks 20-25. For analysis of the normal mammary gland, mice were 

euthanized at 8 weeks or age matched to tumor bearing mice. 

 

Mammary gland dissociation 

Mouse mammary fat pads were harvested and processed to obtain single-cell 

suspensions using established protocols94 that were slightly modified. Mammary fat pads 

were digested in a solution of DMEM (Corning, 10-013-CV) with Hyaluronidase (Fischer 

Scientific, ICN10074091) and Collagenase A (Sigma-Aldrich, 10103586001) for 2 hours at 

37°C with gentle agitation using a rotator. Red blood cells were subsequently removed 

with an ammonium chloride lyse (8.02g NH4Cl, 0.84g NaHCO3, 0.37g EDTA in 1L of water), 

and samples were agitated with Trypsin (Corning, 25-053-CI) and Dispase (Stem Cell 

Technologies, 7913) + DNAse I (Sigma-Aldrich, DN25-100mg) for 1 minute each to further 

dissociate the cells. Finally, samples were filtered through a 40mm cell strainer (Corning, 

431750) to obtain a single-cell suspension. 

 

Mammary gland whole mount preparation and Carmine Alum staining 

Whole mammary glands were spread on a glass slide and fixed with Carnoy’s fixative (60% 

ethanol, 30% chloroform, 10% glacial acetic acid) overnight at RT. Fixed tissue was 

rehydrated by washing with decreasing ethanol concentrations (70%, 50%, 30%, 10%) 2 

times each for 10 minutes. Rehydrated tissue was then stained with Carmine Alum (Stem 

Cell Technologies, 07070) for 48-72 hours. Mammary glands were then dehydrated using 

increasing ethanol concentrations (70%, 95%, 100%) 2 times each for 15 minutes, and 

cleared in xylene overnight. Cleared mammary glands were then mounted with Permount 
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mounting medium (Fischer Chemical, SP15-100) and glass coverslips and allowed to dry 

overnight. Slides were imaged on the PerkinElmer Vectra3 slide scanner. 

 

Tumor dissociation 

Tumors harvested from euthanized mice were digested in DMEM containing 2 mg/ml 

Collagenase A and 100U/ml hyaluronidase at 37°C for 2 hours with gentle agitation using 

a rotator. Following digestion, samples were strained through 70mm (Corning, 431751) 

and 40mm cell strainers to obtain a single-cell suspension. Finally, red blood cells were 

removed with an ammonium chloride lyse, and cells were washed in PBS. 

 

FFPE tissue processing 

Harvested mammary glands, tumors and lungs were placed in tissue biopsy cassettes and 

fixed in 10% Neutral Buffered Formalin (Leica, 3800598) at 4°C overnight. The formalin 

was then removed and tissues were soaked in 70% ethanol at 4°C for at least 2 days 

before embedding in paraffin blocks. Hematoxylin & Eosin (H&E) staining was performed 

on sections cut from the paraffin blocks. Embedding, sectioning, and H&E staining were 

performed by Dartmouth-Hitchcock Pathology Shared Resources. 

 

Flow Cytometry and Fluorescence assisted cell sorting (FACS) 

Single-cell suspensions were first stained with fluorescently labelled antibodies. Tumor 

single-cell suspensions were stained with Alexa Fluor 700 anti-CD326 (Ep-CAM) antibody 

(Biolegend, 118239, clone: G8.8, 1:100 dilution), PE/Cyanine 7 anti-mouse CD31antibody 

(Biolegend, 102418, clone:390, 1:100 dilution), and PE/Cyanine 7 anti-mouse CD45 

antibody (Biolegend, 103114, clone: 30-F11, 1:100 dilution) for 30 minutes on ice. 

Mammary gland single-cell suspensions were stained with all the above antibodies, with 

the addition of Super Bright 600 anti-CD49f (integrin alpha 6) antibody (Thermo Scientific, 

63-0495-42, clone: GoH3, 1:100 dilution). 
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For staining intracellular keratins, single-cell suspensions were fixed for 15 minutes at RT 

in 2% paraformaldehyde (methanol free, Thermo Scientific, J19943-K2), and 

permeabilized for 15 minutes at RT in Intracellular Staining Perm Wash Buffer (Biolegend, 

421002), before staining with Recombinant anti-Cytokeratin 8 antibody Alexa Fluor 647 

(Abcam, ab192468, clone: EP1628Y, 1:100 dilution), and Recombinant anti-Cytokeratin 5 

antibody (Abcam, ab236216, clone: SP27) conjugated to Dylight 405 (Abcam, ab201798), 

or anti-Cytokeratin 14 monoclonal antibody (Thermo Scientific, MA5-11599, clone: 

LL002), conjugated to Pacific Blue (Thermo Scientific, P30013) for 30 minutes at RT. 

Samples were washed and resuspended in PBS supplemented with 2% FBS before being 

analyzed for cell marker expression using BioRad ZE-5 cell analyzer. Compensation was 

performed with the aid of single-stained Ultracomp eBeads plus compensation beads 

(Invitrogen, 01-3333-42). Analysis and plot generation was performed on FlowJo. 

 

For sorting of GFP-expressing cells, single-cell suspensions were only stained for 

extracellular markers, and DAPI (Sigma-Aldrich, 10236276001) was added at a dilution of 

1:1000 after the final wash step in order to facilitate live-cell sorting. GFP-positive cells 

were sorted on FACSAria III cell sorter by first gating on DAPI-negative live cells, and CD31- 

and CD45-negative epithelial cells. 

 

Immunohistochemistry (IHC) staining 

Slides are cut at 4mm and air dried at RT before baking at 60°C for 30 minutes. Automated 

protocol performed on the Leica Bond Rx (Leica Biosystems) includes paraffin dewax, 

antigen retrieval, peroxide block and staining. Heat induced epitope retrieval using Bond 

Epitope Retrieval 2, pH9 (Leica Biosystems, AR9640) was incubated at 100 degrees Celsius 

for 20 minutes (for anti-Cytokeratin 5, Bond Epitope Retrieval 1, pH6.0 (Leica Biosystems, 

AR9961) was used instead). Primary antibody anti-ER (Cell Marque, 249-R-15-ASR, clone: 

SP1, 1:35 dilution), anti-p63 (Biocare Medical, CM163B, clone:4A4, 1:200 dilution), and 

anti-Cytokeratin 5 (Abcam, ab236216, clone: SP27, 1:100 dilution) was applied and 

incubated for 15 minutes at room temp. Primary antibody binding is detected and 
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visualized using the Leica Bond Polymer Refine Detection Kit (Leica Biosystems DS9800) 

with DAB chromogen and Hematoxylin counterstain. Slides were imaged using the 

PerkinElmer Vectra3 slide scanner, and PhenoChart. Staining was qualified and quantified 

by a breast pathologist (KM). 

 

Multiplexed TSA staining 

Staining was optimized based on the PerkinElmer OPAL Assay Development Guide 

(August 2017). Sample slides were baked at 60°C for 2 hours to remove paraffin wax, 

followed by 3 xylene washes of 10 minutes each. Slides were then rehydrated with 

decreasing concentrations of ethanol (100%, 95%, 70%, and 50%), followed by fixation in 

10% Neutral Buffered Formalin (Leica, 3800598) for 30 minutes at RT. Antigen retrieval 

was performed in BOND Epitope Retrieval Solution 1 (Leica, AR9961) for 20 minutes at 

high pressure in a pressure cooker. After the slides were cooled, they were rinsed in PBS, 

and endogenous peroxide activity was blocked by treatment with 3% hydrogen peroxide 

for 10 minutes. Slides were washed in TBS + 0.1% tween (TBS-T) and blocked in Antibody 

Diluent/Block (Akoya Biosciences, ARD1001EA) for 30 minutes at RT. Primary antibody 

were added and slides were incubated at RT for 30 minutes. After TBS-T washes, 

secondary antibodies were added and incubated at RT for another 30 minutes, followed 

by TBS-T washes. Opal fluorophore was applied to slides for precisely 6 minutes, followed 

by TBS-T washes. Slides were then boiled for 2 minutes in a microwave at 100% power, 

followed by 15 minutes at 20% power in AR6 Buffer (Akoya Biosciences, AR600250ML) to 

affix Opal to target sites and remove primary and secondary antibodies. This process is 

repeated for each primary antibody used. After staining with the final antibody, Spectral 

DAPI (Akoya Biosciences, FP1490) was added, and slides were mounted with ProLong 

Diamond Antifade Mountant (Invitrogen, P36961) and glass coverslips. 

 

The primary antibody and Opal pairs used are as follows: 

For TMA samples: anti-Cytokeratin 14 (Abcam, ab119695, clone:SP53, 1:200 dilution) 

with Opal 620 (Akoya Biosciences, FP1495001KT, 1:500 dilution), anti-Cytokeratin 5 
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(Abcam, ab64081, clone: SP27, 1:300 dilution) with Opal 520 (Akoya Biosciences, 

FP1487001KT, 1:150 dilution), anti-ER (Cell Marque, 249-R-15-ASR, clone: SP1, 1:70 

dilution) with Opal 650 (Akoya Biosciences, FP1496001KT, 1:500 dilution), and anti-

Cytokeratin 8 (Abcam, ab53280, clone: EP1628Y, 1:400 dilution) with Opal 570 (Akoya 

Biosciences, FP1488001KT, 1:600 dilution). 

 

For mouse tumor and lung samples: anti-Cytokeratin 14 (1:200 dilution) with Opal 620 

(1:500 dilution), anti-Cytokeratin 5 (1:300 dilution) with Opal 690 (Akoya Biosciences, 

FP1497001KT, 1:150 dilution), anti-GFP (Cell Signaling, 2956, clone: D5.1, 1:150 dilution) 

with Opal 650 (1:500 dilution), and anti-Cytokeratin 8 (1:300 dilution) with Opal 570 

(1:600 dilution). 

 

Image processing, analysis, and phenotype training 

Whole slide scans were imaged at 4x resolution using the PerkinElmer Vectra3 slide 

scanner, and Regions of interest (ROIs) were selected on PhenoChart. ROIs were then 

imaged at 20x resolution. Spectral unmixing was performed, and each Opal was assigned 

a color using the software InForm, which was also used to train the algorithm for 

phenotype quantification. Tissue and cell segmentation was performed (with the aid of 

DAPI as the nuclear marker, and Krt8, as the cytoplasmic marker), and cells were 

phenotyped based on marker expression, and validated by marker distribution (entire Cell 

Mean Fluorescent units extracted for each marker and normalized as a percentile of 

maximum and minimum fluorescence across all cells in all images). 

 

Re-analysis of TCGA breast cancer cohort 

Preprocessed protein expression data from RPPA assays and gene expression data from 

RNA-seq from breast cancer patients in The Cancer Genome Atlas (TCGA) were 

downloaded from Synapse (https://doi.org/10.7303/syn300013).  
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For ERa based analyses, 564 subjects of Luminal A and B primary breast tumors that were 

estrogen receptor-positive (ER+) with defined progesterone receptor (PR) status from 

immunohistochemistry staining were used. Binary classification of ERa levels were 

determined based on the distribution of ERa from RPPA assays. Subjects were defined as 

ERa low (n = 141) if the level of ERa were below the 25th percentile and as ERa high (n = 

423) if the level of ERa were above the 25th percentile.  

 

For ESR1 based analyses, 719 subjects of Luminal A and B primary breast tumors that were 

ER+ with defined PR status from immunohistochemistry staining were used. Binary 

classification of ESR1 levels were determined based on the distribution of ESR1 from RNA-

seq. Subjects were defined as ESR1 low (n = 180) if the level of ESR1 were below the 25th 

percentile and as ESR1 high (n = 539) if the level of ESR1 were above the 25th percentile.  

 

Gene expression levels of 439 basal signature genes (obtained from previously published 

data95) were available in the TCGA data. Winsorized Z-scores for each gene were used to 

compare the differences in expression between ERa/ESR1 high and low subjects. Log2 

transformed counts were used to compare the differences for POSTN, SPP1, and SOX10.  

 

scRNA-seq sample and library preparation 

GFP expressing cells were collected from the FACSAria, resuspended in PBS + 0.05% BSA 

and brought to the Genomics Shared Resource for processing. Cell suspensions were 

counted on a Nexcelom K2 automated cell counter and loaded onto a Chromium Single 

Cell G Chip (10x Genomics Inc.) targeting a capture rate of 10,000 cells per sample. Single 

cell RNA-seq libraries were prepared using the Chromium Single Cell 3’ v3.1 kit (10x 

Genomics) following the manufacturer’s protocol. Libraries were quantified by qubit and 

peak size determined by Fragment Analyzer (Agilent). All libraries were pooled and 

sequenced on an Illumina NextSeq2000 using Read1 28bp, Read2 90bp to generate an 

average of 25,000 reads/cell. 
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scRNA-seq data analysis  

Raw sequencing data were demultiplexed to create individual FASTQ files using Cell 

Ranger (v.6.0.1) mkfastq (10X Genomics)96. Cell Ranger count was used to map sequence 

reads to the reference genome (mm10-2020-A) and construct a matrix of raw read 

counts. R-package Seurat (v.4.0.4)97 was used for downstream processing, normalization, 

and dataset integration. Raw read counts for cell-containing droplets were imported into 

R v.4.0.3 using Seurat function Read10X. Doublets were identified and removed using the 

simulation-based approach implemented by function scDblFinder from R-package 

scDblFinder98, with the doublet rate argument (dbr) set based on the number of 

recovered cells from each experiment. Cells with ≤ 500 UMIs or ≤ 200 detected features 

were removed from further analyses. Cells were further filtered to exclude those 

identified as outliers (using function isOutlier from R-package scater v.1.18.699) from the 

distribution of mitochondrial read counts (percentage reads mapped to mitochondrial 

genes). Genes with <10 assigned reads across all samples were also removed prior to 

downstream analysis. Read counts were normalized using sctransform100 with default 

settings. Datasets were integrated using the anchor-based integration framework 

implemented in Seurat, using 3000 integration features and reciprocal principal 

components analysis (RPCA) for anchor selection. Unsupervised clustering was performed 

at multiple resolutions using default parameters in Seurat. Clustree v.0.4.4101 was used to 

identify the optimal clustering solution for downstream analysis. Contaminating clusters 

expressing markers of lymphoid and myeloid lineages were identified and removed from 

the dataset, and the remaining cells were resubjected to unsupervised clustering analysis 

and dimensionality reduction. Cluster specific marker genes for each cluster were 

identified using the Seurat function FindMarkers with arguments “min.pct = 0.1, only.pos 

= TRUE” and default parameters. Differential expression analysis was also performed 

using FindMarkers with argument “min.pct = 0.1” and default parameters. Luminal 

progenitor (LP), mature luminal (ML), and basal (MS) gene expression signatures 

(obtained from Pal et al.102) were scored for enrichment at the individual cell-level using 

variance-adjusted Mahalanobis (VAM)103. VAM generates cell-specific scores, using the 
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gamma cumulative distribution function (CDF), between 0 (no enrichment) and 1 (highly 

enriched) for a given gene-set. Log-normalized counts (generated by Seurat function 

NormalizeData) were used as input to function vamForSeurat, which was run with default 

settings. Squared adjusted Mahalanobis distances were used to generate ternary plots, 

positioning each cell according to its combined expression of LP, ML, and MS gene 

signatures.  

 

Raw scRNA-seq data 

The data discussed in this publication have been deposited in NCBI's Gene Expression 

Omnibus (Edgar et al., 2002104) and are accessible through GEO Series accession number 

GSE214815 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE214815). 

 

2.4 Results 

2.4.1 Low-ER breast tumors exhibit distinct basal-like features 

Previous studies have observed that invasive breast carcinomas with low-ER expression,  

in which less than 10% of tumor cells express ER, share more similarities with TNBCs when 

compared to tumors that harbored more than 10% ER-expressing cells105. We analyzed 

newly diagnosed invasive breast carcinomas from the pathology database at Dartmouth-

Hitchcock Medical Center (DHMC) from 2012-2020 (n=2208) and observed 46 (2.1%) that 

were classified as low-ER tumors containing between 1-10% ER-expressing tumor cells 

(Fig 1A). Most, (41 out of 46, 89%) were high-grade invasive carcinomas (Fig 2A) with 1-

9% ER-expressing tumor cells (Fig 1B). The intensity of ER expression was also reduced in 

these low-ER tumors, with 93.5% showing moderate or weaker ER staining (Fig 1C and 

2B-D). In contrast to high expressing ER tumors which typically also exhibit some degree 

of progesterone receptor (PR) expression, most low-ER tumors (76%) were PR negative 

(Fig 1D). The frequency of HER2-positivity was as expected, with 24% of cases harboring 

HER2/neu amplification (Fig 1E).  
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Treatments administered to patients harboring low-ER tumors are more similar to 

treatment regimens for patients with TNBC. In our cohort, 43% of patients received 

chemotherapy, 34% received radiation therapy, and only 23% received hormone therapy 

(Fig 2E). Interestingly, response rates to neoadjuvant chemotherapy in patients with low-

ER tumors were similar to ER-negative tumors and significantly different from tumors 

with moderate and high ER-positive tumors106. Twelve patients (24%) received 

neoadjuvant chemotherapy, and most (75%) achieved a pathologic complete response 

(Fig 1F and 2A). The majority of patients (81%) had no evidence of the disease at follow-

up (Fig 2F).  

 

Microscopic examination of tumors with low-ER expression revealed histologic features 

commonly present in breast tumors with basal-like molecular profiles and carcinomas 

harboring BRCA1 mutations.  Twenty of 46 tumors (43%) showed well-circumscribed or 

pushing borders and were comprised of high-grade, pleomorphic tumor cells arranged in 

solid sheets with conspicuous mitotic activity, admixed necrosis, and prominent tumor 

infiltrating lymphoplasmacytic infiltrates (Fig 1G-J). The histologic findings in our cases are 

in agreement with several other recent studies that have shown that low-ER breast 

tumors show pathologic characteristics typical of ER-negative tumors with basal-like gene 

expression profiles79,105,107.  

 

These data indicate that low-ER tumors are a distinct subtype of breast cancer, separate 

from the typical, ER-expressing luminal-like subtypes. They display more similarities to 

basal-like or triple-negative tumors, especially with respect to biomarker expression, 

pathology and the types of treatments patients receive. 
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Figure 1: Basal-like features of tumors expressing low ER. (A) Frequency of cases 

expressing low ER levels (<1% ER expressing nuclei) in newly diagnosed invasive breast 

carcinomas from the pathology database at Dartmouth-Hitchcock Medical Center 

(DHMC) from 2012-2020. (B-E) Breakdown of ER expression levels (B), ER intensity levels 

(C), PR expression (D), and Her2/neu amplification (E), in the 46 low-ER cases. (F) Patient 

demographics of the 46 low-ER cases in our cohort. (G-J) H&E staining of low-ER tumors 

showing solid tumor with pushing borders (G), pleomorphic, high-grade nuclei with 

admixed necrosis (H), prominent lymphoplasmacytic infiltrates (I), and conspicuous 

mitotic activity, including atypical mitoses (yellow arrows) (J). 
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Figure 2: Histological features and treatment decisions for patients with low-ER tumors. 

(A) Histological features of the 46 low-ER cases in our cohort. (B-D) Representative IHC 

images showing the different levels and intensity of ER staining in the low-ER tumors. (E-

F) Breakdown of treatment decisions (E), and follow-up details (F), of the 46 low-ER cases. 
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2.4.2 Low-ER tumors differ from luminal B tumors in their biomarker profiles 

To investigate precisely how different low-ER tumors are from luminal tumors, 24 luminal 

B and 22 low-ER tumors were compiled into two tissue microarrays (TMAs). The luminal 

B tumors were selected based on a combination of pathologic characteristics including 

high tumor grade, high mitotic rate (>18 mitoses per 10 high power fields), and diffuse ER 

expression in tumor cells (all tumors showed >80% tumor cell nuclei with ER expression). 

Compared to the low-ER group, none of luminal B tumors showed histologic basal-like 

phenotypic characteristics. In the luminal B group, most patients (87.5%) received 

hormone therapy, or a combination of hormone therapy and chemotherapy (Fig 4A), 

which proved effective, with more than 91% of patients showing no evidence of disease 

at follow-up (Fig 4B). No patients received neoadjuvant chemotherapy (Fig 3A). Most 

tumors in the luminal B group showed strong PR positivity (Fig 4C) and all tumors were 

negative for HER2/neu amplification (Fig 4D), which are more typical features of a 

luminal-like breast cancer subtype. In comparison to low-ER tumors, none of the luminal 

B tumors contained the constellation of basal-like histologic features we observed in 43% 

of low-ER tumors.  

 

The two TMAs were stained for expression of ER (luminal marker) and Krt5 (basal marker). 

As expected, immunohistochemistry (IHC) staining of these TMAs showed that all 24 

luminal B samples were ER positive (>10% ER expressing cells), with almost 80% showing 

strong ER intensity, while the low-ER samples were mostly low-ER expressing, with weak 

or moderate ER intensity (Fig 3B, 3C, and 4E). Eight tumor cores in the low-ER TMA were 

observed to stain negative for ER, while one had 10-20% ER positive nuclei. The low-ER 

tumors were identified based on ER expression in the diagnostic biopsy, while TMA cores 

were obtained from the surgical specimens. These tumors are still biologically low-ER 

tumors, however due to focal ER expression and heterogeneity, the ER expression of 

these tumor cores may vary. When stained for Krt5, a basal marker used to identify basal-

like breast cancer subtypes, none of the luminal B samples expressed Krt5, but 65% of the 

low-ER samples were Krt5+ (Fig 3D and 3E). Staining for p63, another basal marker, also 
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showed higher positivity in low-ER tumors compared to luminal B (Fig 4F). These data 

support histological observations that low-ER tumors are more basal-like and express 

higher levels of basal markers than luminal B tumors. 

 

We wanted to further investigate if the expression of basal markers within the low-ER 

tumors corresponded to a loss of luminal marker expression. Tyramide Signal 

Amplification (TSA) staining108,109 was used with luminal marker ER and Krt8 antibodies in 

addition to basal markers Krt5 and Krt14. We utilized this staining method as it allows the 

use of multiple antibodies raised in the same species and have previously used it to stain 

TMAs containing hundreds of patient tumor samples110,111. All luminal B TMA cores 

strongly expressed both ER and Krt8, with no expression of either basal marker (Fig 4G). 

In contrast, low-ER TMA cores exhibited more heterogeneous ER, Krt5, and Krt14 

expression (Fig 3F). Importantly, the low-ER TMA cores also expressed high Krt8 levels, 

suggesting luminal lineage identity is retained despite the reduction in ER and increase in 

Krt5 expression. Along these lines, most of the Krt5-expressing tumor cells also co-

expressed Krt8, with only a small percentage of cells exclusively expressing the basal 

marker. 

 

The low-ER TMA cores were further analyzed to identify the different cell types that these 

heterogeneous tumors were comprised of. While a few cells were found to only express 

Krt5, most of the Krt5-expressing cells co-expressed Krt8. Krt14 was less abundant in 

these tumors, with Krt14+ cells also co-expressing both Krt5 and Krt8, indicating that most 

basal-like cells within these tumors express basal markers without losing their luminal 

identity i.e., exhibiting a lumino-basal phenotype (Fig 3F). Cells with fully basal 

phenotypes in which only Krt5 was expressed were rare and only found in 9 out of 13 low-

ER tumor cores (Fig 3F and 3G). ER expression was expectedly weak and scarce, but was 

found both in cells expressing Krt8 only, and in cells co-expressing either Krt8 and Krt5 or 

Krt8 and Krt14 (Fig 3F).  
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To analyze the distribution of these various cell types within the low-ER tumors, we 

quantified each cell phenotype within the low-ER tumor cores. Of the 20 tumor cores 

analyzed, six cores predominantly consist of the luminal cells, seven cores predominantly 

consist of cells of the lumino-basal phenotype (Fig 3G), and seven cores were excluded 

from analysis due to an absence of basal marker expression. As expected, ER expression 

is more abundant in cells of the luminal phenotype as compared to those exhibiting a 

lumino-basal phenotype. The strictly basal phenotype was also not commonly found 

within these tumors, indicating that tumor cells rarely lost all luminal marker expression 

to become fully basal.  

 

These results provide evidence that distinguishes low-ER tumors from luminal B tumors, 

both in terms of histopathology and luminal and basal marker expression. Furthermore, 

low-ER tumors are more heterogeneous in epithelial cell marker expression, with the 

emergence of a lumino-basal cell phenotype that could define the biological properties 

of this subtype. 
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Figure 3: Low-ER tumors are distinct from luminal B tumors. (A) Details of the luminal B 

tumors included in TMAs as a comparison to Low-ER tumors. (B-C) ER expression (B) and 

intensity (C) levels of the luminal B tumors. (D) Representative images of Krt5 IHC staining 

in luminal B and low-ER TMAs. (E) Quantified Krt5 expression in luminal B and low-ER 

TMAs. (F) Representative images of TSA staining containing heterogeneous populations 

in low-ER TMAs. Samples were stained with Krt8 (purple), Krt5 (cyan), Krt14 (white), ER 

(green), and DAPI (blue). White arrows point to basal tumor cells, yellow arrows point to 

luminal tumor cells, and green arrows point to lumino-basal tumor cells. (G) 
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Quantification of different cell phenotypes found within 13 of the low-ER TMA cores 

which were found to harbor heterogeneous populations (TMA cores with homogenous 

populations were excluded). 
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Figure 4: Luminal B tumors show features typical of luminal-like mammary tumors. (A-

D) Breakdown of treatment decisions (A), follow-up details (B), PR expression (C), and 

Her2/neu amplification (D), of the 24 luminal B cases used in the TMA. (E) Representative 

IHC images showing the different levels and intensity of ER staining in the luminal B TMA 

cores. (F) p63 expression differences between luminal B and low-ER tumors. (G) 

Representative images of TSA staining showing homogeneous populations in luminal B 

TMAs. Samples were stained with Krt8 (purple), Krt5 (cyan), Krt14 (white), ER (green), and 

DAPI (blue). 
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2.4.3 Tumors with lower ER expression express a distinct basal signature  

We sought to explore a larger set of ER-positive tumors, specifically to assess whether 

lower ER expression was associated with expression of a basal gene signature. We first 

analyzed 564 ER-positive breast cancer tumor cases from The Cancer Genome Atlas 

(TCGA), in which their ERa expression was quantified using Reverse Phase Protein Array 

(RPPA), which included both ER+/PR+, and ER+/PR- cases (Fig 6A). These cases were 

stratified into two groups; ERa low (141 cases, bottom quartile of ER expression), and 

ERa high (423 cases, top 75% of ERa expression) (Fig 5A) and analyzed their basal gene 

signature95. Unsupervised clustering of all basal signature genes revealed modules with 

higher relative expression in ERa low cases compared to ERa high cases (Fig 6B). 

Supervised clustering of these cases based on ERa expression revealed a statistically 

significant (Fig 5B) upregulation of basal signature gene expression in the ERa low cluster 

(Fig 5C) irrespective of PR status (Fig 6C). Similar results were observed when cases were 

stratified using ESR1 mRNA levels instead of ERa levels (Fig 5D-F, 6D-F), whereby tumors 

expressing lower ESR1 demonstrated an increased expression of genes conferring basal 

identity, suggesting that tumors gain basal-like traits upon concomitant reduction of ER 

levels. 
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Figure 5: Distinct basal gene expression signature in tumors with lower ER. (A) 

Stratification of ER positive breast tumor cases from TCGA into ERa low and ERa high 

groups, based on ERa expression. (B) Boxplots comparing the distribution of basal 

signature gene expression in the ERa low and ERa high groups. (C) Heatmap with 

supervised clustering of the ER positive tumors highlighting higher basal signature gene 

expression in the ERa low group. (D) Stratification of ER positive breast tumor cases from 

TCGA into ESR1 low and ESR1 high groups, based on ESR1 expression. (E) Boxplots 
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comparing distribution of basal signature gene expression in the ESR1 low and ESR1 high 

groups. (F) Heatmap with supervised clustering of the ER positive tumors highlighting 

higher basal signature gene expression in the ESR1 low group. 
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Figure 6: Unsupervised clustering show enrichment of basal signature genes in ER low 

tumors. (A) Boxplots showing distribution of ERa levels in the ER+/PR- and ER+/PR+ cases 

used in this analysis. (B) Heatmap with unsupervised clustering of the basal signature 

gene expression in ER positive tumors. (C) Boxplots showing the differences in distribution 

of basal signature gene expression stratified by ERa expression level and PR status. (D) 

Boxplots showing distribution of ESR1 levels in the ER+/PR- and ER+/PR+ cases used in 

this analysis. (E) Heatmap with unsupervised clustering of the basal signature gene 

expression in ER positive tumors. (F) Boxplots showing the differences in distribution of 

basal signature gene expression stratified by ESR1 expression level and PR status.  
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2.4.4 Tumor cell plasticity results in emergence of basal-like features in low-ER tumors 

We reasoned that the emergence of basal-like characteristics in the low-ER luminal 

tumors may arise via two possible mechanisms. Firstly, an expansion of basal cells might 

occur during the later stages of tumorigenesis in low-ER tumors, or alternatively, cellular 

plasticity may reprogram luminal tumor cells and allow them to acquire basal-like traits. 

To identify which mechanism was at play, we carried out lineage tracing using a model 

that accurately captured aspects of low-ER breast tumors. MMTV-PyMT92 is a mouse 

mammary tumor model that closely resembles human luminal B breast cancers112 

whereby late stage tumors lose ER expression113. IHC staining for ER revealed weak to 

moderate expression in MMTV-PyMT tumors, with half of the tumors displaying less that 

10% ER expression (Fig 8A and 8B). 

 

In order to trace the lineage of the MMTV-PyMT tumor cells, either Krt8 (luminal) or Krt5 

(basal) specific, tamoxifen-inducible Cre-ERT promoters82 were used to induce expression 

of GFP in an mTmG reporter mouse93 to label luminal or basal cells, respectively (Fig 7A 

and 7B). The most efficient mammary epithelial GFP labelling was observed when 

tamoxifen induction was performed 3 days per week at postnatal week 3 for the Krt5-

CreERT/Rosa26-mTmG model (Fig 8C), and at postnatal weeks 5 and 6 for the Krt8-

CreERT/Rosa26-mTmG model (Fig 8D). Tumors that eventually arose in these tamoxifen-

pulsed mice were harvested and analyzed for GFP expression by immunostaining and flow 

cytometry. 

 

Flow cytometry analysis (Fig 8E) of tamoxifen-pulsed Krt5-CreERT/Rosa26-mTmG/MMTV-

PyMT tumors revealed mostly GFP-negative cells (Fig 7C), indicating that MMTV-PyMT 

tumors did not originate from the Krt5-expressing basal lineage. In addition, most of the 

basal-marker expressing population (Krt5+ or Krt14+) did not inherit the GFP label from 

the basal lineage (mean GFP-positive basal cells= 1.67%) (Fig 7C and 7D). In contrast, a 

larger proportion (mean GFP-positive basal cells= 45.4%) of basal cells inherited the GFP 

label in the developing normal mammary gland (Fig 7E). These results indicate that the 
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basal-like tumor cells were not derived from the basal lineage, and that the basal-like 

traits emerging within MMTV-PyMT tumors did not arise from expansion of normal basal 

cells during the process of tumorigenesis. 

 

Conversely, tamoxifen-pulsed Krt8-CreERT/Rosa26-mTmG/MMTV-PyMT mice developed 

tumors that were primarily comprised of GFP-positive cells (Fig 7F), indicating that they 

originated from the luminal lineage. Strikingly, most of the basal-marker expressing tumor 

cells were found to have also inherited the GFP label (mean GFP-positive basal cells= 

70.26%) (Fig 7F and 7G). In contrast, the GFP expression within the normal mammary 

gland was confined to a small percentage of basal cells (mean GFP-positive basal cells= 

5.37%) (Fig 7H). This indicates that the basal-like cells within these tumors arose from the 

luminal lineage, providing evidence for luminal-to-basal plasticity whereby luminal cells 

acquire basal-like traits.  

 

TSA staining confirmed the expression of GFP in luminal- or basal-like tumor cells. 

Luminal-like tumor cells were identified by Krt8 expression whereas basal-like tumor cells 

were identified by either Krt5 or Krt14 expression. In Krt5-CreERT/Rosa26-mTmG /MMTV-

PyMT tumors, co-expression of Krt5 and GFP was restricted to cells in the tumor periphery 

(Fig 7I), suggesting that cells of the basal lineage were confined to the adjacent normal 

regions. Furthermore, Krt5 itself was primarily expressed in these adjacent normal 

regions, with very few Krt5-expressing cells within the main tumor. On the other hand, 

Krt14 expression was more abundant throughout the tumor (Fig 7I), indicating that Krt14 

could serve as a more appropriate marker to track basal identity within these tumors. 

 

GFP expression was more abundant throughout the Krt8-CreERT/Rosa26-mTmG/MMTV-

PyMT tumors (Fig 7I), reflecting their luminal origin, with most of these GFP-expressing 

cells co-expressing Krt8. Co-expression of GFP and Krt14 was also observed, with about 

50% of basal marker expressing cells co-expressing GFP (mean= 47.79%) (Fig 8F), 

confirming the luminal lineage of these basal-like tumor cells. Interestingly, most of the 
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cells co-expressing GFP and Krt14 also co-expressed Krt8 (Fig 7I), suggesting that these 

tumor cells do not completely lose their luminal identity, but instead gain a lumino-basal 

phenotype. Quantification of these phenotypes within the tumor show that about 90% of 

the basal marker and GFP co-expressing cells were of the lumino-basal phenotype 

(mean=89.10%), with only about 10% of cells transitioning to a fully basal phenotype 

without Krt8 co-expression (mean=10.90%) (Fig 7J). These findings are consistent with the 

results from the flow cytometry analysis of these tumors which show that most of the 

tumor cells expressing the basal marker Krt5 or Krt14 descended from the luminal lineage. 

 

2.4.5 Distant metastases are seeded by tumor cells of luminal origin 

In addition to influencing the course of therapy, lineage plasticity could also play an 

important role in promoting metastasis within luminal-like tumors. To investigate 

whether one lineage is important for metastasis than the other, we analyzed lungs from 

Krt5-CreERT/Rosa26-mTmG/MMTV-PyMT and Krt8-CreERT/Rosa26-mTmG/MMTV-PyMT 

tumor bearing mice. TSA staining of these lungs for Krt8, Krt14, and GFP revealed no GFP 

expression in all 7 metastases from Krt5-CreERT/Rosa26-mTmG /MMTV-PyMT mice (Fig 

7K and 8G). In contrast, 16 out of 17 lung metastases from Krt8-CreERT/Rosa26-mTmG 

/MMTV-PyMT mice express GFP, indicating that the metastatic colony is seeded from a 

tumor cell of a luminal lineage. 

 

All metastases, regardless of the model they arose from, exhibited Krt8 positivity (Fig 8G), 

consistent with the luminal nature of the primary tumor. In contrast, Krt14 was only 

observed in a fraction of the metastases (6 out of 17), primarily on the periphery of the 

metastatic colony. While this may suggest that luminal-to-basal plasticity may not be 

important in metastatic seeding, it is plausible that lumino-basal tumor cells may have 

lost their basal marker expression following metastatic colony formation.  

 

Next, we addressed the requirement for lumino-basal cells for metastatic outgrowth, in 

contrast to its role in metastatic seeding. In our previous experiments above, lungs were 
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obtained from euthanized mice when they reached tumor burden (~1.0mm3). Tumor 

burden was typically achieved about 4 weeks after an initial palpable tumor was 

observed, which may not allow sufficient time for the outgrowth of seeded metastases. 

In order to allow the lung metastases to continue to grow beyond this point, we surgically 

resected the primary tumor from a Krt8-CreERT/Rosa26-mTmG /MMTV-PyMT mouse, 

and allowed the lung metastases to develop until the surgically resected tumor began to 

regrow. This took an additional 3 weeks, which allowed the lung metastases to develop 

over a total of 7 weeks. Larger metastases were observed in this case, along with an 

increase in smaller metastatic nodules. Consistent with previous observations, all the 

metastases expressed GFP and Krt8, and only 20 out of 34 metastases exhibited Krt14 

positivity (Fig 8G). Again, there is a possibility that lumino-basal tumor cells have lost their 

basal marker expression upon reaching the lung. As we are not able to study the 

metastatic process at multiple timepoints, it is unknown whether lumino-basal cells are 

important in the metastatic process. 
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Figure 7: Basal-like MMTV-PYMT tumor cells arise from the luminal lineage. (A-B) 

Strategy to trace basal and luminal lineage tumor cells in MMTV-PyMT mice. Lineage-

specific and tamoxifen-inducible Cre-ERT2 was used to specifically label basal (A) or 

luminal (B) epithelial cells with GFP. (C) Representative flow cytometry plots of luminal 

and basal tumor cells inheriting the basal lineage GFP label. (D-E) Percentage of basal and 
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luminal cells expressing basal lineage GFP in Krt5-CreERT/Rosa26-mTmG/MMTV-PyMT 

tumors (n=7, p=0.0513, unpaired t test) (D) and the normal Krt5-CreERT/Rosa26-mTmG 

mouse mammary gland (n=4, p=0.028, unpaired t test) (E). (F) Representative flow 

cytometry plots showing luminal and basal tumor cells inheriting the luminal lineage GFP 

label. (G-H) Percentage of basal and luminal cells expressing luminal lineage GFP in Krt8-

CreERT/Rosa26-mTmG/MMTV-PyMT tumors (n=8, p=0.4938, unpaired t test) (G) and the 

normal Krt8-CreERT/Rosa26-mTmG mouse mammary gland (n=4, p=0.0005, unpaired t 

test) (H). (I) Representative images of TSA staining of Krt5-CreERT/Rosa26-mTmG/MMTV-

PyMT and Krt8-CreERT/Rosa26-mTmG/MMTV-PyMT tumors. Samples were stained with 

Krt8 (purple), Krt5 (red), Krt14 (white), and GFP (green). Yellow arrows point to 

Krt5+/GFP+ tumor cells, and green arrows point to Krt14+/GFP+ tumor cells. (J) 

Quantification of lumino-basal tumor cells expressing GFP and strictly basal tumor cells 

expressing GFP from TSA-stained images of Krt8-CreERT/Rosa26-mTmG/MMTV-PyMT 

tumors. (K) Representative images of TSA staining of lung metastases from Krt5-

CreERT/Rosa26-mTmG/MMTV-PyMT and Krt8-CreERT/Rosa26-mTmG/MMTV-PyMT 

mice. Samples were stained with Krt8 (purple), Krt14 (white), GFP (green), and DAPI 

(blue). White arrows point to Krt14-expressing cells. 
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Figure 8: MMTV-PyMT as a model of low-ER mammary tumor.  (A) ER expression in 

MMTV-PyMT tumors. (B) Representative IHC images of ER expression in MMTV-PyMT 

tumors. (C-D) Optimization of tamoxifen induced GFP labelling in Krt5-CreERT/Rosa26-

mTmG (C) and Krt8-CreERT/Rosa26-mTmG (D) mouse mammary gland. (E) Flow 

cytometry gating strategy for identifying GFP expressing luminal and basal tumor cells. (F) 

Quantification of GFP expressing luminal and basal tumor cells from TSA stained images 
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of Krt8-CreERT/Rosa26-mTmG/MMTV-PyMT tumors. (G) Counts of metastatic colonies 

from Krt5-CreERT/Rosa26-mTmG/MMTV-PyMT and Krt8-CreERT/Rosa26-mTmG/MMTV-

PyMT mice expressing Krt8, Krt14, and GFP. 
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2.4.6 Single cell RNA sequencing reveals SOX10 as a key driver of luminal-to-basal 

plasticity 

To identify genetic drivers enabling the emergence of lineage plasticity, we carried out 

single-cell RNA sequencing to compare the gene-expression profiles of lineage-restricted 

luminal tumor cells and luminal-derived basal tumor cells. Tumors were harvested from 

two Krt8-CreERT/Rosa26-mTmG /MMTV-PyMT mice and sorted by flow cytometry (Fig 

10A) for all GFP-expressing cells to specifically analyze both luminal- and basal-like tumor 

cells of luminal origin. Dimensionality reduction with uniform manifold approximation 

and projection (UMAP) revealed the presence of a large, connected cluster of cells, in 

addition to a smaller cluster that showed clear separation from the larger cluster. 

Unsupervised clustering identified a total of 18 clusters (Fig 9A), with similar results 

observed in the two mouse replicates (Fig 10B). Using previously described gene 

signatures102, individual cells were scored to quantify their activity of luminal-progenitor, 

mature-luminal, and basal gene expression programs. Most cells scored highly for the 

luminal-progenitor signature (Fig 10C), in agreement with previous single-cell RNA 

analyses of MMTV-PyMT tumors114, however cells from multiple clusters demonstrated 

concomitant luminal-progenitor and basal signatures (Fig 10D), suggesting that tumor 

cells do not fully establish a basal identity, and instead express a combination of both 

luminal progenitor and basal markers. Cluster 6 demonstrated the greatest combined 

luminal and basal signature scores, suggesting these cells likely express a lumino-basal 

phenotype (Fig 9B and 9C). Cluster 13 demonstrated high scores specifically for the 

mature luminal signature, while clusters 15 and 16 demonstrated high scores specifically 

for the basal signature, suggesting that these clusters contain luminal- and basal-like 

tumor cells, respectively (Fig 9B, 9C, and 10E).  

 

To identify genes contributing to this lumino-basal plasticity, we compared the genes 

expressed in the lumino-basal cell cluster (cluster 6) against their possible ancestors, the 

lineage-restricted luminal cell (cluster 13). Analysis of the differentially expressed genes 

between the cluster 6 and cluster 13 uncovered upregulation of basal marker genes (Krt5, 
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Krt14, Krt17, and Acta2) (Fig 9D, light blue points) and simultaneous downregulation of 

luminal marker genes (Krt7, Krt8, Krt18, Krt19, and Foxa1) (Fig 9D, dark blue points) in 

cluster 6, supporting the proposed lumino-basal identity of this cluster. Of note, 

mesenchymal genes Mmp2, and vimentin (Vim) (Fig 9D, yellow points) were upregulated 

in cluster 6, while epithelial genes E-cadherin (Cdh1) and Epcam (Fig 9D, orange points) 

were downregulated, suggesting that the emergence of basal-like characteristics in these 

luminal-derived tumor cells may result from an epithelial to mesenchymal transition 

(EMT).  

 

From the list of upregulated genes in cluster 6, we selected 3 that potentially regulate the 

luminal-to-basal plasticity observed in low-ER tumors (Fig 9D, red points). The gene Spp1, 

which encodes the protein osteopontin (Opn), was selected as it has the highest effect-

size (avg_log2FC=5.42). Osteopontin is usually found as a component of bone, as it is an 

extracellular structural protein; however, intracellular osteopontin has been found to 

regulate EMT115 via its interaction with the stemness marker CD44116. We also selected 

the gene Postn, which encodes periostin, an extracellular matrix protein that has been 

found to enable cell motility by binding to integrins aVb3 and aVb5
117. Finally, we selected 

the transcription factor Sox10, as it has been implicated in the regulation of cell plasticity 

in mammary tumors118. Furthermore, three Sox10 targets, Nes, Mia and Pmp22, 

identified using TRRUST v2 (Transcriptional Regulatory Relationships Unraveled by 

Sentence-based Text mining)119, were found to be upregulated in cluster 6 as well (Fig 9D, 

green points), further supporting the role that this transcription factor may play in driving 

plasticity. 

 

To assess the roles of each candidate gene on lumino-basal plasticity in low-ER tumors, 

we analyzed the expression of these genes in the ERa low vs ERa high stratified tumors 

obtained from TCGA (Fig 5). The expression of all 3 genes were found to be significantly 

higher in the ERa low group of tumors, as compared to the ERa high group (Fig 9E). We 

further analyzed protein expression of these potential plasticity drivers in the luminal B 
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vs low-ER tumor TMAs by using IHC staining. Periostin expression was mostly relegated 

to the stroma, with no expression in tumor cells (Fig 10F). Osteopontin could also be 

detected in the stroma, while tumor cells staining positive for this protein appear to be 

present on the edges of the tumor (Fig 10G); however, there was no difference in 

osteopontin expression between tumors in the luminal B or the low-ER TMAs (Fig 10H). 

On the other hand, SOX10 appears to have a more direct correlation to low-ER tumors 

(Fig 9F), with high (>10% of tumor cells) expression of SOX10 observed in 47.47% of low-

ER tumors, while only 1 of the luminal B tumors (4.76%) expressed high levels of SOX10. 

66.67% of luminal B tumors stained negatively for SOX10, compared to only 38.84% of 

low-ER tumors (Fig 9G), further indicating that SOX10 is more highly expressed in low-ER 

tumors, as compared to luminal B tumors. This suggests that SOX10 could be a potential 

driver of luminal-to-basal plasticity, expressed in both the MMTV-PyMT mouse tumors 

and in low-ER patient tumors. 
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Figure 9: Sox10 is a potential driver of luminal-to-basal plasticity. (A) UMAP of Krt8-

CreERT/Rosa26-mTmG/MMTV-PyMT tumor cells sorted for GFP. Unsupervised clustering 

divided the cells into 18 different clusters. (B) Heatmap showing the basal, mature 

luminal, and luminal progenitor gene signature activity in each cluster. Cluster 13 (purple 

box) has high expression of mature luminal genes, while clusters 15 and 16 (orange box) 

have high expression of basal genes. Cluster 6 (red box) has high expression of both 
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mature luminal and basal genes, and is identified as the lumino-basal cluster. (C) Ternary 

plots showing the distribution of relative activity of luminal progenitor, mature luminal, 

and basal gene signatures across all tumor cells profiled by scRNA-seq. In the left plot, 

cells assigned to cluster 6 are highlighted in red, while cells assigned to cluster 13 are 

highlighted in the right plot. (D) Volcano plot showing genes upregulated and 

downregulated in cluster 6 as compared to cluster 13. Light blue points are basal marker 

genes, dark blue points are luminal marker genes, yellow points are mesenchymal genes, 

orange points are epithelial genes, red points are potential plasticity driver genes, and 

green points are SOX10 target genes. (E) Boxplots showing the differences in distribution 

of POSTN, SOX10, and SPP1 gene expression between the ERa low and ERa high groups 

of tumors obtained from TCGA. (F) Representative images of SOX10 IHC staining in 

luminal B and low-ER TMAs. (G) Quantified SOX10 expression in luminal B and low-ER 

TMAs. 
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Figure 10: Osteopontin and Periostin expression are not correlative with a low-ER 

phenotype. (A) Flow cytometry plots showing the gating strategy and the GFP positive 

cell population harvested using fluorescence assisted cells sorting (FACS). (B) UMAP of 

Krt8-CreERT/Rosa26-mTmG/MMTV-PyMT tumor cells sorted for GFP and split by sample 

of origin. Unsupervised clustering divided the cells into 18 different clusters. (C) UMAP 

projections of all tumor cells profiled with scRNA-seq. Cells are colored based on activity 

scores of luminal progenitor, mature luminal, and basal gene signatures. (D) Ternary plot 

showing the relative activity of luminal progenitor, mature luminal, and basal gene 

signatures across all tumor cells, colored by unsupervised cluster. (E) Ternary plots 

showing the distribution of relative activity of luminal progenitor, mature luminal, and 
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basal gene signatures across all tumor cells profiled by scRNA-seq. In the left plot, cells 

assigned to cluster 15 are highlighted in red, while cells assigned to cluster 16 are 

highlighted in the right plot. (F-G) Representative images of periostin (F) and osteopontin 

(G) IHC staining in luminal B and low-ER TMAs. (H) Quantified osteopontin expression in 

luminal B and low-ER TMAs. 
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2.5 Discussion 

Our study demonstrates that low-ER breast carcinomas represent a distinct subset of 

luminal-like tumors, and should be classified as a separate tumor subtype from luminal A 

and B tumors for the purposes of therapy. We found that cells within the low-ER tumors 

undergo luminal-to-basal plasticity, which introduces lumino-basal heterogeneity, 

allowing them to gain basal-like characteristics. These findings potentially reframe the 

current intrinsic subtypes of breast cancer as connected to each other, instead of being 

distinct subsets, and that the different subtypes could essentially represent different 

stages of evolutionary progression of breast tumors as they deviate from their lineage-of-

origin. This lineage divergence may influence breast cancer diagnosis and treatment, as 

luminal-like tumors, which typically exhibit better response to therapy, may evolve into 

more basal-like counterparts in response to drug-induced evolutionary pressures that 

could selectively eliminate their luminal-like ancestors while sparing basal-like tumor 

cells.  

 

Lineage plasticity has also been previously described in other breast carcinoma studies. Li 

et al120 found basal marker expression in luminal lineage-labelled cells, although they did 

not carry out further investigations on this observation. Hein et al121 observed that 

oncogenic transformation of the luminal lineage resulted in a small percentage of tumor 

cells co-expressing Krt5, however, their model utilized HA-tagged Polyoma Middle T 

antigen (PyMT) and ErbB2 oncogenes to both induce transformation and label the luminal 

lineage, whereas our lineage-tracing strategy uncoupled the process of oncogenesis from 

lineage labelling. The use of the MMTV promoter to drive the expression of the PyMT 

oncogene allowed this protein to be expressed in both luminal and basal cells, as 

previously shown114, while lineage labelling using keratin-driven Cre recombination, 

allows specific labelling of either luminal or basal cells. Consistent with our observations, 

they also found Krt5 expression to be restricted to the edges of the tumor. Finally, Koren 

et al122 and Van Keymeulen et al123 noted that PIK3CA mutations could induce 

oncogenesis and multipotency within mammary cells, resulting in heterogeneous, multi-
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lineage tumors. These findings suggest that oncogenesis and lineage plasticity can occur 

simultaneously by the activity of various oncogenes. While we have identified SOX10 as 

the potential driver for lineage plasticity, it is unknown whether this transcription factor 

itself is activated by PyMT the driver oncogene used in our model. PyMT is known to 

induce oncogenic transform via interacting with, and activating c-Src124, a non-receptor 

tyrosine kinase, thereby activating various other signaling molecules such as Shc125 and 

PI3K126. It is thus possible that one of the cell signaling pathways activated may lead to an 

increase in SOX10 transcription and activity, and the PyMT oncogene may indirectly have 

an effect on SOX10 function. Further studies must be carried out to in order to identify if 

and how lineage plasticity can occur independently from oncogenesis, as the 

homogeneous tumor cell populations observed within some luminal-like tumors suggest 

that oncogenic transformation may not always lead to lumino-basal plasticity. 

Furthermore, our study showed specific unidirectional luminal-to-basal plasticity, and not 

simply multipotency, which has important implications when considering the potential 

evolution from a luminal-like to a basal-like tumor, as mentioned previously. 

 

The presence of basal-like cells within breast tumors has important implications in tumor 

development and metastasis. We have previously shown that PKA-induced reduction of 

the lumino-basal subpopulation may be important in limiting metastasis and reducing 

chemotherapy resistance114. The collective migration of breast cancer has also been 

shown to involve leader cells with a re-activated basal program127, suggesting that the 

successful establishment of metastasis by these invading tumor clusters may depend on 

leader cells that have undergone luminal-to-basal plasticity. It is important to note that, 

while we are not able to assess the requirement for lumino-basal plasticity in metastasis 

from our data, we cannot rule out the possibility that the cells that established these 

metastases could have gained lumino-basal features within the primary tumor, which 

may have been subsequently lost upon lung colonization. Metastatic dissemination has 

been shown to involve cells that have undergone partial EMT128, suggesting that 

maintaining cellular plasticity is beneficial in metastasis. Circulating tumor clusters have 
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also been found to consist of multiple clones129, suggesting that only a small percentage 

of lumino-basal cells may be required to successfully colonize distant sites. Further studies 

analyzing circulating tumor clusters in lineage-labelled mice, or studying early vs late 

metastases may help to address the importance of lumino-basal plasticity in metastasis. 

Alternatively, lineage ablation experiments can be carried out using mouse models with 

inducible and lineage-specific diphtheria toxin, to eliminate the lumino-basal population, 

which could assess if metastases can still develop without lumino-basal tumor cells. 

 

Although the MMTV-PyMT mouse is an appropriate mammary tumor model that is 

commonly used in the study of breast carcinomas113, the oncogenic mechanism and 

development of these murine mammary tumors may not fully reflect the typical 

progression of human carcinomas. The use of this model in our lineage tracing 

experiments may thus be a possible limitation in attempting to elucidate the origin of 

lumino-basal heterogeneity within low-ER tumors. The model, however, represents the 

closest to modeling low-ER breast cancers and to understand lineage plasticity and 

lumino-basal heterogeneity. Besides the use of this specific mouse model, alternative 

models may also be useful in attempting to study lumino-basal heterogeneity. 

Specifically, the Brca1F22–24/F22–24;p53+/− mouse tumor model130 more accurately reflects 

mammary epithelial transformation in human patients by introducing Brca1 mutation and 

loss of p53. When crossed with BLG-Cre mice to induce oncogenesis in milk-producing 

luminal cells, this mouse model was shown to produce tumors that are basal-like and 

metaplastic. Substitution of BLG-Cre with Krt8- or Krt5-driven Cre could enable oncogenic 

transformation and lineage labelling to occur simultaneously. Lineage labelling of luminal 

progenitor cells in mice using ELF5-rtta in combination with TetO-Cre131 could also help 

to address whether lumino-basal plasticity can specifically be observed in this luminal 

subpopulation. Finally, in order to confirm if lumino-basal plasticity is a crucial step in 

tumor development, lineage ablation experiments can also be carried out to assess 

whether eliminating the lumino-basal subpopulation would interrupt tumor 

development. 
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We have uncovered that SOX10 may be responsible for driving the lumino-basal plasticity 

seen in the low-ER tumors. This is in agreement with previous studies demonstrating the 

role of SOX10 in regulating cell-state plasticity in mammary tumors118. Interestingly, 

several recent studies have shown that SOX10 is preferentially expressed in triple 

negative and metaplastic breast carcinomas and has emerged as a useful 

immunohistochemical marker to utilize in breast pathology practice132,133. In addition, 

SOX10 is associated with developmental plasticity and bipotent progenitor identity in 

fetal mammary stem cells, suggesting that the activity of this transcription factor reflects 

the reactivation of the bipotent progenitor program in tumor cells. SOX10 has been 

shown to be expressed in TNBCs, and is associated with worse clinical outcomes in these 

patients134, highlighting the similarities between this tumor subtype and the low-ER 

tumors in our study. SOX10 has also been shown to induce dedifferentiation and EMT118, 

highlighting the increase in invasive potential of the basal-like progression of low-ER 

tumors, potentially leading to the worse prognosis and poor clinical outcomes observed 

in these patients.  
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Chapter 3: PKA activation curtails cellular plasticity by reducing basal tumor lineage 

Adapted from “Limiting Self-Renewal of the Basal Compartment by PKA Activation 

Induces Differentiation and Alters the Evolution of Mammary Tumors”, Ognjenovic et al 

2020, available on Developmental Cell 

(https://www.sciencedirect.com/science/article/pii/S1534580720307942) 

Experiments for Figures 11, 12A-D, and 13 were performed by Gadisti Aisha Mohamed and Nevena Ognjenovic 

Experiments for Figures 12E-H were performed by Meisam Bagheri 

Experiments for Figure 14 were performed by Diwakar Pattabiraman with computational analysis performed by Mohamed Ashick 

 

3.1 Introduction 

The epithelial-mesenchymal transition (EMT) is a cell developmental program which 

activates cellular plasticity to allow epithelial cells to gain a mesenchymal phenotype25. It 

is activated during embryonic development, along with the reverse process, 

mesenchymal-epithelial transition (MET), allowing cells to differentiate and give rise to 

the various cell phenotypes in the adult tissues and organs70. EMT is also important in 

post-embryonic wound healing, where Snai2135 and fibroblast growth factor 2 (FGF2)136 

activate the EMT program in keratinocytes, allowing them to gain a mesenchymal-like 

phenotype in order to move over and cover wound surfaces135,136. In cancer, EMT plays a 

role in initiating metastasis by allowing tumor cells to escape the site of the primary tumor 

and colonize distant organs25,70. EMT plasticity promotes intra-tumoral heterogeneity, as 

some cells gain a mesenchymal phenotype while others remain epithelial. This 

heterogeneity thus allows tumors to disseminate as circulating tumor cell clusters (CTC 

clusters) containing a mixed population of cells expressing both epithelial and 

mesenchymal phenotypes137. CTC clusters promote metastasis by collective migration of 

both mesenchymal cells that allow intravasation and survival in the bloodstream, and 

epithelial cells that promote seeding in epithelial tissues of distant organs138. 

 

Previous studies have shown that treatment of mesenchymal tumor cell lines with 

forskolin and cholera toxin is able to inhibit or reverse EMT, thus preventing metastasis, 
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by elevating cyclic AMP (cAMP) levels and activating protein kinase A (PKA)139. The 

inactive PKA holoenzyme consist of 2 catalytic (C) subunits bound to 2 regulatory (R) 

subunits. Activating PKA involves the binding of cAMP to 2 regulatory sites each on the R 

subunit, thus releasing the C subunits and allowing them to phosphorylate substrate 

targets140. PKA has been shown to inhibit GLI and YAP1, both transcription factors 

involved in epidermal stem cell maintenance, and PKA overactivation results in the 

exhaustion of the stem cell compartment141. This suggests that PKA activation may disrupt 

cellular plasticity, and that the effects of EMT inhibition by PKA seen in the mesenchymal 

tumor cell lines may be due to this disruption. While the function of PKA in epidermal 

maintenance has been identified, the effects of PKA activity in the mammary context is 

unclear. 

 

In this study, transgenic mouse models expressing constitutively active PKA were utilized 

to study the effects of PKA in both the normal and transformed mammary gland. The 

PrkacaCaR mice express a mutant PKA C subunit with a tryptophan to arginine substitution 

on amino acid 196, which prevents it from binding to the R subunit142,143. The expression 

of the PKA-CaR mutant is cre recombinase-dependent, which allows its targeted 

expression in specific tissues143. In order to specifically express these mutants in the 

mammary gland, the PrkacaCaR mice are crossed with MMTV-Cre mice, which express the 

cre recombinase specifically in mammary epithelial cells144. This would permit the study 

of PKA activation on the development of the normal mammary gland. To elucidate the 

effects of PKA activity on tumor development, progression, and metastasis, the 

PrkacaCaR/MMTV-Cre mice were additionally crossed to the MMTV-PyMT mouse92, 

generating mammary tumors that also express the PKA-CaR constitutively active mutant. 

 

3.2 Materials and Methods 

Animal studies 

All animal experiment IACUC protocols were approved by the Dartmouth College 

Committee on Animal Care. The PKA-CaR143 mice were a gift from Stanley McKnight 
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(UWashington). Tg(MMTV-cre)4Mam/J line D (Strain #: 003553)144, and MMTV-PyMT 

mice ((Tg(MMTV-PyVT)634Mul/LellJ mice on a C57Bl/6J background, strain #: 022974)92 were 

purchased from The Jackson Laboratory. Mice were euthanized and tumors were 

harvested once tumors reached a volume of 1.5cm3, usually at weeks 15-18. For analysis 

of the normal mammary gland, mice were euthanized at 8 weeks. 

 

Mammary gland dissociation 

Mouse mammary fat pads were harvested and processed to obtain single-cell 

suspensions using established protocols94 that were slightly modified. Mammary fat pads 

were digested in a solution of DMEM (Corning, 10-013-CV) with Hyaluronidase (Fischer 

Scientific, ICN10074091) and Collagenase A (Sigma-Aldrich, 10103586001) for 2 hours at 

37°C with gentle agitation using a rotator. Red blood cells were subsequently removed 

with an ammonium chloride lyse (8.02g NH4Cl, 0.84g NaHCO3, 0.37g EDTA in 1L of water), 

and samples were agitated with Trypsin (Corning, 25-053-CI) and Dispase (Stem Cell 

Technologies, 7913) + DNAse I (Sigma-Aldrich, DN25-100mg) for 1 minute each to further 

dissociate the cells. Finally, samples were filtered through a 40mm cell strainer (Corning, 

431750) to obtain a single-cell suspension. 

 

Mammary gland whole mount preparation and Carmine Alum staining 

Whole mammary glands were spread on a glass slide and fixed with Carnoy’s fixative (60% 

ethanol, 30% chloroform, 10% glacial acetic acid) overnight at RT. Fixed tissue was 

rehydrated by washing with decreasing ethanol concentrations (70%, 50%, 30%, 10%) 2 

times each for 10 minutes. Rehydrated tissue was then stained with Carmine Alum (Stem 

Cell Technologies, 07070) for 48-72 hours. Mammary glands were then dehydrated using 

increasing ethanol concentrations (70%, 95%, 100%) 2 times each for 15 minutes, and 

cleared in xylene overnight. Cleared mammary glands were then mounted with Permount 

mounting medium (Fischer Chemical, SP15-100) and glass coverslips and allowed to dry 

overnight. Slides were imaged on the PerkinElmer Vectra3 slide scanner. 
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Tumor dissociation 

Tumors harvested from euthanized mice were digested in DMEM containing 2 mg/ml 

Collagenase A and 100U/ml hyaluronidase at 37°C for 2 hours with gentle agitation using 

a rotator. Following digestion, samples were strained through 70mm (Corning, 431751) 

and 40mm cell strainers to obtain a single-cell suspension. Finally, red blood cells were 

removed with an ammonium chloride lyse, and cells were washed in PBS. 

 

FFPE tissue processing 

Harvested mammary glands, tumors and lungs were placed in tissue biopsy cassettes and 

fixed in 10% Neutral Buffered Formalin (Leica, 3800598) at 4°C overnight. The formalin 

was then removed, and tissues were soaked in 70% ethanol at 4°C for at least 2 days 

before embedding in paraffin blocks. Hematoxylin & Eosin (H&E) staining was performed 

on sections cut from the paraffin blocks. Embedding, sectioning, and H&E staining were 

performed by Dartmouth-Hitchcock Pathology Shared Resources. 

 

Flow Cytometry and Fluorescence assisted cell sorting (FACS) 

Single-cell suspensions were first stained with fluorescently labelled antibodies. Tumor 

single-cell suspensions were stained with APC anti-CD326 (Ep-CAM) antibody (Biolegend, 

118214, clone: G8.8, 1:100 dilution), PE anti-CD49f (integrin alpha 6) antibody (Biolegend, 

313612, clone: GoH3, 1:100 dilution), PE/Cyanine 7 anti-mouse CD31antibody (Biolegend, 

102418, clone:390, 1:100 dilution), and PE/Cyanine 7 anti-mouse CD45 antibody 

(Biolegend, 103114, clone: 30-F11, 1:100 dilution) for 30 minutes on ice. DAPI (Sigma-

Aldrich, 10236276001) was added at a dilution of 1:1000 after the final wash step in order 

to facilitate live-cell sorting. 

 

Cells were sorted on the FACSAria III cell sorter for normal basal and luminal cells by first 

gating on DAPI-negative live cells, and CD31- and CD45-negative epithelial cells. Cells that 

were EpCam high and CD49f low were collected as luminal cells, while cells that were 

EpCam low and CD49f high were collected as basal cells. 
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Organoid assay 

Dissociated cells from the mammary epithelium were cultured with advanced DMEM 

(Gibco, 12491015) with 5% Matrigel, 5% heat-inactivated FBS, 10 ng/ml EGF, 20 ng/ml 

bFGF, 4 mg/ml heparin, and 5 mM Y-27632. Cells were seeded at 1000 cells per well of a 

96-well ultralow attachment plate (Corning, 29443-034). The number of organoids 

formed were counted 7-14 after seeding. 

 

Immunohistochemistry (IHC) staining 

Slides are cut at 4mm and air dried at RT before baking at 60°C for 30 minutes. Automated 

protocol performed on the Leica Bond Rx (Leica Biosystems) includes paraffin dewax, 

antigen retrieval, peroxide block and staining. Heat induced epitope retrieval using Bond 

Epitope Retrieval 2, pH9 (Leica Biosystems, AR9640) was incubated at 100 degrees Celsius 

for 20 minutes. Primary antibody anti-p-PKA substrate (Cell Signaling Technoloy, 9624, 

1:200 dilution) was applied and incubated for 15 minutes at room temp. Primary antibody 

binding is detected and visualized using the Leica Bond Polymer Refine Detection Kit 

(Leica Biosystems DS9800) with DAB chromogen and Hematoxylin counterstain. Slides 

were imaged using the PerkinElmer Vectra3 slide scanner, and PhenoChart. 

 

Immunofluorescence staining 

Slides were rehydrated by incubating in Histoclear solution twice for 5 min each, followed 

by incubation in 100% ethanol twice for 5 min each, in 95% ethanol twice for 5min each, 

70% ethanol twice for 5 min each, once in 35% ethanol for 5 min, and in water for 5 min. 

Pressure cooker-mediated heat-induced epitope retrieval was carried out in 250 ml of 

unmasking buffer containing sodium citrate at pH 6. After retrieval, slides were blocked 

for 30 min in PBS containing 3% normal horse serum after which they were incubated 

with primary antibody in blocking solution overnight at 4 C. Slides were washed twice 

with PBS and incubated with secondary antibody at room temperature for 1 hour in the 

dark. After two PBS washes, 20 ml of mounting medium was added, then slide contents 
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were topped with coverslips, and stored in the dark for 24 hours before imaging on a Zeiss 

LSM800 microscope and analyzed using the Zen Digital Imaging software. 

 

Single-cell RNA-seq Library Construction and Sequencing  

Single Cell Capture and Library Preparation: Immediately following dissociation, single cell 

suspensions were placed on ice and counted on a Luna automated cell counter. Cell 

concentrations from each sample were be normalized to 1000 cells/ul and loaded onto a 

Chromium Single Cell A Chip (10x Genomics Inc.) targeting a capture rate of 5,000 cells 

per sample. Single cell RNA-seq libraries were prepared using the Chromium Single Cell 3’ 

v2 kit (10x Genomics) following the manufacturer’s protocol. Libraries were quantified by 

qubit and peak size determined on a fragment analyzer instrument. All libraries were 

pooled and sequenced on an Illumina NextSeq500 High Output 26bp x 98bp run to 

generate an average of 50,000 reads/cell. Data Analysis: Raw sequencing were processed 

using the 10x Genomics Cell Ranger to generate quality metrics and primary data 

visualizations as well as gene expression matrices for downstream analysis in R using 

Seurat and other open-source packages.  

 

Single-cell RNA-seq Data Processing  

To investigate the transcriptional evolution of tumors at single cell level, we performed 

matched hyperplasia and tumor samples single-cell RNA-seq on the 10X genomics 

platform, and generated data at an average of ~78M reads per sample with cell numbers 

ranging from ~2600 to 5000. Single-cell transcriptome sequencing raw reads were quality 

filtered using Fqtrim (v0.9.7) tool145. Reads were trimmed and filtered for low quality 

bases, poly-A/T tails and N bases while retaining the paired-end integrity of the reads. 

Read1 of the pair containing barcodes was not considered for trimming but allowed to be 

filtered to maintain paired-end integrity. Sequencing and PCR errors in cell barcodes can 

convolute the process of differentiating reads per cell barcode; hence we used UMItools 

(v0.5.4) to distinguish the reads per cell (barcode) accommodating for technical errors146. 
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A knee density method-based approach is used in UMItools to estimate the number of 

acceptable cell barcodes and then reads were assigned for each cell.  

Clean and barcode classified reads were aligned against Mouse genome reference 

(GRCm38) using STAR aligner (v2.5.3a)147 and output was restricted to uniquely aligned 

reads. De-duplication of transcripts with the same UMIs arising from PCR amplification 

were removed. Reads were assigned with position based annotation of genomic features 

using featureCounts module148 in the subread package (v1.6.0). Taking advantage of the 

UMI information, read counts were extrapolated to quantify molecular level count for 

each transcript using directional-adjacency method-based count module in UMItools. 

Reads were grouped per cell (based on barcode) and then a gene expression matrix was 

generated with RNA molecule count of genes in rows for each cell in columns represented 

in GxC matrix format (where G is gene in rows and C is cells in columns).  

 

Cell-Type Classification 

Gene expression matrix was filtered for cells with <500 genes expressed and <500 total 

UMI counts genes and >0.25 percentage of reads aligned to Mitochondrial genome using 

Monocle2 (v2.6.4) R package149–151. Further, outliers of total mRNAs count for each cell 

was removed from the downstream analysis. Expression counts were normalized using 

negative binomial distribution of library sizes. Genes with mean expression value of 0.1 

across cells were used for PCA based dimensionality reduction and then clustered using 

an unsupervised density Peaks algorithm in Monocle2 and projected using t-SNE method. 

To classify the population into various cell-types, we investigated the expression of 

curated and well-established cell-type specific marker genes’ expression in our data and 

selected a specific list of markers that are expressed and/or not expressed for each cell- 

type. Following are the cell-type specific markers used for the classification in this study. 
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Cell type Higher expression 

Basal cells Krt14, Krt5, Snai2 

Luminal mature cells Pgr, Prlr, Foxa1, Gpx3, Esr1 

Luminal Progenitor cells CD14, Kit, Lalba 

Lumino-basal  Krt14, Krt8, CD14 

EMT-like Trim29, Vim, Cldn6, Sox4 

Table 1: Specific markers used to classify cells in scRNA-seq data 

 

3.3 Results 

3.3.1 PKA activation leads to quantitative and qualitative changes in the normal 

mammary basal compartment 

In order to study the effect of PKA activation in the development of the normal mammary 

gland, PrkacaCaR mice were crossed with MMTV-Cre mice, which specifically expresses 

the Cre recombinase in the cells in the mammary gland, thus allowing the expression of 

the CaR subunit of PKA to be targeted to the mammary epithelial cells (Fig 11A). Mice 

that inherited only PrkacaCaR or MMTV-Cre individually were used as controls (PrkacaWT). 

Mammary glands were harvested after the onset of puberty at around 8 weeks. PKA 

activation appears to disrupt normal mammary gland development with interrupted 

ductal tree formation in PrkacaCaR mammary glands (Fig 11B). A reduction in the number 

of Terminal Ductal Lobular Units (TDLU) (Fig 11C) was also observed, with a 65% reduction 

in the average number of TDLUs in PrkacaCaR compared to PrkacaWT mice (Fig 11D). This 

demonstrates that PKA activation prevents the mammary gland from developing 

normally, severely restricting the formation of the network of branched ducts that 

represent the typical structure of a normal mammary gland. 

 

To investigate if PKA activation affects basal and luminal cells of the mammary gland 

equally, flow cytometry was performed to analyze the proportion of mammary epithelial 

cells in PrkacaCaR and PrkacaWT mammary glands. The flow cytometry analysis showed a 

reduction in the proportion of basal epithelial cells in PrkacaCaR mice, with only 5.52% 

basal cells in the mammary gland, as compared to 11.9% basal cells in the PrkacaWT 
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mammary gland, an almost 50% reduction (Fig 11E and F). In contrast, luminal cell 

proportions seem to be relatively consistent between the PrkacaCaR (6.27%) and the 

PrkacaWT (4.86%) mice. These results suggest the interruption of the mammary gland 

development by PKA activity primarily affects the basal epithelial lineage rather than the 

luminal epithelial lineage. 

 

The basal epithelial compartment is known to harbor more mammary stem cells (source), 

and thus reduction of this epithelial lineage may result in the reduction in repopulating 

capacity of the mammary gland. To test this, organoid assays were performed, to analyze 

the ability of basal cells to form organoids in Matrigel. Basal epithelial cells were sorted 

from PrkacaCaR and PrkacaWT mice, and allowed to grow in media supplemented with 5% 

Matrigel, with 1000 cells deposited into each well of a 96-well plate. Basal cells sorted 

from PrkacaCaR mice had a reduced ability to form organoids, with a 4-fold decrease in 

organoids formed per 1000 cells compared to basal cells from PrkacaWT mice (Fig 11G and 

H). This indicates that PKA activity disrupts the self-renewal capabilities of the basal 

epithelial compartment, which thus causes the interruption of normal mammary gland 

formation. 
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Figure 11: PKA activation reduces basal epithelial proportions and prevents self-

renewal of basal epithelial compartment in the normal mammary gland. (A) Genetics of 

mice used to interrogate PKA activity in the normal mammary gland. PrkacaCaR mice were 

crossed with MMTV-Cre mice to induce PKA activation specifically in the mammary gland. 

(B) Whole mount mammary gland stained with carmine alum shows interrupted ductal 

tree formation in PrkacaCaR mice compared to in PrkacaWT mice. (C) Representative H&E 

stained images of the mammary gland, showing reduction in the number of TDLUs in 
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mice to express the CaR allele in a basal-specific manner (Van
Keymeulen et al., 2011) (Figure 2A). Upon tamoxifen administra-
tion at 4 weeks of age and observation of mammary glands at
8 weeks, we noted an absence of GFP-positive basal cells in
the PrkacaCaR/fl mice, present only in controls that lacked the
CaR allele or those that did not receive tamoxifen (Figures 2B–
2D). Initial recombination following administration of tamoxifen
led to 76% of basal cells undergoing Krt5-Cre recombination
(Figure S2), whereas in 8-week-old PrkacaCaR/fl mice, less than
1% of basal cells were GFP positive, compared to >30% in Prka-
cafl/fl controls (Figure 2B). These observations suggest that the
expression of the PrkacaCaR allele inhibited the expansion of
the basal compartment, leading to the observed defects in
ductal outgrowth. We, subsequently, expressed the CaR allele
specifically in luminal cells using the Krt8-CreERT2 mouse (Van
Keymeulen et al., 2011)(Figure 2E). Upon tamoxifen administra-
tion at 5 weeks of age and observation of mammary glands at
8weeks, the percentage of GFP-expressing luminal cells inPrka-
caCaR/flmice was comparable to those of Prkacafl/fl controls (Fig-
ure 2F), and indeed, the presence of GFP+ ducts was observed
upon whole mount imaging and staining of sections (Figures 2G
and 2H), indicating that activation of the PKA allele did not affect

the luminal lineage. These results reiterate the ability of PKA
signaling in inducing a qualitative and quantitative alteration of
the mammary basal/myoepithelial compartment. We further
explored the impact of these alterations on the development
and progression of mammary tumors that arise from these aber-
rant glands.

Human Breast Cancers Harbor Recurrent Genomic
Alterations in the PKA Locus
Given the previously identified role for PKA in the induction ofMET
(Pattabiraman et al., 2016), we interrogated the clinical signifi-
cance of the PKA genes in human breast cancer. Analysis of the
breast cancer genomic data from The Cancer Genome Atlas
(TCGA) (CancerGenomeAtlasNetwork, 2012) revealed amplifica-
tions in the genomic loci encoding PKA subunits in 11.2% (121/
1085) of breast cancers (Figure 3A). PRKAR1A encodes one of
four negative regulatory subunits that sequester the catalytic sub-
units, including that encoded by PRKACA, which carry out enzy-
matic functions downstream (Skalhegg and Tasken, 2000). The
frequency of amplifications in the other regulatory subunits
PRKAR1B, PRKAR2A, and PRKAR2B were significantly lower
than that of PRKAR1A at 1.1%, 0.1%, and 0.6%, respectively

Figure 1. Activation of PKA Impairs Mammary Development and Repopulating Ability
(A) PKA-CaR mice were crossed to MMTV-Cre mice to activate the CaR constitutively active allele.

(B) Fluorescence-activated cell sorting (FACS) plots showing proportions of EpCAMhiCD49fmed luminal and EpCAMmedCD49fhi basal compartments upon

constitutive activation of PKA.

(C) A summary of relative proportions of these subpopulations across multiple mice.

(D) Carmine alum stained whole mounts of mammary glands from and PrkacaCaR/fl control mice displaying ductal outgrowth. Scale bar, 3mm.

(E) Fluorescence imaging of Krt8 (luminal) and Krt14 (basal) layers in mammary glands from PrkacaCaR/fl and Prkacafl/fl mice. Scale bar, 150 mm.

(F) Hematoxylin-eosin staining of FFPE sections of mammary glands depicting TDLUs from PrkacaCaR/fl and Prkacafl/fl mice. Scale bar, 150 mm.

(G andH) Organoid assayswere carried out to assay for differences in self-renewal potential upon activation of PKA. Data are shown asmean ± SD (n =10mice). p

value was determined by Student’s two-tailed t test (unpaired). *p < 0.01.

(I) Limiting dilution transplantation into cleared fat pads estimated the frequency of mammary repopulating units in PrkacaCaR/fl and Prkacafl/fl controls.

(J) Schematic representation of breeding strategy to generate mammary-specific Gas active mutants.

(K) FACSwas carried out to capture differences in representation of luminal and basal subpopulations (K and L) Organoid assays carried out to test for differences

in self-renewal potential (L) (n = 5 mice). Statistical significance was calculated by a Student t test (two-tailed) to compare two groups (p < 0.05 was considered

significant).
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Supplementary Figure 1: Activation of PKA impairs mammary development and 

repopulating ability, Related to Figure 1. PrkacaCaR/fl and control Prkacafl/fl mice were 

crossed to MMTV-Cre mice co-expressing the Rosa26-mTmG reporter. FACS plots (A) and 

table (B) outlining the percent of luminal and basal cells that undergo Cre recombination, 

thereby expressing GFP in Prkacafl/fl (top) and PrkacaCaR/fl (bottom) mice. Enumeration of 

terminal ductal lobular units (TDLUs) from H&E stained sections of mammary glands of 
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mice to express the CaR allele in a basal-specific manner (Van
Keymeulen et al., 2011) (Figure 2A). Upon tamoxifen administra-
tion at 4 weeks of age and observation of mammary glands at
8 weeks, we noted an absence of GFP-positive basal cells in
the PrkacaCaR/fl mice, present only in controls that lacked the
CaR allele or those that did not receive tamoxifen (Figures 2B–
2D). Initial recombination following administration of tamoxifen
led to 76% of basal cells undergoing Krt5-Cre recombination
(Figure S2), whereas in 8-week-old PrkacaCaR/fl mice, less than
1% of basal cells were GFP positive, compared to >30% in Prka-
cafl/fl controls (Figure 2B). These observations suggest that the
expression of the PrkacaCaR allele inhibited the expansion of
the basal compartment, leading to the observed defects in
ductal outgrowth. We, subsequently, expressed the CaR allele
specifically in luminal cells using the Krt8-CreERT2 mouse (Van
Keymeulen et al., 2011)(Figure 2E). Upon tamoxifen administra-
tion at 5 weeks of age and observation of mammary glands at
8weeks, the percentage of GFP-expressing luminal cells inPrka-
caCaR/flmice was comparable to those of Prkacafl/fl controls (Fig-
ure 2F), and indeed, the presence of GFP+ ducts was observed
upon whole mount imaging and staining of sections (Figures 2G
and 2H), indicating that activation of the PKA allele did not affect

the luminal lineage. These results reiterate the ability of PKA
signaling in inducing a qualitative and quantitative alteration of
the mammary basal/myoepithelial compartment. We further
explored the impact of these alterations on the development
and progression of mammary tumors that arise from these aber-
rant glands.

Human Breast Cancers Harbor Recurrent Genomic
Alterations in the PKA Locus
Given the previously identified role for PKA in the induction ofMET
(Pattabiraman et al., 2016), we interrogated the clinical signifi-
cance of the PKA genes in human breast cancer. Analysis of the
breast cancer genomic data from The Cancer Genome Atlas
(TCGA) (CancerGenomeAtlasNetwork, 2012) revealed amplifica-
tions in the genomic loci encoding PKA subunits in 11.2% (121/
1085) of breast cancers (Figure 3A). PRKAR1A encodes one of
four negative regulatory subunits that sequester the catalytic sub-
units, including that encoded by PRKACA, which carry out enzy-
matic functions downstream (Skalhegg and Tasken, 2000). The
frequency of amplifications in the other regulatory subunits
PRKAR1B, PRKAR2A, and PRKAR2B were significantly lower
than that of PRKAR1A at 1.1%, 0.1%, and 0.6%, respectively

Figure 1. Activation of PKA Impairs Mammary Development and Repopulating Ability
(A) PKA-CaR mice were crossed to MMTV-Cre mice to activate the CaR constitutively active allele.

(B) Fluorescence-activated cell sorting (FACS) plots showing proportions of EpCAMhiCD49fmed luminal and EpCAMmedCD49fhi basal compartments upon

constitutive activation of PKA.

(C) A summary of relative proportions of these subpopulations across multiple mice.

(D) Carmine alum stained whole mounts of mammary glands from and PrkacaCaR/fl control mice displaying ductal outgrowth. Scale bar, 3mm.

(E) Fluorescence imaging of Krt8 (luminal) and Krt14 (basal) layers in mammary glands from PrkacaCaR/fl and Prkacafl/fl mice. Scale bar, 150 mm.

(F) Hematoxylin-eosin staining of FFPE sections of mammary glands depicting TDLUs from PrkacaCaR/fl and Prkacafl/fl mice. Scale bar, 150 mm.

(G andH) Organoid assayswere carried out to assay for differences in self-renewal potential upon activation of PKA. Data are shown asmean ± SD (n =10mice). p

value was determined by Student’s two-tailed t test (unpaired). *p < 0.01.

(I) Limiting dilution transplantation into cleared fat pads estimated the frequency of mammary repopulating units in PrkacaCaR/fl and Prkacafl/fl controls.

(J) Schematic representation of breeding strategy to generate mammary-specific Gas active mutants.

(K) FACSwas carried out to capture differences in representation of luminal and basal subpopulations (K and L) Organoid assays carried out to test for differences

in self-renewal potential (L) (n = 5 mice). Statistical significance was calculated by a Student t test (two-tailed) to compare two groups (p < 0.05 was considered

significant).
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mice to express the CaR allele in a basal-specific manner (Van
Keymeulen et al., 2011) (Figure 2A). Upon tamoxifen administra-
tion at 4 weeks of age and observation of mammary glands at
8 weeks, we noted an absence of GFP-positive basal cells in
the PrkacaCaR/fl mice, present only in controls that lacked the
CaR allele or those that did not receive tamoxifen (Figures 2B–
2D). Initial recombination following administration of tamoxifen
led to 76% of basal cells undergoing Krt5-Cre recombination
(Figure S2), whereas in 8-week-old PrkacaCaR/fl mice, less than
1% of basal cells were GFP positive, compared to >30% in Prka-
cafl/fl controls (Figure 2B). These observations suggest that the
expression of the PrkacaCaR allele inhibited the expansion of
the basal compartment, leading to the observed defects in
ductal outgrowth. We, subsequently, expressed the CaR allele
specifically in luminal cells using the Krt8-CreERT2 mouse (Van
Keymeulen et al., 2011)(Figure 2E). Upon tamoxifen administra-
tion at 5 weeks of age and observation of mammary glands at
8weeks, the percentage of GFP-expressing luminal cells inPrka-
caCaR/flmice was comparable to those of Prkacafl/fl controls (Fig-
ure 2F), and indeed, the presence of GFP+ ducts was observed
upon whole mount imaging and staining of sections (Figures 2G
and 2H), indicating that activation of the PKA allele did not affect

the luminal lineage. These results reiterate the ability of PKA
signaling in inducing a qualitative and quantitative alteration of
the mammary basal/myoepithelial compartment. We further
explored the impact of these alterations on the development
and progression of mammary tumors that arise from these aber-
rant glands.

Human Breast Cancers Harbor Recurrent Genomic
Alterations in the PKA Locus
Given the previously identified role for PKA in the induction ofMET
(Pattabiraman et al., 2016), we interrogated the clinical signifi-
cance of the PKA genes in human breast cancer. Analysis of the
breast cancer genomic data from The Cancer Genome Atlas
(TCGA) (CancerGenomeAtlasNetwork, 2012) revealed amplifica-
tions in the genomic loci encoding PKA subunits in 11.2% (121/
1085) of breast cancers (Figure 3A). PRKAR1A encodes one of
four negative regulatory subunits that sequester the catalytic sub-
units, including that encoded by PRKACA, which carry out enzy-
matic functions downstream (Skalhegg and Tasken, 2000). The
frequency of amplifications in the other regulatory subunits
PRKAR1B, PRKAR2A, and PRKAR2B were significantly lower
than that of PRKAR1A at 1.1%, 0.1%, and 0.6%, respectively

Figure 1. Activation of PKA Impairs Mammary Development and Repopulating Ability
(A) PKA-CaR mice were crossed to MMTV-Cre mice to activate the CaR constitutively active allele.

(B) Fluorescence-activated cell sorting (FACS) plots showing proportions of EpCAMhiCD49fmed luminal and EpCAMmedCD49fhi basal compartments upon

constitutive activation of PKA.

(C) A summary of relative proportions of these subpopulations across multiple mice.

(D) Carmine alum stained whole mounts of mammary glands from and PrkacaCaR/fl control mice displaying ductal outgrowth. Scale bar, 3mm.

(E) Fluorescence imaging of Krt8 (luminal) and Krt14 (basal) layers in mammary glands from PrkacaCaR/fl and Prkacafl/fl mice. Scale bar, 150 mm.

(F) Hematoxylin-eosin staining of FFPE sections of mammary glands depicting TDLUs from PrkacaCaR/fl and Prkacafl/fl mice. Scale bar, 150 mm.

(G andH) Organoid assayswere carried out to assay for differences in self-renewal potential upon activation of PKA. Data are shown asmean ± SD (n =10mice). p

value was determined by Student’s two-tailed t test (unpaired). *p < 0.01.

(I) Limiting dilution transplantation into cleared fat pads estimated the frequency of mammary repopulating units in PrkacaCaR/fl and Prkacafl/fl controls.

(J) Schematic representation of breeding strategy to generate mammary-specific Gas active mutants.

(K) FACSwas carried out to capture differences in representation of luminal and basal subpopulations (K and L) Organoid assays carried out to test for differences

in self-renewal potential (L) (n = 5 mice). Statistical significance was calculated by a Student t test (two-tailed) to compare two groups (p < 0.05 was considered

significant).

ll
Article

546 Developmental Cell 55, 544–557, December 7, 2020

E PrkacaCaRPrkacaWT

CD49f

Ep
CA

M

Luminal Luminal

Basal Basal

mice to express the CaR allele in a basal-specific manner (Van
Keymeulen et al., 2011) (Figure 2A). Upon tamoxifen administra-
tion at 4 weeks of age and observation of mammary glands at
8 weeks, we noted an absence of GFP-positive basal cells in
the PrkacaCaR/fl mice, present only in controls that lacked the
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matic functions downstream (Skalhegg and Tasken, 2000). The
frequency of amplifications in the other regulatory subunits
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Keymeulen et al., 2011) (Figure 2A). Upon tamoxifen administra-
tion at 4 weeks of age and observation of mammary glands at
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the PrkacaCaR/fl mice, present only in controls that lacked the
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PrkacaCaR mice. (D) Quantification of TDLUs in PrkacaCaR and PrkacaWT mice. (E) Flow 

cytometry analysis of luminal and basal cells in the normal mammary gland of PrkacaCaR 

and PrkacaWT mice. (F) Proportions of luminal and basal quantified from flow cytometry 

analysis of of PrkacaCaR and PrkacaWT mice mammary glands. (G) Representative images 

of organoid assays to study the organoid forming capability of in PrkacaCaR and PrkacaWT 

basal cells. (H) Quantification of organoids formed by in PrkacaCaR and PrkacaWT basal 

cells. 
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3.3.2 PKA induced reduction of basal cells improve tumor prognosis and reduces 

metastasis 

PrkacaCaR and PrkacaWT were crossed with MMTV-PyMT mice in order to study the effects 

of PKA activation in tumor development (Fig 12A). Tumors were allowed to develop until 

the tumor burden reaches 2cm2, after which the mice were sacrificed to harvest and 

analyze the tumors and lung metastases. Histologically, PKA activation appears to affect 

the differentiation of mammary tumors, with PrkacaCaR/MMTV-PyMT tumors showing a 

more differentiated phenotype, gland formation and nuclear characteristics intermediate 

grade Invasive Ductal Carcinomas (IDC), and vascularized stroma similar to papillary 

differentiation (Fig 12B). In contrast, PrkacaWT/MMTV-PyMT tumors were more de-

differentiated, and were comprised of solid sheets of pleiomorphic cells with high mitotic 

activity, similar to higher grade IDC (Fig 12B).  Immunohistochemistry (IHC) staining for 

phospho-PKA substrates confirmed the activation of PKA in the PrkacaCaR/MMTV-PyMT 

tumors, which showed higher levels of activated PKA target proteins (Fig 12C and D). 

 

PrkacaCaR/MMTV-PyMT tumors also appear to have reduced basal-like tumor cells and 

mesenchymal tumor cells compared to the PrkacaWT/MMTV-PyMT tumors. 

Immunofluorescence staining of the PrkacaWT/MMTV-PyMT tumors showed most of the 

tumor cells expressing the luminal marker Krt8, with a proportion of cells expressing the 

basal marker Krt14 (Fig 12E). In contrast, the PrkacaCaR/MMTV-PyMT tumors show a 

reduction in Krt14 staining, while Krt8 staining appears to remain (Fig 12F). This is 

consistent with the reduction in basal cell proportions in the normal mammary gland as 

a result of PKA activation. Staining for vimentin, a mesenchymal marker also appears 

reduced in the PrkacaCaR/MMTV-PyMT tumors compared to the PrkacaWT/MMTV-PyMT 

tumors (Fig 12G and H). The reduction in both Krt14 and vimentin expression suggest that 

luminal-to-basal plasticity may be synonymous with epithelial-to-mesenchymal plasticity, 

and that PKA’s effect in the tumor context limits cellular plasticity thus preventing tumor 

cells from developing and evolving into different phenotypes. 
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The reduced mesenchymal and basal-like cells in the PrkacaCaR/MMTV-PyMT tumors may 

suggest that the altered development of these tumors could also result in changes in 

tumor prognosis and metastasis. PKA activation appears to improve the overall survival 

of the mice, with PrkacaCaR/MMTV-PyMT tumors developing slower, taking as much as 

173 days to develop a tumor burden endpoint of 2cm2. In contrast, all of the 

PrkacaWT/MMTV-PyMT mice reached the endpoint by day 142, 31 days earlier than the 

PrkacaCaR/MMTV-PyMT mice (Fig 13A and B). To evaluate the lung metastatic burden, 

lungs were sectioned and stained for H&E, which allows visualization of the 

macrometastatic colonies present in each lung (Fig 13D). Quantification of these 

macrometastases revealed that PrkacaCaR/MMTV-PyMT mice developed a lower number 

of lung metastases, with an average lung metastatic burden of less than 2, almost half as 

much as the PrkacaWT/MMTV-PyMT mice (Fig 13C), despite taking a longer time to reach 

the same tumor burden (Fig 13A and B). These results show that PKA induced arrest of 

cellular plasticity interrupts regular metastatic evolution within tumors, thus preventing 

metastatic colonization and outgrowth and improving tumor prognosis.  
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Figure 12: PKA activation prevents the de-differentiation of mammary tumors and 

results in reduction of basal-like and mesenchymal tumor cells. (A) Genetics of mice 

used to interrogate PKA activity in mammary tumors. The offspring of PrkacaCaR/MMTV-

Cre crossed mice were further crossed with MMTV-PyMT mice to induce PKA activation 

and oncogenic transformation specifically in the mammary epithelial cells. (B) H&E 

staining to show the histological differences as a result of PKA activation in mammary 

tumors. PrkacaWT/MMTV-PyMT tumors on the left display characteristics similar to high 

 
 
 
Supplementary Figure 4: Induction of tumor differentiation upon activation of PKA 
signaling, Related to Figure 4. Activation of PKA was assessed by IHC using a p-PKA 

substrate antibody (A, B). H&E staining of FFPE sections from the primary tumor used to 

assess histopathology and differentiation state of from PrkacaCaR/fl PyMT and Prkacafl/fl PyMT 

tumors (C). 
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Figure 4. Induction of Tumor Differentiation upon Activation of PKA Signaling
(A) Schematic of breeding strategy to generate MMTV-PyMT mice with active PKA.

(B and C) Differences in survival (B; n = 24 mice) and primary tumor volumes (C; n = 11 mice) of PrkacaCaR/fl PyMT mice compared to Prkacafl/fl PyMT controls.

(D and E) Differences in lung metastatic burden was captured from H&E stained FFPE lung sections, red arrows indicate macrometastases. Scale bar, 2 mm (n =

13 mice).

(F and G) Treatment with Adriamycin showing differences in response to chemotherapy (F and G) between PrkacaCaR/fl PyMT mice and Prkacafl/fl PyMT controls

(n = 20 tumors).

(H) Tumor initiating potential of PrkacaCaR/fl PyMT mice and Prkacafl/fl PyMT controls was assessed by limiting dilution transplantation analyses.

(I–L) Fluorescence imaging of tumor sections stained with antibodies against E-cadherin, vimentin, Krt8 and Krt14 revealing epithelial-mesenchymal (I and J) and

luminal-basal heterogeneity (K and L). Yellow arrows highlight vimentin (I) - and Krt14 (K)-expressing tumor cells. Scale bar, 10 and 4 mm. Error bars represent ±

standard deviations of the mean. Statistical significance was calculated by a Student t test (two-tailed) to compare two groups (p < 0.05 was considered sig-

nificant) except for survival analyses where significance was determined using a Log-rank (Mantel-Cox) test (p < 0.05 was considered significant) and

chemotherapy treatment where a Wald Z-test was used to compute the p value for the difference of slopes in two treatment groups.
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grade IDC, while PrkacaCaR/MMTV-PyMT tumors on the right show a differentiated 

phenotype, with characteristics similar to intermediate grade IDC. (C and D) IHC staining 

for phosphor-PKA substrates in PrkacaWT/MMTV-PyMT (C), and PrkacaCaR/MMTV-PyMT 

tumors (D) to confirm the increase of PKA activity. (E and F) IF staining for luminal marker 

Krt8 and basal marker Krt14 in PrkacaWT/MMTV-PyMT (E), and PrkacaCaR/MMTV-PyMT 

tumors (F), showing reduction in Krt14 expression in tumors with increased PKA activity. 

(G and H) IF staining for mesenchymal marker vimentin and epithelial marker E-cadherin 

in PrkacaWT/MMTV-PyMT (G), and PrkacaCaR/MMTV-PyMT tumors (H), showing 

reduction in mesenchymal marker expression in tumors with increased PKA activity. 
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Figure 13: PKA activation improves tumor prognosis and reduces metastasis. (A) Kaplan-

Meier survival curve showing improved survival of PrkacaCaR/MMTV-PyMT mice 

compared to PrkacaWT/MMTV-PyMT mice. Each mouse was sacrificed once the tumors 

reach a size of about 2cm2. (B) Comparison of tumor volume harvested between 

PrkacaCaR/MMTV-PyMT mice to PrkacaWT/MMTV-PyMT mice. As each mouse was 

euthanized once the tumor burden was reached, there is no significant difference in the 

tumor volume harvestd. (C) Quantification of macrometastases per mouse, showing a 

larger tumor burden in PrkacaWT/MMTV-PyMT mice as compared to PrkacaCaR/MMTV-

PyMT mice. (D) Representative H&E image of harvested mouse lungs showing larger and 

more macrometastases in PrkacaWT/MMTV-PyMT mice as compared to 

PrkacaCaR/MMTV-PyMT mice. 

 

  

Figure 4. Induction of Tumor Differentiation upon Activation of PKA Signaling
(A) Schematic of breeding strategy to generate MMTV-PyMT mice with active PKA.

(B and C) Differences in survival (B; n = 24 mice) and primary tumor volumes (C; n = 11 mice) of PrkacaCaR/fl PyMT mice compared to Prkacafl/fl PyMT controls.

(D and E) Differences in lung metastatic burden was captured from H&E stained FFPE lung sections, red arrows indicate macrometastases. Scale bar, 2 mm (n =

13 mice).

(F and G) Treatment with Adriamycin showing differences in response to chemotherapy (F and G) between PrkacaCaR/fl PyMT mice and Prkacafl/fl PyMT controls

(n = 20 tumors).

(H) Tumor initiating potential of PrkacaCaR/fl PyMT mice and Prkacafl/fl PyMT controls was assessed by limiting dilution transplantation analyses.

(I–L) Fluorescence imaging of tumor sections stained with antibodies against E-cadherin, vimentin, Krt8 and Krt14 revealing epithelial-mesenchymal (I and J) and

luminal-basal heterogeneity (K and L). Yellow arrows highlight vimentin (I) - and Krt14 (K)-expressing tumor cells. Scale bar, 10 and 4 mm. Error bars represent ±

standard deviations of the mean. Statistical significance was calculated by a Student t test (two-tailed) to compare two groups (p < 0.05 was considered sig-

nificant) except for survival analyses where significance was determined using a Log-rank (Mantel-Cox) test (p < 0.05 was considered significant) and

chemotherapy treatment where a Wald Z-test was used to compute the p value for the difference of slopes in two treatment groups.
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3.3.3 PKA activation alters mammary tumor evolution by limiting tumor cell plasticity  

The distinct differentiation states of PrkacaWT/MMTV-PyMT and PrkacaCaR /MMTV-PyMT 

tumors (Fig 12B) show that PKA activation affects the development and evolution of 

mammary tumors. To track the changes in cell phenotypes in these tumors over time, 

early-stage hyperplastic glands were surgically resected from one of the two 4th inguinal 

mammary fat pads from PrkacaWT/MMTV-PyMT and PrkacaCaR /MMTV-PyMT at week 9, 

allowing the mouse to survive and develop mature carcinomas which were then 

harvested at week 22. Single-cell RNA sequencing was performed on the cells obtained 

from these two timepoints, and cell phenotypes were then annotated based on 

expression of well-known marker genes (Table 1).  

 

Dimensionality reduction with t-distributed stochastic neighbor embedding (t-SNE) 

revealed hyperplastic tumors harboring mainly three cell phenotypes, basal, mature 

luminal (ML), and luminal progenitor (LP) (Fig 14A and C). As tumors progress, these 

tumor cells evolved, leading to the emergence of two additional phenotypes, lumino-

basal (LB), and EMT-like (Fig 14B and D). While the proportions of cell phenotypes in 

PrkacaWT/MMTV-PyMT and PrkacaCaR /MMTV-PyMT tumors remain relatively similar at 

the hyperplastic stage, a divergence in the proportions of the LB and EMT-like cells were 

observed at the carcinoma stage, with a reduction of cells with these two phenotypes 

observed in PrkacaCaR /MMTV-PyMT tumors. This indicates that PKA activation inhibits 

the evolution of the LB and EMT-like cells by preventing luminal-to-basal and epithelial-

to-mesenchymal plasticity. 
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Figure 14: PKA activation alters the evolution of mammary tumors. (A-D) tSNE plots 

showing the different cell types in hyperplastic glands harvested at 9 weeks (A and C), 

and mature carcinomas harvested at tumor burden of 22 weeks (B and D). Tumor 

development appears to be similar at the early hyperplasia stage, with both 

PrkacaWT/MMTV-PyMT (A) and PrkacaCaR/MMTV-PyMT (C) tumors having similar 

proportions of basal, mature luminal, and luminal progenitor cells, however the tumors 

evolve differently, as seen in the carcinoma stage where the PrkacaWT/MMTV-PyMT 

tumor (B) has a larger proportion of mesenchymal and luminobasal cells  compared to 

the PrkacaCaR/MMTV-PyMT tumor (D). 

 

  

and Sox4. A number of residues were found to be directly phos-
phorylated upon addition of ATP to the reaction, including S56,
S103, S136, and S266 (Figure 7E; Table S1). The first two phos-
phorylated residues reside in the highly conserved HMG box-
containing DNA binding domain (van de Wetering et al., 1993)
(Figure 7F), suggesting that their post-translational modifications
might have an effect on the DNA-binding capability of the pro-
tein. Indeed, as observed in an electrophoretic mobility shift
assay (EMSA), the presence of Sox4 and PKA led to a retardation
of mobility of a fluorescence-labeled consensus oligo sequence,
ostensibly due to the formation of Sox4-DNA complexes (Fig-
ure 7G). Addition of ATP to the reaction relieved the retardation,
suggesting that PKA phosphorylation could impair the DNA
binding ability of Sox4. These results implicate Sox4 as being a
direct downstream substrate of PKA, phosphorylation of which
impairs its ability to act as a transcription factor. Given the role
that Sox4 plays in EMT and promoting tumor metastasis, it is
likely to be activated during the progression of tumorigenesis
as a result of PRKAR1A locus amplifications that result in a
reduction in PKA catalytic subunit activity.

DISCUSSION

This study reveals a role for PKA as a differentiation-promoting
pathway in some breast tumors. The ability of PKA to promote
stem or progenitor cell differentiation has previously been shown

in epidermal and hair follicle stem cells (Iglesias-Bartolome et al.,
2015), in the adrenal cortex (Drelon et al., 2016), and granule neu-
ral progenitors (He et al., 2014). Wnt and Hh pathways have been
previously implicated in stem cell self-renewal and maintenance
in different tissue types (Briscoe and Thérond, 2013; Clevers
et al., 2014). Although PKA has previously been shown to inhibit
b-catenin (Drelon et al., 2016), our results point to a reduction in
nuclear translocation only after 4 h of PKA activation (Fig-
ure S7B), suggesting a secondary mechanism of repression of
the Wnt pathway. In line with this assumption, Sox4 has previ-
ously been shown to play a role in stabilizing b-catenin (Lee
et al., 2011; Sinner et al., 2007), pointing to an alternate mecha-
nism by which the latter could be de-stabilized and inactivated
upon PKA activation. The reduction in nuclear localization of
b-catenin also correlates with increased cytoplasmic accumula-
tion of Sox4 (Figure S7B).
Previous studies identified a subpopulation inMMTV-PyMT tu-

mors that expresses basal markers and is responsible for collec-
tive invasion (Cheung et al., 2013). Our scRNA-seq results also
point to the emergence of a subpopulation of cells, the LB frac-
tion, that is correlated with an increase in metastatic burden.
We observed that these cells still retained the expression of
luminal markers, including Krt8 and CD14, while also expressing
basal markers. Our scRNA-seq analyses revealed that activation
of PKA suppressed the acquisition of basal traits that appear to
be necessary to generate LB cells, mirroring phenotypes

Figure 6. Altered Evolution of Tumor Cell Subpopulations upon Activation of PKA
(A) Schematic of experimental set up to carry out sequential scRNA-seq of hyperplastic and overt tumor samples from matched mice.

(B–E) tSNE plots show similar cellular constituents in hyperplastic glands ofPrkacaCaR/flPyMTmice andPrkacafl/flPyMT controls (B and D) but divergent evolution

of subpopulations during the transition from hyperplasia to tumor stages of development (C and E).

(F) tSNE plots highlighting the expression levels of the Lalba (left) and Sox4 (right) genes in tumors from Prkacafl/fl PyMT (top) and PrkacaCaR/fl PyMT tumors

(bottom), and the LB subpopulation is highlighted by the red ellipse.

(G and H) Pseudotime analyses enabled the capture of the directionality of evolution from hyperplasia to tumor in the Prkacafl/fl PyMT tumors (G) that is altered

upon PKA activation in PrkacaCaR/fl PyMT tumors (H).
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3.4 Discussion 

PKA is known to promote terminal differentiation and exhaustion of the stem cell 

compartment of the epidermis141, and has been shown to promote MET and inhibit EMT 

in mammary tumor in vitro models139. In this study, PKA activity is shown to inhibit self-

renewal of the basal compartment of the mammary gland, and disrupt cellular plasticity 

in mammary tumors This prevents the emergence of the lumino-basal population, 

reducing the metastatic potential of tumors, and affecting the ability of tumor cells to 

leave and colonize other organs, leading to improved survival. These results suggest that 

limiting the self-renewal and plasticity of tumor cells is a viable strategy to employ in order 

to help reduce the aggressiveness of the disease and thus improve prognosis and 

outcomes for patients with breast cancer. 

 

The concurrent decrease in metastatic burden and lumino-basal cell population in PKA 

active tumors suggest that EMT may be synonymous with luminal-to-basal plasticity, 

where tumor cells with a more luminal phenotype represent an epithelial population, and 

the emergence of basal-like traits represent a mesenchymal shift in these epithelial cells. 

While both the luminal and basal populations retain epithelial markers, the lumino-basal 

population has been observed to express higher levels of mesenchymal markers Vim and 

Mmp2, while the luminal population expresses higher levels of epithelial markers Epcam 

and Cdh1 (Chapter 2). The retention of epithelial markers in the basal and lumino-basal 

phenotypes suggest that these cells do not fully transition to a terminal mesenchymal 

state, but instead occupy a transitional or intermediate mesenchymal state along the EMT 

spectrum. Furthermore, genes associated with EMT promotion have also been shown to 

be important in basal cells. Slug, a transcription factor that inhibits E-cadherin expression 

and promotes EMT152, has been found to also repress the expression of luminal markers 

Krt8/18, ER, and GATA3153. Smooth-muscle-actin (SMA), which has been found to be 

important in the dissemination of human lung adenocarcinoma154, is also highly 

expressed in basal or myoepithelial cells155. Basal-like tumors have also been shown to 

have upregulated expression of mesenchymal genes VIM, ACTA2, and CDH2, and reduced 
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expression of the epithelial gene CDH1156, suggesting that EMT is involved in the evolution 

of basal-like mammary carcinomas. 

 

The results of this study suggest that inhibition of cellular plasticity and EMT by activating 

PKA is a potentially viable treatment strategy to prevent the development of metastatic 

breast cancer; however therapeutically activating a target may be more complicated than 

inhibiting or inactivating it. Alternatively, instead of targeting PKA directly, substrate 

proteins inhibited by PKA may be inhibited instead. Analog sensitive (AS) mutants can be 

used in order to elucidate the downstream effectors of PKA. AS mutants are kinases with 

a mutation in their ATP-binding site, allowing the kinase to utilize a bulky ATP-analog (N-

6-benzyl-ATP)157. As the N-6-benzyl-ATP is larger than ATP, only AS mutants, and not other 

wild-type kinases, are able to utilize it. Radioactive tagging of the terminal phosphates on 

the N-6-benzyl-ATP and subsequent phosphorylation of substrates by PKA allows the 

tagged phosphate to be transferred to the target molecule, thus permitting the 

identification of PKA phosphorylated proteins. Downstream targets of PKA that may 

normally play a role in promoting cellular plasticity and are inhibited by PKA activity can 

then be identified, and may thus serve as an ideal target molecule for therapeutic 

intervention. 
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Chapter 4: Eribulin induced mesenchymal-epithelial transition (MET) enables tumor 

cells to gain sensitivity to subsequent chemotherapy 

Experiments for Figure 17E were performed by Meisam Bagheri 

Experiments for Figure 17-20 were performed by Gadisti Aisha Mohamed with computational analysis performed by Mohamed Ashick 

 

4.1 Introduction 

Chemotherapy resistance is one of the major causes of death of patients with breast 

cancer. Metastatic breast cancer patients treated with anthracycline- or taxane-based 

therapies show moderate response rates ranging from 30-70%, with a median time to 

progression of 6 to 10 months158,159, after which treatment failure and tumor relapse 

frequently occurs. This relapse is largely driven by the emergence of resistant clones, 

which survive the initial treatment and repopulate the tumor.  

 

The presence of various cell types within a heterogeneous tumor suggests that a single 

drug treatment, chemo- or targeted therapy, may not be efficient in eliminating all of the 

tumor cells at once. While a drug may be successful in eradicating most of the tumor cells, 

there may be some cells within the tumors that are resistant to the treatment, allowing 

them to survive, and repopulate the tumor once the sensitive population has been 

eliminated. Looking at the modes of resistance in a simplistic manner, drug resistant 

populations may emerge in one of two ways: Darwinian selection occurs when a pre-

existing drug resistant population is selected for during drug treatment160 (Fig 15A). This 

resistant population is able to tolerate and avoid drug-induced elimination, allowing it to 

survive the treatment. Other cells that are susceptible to the drug will be eliminated, 

allowing the resistant clone to then repopulate the tumor after treatment. On the other 

hand, Lamarckian induction occurs when the drug itself is able to trigger an epigenetic 

reprogramming of tumor cells to become resistant to the drug20 (Fig 15B). This resistant 

phenotype is typically not found in the drug naïve population, and only emerges in 

response to drug treatment. 
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Figure 15: Modes of chemotherapeutic resistance. (A) Darwinian selection occurs when 

pre-existing drug resistant phenotypes are present in the drug naïve population. Drug 

treatment selects for these resistant phenotypes by eliminating other non-resistant 

clones, allowing the resistant population to repopulate. (B) Lamarckian induction occurs 

when the drug treatment itself induces epigenetic reprogramming of tumor cells, 

allowing a drug resistant clone to emerge after treatment. This drug resistant phenotype 

did not exist in the drug naïve population but arises after drug treatment to repopulate 

the tumor. (Created with BioRender.com) 
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Either of these modes of resistance may be used by tumor cells as a strategy to overcome 

therapeutic elimination. Darwinian selection has been implicated in the therapy 

resistance of metastatic melanoma, where pre-existing populations harboring MEK1 

mutations (MEK1P124) respond poorly to BRAF inhibitors such as dabrafenib161. 

Mathematical modeling has also implicated Darwinian selection as the mode of resistance 

in the recurrence of KRAS-mutant colorectal carcinomas after treatment with the anti-

EGFR agent panitumumab162. On the other hand, transcriptionally variable melanoma 

cells have been found to undergo epigenetic reprogramming upon treatment with the 

BRAF inhibitor Vemurafenib, suggesting that Lamarckian induction could be responsible 

for the emergence of Vemurafenib-resistant cells26. Finally, cisplatin treatments have 

been found to promote Darwinian selection of pre-existing resistant cells in a 

heterogeneous oral squamous cell carcinoma cell line population, while inducing 

Lamarckian induction in a homogeneous population, suggesting that chemotherapeutics 

can promote both these resistance mechanisms in tumors under different contexts20. 

 

Eribulin is a chemotherapeutic drug used as a third line therapy against breast cancer163. 

This drug works by preventing dynamic instability of microtubules, thereby inhibiting 

microtubule elongation and cell division164. Previous studies have shown that eribulin 

treatment is able to reverse epithelial-mesenchymal transition (EMT), and induce a 

mesenchymal-epithelial transition (MET) in triple-negative breast cancer (TNBC) cells and 

xenograft models, thus decreasing metastasis and prolonging survival78. This suggests 

that eribulin is able to induce epigenetic reprogramming, thus allowing cells to gain a new 

drug resistant phenotype, with the additional benefit of preventing tumor cell migration. 

 

In order to study the mode of resistance that eribulin exerts against mammary tumors, 

lineage tracing using cells with expressed barcodes sequences were used (Fig 16). By 

identifying the barcode identities (IDs) of treatment naïve and drug resistant populations 

using single-cell RNA sequencing (scRNA-Seq), the lineage of drug resistant cells can be 

traced back to their pre-treatment ancestors. The gene expression profile of each cell 
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obtained from scRNA-Seq can be used to analyze transcriptomic similarity between the 

drug resistant cells and their pre-treatment ancestors (Fig 16B). Any changes that a cell 

undergoes upon drug treatment would manifest as changes in gene expression, which 

would imply an epigenetic or transcriptional reprogramming leading to the emergence of 

a de novo cell state. Alternatively, if no change in gene expression is observed, it would 

suggest that a selection event has occurred, amplifying a pre-existing resistant population 

that is transcriptionally stable. Cells that survive treatment due to Darwinian selection 

would be transcriptionally similar to the treatment-naïve cells expressing the same 

barcode, while those that survived due to Lamarckian induction would be 

transcriptionally distinct from their pre-treatment ancestors (Fig 16C).  
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Figure 16: Strategy to elucidate the mode of resistance to eribulin and paclitaxel. (A) 

PB3 cells were labelled with expressed barcode sequences via lentiviral delivery. 

Successfully barcoded cells were then selected for and allowed to expand. A portion of 

the barcoded cells were then treated with a drug. scRNA-Seq was then performed on the 

resistant cells that emerged, along with a portion of untreated cells to identify the 

transcriptome and the barcode identity of each cell.  (B) Example of scRNA-seq UMAP 

results showing distribution of treated and untreated cells colored by barcode ID. Each 

barcode ID represent a single clone within the population. (C) Determination of mode of 

resistance by identifying distribution of untreated and drug resistant clones with the same 

barcode. Barcode IDs that are found only in the untreated population and not in the drug 
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resistant population indicate drug sensitive clones that have been eliminated. Clones are 

resistant by selection if surviving drug treated cells cluster close to their untreated 

ancestors. Clones are resistant by induction if surviving drug treated clones cluster far 

apart from their untreated ancestors. A mixed mode of drug resistance can also occur if 

some of the surviving drug treated clones cluster close to the untreated ancestors, while 

some cluster further apart. 
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4.2 Materials and methods 

Lentiviral barcoding and selection of successfully barcoded cells 

PB3 cells were grown to an estimated 70% confluency, and trypsinized to obtain a single 

cell suspension. The cells were counted, and 200 000 cells were plated in a 6cm tissue 

culture dish, along with 6ug/ml Polybrene transfection reagent (Millipore, Cat #TR-1003-

G, Lot #2129807), and were incubated at 37°C for one hour. A lentiviral barcode library 

(CloneTracker XPTM 10M Barcode-3’ Library with RFP-puro (Packaged), Cellecta 

#BCXP10M3RP-V), was then added at an MOI of 0.5, and the cells and virus were further 

incubated at 37°C overnight. After 24 hours, the media was replaced with fresh media, 

and the cells were allowed to grow for an additional two days. The cells were then 

trypsinized to obtain a single cell suspension, and flow sorted using the FACSAria III cell 

sorter to select for RFP expressing, successfully barcoded cells. The collected cells were 

then re-plated and allowed to grow until the plate reaches confluency. Any cells not used 

for further experiments were frozen down for long term storage. 

 

Starting a founder population of barcoded cells 

Since the 10x genomics platform can only run a maximum of 10 000 cells per sample, a 

founder population of at most 10 000 barcodes was first obtained to ensure consistency 

of barcode distribution across samples. This was done by counting 10 000 cells and plating 

them in one well of a 24 well plate. This founder population was allowed to grow by 

scaling up the plate size to ensure that a sufficient number of cells are obtained to carry 

out the drug treatment experiments. 

 

Drug treatment of barcoded cells 

Barcoded PB3 cells were counted, and 80 000 cells were seeded into each well of a 12 

well plate. The cells were incubated at 37°C overnight, and 500nM eribulin or 100nM 

paclitaxel were added. Cells were incubated with the drug for 72 hours, before being 

replaced with fresh, drug free media. The cells were allowed to recover for 48 hours. 

Before the next round of treatment, the cells were re-plated into 6 well plates to allow 
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for more space for the cells to grow. As the paclitaxel treated cells seemed to be resistant 

to 100nM of the drug, the dosage was increased to 250nM for subsequent treatment 

rounds. The drug treatment was repeated for an additional two rounds, with a portion of 

cells frozen down after each treatment to represent the different treatment cycles. To 

drive the eribulin-induced epithelial change the eribulin treated cells were subjected to 

one additional round of treatment. 

 

Single-cell omics 

Untreated and Eri4 samples were initially run on the 10x Genomics single cell RNA-seq 

and single cell ATAC-seq platforms. The intermediate treatment cycles (Pac1-Pac3, and 

Eri1-Eri3) were run simultaneously on two 10x Genomics single cell RNA-seq runs, using 

multi-seq multiplexing to differentiate between samples. A second sample of untreated 

and Eri4 samples were run on 10x Genomics single cell Multiome ATAC + Gene Expression. 

 

Barcode whitelist preparation 

The lentiviral barcode library was purchased from Cellecta (CloneTracker XPTM 10M 

Barcode-3’ Library with RFP-puro (Packaged), Cellecta #BCXP10M3RP-V). A whitelist of 

barcodes was prepared by combining BC14 and BC30 (BC14sequence+BC30sequence) 

barcodes. In custom barcode only sequencing, barcodes are expected in the following 

format, 

Custom barcode = 19bp constant + BC14 sequence + TGGT + BC30 sequence 

These barcodes were prepared in various formats as per the requirement of downstream 

tools using in-house scripts. These reference files are used for feature barcode 

demultiplexing in downstream for custom barcodes FASTQ files. 

 

Single cell/nuclei transcriptome data analysis 

Eight libraries for single cell/nuclei transcriptome data were obtained in 3 batches namely 

Run1, Run2 and Run3. Each batch contains different treatment and dosage samples 

sequenced as listed in supplementary table S1 with their summary statistics. While Run1 
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and Run2 data were from single cell 3’ V3 sequencing (scRNA) protocol, Run3 was single 

nuclei RNA+ATAC V1 sequencing (snRNA multiome) protocol. Hence, FASTQ and count 

matrix were generated using 10x Genomics cellranger-3.1.0, 10x Genomics cellranger-

4.0.096 and 10x Genomics cellranger-arc-1.0.0165 for Run1, Run2 and Run3 respectively. 

Cellranger reference mm10 was used as reference for all runs. For Run1 and Run2, 

whitelist custom barcodes (as detailed in previous section) were used in cellranger “--

feature-ref” parameter for custom barcodes FASTQ. As cellranger-arc pipeline doesn’t 

support “--feature-ref” barcoding, custom barcode FASTQ files were processed using 

CITE-seq-Count v1.4.3 tool166. 

Count matrices were analysed using Seurat v3.1.4 pipeline167. Briefly, low quality cells 

(number of genes expressed < 200, percentage of UMIs in mitochondrial and ribosomal 

genes individually > 50) are filtered out. Using selected variably expressing genes and 

significant PCs from PCA, clustering and UMAP projection were generated. Further, all the 

samples are merged into one object to illustrate the differences due to treated drug and 

their varying dosage effect. Post merging, batch effects due to run and technology 

differences were regressed out. Pseudotime analysis was done against all samples 

merged dataset using Monocle3 v0.2.1150,151,168 while considering “Untreated” cells as the 

root cells. To represent the relative frequency of each barcode over pseudotime, Muller 

plot representation was used169. Relative frequencies were calculated as the ratio 

between number of cells associated with a barcode at a given pseudotime (binned) and 

the sum of all cells (from all barcodes) at the same pseudotime bin. Muller plot is 

accompanied with line chart illustrating the total number of cells at any given 

pseudotime. 

 

Single cell/nuclei ATAC data analysis 

Four libraries for single cell/nuclei ATAC data were obtained in 2 batches namely Run1 

and Run3 using scATAC V1 and snATAC (multiome) V1 protocol respectively. Sample and 

summary statistics are provided in supplementary table S2. FASTQ and peak count matrix 

were generated using 10x Genomics cellranger-atac-1.2.0 and 10x Genomics cellranger-
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arc-1.0.0 for Run1 and Run3 respectively. Cellranger reference mm10 was used as 

reference for both the runs. Custom barcode FASTQ files were processed using CITE-seq-

Count v1.4.3 tool. 

Peak count matrices were analysed using Signac v1.1.1 pipeline. Briefly, low quality cells 

(fragments in peak regions < 1000 and >75000, percentage of UMIs in peaks > 20, ratio of 

UMIs in blacklist regions to that of peak regions > 0.05, nucleosome signal > 10 and TSS 

enrichment < 2) are filtered out. Using selected top features and 2 to 30 PCs from LSI, 

clustering and UMAP projection were generated. Further, all the samples are integrated 

into one object using Harmony R package170  to illustrate the differences due to treated 

drug and their varying dosage effect. In harmony, batch effects due to run and technology 

differences were regressed out. 

 

Integration and Custom barcode classification 

To assign each cell to a specific custom barcode, we have applied MULTIseqDemux 

method171  from Seurat pipeline. Though the method has managed to differentiate the 

barcodes, this method was originally designed for multiple samples demultiplexing, 

where background estimation is appropriated for each cell from all the barcodes. Here, 

the enrichment level for each barcode can vary, and it is appropriate to calculate the 

background for each barcode from all the cells. We deployed an in-house developed R 

script using binomial distribution, that estimates background for each barcode from all 

the cells. We have considered only doublets and negatives annotated cells from 

MULTIseqDemux annotation. Using this approach, we were able to re-annotate and 

increase the number of singlets. Finally, RNA and ATAC datasets were integrated with 

TransferData module in Seurat pipeline. 

 

Selection vs induction identification 

To identify and illustrate the cells that undergo selection (Treated and Untreated cells 

clustering together) or induction (Treated and Untreated cells clustering further apart) 

process upon treatment, all cells in each barcode were analysed using Jaccard index and 
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Euclidean distance-based methods. Euclidean distance is calculated between median 

points of cells from a sample per barcode in their UMAP space. For differences within 

samples, we have used Jaccard index method from scclusteval v1.0172, where cells of each 

barcode were re-clustered using density clustering method (with same variable genes 

from original integrated dataset). Based on the number of cells for each sample (treated 

or untreated) in various clusters, the Jaccard index is calculated. In density clustering, 

proximal cells are assigned to one cluster. Ideally, if all the cells are similar in a given 

scenario, then they will be clustered closely and assigned into one cluster. In complex 

scenarios, cells in barcode and then within sample, cells can form sub-clusters. Each sub-

cluster can exhibit varying scenarios in selection vs induction process. Jaccard index will 

score each cluster as per the number of cells (out of total cells in a sample) in a given 

cluster for both the samples. 

 

4.3 Results 

4.3.1 Morphological changes in PB3 cells upon eribulin, but not paclitaxel treatment 

PB3 cells, a heterogeneous cell line derived from MMTV-PyMT mammary tumors173, were 

first transduced with a Lentiviral barcode library to label each cell with a unique, 

expressed barcode (Fig 17A). Cells were then treated with either 4 rounds of eribulin, or 

3 rounds of paclitaxel. Paclitaxel was used as a control as it has a similar mechanism of 

action as eribulin.  Brightfield images taken of barcoded PB3 cells upon eribulin treatment 

showed the emergence of an epithelial-like subpopulation of resistant cells, compared to 

the generally mesenchymal morphology of untreated cells (Fig 17B and D). These cells 

appear more compact and regularly shaped, with the cobblestone morphology typical of 

epithelial cells. Epithelial morphology was not observed in intermediate cell populations, 

where the cells underwent only 1 or 2 rounds of eribulin treatment (Fig 17D), suggesting 

that a change in phenotype has occurred in cells that are ultimately resistant to eribulin. 

In contrast, paclitaxel treated cells appear to maintain the elongated and irregular 

mesenchymal morphology of the original untreated population throughout the course of 

treatment (Fig 17C), suggesting that these cells did not undergo a phenotypic shift, and 
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thus cells that are resistant to paclitaxel may already be present in the population before 

treatment began. Expression of EMT markers were also different in eribulin-resistant 

cells, with an increase in the epithelial marker E-cadherin, and a reduction of the 

mesenchymal marker vimentin, as compared to controls (Fig 17E). No difference in EMT 

marker expression was observed in paclitaxel-resistant cells. 

 

While these results may suggest eribulin resistance arises due to induction and paclitaxel 

resistance occurs due to selection, there is a possibility that a small population of 

epithelial eribulin-resistant cells may exist, undetected, in the original population, or that 

paclitaxel treatment may reprogram the cells into a different state where they still appear 

morphologically mesenchymal. It is thus necessary to study the evolution of drug resistant 

clones at the single-cell level to better understand the dynamics of treatment. 
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Figure 17: PB3 cells resistant to eribulin display epithelial morphology different from 

the original, untreated cells. (A) Overview of barcoding implementation and drug 

treatment schedules for generating eribulin- and paclitaxel-resistant PB3 cells. (B) 

Brightfield image showing mesenchymal morphology of untreated PB3 cells. (C) 

Brightfield images showing paclitaxel treated cells maintaining the mesenchymal 

morphology of PB3 cells before treatment. (D) Brightfield images showing the emergence 

of epithelial-like cells (outlined in orange) upon treatment with eribulin, with eribulin 

resistant populations consisting of a mix of cells displaying either epithelial and 

mesenchymal morphology. (E) Western blot showing expression of the epithelial marker 

E-cadherin (E-Cad) and the mesenchymal marker vimentin (Vim) in untreated PB3 control 

and drug-resistant cells. Eribulin resistant cells (ERI-R) showed an increase in E-cadherin 

expression, and decrease in vimentin expression, compared to untreated control cells 

(Cont.). No differences in E-cadherin and vimentin were observed in paclitaxel-resistant 

(PAC-R) and Vinorelbine-resistant (VIN-R) cells. Vinorelbine was used as an additional 

control, as it has similar mechanism of action as eribulin and paclitaxel. 
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4.3.2 Cells receiving eribulin treatments form distinct clusters on a UMAP 

PB3 cells receiving each iteration of eribulin or paclitaxel treatment were harvested, along 

with an untreated reference sample, and were analyzed using single-cell RNA sequencing 

(Fig 18A). Dimensionality reduction with uniform manifold approximation and projection 

(UMAP) appears to show untreated cells clustering mostly towards the right, while 

eribulin resistant cells (Eri4) clustering separately on the left. The intermediate 

treatments Eri1, Eri2, and Eri3 cluster in between the untreated and Eri4 clusters, with 

Eri3 appearing as a distinct cluster separate from Eri1 and Eri2. Paclitaxel treated clusters 

appear to be less distinct, with Pac1, Pac2, and Pac3 cells clustering together towards the 

middle and bottom of the plot. These results suggest that eribulin resistance cells had 

evolved  

 

Monocle pseudotime151 orders the cells along an evolutionary trajectory, thereby helping 

to identify the cells in the most primitive and advanced transcriptomic states as they 

undergo treatment. In the eribulin pseudotime plot, untreated cells are in the most 

primitive transcriptional state, and Eri4 cells are in the most advanced transcriptional 

state (Fig 18B). Eribulin resistance seems to progress uniformly in the initial stages, with 

one single branch progressing through Eri1 and Eri2, before breaking off into 4 branches, 

showing diverse transcriptional fates of Eri3 and Eri4. This demonstrates potential 

induction where Eribulin induces transcriptional changes to allow resistant cells to be 

transcriptionally distinct from untreated cells. Three of the branches of the pseudotime 

points also seem to end on Eri3 cells, suggesting that the final transcriptional states of 

Eribulin resistant cells may already be established as early as the third treatment. 

 

In the paclitaxel pseudotime plot, untreated cells are in the most primitive transcriptional 

state, and Pac2 are in the most advanced transcriptional state (Fig 18C). The Paclitaxel 

pseudotime plot also seems more simplified, with fewer branch points. The branch points 

also seem to end on different samples, with one ending on Pac1, two ending on Pac2, and 



 95 

one ending on Pac3. This shows that there is no uniform directionality of Paclitaxel 

resistance, suggesting random selection mechanism of resistance 

 

  



 96 

 
Figure 18: UMAP clustering and pseudotime analysis of eribulin and paclitaxel treated 

cells. (A) scRNA-seq UMAP projection of untreated, and eribulin and paclitaxel treated 

cells. (B and C) Monocle pseudotime projection showing the trajectory of tumor evolution 

upon treatment with eribulin (B) and paclitaxel (C) respectively. The main lineage path or 
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master path/node is indicated by the number 1 in the white circle. Sub-lineages from the 

master path (also called leaf nodes) are indicated by numbers in grey circles. Further sub-

divisions or branches from the leaf nodes are indicated by numbers in black circles.  
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4.3.3 Eribulin treatment induces transcriptomic reprograming, allowing PB3 cells to gain 

drug resistance 

Given that all the cells surviving from the subsequent drug treatments were descended 

from the initial founder population of barcoded cells, cells with the same barcode can 

thus be considered as a single clone, and treated cells are descendants of untreated cells 

with the same barcode (Fig 16). In order to understand the mode of resistance of each 

clone, 28 barcodes with the most abundant number of untreated and resistant cells from 

each treatment were analyzed individually. Calculating the Euclidean distance between 

the median position of untreated cells and the median position of resistant cells on the 

UMAP would provide a direct measure of distance between them, where shorter 

Euclidean distance signifies closer transcriptomic similarities between untreated and 

resistant populations, likely implying selection as the mode of resistance. On the other 

hand, a larger Euclidean distance signifies larger transcriptomic differences and imply 

induction as the primary mode of resistance.  

 

Euclidean distance calculations revealed larger distances between untreated and 

resistant cells in eribulin resistant clones compared to paclitaxel resistant clones (Fig 19A 

and B). Eribulin resistant clones have a median Euclidian distance of 11.74 whereas 

paclitaxel resistant clones have a median Euclidian distance of 5.59 (Fig 19G), suggesting 

that eribulin treatment results in higher transcriptomic reprogramming of resistant cells 

compared to paclitaxel. Furthermore, barcodes with the smallest Euclidean distance 

score appear to originate from the bottom cluster of cells, suggesting that this region 

harbors clones that are resistant by selection, whereas resistant cells with the largest 

Euclidean distance score are found in the cluster of cells on the far left, suggesting that 

this region harbors clones that are resistant by induction (Fig 19A and B). Fourteen 

eribulin resistant, and only 3 paclitaxel resistant clones were found in the ‘induction’ 

region, while only 1 eribulin resistant, and 5 paclitaxel resistant clones were found in the 

‘selection’ region, implying that eribulin resistance occurs predominantly via induction.  
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For clones that are not found within these two regions, Jaccard index was used to 

determine mode of resistance. For this method, density clustering was used to assign 

untreated and resistant cells into clusters based on proximity, and Jaccard index scores 

each cluster according to the number of untreated and resistant cells present172. A Jaccard 

index score of 1 indicates that the cluster consists of only resistant or untreated cell, while 

a Jaccard index score of <1 indicates that a mix of resistant and untreated cells can be 

found within the cluster. To determine if a clone is resistant by induction, untreated and 

resistant cells will thus have to occupy separate clusters, resulting in a Jaccard index score 

of 1 for the untreated cluster, and 1 for the resistant cluster (Fig 19C). For a clone that is 

resistant by selection, clusters will have a mix of untreated and resistant cells, resulting in 

a Jaccard index score of between 0 and 1 (Fig 19D).  

 

Using a combination of the Euclidean distance calculation and Jaccard index scores, the 

mode of resistance for each clone was identified (Fig 19E), revealing induction as the 

predominant mode of resistance upon eribulin treatment, and selection induction as the 

predominant mode of resistance upon paclitaxel treatment. This indicates that pre-

existing paclitaxel resistant cells may be present in the untreated population, while 

eribulin treatment itself is able to reprogram cells and allow them to evolve and gain 

resistance. 
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Figure 19: Determination of induction or selection mode of resistance. (A) Euclidean 

distance calculations between Eri4 and untreated cells with the same barcode (A), and 

between Pac3 and untreated cells with the same barcode (B). The UMAP overlay shows 

the median point of Eri4 or Pac3 (represented by •) and the median point of untreated 

cells (represented by ¨). (C) Example showing the determination of induction based on 

Jaccard index. Eri4 and untreated cells with this barcode fall into different clusters, as 

seen by the Jaccard index score. (D) Example showing the determination of selection 

based on Jaccard index. Pac3 and untreated cells with this barcode share the same 

clusters, as seen by the Jaccard index score. (E) Example showing a combination of 

induction and selection within the same barcode. For this barcode, some clusters show 
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resistance by induction (no untreated cells in the cluster), and some show resistance by 

selection (at least one untreated cell in the cluster). The cluster with the largest number 

of resistant cells is used to determine mode of resistance. In this example, cluster 1 has 

the largest number of Eri4 cells, and these cells are resistant by induction, hence, this 

barcode was assigned as resistant by induction. (F) Breakdown of induction or selection 

determination based on both Euclidean distance and Jaccard index calculations. (G) 

Distribution of Euclidean distance values of eribulin resistant and paclitaxel resistant 

barcodes. Median for eribulin: 11.74, median for paclitaxel: 5.597.  P<0.0001, Mann-

Whitney test. (H) Proportions of clones resistant by induction vs clones resistant by 

selection resistance for eribulin and paclitaxel treatments. P=0.0002, Chi-Square test 
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4.3.4 Single-cell ATACseq and Muller Plots support Lamarckian induction of eribulin- 

resistant cells 

To confirm the results of the single-cell RNAseq data, and that Euclidean distance 

calculations can be used as a measure of epigenetic change, single-cell ATAC seq was 

performed on untreated and Eri4 (eribulin resistant) samples. Dimensionality reduction 

with UMAP of barcodes with 10 lowest Euclidean distance (representing selection, Fig 

20A) show some Eri4 cells within the Untreated cluster, and some untreated cells in Eri4 

cluster, suggesting similarities in accessible chromatin regions between the untreated and 

eribulin resistant samples. On the other hand, distinct segregation of Untreated and Eri4 

cells were observed in barcodes with 10 largest Euclidean distance (representing 

induction, Fig 20B), suggesting differences in accessible chromatin regions between the 

two samples, and confirming that Euclidean distance calculation from RNAseq data is able 

to distinguish between induction and selection mode of resistance. 

 

To further confirm Lamarckian induction of eribulin resistance and Darwinian selection of 

paclitaxel resistance, changes in clonal dynamics over the course of treatment were 

analyzed. Muller plots with the top 10 most abundant barcodes after eribulin and 

paclitaxel treatments were constructed and plotted against pseudotime, to identify if the 

dominating clones change over the course of the treatment. For the eribulin treated 

population, dominating clones differ at different points. In the early stages of drug 

treatment, the bulk of the population is made up of cells expressing 4 barcodes (bc14-55-

bc30-99383, bc14-55-bc30-37135, bc14-39-bc30-41529, bc14-1-bc30-96229), suggesting 

that these 4 clones were able to resist initial eribulin treatment. Eventually these 4 clones 

succumbed to drug treatment, leading to the dominance of 3 other clones (bc14-95-bc30-

33662, bc14-76-bc30-49517, bc14-6-bc30-93034) at pseudotime points 15 to 30. At 

around pseudotime point 23, another clone (bc14-55-bc30-23349) began to emerge, 

which then almost completely dominated the resistant population towards the end of the 

treatment. The emergence of different dominating clones at different timepoints suggest 

that these clones have had to adapt to survive the drug treatment. Drug induced 
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evolutionary pressures may force some clones to evolve in order to survive early eribulin 

treatment, but these changes failed to allow them to survive further treatment, thus 

allowing other clones to dominate. 

 

Dominant clones as a result of paclitaxel treatment seem to be more consistent, with 3 

clones dominating throughout the course of treatment (bc14-92-bc30-83570, bc14-76-

bc30-49517, bc14-6-bc30-93034), with bc14-92-bc30-83570 appearing as the earliest 

dominant clone. The consistency in which dominating clones remain within the paclitaxel 

resistant populations suggest that these clones pre-exist within the untreated population, 

and that the drug treatment itself does not influence or induce the evolution of resistant 

cells. 
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Figure 20: Further evidence of eribulin resistant cells gaining resistance while paclitaxel 

resistant populations are pre-existing. (A and B) scATAC-seq UMAP projection of 

Untreated and eribulin treated cells resistant by selection (lowest 10 Euclidean distance 

values) (A), and eribulin treated cells resistant by induction (highest 10 Euclidean distance 

values) (B). (C and D) Muller plot showing clonal diversity of the top 10 most abundant 

barcodes after eribulin (C) and paclitaxel (D) treatments.  
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4.4 Discussion 

The results of this study reveal that a heterogeneous tumor cell population can respond, 

and gain resistance to, chemotherapeutic drugs via different modes. Analysis of individual 

drug resistant clones suggest that eribulin appears to induce transcriptional/epigenetic 

reprogramming in drug naive cells, thus allowing a new drug resistant phenotype to 

emerge, whereas paclitaxel appears to predominantly select for pre-existing resistant 

cells within the pre-treated population. These results confirm that the initiation of MET 

in response to eribulin treatment78 is indeed a Lamarckian induction event that not only 

allows tumors to transition into a more epithelial state that is less likely to metastasize, 

but also to allow them to gain resistance to eribulin. 

 

While Lamarckian induction appears to be the main mode of resistance employed in 

response to eribulin treatment, and Darwinian selection appears to be the mode of 

resistance of paclitaxel treated cells, both these modes of resistance were also observed 

to occur in response to both drug treatments. Two eribulin resistant clones were 

observed to have arisen due to selection, whereas 13 paclitaxel resistant clones were 

observed to have emerged due to induction. This suggests that a combination of 

Lamarckian induction and Darwinian selection can be employed by a heterogeneous cell 

population as successful strategies to evade drug elimination.  

 

Molecular barcoding technology has been a useful tool used for lineage tracing, especially 

in drug treatment studies to elucidate the lineage and evolution of resistant clones. The 

expressed barcoding system has previously been used in various cancer models in order 

to differentiate heterogeneous cell populations, including studies to analyze clonal 

dynamics in NSCLC models upon erlotinib treatment174, and studying clonal evolution and 

chemoresistance in patient-derived models of pancreatic cancer175. More recently, 

molecular barcodes were used to track clonal responses to next-generation therapeutics 

that both inactivate and degrade EGFR, compared to standard EGFR-targeting drugs that 

merely inhibit its kinase function176. Dual inhibitor-degrader therapeutics were found to 
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be less effective than a standard kinase-targeted inhibitor, and subsequent 

transcriptomic analysis between resistant and sensitive clones revealed a reduction in 

genes associated with ER processing in inhibitor-degrader resistant clones, suggesting 

that the downregulation of these genes play an important role in the adaptation or 

induction of drug resistance176. 

 

This study utilized molecular barcodes to trace the lineage of resistant cells in vitro, where 

drug treatments were administered in cell culture, however various other factors, such as 

the immunosuppressive tumor microenvironment, and tumor vascular support, may 

influence the response of tumor cells against the drug. It is thus useful to study drug 

induced resistance and evolution in an in vivo system. Unfortunately, as molecular 

barcoding with lentiviral vectors requires manipulation of the tumor cells before 

treatment, it is challenging to use them to study the effects of drug treatment on 

autochthonous tumors. A possible way to overcome this is to surgically implant tumor 

cells in an endogenous site in mice after in vitro lentiviral barcoding. The drugs could then 

be administered to the mice, allowing a more holistic in vivo analysis of how drug 

treatment, in combination with other natural biological processes, may affect drug 

resistance and evolution. 

 

An alternative to using molecular barcodes that are introduced in vitro, in vivo cell 

labelling techniques can also be employed. These techniques involve the use of animal 

models that have been introduced with lineage barcodes consisting of multiple Cas9 

target sites177. Over time, these target sites accumulate various mutations, amplifications 

or deletions that will be passed on to daughter cells, allowing the lineage of each cell to 

be determined after sequencing. MARC1 (mouse for actively recording cells) mice 

harboring these Cas9 target barcodes have been generated178 and can be crossed with 

other tumor bearing mouse models, such as MMTV-PyMT, to allow tumor formation and 

development, and subsequent drug treatment and lineage analysis of resistant cells will 
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help to elucidate how drug treatment affects tumor development and evolution in an 

autochthonous, in vivo setting. 

 

Identification of the mode of resistance to drugs such as eribulin or paclitaxel represents 

a first step in elucidating the dynamics of drug resistance. With the information gained 

from single-cell transcriptome and epigenome sequencing, similarities in genes expressed 

pre- and post- treatment can be identified, along with open chromatin regions that signify 

a propensity towards plasticity, which can provide an insight into possible mechanisms of 

induction. Similarities in gene expression patterns of cells resistant by selection can also 

be used as a predictive marker to response to different types of therapy and help to 

inform ideal combinatorial treatment regimens to target multiple potentially resistant 

phenotypes with the aim to prevent tumor repopulation and recurrence.  
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Chapter 5: Conclusions and future directions 

This study aims to identify how lineage plasticity contributes to intra-tumoral 

heterogeneity of breast cancer, and its implications for tumor development, by 

elucidating the potential mechanisms that promote phenotypic alterations of tumor cells. 

SOX10 and PKA activity have been identified as intrinsic and cell-autonomous drivers that 

induce lineage evolution of luminal-like, low-ER tumors, and interrupt EMT and 

metastasis respectively, whereas the chemotherapeutic drug eribulin has been identified 

as an external selection pressure that forces tumor cells to undergo an MET. The 

identification of these intrinsic and extrinsic drivers of plasticity represents the first step 

in elucidating the mechanisms by which breast tumors evolve, metastasize, and survive 

treatment. 

 

The identification of SOX10 as a possible intrinsic driver of luminal-to-basal transition 

suggests that this process is cell-autonomous, however, it is not known how SOX10 

expression is activated within tumors. While stochastic and transient expression of this 

transcription factor may trigger expression of basal genes, the sustained expression of 

these basal-specific markers suggests that stochastic mechanisms of SOX10 activation are 

unlikely to play a major role. Furthermore, the high expression of SOX10 specifically in 

tumors expressing low ER suggests a possible link between reduction of ER activity and 

induction of SOX10 activity. This link is yet to be explored, along with possible 

environmental signals and extrinsic triggers that may reduce ER levels and increase SOX10 

expression. The mechanisms by which SOX10 increases basal gene signature expression 

are also presently unknown, and elucidating this process could help identify potential 

methods to curtail luminal-to-basal plasticity and prevent the lineage evolution of 

luminal-like tumors. 

 

SOX10 driven lineage plasticity of luminal cells was also found to involve an incomplete 

luminal-to-basal transition, in which cells do not transition into a fully basal phenotype. 

Instead, these cells express a combination of both luminal and basal markers, resulting in 



 109 

the emergence of a hybrid lumino-basal phenotype. This suggests that complete lineage 

transition may not be necessary for tumor cells to gain a basal-like phenotype, leading to 

the declining prognosis associated with the basal-like subtype. Incomplete lineage 

transition or hybrid cell-states are commonly described in the study of EMT, where it is 

not necessary for tumor cells to fully recapitulate the phenotypic properties of a 

mesenchymal cell type in order for it to form metastases128. In fact, it appears to be more 

advantageous for cells to co-express properties of both epithelial and mesenchymal cells, 

to aid in both invasion away from the primary tumor, and colonizing the tissues of distant 

organs. Similarly, it may be more advantageous for the lumino-basal phenotype to 

maintain both luminal-like and basal-like characteristics, although the underlying 

implications of this phenomenon are yet to be explored. The normal mammary gland 

structure suggests that basal (myoepithelial) cells exhibit more mesenchymal 

characteristics, whereas luminal cells exhibit more epithelial-like traits, thus the luminal-

to-basal transition may simply be a form of EMT, with the lumino-basal cell phenotype 

taking the form of a hybrid or intermediate EMT cell-state. Furthermore, transcriptomic 

analysis has revealed the expression of mesenchymal marker genes in basal cells, and 

epithelial marker genes in luminal cells. The EMT gene SNAI2, along with other 

mesenchymal markers, have been found to be highly expressed in both human and 

murine basal cells179,180, while data from this study also show that the lumino-basal 

population expresses higher levels of mesenchymal markers Vim and Mmp2, with the 

luminal population expressing higher levels of epithelial markers Epcam and Cdh1. 

 

The identification of the lumino-basal cell phenotype in the low-ER human tumor samples 

aids in the understanding of potential lineage evolution in human breast cancer subtypes. 

Well-known luminal and basal markers were used to define lineage-restricted luminal and 

basal cells and identify lumino-basal populations; however, these markers represent only 

a small subset of the genes expressed by luminal, basal and lumino-basal cells. While the 

luminal and basal gene expression signatures have been described in the normal 

mammary gland and tumors of both human and murine animal models95,102, the lumino-
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basal gene signature is yet to be defined. This study has attempted to identify a lumino-

basal subpopulation by scRNA-seq analysis of mouse mammary tumor cells, but the small 

sample size of 2 mouse tumors is insufficient to determine a lumino-basal gene signature. 

Furthermore, while it may be useful to define a mouse tumor lumino-basal signature, it is 

more beneficial to identify a lumino-basal signature of human breast tumors, as this will 

aid in the understanding of the luminal-to-basal transition in the human disease context, 

while possibly providing new prognostic markers to predict the progression and 

therapeutic response of breast cancer in patients. In order to elucidate the human 

lumino-basal tumor cell signature, the lumino-basal population from a larger sample of 

human low-ER mammary tumors can be identified by scRNA-seq analysis. Comparing the 

gene expression profiles from this population against a lineage-restricted luminal 

population from the same samples would thus reveal genes enriched specifically in the 

lumino-basal cell population. 

 

Preventing the metastatic spread of cancer is a problem that has long plagued clinicians 

and cancer researchers, as the likelihood of patients to survive a cancer diagnosis after 

the onset of metastatic disease are greatly reduced. The function of PKA to reverse EMT 

and promote MET thus presents a potential targetable avenue by which to prevent the 

spread of this disease and improve patient survival. Multiple pharmacological agents 

targeting PKA have been designed, such as the compounds H89 and KT 5720, however 

these drugs antagonize PKA activity, and have only been utilized to inhibit PKA in the 

research setting181. Furthermore, it is PKA activation that is desirable in this context in 

order prevent EMT, as PKA inhibition has been shown to promote tumorigenesis instead, 

and as such, designing PKA agonists would appear to be a beneficial strategy to reduce 

metastasis. Alternatively, other proteins within the PKA activation pathway may be 

targeted, as designing a compound to activate a protein may be more challenging than 

identifying a drug to inhibit it. This requires a more comprehensive understanding of the 

mechanism of action of PKA induced plasticity, and the signaling pathways activated to 

prevent EMT in tumor cells. 
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PKA is a protein kinase known to promote differentiation and exhaustion of the stem cell 

compartment in the epidermis141, and promote MET in breast cancer cell lines139, 

however the pathways activated by this kinase in order to curtail EMT in mammary 

tumors remains to be fully explored. Previous studies have provided clues as to how PKA 

functions to inhibit plasticity. In epidermal stem cells, PKA has been found to induce 

differentiation by inhibiting YAP and GLI transcription pathways141, however there is no 

evidence for GLI activation in PKA induced MET of mammary tumor cells139. Instead, Sox4 

and PHF2 have been implicated as important downstream effectors of PKA activity114,139, 

suggesting that the mechanisms in which PKA induces MET and prevents EMT in the 

mammary tumor context are different from the processes which promote differentiation 

and exhaustion of the epidermal stem cell compartment. Sox4 is a transcription factor, 

whereas PHF2 is a histone lysine demethylase which regulates chromatin activation state, 

thus these 2 proteins may work in concert to regulate PKA-induced epigenetic changes by 

first remodeling the chromatin landscape, and subsequently activating genes that 

function to reverse EMT. Further studies have to be carried out to delineate the 

mechanisms of Sox4 and PHF2 activity in curtailing EMT in mammary tumors, along with 

other proteins that may play a role in this pathway. 

 

Eribulin’s ability to induce MET in tumor cells suggests that it may provide benefit as a 

treatment for early-stage breast cancer. This drug is currently used as a treatment for 

patients with advanced breast cancer, where development of metastatic disease has 

already occurred163. The results from this study suggests that eribulin may be better 

utilized as a first-line chemotherapy, or a pre-treatment therapy used to prevent the 

emergence of metastatic disease while the primary tumor is being managed. 

Furthermore, inducing an epithelial phenotype in tumors through eribulin pre-treatment 

may sensitize them to treatment with subsequent chemotherapeutic agents, as 

epithelial-like tumor cells are known to be more sensitive to chemotherapy than their 

more resistant mesenchymal counterparts. Further clinical studies must first be carried 
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out to identify if using eribulin before any other treatments would be beneficial for 

patient survival. 

 

Identification of Lamarckian induction as a mode of resistance against eribulin treatment 

has shown how extrinsic factors can influence the plasticity and heterogeneity of tumor 

cells, however the intrinsic pathways that are activated in response to eribulin activity is 

still unknown. Eribulin functions to eliminate tumor cells by binding to microtubule ends 

and inhibiting growth, thus blocking dynamic instability of microtubules and preventing 

proliferation164. The altered transcriptomic output and MET as a result of eribulin 

treatment suggests that eribulin may have other functions besides microtubule binding, 

which may involve direct activation of transcriptional programs leading to the expression 

of epithelial genes and repression of mesenchymal genes, or histone modification effects 

that could alter the epigenetic state of the cell. It is thus essential to elucidate the 

mechanism by which eribulin promotes transcriptomic and phenotypic alteration, in 

order to evaluate the potential utility of this drug as an epigenetic modifier for use as a 

pre-treatment for cancer. 

 

This work focuses on 3 specific areas of lineage plasticity and heterogeneity, namely low-

ER heterogeneity, EMT heterogeneity, and drug induced transcriptomic changes that lead 

to drug resistance. Due to the nature of phenotypic heterogeneity and transcriptomic 

alterations, there are infinite ways in which gene expression profiles can vary, leading to 

the emergence of new tumor subpopulations with varying lineages and phenotypes. 

Identifying how each new phenotype emerges, and how it affects tumor development is 

therefore challenging, and the complexity of a heterogeneous tumor may never be fully 

appreciated. Adding to the challenge is the possibility that tumors may harbor extremely 

rare subpopulations of cells that may not be easily detected, but may play an essential 

role in metastasis or chemotherapy resistance. In recent years, elucidating the extent of 

intra-tumoral heterogeneity has been facilitated by the advent of single-cell sequencing 

technologies that have helped to uncover the unique genetic, transcriptomic, and 
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epigenetic properties of each cell within a tumor. This has paved the way towards 

identifying new and hybrid phenotypes, as used in this study to identify the lumino-basal 

cell population in low-ER tumors, as well as reveal potential mechanisms leading to the 

emergence of these phenotypes. While the enormous task of understanding tumor 

heterogeneity as a whole may seem daunting, seemingly small discoveries, like the ones 

presented in this study, will contribute towards the larger body of work that has already 

been, and yet to be, discovered, to hopefully provide a more meaningful appreciation and 

understanding of this complex disease.  
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