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ABSTRACT 

 

 

Impacts of area-wide air pollution on multimodal traffic: 

Comparing pedestrian, motor vehicle, and transit volumes in Utah 

 

by 

 

 

Prachanda Tiwari, Master of Science  

Utah State University, 2023 

 

Major Professor: Dr. Patrick Singleton 

Department: Civil and Environmental Engineering 

 

 

During area-wide episodes of poor air quality, people may want to: 1) reduce their 

transportation-related emissions by driving less, 2) reduce their exposure to emissions by 

walking/bicycling less, or 3) go about their activities as usual. These three reactions have 

different consequences for travel behaviors and impacts on traffic volumes and the 

environment. This study investigates the effects of area-wide air pollution on multimodal 

traffic volumes by comparing associations of daily air quality with pedestrian, motor 

vehicle, and transit volumes over a two-year period in Utah, US. We used multilevel 

modeling to measure how this relationship differs by mode and across locations. The study 

region consisted of the Wasatch Front and Cache County in Northern Utah. The results 

revealed that, on days with poor air quality in Cache County, there was a decrease in 

pedestrian volumes accompanied by an increase in motor vehicle volumes; however, in the 

Wasatch Front, there was a decrease in pedestrian volumes, but a non-linear relationship 

was found out for motor vehicle volumes: i.e., motor volumes increased during yellow air 



iv 

quality days while it decreased during orange air quality days. Similarly, an increase in 

transit ridership was observed during moderate levels of air pollution.  

We found that in Cache County, in areas with high street connectivity, pedestrian 

volumes did not decrease as much on poor quality days, whereas in neighborhoods with 

higher vehicle ownership, pedestrian volumes decreased more on poor air quality days. In 

the Wasatch Front, neighborhoods with higher median income saw amplified decrease in 

both pedestrian and motor vehicle volumes. Our findings suggest policy implications (air 

quality alerts and voluntary behavior change encouragements) for various locations and the 

scope of future research to better understand the relationships between air quality and 

multimodal traffic volumes.  

 (132 pages)
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PUBLIC ABSTRACT 

 

 

Impacts of area-wide air pollution on multimodal traffic: 

Comparing pedestrian, motor vehicle, and transit volumes in Utah 

 

Prachanda Tiwari 

The impact of area-wide air pollution on multimodal traffic volumes has been 

underexplored. Thus, this research investigates the effect of area-wide air pollution on pedestrian 

volumes, motor volumes, and transit ridership across two urban areas in Utah for two years (2018 

and 2019). The research employed multilevel modeling to study this effect. The model results 

showed an overall decrease in pedestrian volumes in both study areas, while driving volumes saw 

both increases and decreases in different locations. Transit ridership saw an increase during days 

with moderate air quality in one particular study area. Median income, vehicle ownership, and 

higher street connectivity were significant players in defining variations in the relationships 

between air quality and multimodal traffic volumes across different locations. Our findings suggest 

policy implications (air quality alerts and voluntary behavior change encouragements) for various 

locations and the scope of future research to better understand the relationships between air quality 

and multimodal traffic volumes.  
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1. BACKGROUND 

 

1.1 Introduction 

In many parts of the world, air pollution can frequently reach unhealthy levels, affecting 

both urban and rural downwind communities and negatively impacting public health, out-of-

home and outdoor activities, recreation, and tourism. The transportation system is the major 

cause of pollutants like fine particulate matter (PM2.5) and ground-level ozone (Climate Watch, 

2019). Road traffic exhaust emissions have been the major concern as they are associated with 

the production of PM2.5 and tropospheric ozone (Colvile et al., 2001). During area-wide air 

pollution events (smog, haze, dust, and wildfire smoke), governments often resort to hard and 

soft policies to induce behavior change in people (Teague et al., 2015; Cummings & Walker, 

2010). For example, air quality alerts are often issued to spread awareness regarding the high 

pollution levels and to encourage (discourage) travel behaviors that would contribute to reduced 

(greater) transportation emissions: e.g., carpooling, trip chaining, teleworking, postponing trips, 

or using public and active transportation modes (UDOT, 2022). 

However, without detailed study of the link between air pollution and travel behavior, the 

design of policies is far from effective. Although research on effects of the transportation system 

on air quality and air pollution is plentiful (e.g., Caiazzo et al., 2013; Kryzanowski et al, 2005), 

research emphasizing the reverse link—i.e., how measurements of air pollution impact 

multimodal traffic volumes and other aggregate outcomes of individuals’ travel behaviors and 

transportation choices—is comparatively limited. In order to improve public health as well as 

manage the public’s responses to such air pollution events, it is important to know how people’s 

travel behaviors are affected by area-wide air pollution. 
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Theoretically, there are a variety of ways in which traveler behaviors may be affected by 

area-wide air pollution events, associated information, and any policy actions. First, people may 

exhibit no behavioral response, especially if the pollution event is minor or few options for 

alternative behaviors or activity schedules exist. Second, people may reduce their automobile 

travel or their use of other polluting modes of travel, in order to minimize their contribution to 

the air pollution issue. Third, people may increase their use of encapsulated motorized modes, 

switching from exposed active modes in an attempt to reduce their exposure and inhalation of air 

pollution. One might call the second option the altruistic while the third option is a risk averse 

response (Noonan, 2014). The altruistic response prioritizes the overall good of the society even 

if it comes at one’s individual benefit (forgoing automobile usage to reduce air pollution even if 

it increases one’s exposure to emission), while the risk averse response prioritizes one’s 

individual benefit over the overall good of society (taking up automobile usage to decrease one’s 

exposure to emission even if it contributes to more air pollution). The conflict between these two 

responses highlights the challenge of information dissemination and soft/hard policies that seek 

to mitigate episodes of area-wide air pollution through travel behavior change.  

In addition to the severity of the air pollution event, the population-wide response 

depends on the interplay of various factors, including (but not limited to) the existing 

transportation and built environment structures. Thus, an investigation into the relationship of air 

quality and multimodal traffic volumes—with consideration for varying responses across built 

environment contexts—is needed to effectively manage the travel behavior response during 

episodes of poor air quality. This study addresses the need by employing multilevel modeling to 

study the aggregate effects of air quality on both motor vehicle and pedestrian volumes in 

different locations.  
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It is to be noted that we could have taken a disaggregate approach to study the impact of 

air quality on traffic volumes, by studying people’s behavior at an individual-level, so that we 

could consider awareness, psychological, and other personal factors (Zhao et al., 2018; Li et al., 

2017). But for this study, we chose an aggregate approach, as it allows us to analyze the overall 

impact of air quality on traffic volumes across different modes. This approach provides a broader 

perspective and helps identify general trends in population-level travel behavior response during 

periods of bad air quality. The aggregate approach helps us overcome one of the major 

disadvantages of individual-level approach: probable selection of a non-representative sample of 

the population. Also, people’s self-reported behavior in surveys might not match their actual 

behavior, and to track those individual behaviors over long periods of time is demanding. 

Furthermore, an aggregate approach would be more relevant in exploring the interplay between 

air quality’s effect on traffic volumes and the built environment.    

 

1.2 Literature Review 

As active transportation (walking and cycling), automobile, and transit involve different 

levels of exposure to air pollutants (both the total exposure and exposure/inhalation rate) 

(Chaney et al., 2017; Morabia et al., 2009; Good et al., 2016) and different levels of contribution 

to emissions (Colvile et al., 2001), people’s response in terms of the use of each mode might be 

different. Thus, we have streamlined our literature review into three sections. Separate sections 

review literature on active transportation, driving, and transit, to highlight potential similarities 

and differences in modal reactions to increased levels of area-wide air pollution.  
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1.2.1 Active Transportation 

In the domain of exploring the relationship between air pollution and active 

transportation, a few studies have been conducted in different locations around the world. 

Doubleday et al. (2021) examined the impact of wildfire smoke events on pedestrian and bicycle 

counts at eight city counters in Seattle, WA. They calculated the difference between pre-, during-

, and post-wildfire smoke periods for two smoke events in the summers of 2017 and 2018 and 

found that wildfire smoke event decreased daily average bicycle counts by 15–36% across the 

eight counters, and 32–45% across the two pedestrian counters. Similarly, Saberian et al. (2017) 

analyzed cyclist counts at 31 points across different cycle-paths in the city of Sydney, Australia. 

The authors concluded that when an air quality alert was issued, the amount of cycling was 

reduced by 14–35%. Holmes et al. (2009) analyzed the traffic count at 30 multi-use trail points 

from May 2004 through August 2006 in Indianapolis, USA. They employed fixed effects 

regression and found that both high levels of ozone and fine particulate matters were 

significantly associated with lower levels of trail traffic. Kim (2020) investigated how PM2.5 and 

PM10 affect bike sharing in different seasons in Seoul, South Korea. The study concluded high 

PM levels in spring and winter negatively affected bike sharing but showed no significant 

association with bike sharing during summer. Chung et al. (2019) examined the effect of PM10 

for different air quality grades (good, moderate, and bad) on pedestrian volume data collected 

from 1,223 street locations in Seoul, South Korea, in October 2015. They used multiple 

regression and concluded that when PM increased by 1%, pedestrian volume decreased by 

0.121%. Acharya & Singleton (2022) studied the non-motorized trail volumes in Logan, Utah, 

and found a measurable but small deterring impact of air pollution events on utilitarian active 

transportation. 
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Although the above-mentioned studies were conducted in different settings at different 

time-points, all reached similar conclusions: walking/cycling activities decrease during the 

episodes of poor air quality. However, it is interesting to note the different approaches and 

control variables employed by the studies. Saberian et al. (2017) subdivided trips by purpose and 

stratified the effects of air pollution for leisure and commuter trips. This allowed the authors to 

deduce that cycling for leisure was reduced more (38%) than cycling to work (20%). These 

studies have included a mix of explanatory variables to control for the effect of time and 

weather. However, we see no consistency in the addition of controls. For example, seasonal 

control was lacking in all except Kim (2020). Kim (2020) addressed this by creating different 

models for different seasons. On the other hand, Holmes et al. (2009) explored the distinction of 

effects due to air pollution itself and that of air quality alerts. They isolated the effect of public 

alerts by estimating the probability of a public announcement being made as a function of the 

level of air quality parameters. However, the study did not find the coefficient on the corrected 

air pollution advisory variable to be significant.  

 

1.2.2 Driving 

Another stream of research focuses on the effect of air quality/alerts on encapsulated and 

motorized modes such as automobiles. Using driving data from the Atlanta Regional 

Commission in central Atlanta, Noonan (2014) studied the relationship of household-level daily 

vehicle miles traveled (VMT) and regional ozone. The author hypothesized that daily VMT 

would fall on ozone alert days. However, there was no significant discontinuity at the ozone 

cutoff point of 85ppb. In another study in Salt Lake and Davis counties in Utah, Tribby et al. 

(2013) analyzed motor vehicle traffic data to examine the relation between daily traffic and air 
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quality alerts. They ran ANOVA and multiple regression methods for summer and winter traffic 

separately. The authors found that there was no significant reduction in daily motor vehicle 

traffic during yellow and red days of air pollution. They concluded the ineffectiveness of air 

quality alerts on reducing traffic volume on days of poor air quality. The authors found similar 

reactions to alerts for both PM2.5 and Ozone. They also noted an unintended consequence of the 

alerts, as they found an increase in the average traffic volume for yellow and red days which was 

significant for traffic counters near the mountain regions. The authors attributed the increase in 

traffic to the presence of mountains nearby that provide an easy escape for Salt Lake residents 

from the air quality problem.  

 

1.2.3 Public Transit 

Welch et al. (2005) studied the effects of ozone action day public advisories on train 

ridership in Chicago. For the study they used fixed effects regression model to analyze the effect 

of ozone action days on hourly Chicago Transit Authority (CTA) train ridership. The effect was 

found out to be significant and even sizable during some parts of the day, but the overall effect of 

ozone action days on ridership was not significant. Cutter & Neidell (2009) studied the response 

of traffic to Spare the Air (STA) Program in the San Francisco Bay Area and found that total 

daily traffic is reduced by 2.5–3.5%. This is accompanied by two largest increases in BART 

(Bay Area Rapid Transit) at 9am and 6pm. The results suggested that STA Advisories reduced 

traffic volume and slightly increase the use of public transit, which supported a role of voluntary 

information programs on change in traffic volumes.  
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1.2.4 Research Gaps 

To conclude, the most pronounced changes in traffic volumes in response to area-wide 

poor air quality are reductions for open and active modes, especially for discretionary trips. This 

conclusion, however, does not clarify if the decrease in pedestrian/cyclist volume is accompanied 

by an increase in other modes such as driving and transit. Since the existing studies on driving 

(Noonan, 2014; Tribby et al., 2013) show insignificant changes in volume during days of bad air 

quality, it leads us towards a gap in the literature: the lack of research about traffic volume 

changes for different modes, measured in the same location. As the response to air quality 

depends on the available substitute mode options, demographics, and other built environment 

characteristics, any conclusions about modal shifts are potentially inappropriate if made by 

comparing studies from different sites (e.g., active mode studies from Seoul, Sydney, and Seattle 

vs. motorized mode studies from Atlanta and Salt Lake vs. transit studies in Chicago and Bay 

Area). Thus, there is a need for research exploring traffic volume changes for different modes in 

the same location.   

Also, the reaction to changes in air quality is likely affected by characteristics of a place, 

such as the availability of transit, the built environment, and the sociodemographic 

characteristics of the location. Most studies have not explored spatial variations in the 

relationships between air quality and traffic volumes. Although Tribby et al. (2013) concluded 

that stations near mountains react differently to stations near downtown, their conclusion was 

derived by calculating differences between the mean values of traffic for different air quality 

categories for individual stations. Their approach does not allow us to explore the variation of the 

air quality–traffic volume relationship according to different locational characteristics. Chung et 

al. (2019) also controlled for spatial units, but they did so for weather parameters and calculated 
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a single defining relationship between air quality and traffic volume for the whole area. Thus, a 

methodological gap to be filled is modeling variations in the relationship between air quality and 

traffic volume for different locations. 

Furthermore, during air pollution, some trips might be shifted to a future day in response 

to the air pollution, also known as trip shifting. The presence of trip shifting could be studied by 

the introduction of time-lag variables in the model, but current literature has not investigated into 

the time lag effects of air pollution. Cutter & Neidell (2009) implement hourly levels in the 

model to study the effects of scheduling the trip for another time within a day, but we do not find 

any effort to study the effect of trips shifted to another day. Also, a discussion about substitution 

and shifting of trips have been lacking in the literature until now.  

 

1.3 Research Objectives 

The above-mentioned gaps point us towards a need for this study to explore the 

relationships between air quality and traffic volume for different modes in the same area, and 

allowing for the possibility that each count location could have a different reaction to air 

pollution. Thus, this thesis will address these needs by focusing on the following objectives: 

1. To measure the effects of area-wide air pollution on multimodal traffic volumes and 

study how these effects differ by mode, by building separate models for walking, driving, 

and transit to observe the difference in effects across mode. 

2. To explore locational variations in the effects of area-wide air pollution on multimodal 

traffic volumes, by using multilevel modeling to represent the locational variations in 

each mode-specific model. 
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3. To identify any occurrences of trip shifting, by introducing time lag effects of air 

pollution on multimodal traffic volumes.  
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2. DATA AND METHODS 

 

2.1 Setting and Study Areas 

To meet the objective of the thesis, we approached the study by defining two study areas 

in the state of Utah in the western US. The first study area includes Cache County, which lies in 

the northernmost part of Utah. The second area includes the counties of the Wasatch Front region 

(Weber, Davis, Salt Lake, and Utah). All of the counties involved in the study are listed in Table 

2-1 along with their 2020 Census population. 

 

Table 2-1  

Counties in study areas 

Study Area County 2020 Census Population 

Study area 1 Cache 133,154 

Study area 2 

Salt Lake 1,158,238 

Utah 659,399 

Davis 362,679 

Weber 262,223 

 

The reasons behind the demarcation of our geographical scope into two areas are transit 

accessibility and area coverage of the regions. Cache County (study area 1) is not served by the 

Utah Transit Authority (UTA) service; instead it has its own local transit system: Cache Valley 

Transit District (CVTD). Thus, the transit accessibility is not as robust as in the study area 2. 

Also, the lack of data availability from the Smart Location Database, which used pre-2020 

Census data and transit information from General Transit Feed Specification (GTFS) feeds 

meant some of the built environment variables related to transit service were not available in this 

study area. Secondly, study area 1 served is a smaller region with small dataset which allowed us 
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the leverage to build a model which explained the spatial distribution of effect of air quality on 

multimodal traffic volumes. This model then, efficiently, was replicated for study area 2. 

 

Figure 2-1 

 

Division of counties into study areas 

 

 

 

Study area 1 includes a university town in an agricultural area. Logan is the biggest town 

in study area 1 and also home to Utah State University. Study area 2 includes the majority of the 

state’s population in one long and narrow urban area. The region is fast-growing and home to the 

state’s largest city and the capital, Salt Lake City. The second largest metro area in the state, 
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Provo, also lies in study area 2. Besides, the prominent universities in the area are University of 

Utah, Brigham Young University, Weber State University, and Utah Valley University.  

Both study areas experience summertime wildfire smoke (mostly from California and the 

Pacific Northwest) as well as wintertime inversions that trap pollutants from transportation, 

agriculture, and industry in snow-covered urban valleys adjacent to recreational mountain areas. 

During summer, ozone levels get high in Utah as vehicle emissions and industrial sources mix 

with sunlight and heat. Smoke from various western North American wildfires (Dollar Ridge 

Fire in July 2018 is one notable example) also contribute to the pollution in summer. An ozone 

concentration of 70 parts per billion (ppb)—the 8-hour National Ambient Air Quality Standard 

(NAAQS) standard—is often exceeded in the Wasatch Front (DEQ Utah, 2022).  

During winter months, areas in the Wasatch Front experience high levels of particulate 

matter PM2.5 with daily average values reaching up to 60–80 μgm-3. The PM2.5 pollution is 

related with the formation of persistent cold air pools in Utah’s bowl-shaped basins. These 

conditions are related to stratification and capping inversion of air, which in turn leads to 

pollutants being trapped near the surface (Baasandorj et al., 2017). Study area 1 is also similar as 

high particle concentration is resulted from severe cold temperature- inversion, a mix of rural 

and urban sources, and confined geographical area (Silva et al., 2007). Due to these pollutants, 

the PM2.5 concentration of 35μgm-3—the 24-hour National Ambient Air Quality Standard 

(NAAQS) standard—is often exceeded in the region, leading to some of the worst non-fire-

related air quality within the state of Utah and sometimes the entire US (Wang et al., 2015). The 

counties comprising study area 2 are designated as serious non-attainment areas for PM2.5, and 

Cache County in study area 1 was only redesigned as a maintenance area in 2021 (DEQ Utah, 

2022).  
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2.2  Data and Variables 

In line with our objective of measuring changes in daily multimodal traffic volumes in 

response to area-wide air pollution for multiple modes across various locations, we assembled a 

variety of data. In the following sections, we describe how we obtained multimodal traffic 

volumes—daily motor vehicles volume from traffic count stations, daily pedestrian volumes 

from traffic signals, and public transit ridership (across whole service-area) from transit 

agencies—assembled data on air quality and weather from atmospheric sensors; and combined 

these data with locational information about the built environment around each count location. A 

two-year period from January 2018 through December 2019 was selected for this study. 

Extending the timeframe to include the COVID-19 pandemic could lead to erroneous conclusion 

of the relationship between air quality and multimodal traffic volumes because of inadequate 

control for COVID. Thus, this analysis did not consider timeframe during COVID-19.   

 

2.2.1 Multimodal Traffic Volumes 

Motor vehicle traffic volume counts on various streets and highways are taken from 

continuous count stations (CCSs) maintained by the Utah Department of Transportation 

(UDOT). The stations record the number of vehicles passing a given station by using sensor 

devices such as inductive loops and overhead microwave radar sensors. The UDOT counts 

provide the number of vehicles crossing each location per day for CCSs distributed throughout 

Utah. The motor vehicle traffic volume data had some missing observations spread across 

locations and times. To minimize the effect of missing data on our analysis, we set a threshold of 

600 days (out of a possible 730 days). After the use of thresholds to filter out stations, six 
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stations located in Cache County were selected for the analysis of study area 1. Similarly, 34 

stations spread across study area 2 were selected for the second set of analysis. The remaining 

missing data from the filtered stations were omitted from the model.  

Pedestrian volumes come from a novel big data source: pedestrian push-button data 

obtained from high-resolution traffic signal controller logs. In Utah, such real-time and archived 

data are available from nearly all traffic signals throughout the state. A recent research project 

compared push-button data with ground-truth pedestrian volumes collected from over 10,000 

hours of video at 90 signalized intersections throughout Utah, and developed a set of simple 

regression models to convert push-button data to estimated pedestrian crossing volumes. Details 

of these methods are provided elsewhere (Singleton et al., 2020), but the methods had good 

accuracy (correlation of 0.84, mean absolute error of 3.0 pedestrians per hour). The pedestrian 

signals estimate, though, had a large number of observations with zero in it. Most common 

reasons could be faulty stations, power outage, weekends, and low users in an area. To deal with 

the missing observations, first, we only picked the stations with an average daily estimated 

volume of more than 10. This would eliminate the signals with huge number of missing data and 

also, the signals in area with sparse pedestrian traffic. Then, we picked stations which had less 

than 20 zero counts for a total of 730-day counts. (We kept the limit at 20 as some of the zeros 

could be true zeros as they were observed in weekends only.) After the use of thresholds to filter 

out signals (we had a total of 1,845 signals at start of the process), we used daily estimates of 

pedestrian volumes at 38 signals in study area 1, and 871 signals for the remaining counties in 

study area 2.  

Daily transit ridership was obtained from the transit service provider operating in each 

study area. For the study area 1, the Cache Valley Transit District (CVTD) provided the total 
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daily transit ridership across all of their bus routes for each day throughout the study period. For 

study area 2, the Utah Transit Authority (UTA) provided the total daily transit ridership across 

each of their commuter rail (FrontRunner) and light rail (TRAX) routes for each day during the 

2-year study period. We also attempted to get bus ridership data from UTA, but they were not 

confident of the accuracy of the day-to-day daily bus ridership statistics.  

It is important to note that the transit data has a different structure than the 

pedestrian/motor data, as it captures the area-wide ridership rather than location-specific 

ridership. We are using system-wide data for transit rather than location-specific/route-specific 

data because we would have to use boarding/alighting data to be location/route specific. But, 

boarding/alighting data would capture only the trips starting or ending on that particular point, 

whereas the pedestrian/motor count data capture every trip passing through the point. Thus, to 

maintain the consistency in the nature of data used for analysis across each mode, we opted for 

system-wide data for transit even if it meant forgoing locational analysis for transit system.  

 

2.2.2 Air Pollution, Weather, and Control Variables 

Daily air quality information (air quality index, concentrations of particulate matter and 

ozone) is collected from sensors and was obtained from the US Environmental Protection 

Agency (EPA). In 2012, the Utah Division of Air Quality (UDAQ) revamped its air quality 

categorization in line with the EPA standard and created six categories. The categories are 

described in Table 2-2. The Air Quality Index (AQI) is representative of the pollution due to 

ozone, particulate matter, and oxides of nitrogen, sulfur, and carbon. At most of the air quality 

monitoring stations in Utah, only ozone and particulate matter were tracked. 
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 During the study period (2018–2019), the highest daily AQI value was 160. However, 

only a few observations in Utah county were in the range of 150-160. Adding a new color-coded 

category to our analysis for few samples would weaken the statistical potency of our model. 

Thus, only three-color categories (green, yellow, and orange) were considered in our analysis as 

the limited observations in the range of 150-160 AQI were put under orange category. 

 

Table 2-2 

Air Quality Index (EPA, 2018) 

Air Quality Index (AQI) Values Health Concern Colors 

0-50 Good Green 

51-100 Moderate Yellow 

101-150 Unhealthy for Sensitive Groups Orange 

151-200 Unhealthy Red 

201-300 Very Unhealthy Purple 

301-500 Hazardous Maroon 

 

Travel activity is also influenced by weather and climatic factors (Bocker et al., 2013; 

Runa & Singleton, 2021). Therefore, to control for atmospheric environmental impacts on travel 

behaviors, daily weather data (about precipitation, snow, temperature, etc.) were obtained for 

various stations throughout the study areas from the National Oceanic and Atmospheric 

Administration’s National Centers for Environmental Information (NCEI). To account for 

seasonal differences and behavioral adaptation to weather expectations, a maximum temperature 

difference variable was created as a measure of how much warmer the maximum temperature 

observed in a day was compared to the 30-year average of daily maximum temperature on the 

same day. Since the study areas experience both rain and snow throughout the year, a combined 

precipitation variable was created with following categories: no rain and no snow, light rain (1–

25mm), light snow (1–50mm), heavy rain (>25mm), and heavy snow (>50mm).  
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Study Area 1: Air Quality and Weather Stations: For our initial investigation in study area 

1, air quality data from a single monitoring station in Smithfield (a suburb of Logan) was used. 

The air quality station was 15.4 km and 21.5 km apart from the furthest pedestrian signal and 

motor count station respectively. Also, weather data were obtained from two weather stations: 

one located at Utah State University in Logan that reported daily precipitation (in mm), snowfall 

(in mm), and maximum and minimum temperature (in °C), and another located at the Logan–

Cache Airport, where a dataset containing historical temperature for the last 30 years was 

obtained. The weather station in university was 6.2 km and 28.1 km apart from the furthest 

pedestrian signal and motor count station respectively. 

Study Area 2: Air Quality and Weather Station Matching: Since the air quality and 

weather stations were not in the same location as the traffic station (and we had a large number 

of available air quality and weather station to choose from), we had to match stations with each 

other. The minimum distance approach for each attribute was employed to match stations. For 

example, assume a traffic station (T1) had two weather stations (W1 and W2) at a distance of 5 

km and 9 km respectively. (The threshold distance between weather station and traffic station 

was set at 15 km for the analysis). Ideally, we would take all the weather data from W1. But, if 

W1 only recorded temperature data, then for other missing weather records (such as snow, 

precipitation) we matched it to next nearest weather station (W2). If W2 didn’t contain such 

records, the record would be registered as missing. Similarly, if the same traffic station (T1) had 

three air quality stations (A1, A2, and A3) at distances of 10, 16, and 25 km, respectively (our 

threshold for air quality stations was set at 30 km), we would choose air quality data from A1. 

Only if A1 had missing air quality data, the next nearest air quality station A2 would be 

considered. This individual attribute matching helped us to decrease the number of missing 
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records. After the matching was completed, traffic signals where a single weather and air quality 

attribute was missing on more than 20 occasions were left out.   

Besides the weather controls, three additional control variables were introduced to 

account for temporal variations in traffic volumes and travel patterns. A seasonal categorical 

variable was created which distributed the 12 months into four seasons. Days-of-the-week were 

categorized into Saturday, Sunday, and weekdays to control for the effects of weekends on 

traffic. Also, holidays in the state of Utah during the study period were identified (Office 

Holidays, n.d.). As schools and universities have a significant say in the pedestrian counts, we 

identified the presence of schools and universities near a pedestrian signal. For universities, a 

logical variable was created which would be true for signals near university during the time of 

university breaks. This variable accounted for the low pedestrian volumes in signals near 

university during the breaks. 

 

2.2.3 Count Station-Level Variables 

Recall our second objective to measure variations in the air quality–traffic volume 

relationship across locations. We also collected built and social environment variables at each 

traffic count location. A quarter-mile buffer was created around each location and information 

regarding population and employment density, commercial and residential land uses, transit 

stops, park coverage, schools, and places of worship were calculated from the EPA’s Smart 

Location Database (US EPA, 2021). Similarly, sociodemographic attributes like average 

household size, average household income, and median household income were obtained from 

the American Community Survey (ACS) 2016-2020. 
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Since we had built and social environment variables for each traffic analysis zones and 

census block group, we had to transform those variables into our spatial unit of analysis: traffic 

count stations. For that, we used area-weighted averaging process. First, we created a 400m 

circular buffer around pedestrian signal and took the area-weighted average of the traffic zones/ 

census group included in that buffer. Then, thus-obtained result was used as the built and social 

environment variable for a particular signal. A similar approach with a buffer of 2000m was used 

for the motor signal. 

 

2.2.4 Descriptive Statistics and Maps 

A map of pedestrian count stations, motor volume count stations, weather station, and air quality 

station for study area 1 is shown in Figure 2-2. Similarly, a map of pedestrian count stations, 

motor volume station, and air quality station in the study area 2 are shown for each individual 

county in Figure 2-3 for better representation. The summary of descriptive statistics of the 

associated variables is shown in   
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Table 2-3 for study area 1, while the summary of descriptive statistics of the associated 

variable for study area 2 is shown for each mode (driving, walking, and transit) in Table 2-4, 

Table 2-5, and Table 2-6, respectively. 
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Figure 2-2 

 

Distribution of stations in study area 1 (Cache County) 
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Figure 2-3  

 

Distribution of stations in study area 2: geographically arranged north to south 
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Table 2-3  

Descriptive statistics, study area 1 

Variable Mean SD # % 

Motor vehicle traffic volume 

 (N = 3,963 = 6 stations × 730 days – missing data) 

12,502 8,413   

Pedestrian traffic volume 

 (N = 27,053 = 38 stations × 730 days – missing data) 

379 1,035   

 

Daily Transit Ridership 

    (N = 730 – holidays - Sundays) 

4715 1971.9   

Temporal variables (730 days)     

Day of week: Weekday   522 71.5 

 Saturday   104 14.2 

 Sunday   104 14.2 

Holiday: False   706 96.7 

 True   24 3.3 

Season: Winter   180 24.7 

 Spring   184 25.2 

 Summer   184 25.2 

 Fall   182 24.9 

Precipitation: No rain / no snow   532 73.0 

 Light rain (1–25mm)   117 16.0 

 Light snow (1–50mm)   57 7.8 

 Heavy rain (>25mm)   2 0.3 

 Heavy snow (>50mm)   21 2.9 

Max temperature (°C) difference from average 0.04 4.73   

Air quality index: Green (AQI = 0–50)   626 85.7 

 Yellow (AQI = 51–100)   88 12.1 

 Orange (AQI = 101–150)   16 2.2 

Built and social environment variables (38 pedestrian 

count stations) 

    

Percentage of residential parcels  18.6 13.7   

Percentage of commercial parcels 33.8 16.8   

Percentage of vacant land 6.9 4.6   

Population density (1,000 people/mi2) 4.7 2.2   

Employment density (1,000 jobs/mi2) 9.1 6.3   

Intersection density (#/mi2) 83.5 39.4   

% 4-way intersections 44.6 21.4   

Number of transit stops 5.9 3.8   

Number of schools 0.2 0.5   

Park acreage 1.2 2.8   

Household income (median, $1,000)   38.2 9.2   

Vehicle ownership (mean) 1.6 0.3   
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Table 2-4  

Descriptive statistics (motor vehicle volumes), study area 2 

Variable Mean SD # % 

Motor vehicle traffic volumes 

 (N = 23,064 = 34 stations × 730 days – missing data) 

70,081 70,696   

Temporal variables (730 days)     

Day of week: Weekday   522 71.5 

 Saturday   104 14.2 

 Sunday   104 14.2 

Holiday: False   706 96.7 

 True   24 3.3 

Season: Winter   180 24.7 

 Spring   184 25.2 

 Summer   184 25.2 

 Fall   182 24.9 

Spatial-temporal variables (N = 23,064)     

Precipitation: No rain / no snow   16,642 72.2 

 Light rain (1–25mm)    4,432 19.2 

 Light snow (1–50mm)   1,330 5.8 

 Heavy rain (>25mm)   46 0.2 

 Heavy snow (>50mm)   609 2.6 

Max temperature (°F) difference from average 0.68 8.6   

Air quality index: Green (AQI = 0–50)   19,632 85.2 

 Yellow (AQI = 51–100)   3,251 14.1 

 Orange (AQI = 101–150)   157 0.6 

Built and social environment variables (34 motor 

count stations) 

    

Percentage of zero-car households in CBG, 2018  0.04 0.04   

Gross employment density (people/acre) on unprotected 

land 

4.73 3.31   

Jobs per household  4.71 5   

Total road network density 13.11 6.72   

Distance from population-weighted centroid to transit 

stop (m) 

606.1 194.6   

Jobs within 45 minutes auto travel time, network travel 

time weighted  

78,341    37,609   

Park acreage 31.39 45.5   

Number of schools 5 4.97   

Household income (median, $1,000)   80.66 26.88   

Number of transit stops 47.24 51.6   
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Table 2-5  

Descriptive statistics (pedestrian volumes), study area 2 

Variable Mean SD # % 

Pedestrian traffic volumes 

 (N = 635,830 = 871 stations × 730 days – missing data) 

330 693   

Temporal variables (730 days)     

Day of week: Weekday   522 71.5 

 Saturday   104 14.2 

 Sunday   104 14.2 

Holiday: False   706 96.7 

 True   24 3.3 

Season: Winter   180 24.7 

 Spring   184 25.2 

 Summer   184 25.2 

 Fall   182 24.9 

Spatial-temporal variables (N = 635,830)     

Precipitation: No rain / no snow   464,661 73 

 Light rain (1–25mm)    120,001 18.8 

 Light snow (1–50mm)   34,543 5.4 

 Heavy rain (>25mm)   772 0.1 

 Heavy snow (>50mm)   15,853 0.2 

Max temperature (°F) difference from average 0.86 8.4   

Air quality index: Green (AQI = 0–50)   544,985 85.7 

 Yellow (AQI = 51–100)   86,774 13.6 

 Orange (AQI = 101–150)   3,915 0.6 

Built and social environment variables (871 pedestrian 

count stations) 

    

Percentage of zero-car households in CBG, 2018  0.07 0.076   

Gross employment density (people/acre) on unprotected 

land 

8.2 4.5   

Jobs per household  5.5 8.6   

Total road network density 20.1 4.5   

Distance from population-weighted centroid to transit stop 

(m) 

525.8 228.5   

Jobs within 45 minutes auto travel time, network travel 

time weighted  

84,555    33,422   

Park acreage 10.9 48.9   

Number of schools 0.07 0.076   

Household income (median, $1,000)   67.6 24.5   

Number of transit stops 5.2 3.8   

Signal near university: False   825 94.7 

  True   46 5.3 

Signals near university and on break: False   623,096 98.0 

  True   12,734 2.0 
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Table 2-6 

Descriptive statistics (transit ridership), study area 2 

Variable Mean SD # % 

Daily Transit Ridership (UTA Trax) 

    (N = 730 – holidays) 

4715 1971.9   

Daily Transit Ridership (UTA Frontrunner) 

    (N = 730 – holidays - Sundays) 

16548 4793.6   

Temporal variables (730 days)     

Day of week: Weekday   522 71.5 

 Saturday   104 14.2 

 Sunday   104 14.2 

Holiday: False   706 96.7 

 True   24 3.3 

Season: Winter   180 24.7 

 Spring   184 25.2 

 Summer   184 25.2 

 Fall   182 24.9 

Precipitation: No rain / no snow   538 74.8 

 Light rain (1–25mm)   120 16.6 

 Light snow (1–50mm)   46 6.4 

 Heavy rain (>25mm)   - - 

 Heavy snow (>50mm)   15 2.1 

Max temperature (°F) difference from average 1.26 8.3   

Air quality index: Green (AQI = 0–50)   626 87.1 

 Yellow (AQI = 51–100)   90 12.5 

 Orange (AQI = 101–150)   3 0.4 
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2.3 Analysis Methods 

The three different modes (driving, pedestrian, and transit) under analysis had datasets 

that were distinct in their locational representation: driving and pedestrian data covered multiple 

locations across two years, while transit ridership had a single regional aggregate for two years. 

Because of this difference in the nature of datasets, we employed general regression modeling 

for transit volumes and multilevel modeling for driving and pedestrian volumes. 

For transit ridership, in line with the first objective to examine the relationship of air 

quality and traffic volumes, for each study area we estimated a simple regression model as 

represented by Eq. 1. The dependent variable (𝑌𝑖𝑗) was the natural log of the daily total transit 

ridership in each study area (only bus in study area 1, only rail in study area 2), and the 

independent variables (𝑥𝑖) were air quality, weather, and temporal controls.  

 

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑅𝑖       (1) 

 

Since the datasets for motor vehicle and pedestrian volumes covered multiple locations 

and across a span of two years, multilevel modeling was an appropriate approach for our 

analyses. Multilevel models can adequately represent the two-level nature of our data: daily 

counts 𝑌𝑖𝑗 (level one), nested within locations (level two). Such models also allow clear 

specifications of variations in model coefficients at level one (across level two units 𝑗), including 

fixed and random intercepts (𝛽0𝑗), slopes (𝛽ℎ𝑗) for ℎ level-one variables (𝑥𝑖𝑗), and cross-level 

interactions in which level-two variables (𝑧𝑗) affect level-one slopes. In other words, multilevel 

models can represent variations in the air quality–traffic volume relationship (slope) across 
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locations and due to locational characteristics. A simple multilevel model with one level-one 

variable and level-one residuals 𝑅𝑖𝑗 is represented in the following Eq. 2:  

 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑥𝑖𝑗 + 𝑅𝑖𝑗      (2) 

 

In line with the first objective to examine the relationship of air quality and traffic 

volume for each mode, we estimated separate multilevel models for motor vehicle traffic 

volumes and for pedestrian volumes. The dependent variable (𝑌𝑖𝑗) was the natural log of the 

daily (motor vehicle or pedestrian) traffic count in each study area, and independent (level one) 

variables (𝑥ℎ𝑖𝑗) were air quality, weather, and temporal controls. Different specifications for air 

quality were considered, but the best-fitting and most intuitive results were found for dummy 

variables representing the green, yellow, and orange AQI categories (Table 2-2). For driving and 

walking, we allowed the intercept (but not the slopes) to vary across locations. (Recall, for 

transit, we resorted to general linear regression as we had aggregate transit ridership data, not for 

particular locations.) For pedestrian volumes (38 locations in study area 1 and 868 locations in 

study area 2), we used a random effects intercept model (Eq. 3), in which the intercept 

coefficient (𝛽0𝑗) varied randomly following a normal distribution for level-two residuals (𝑈0𝑗). 

For motor vehicle volumes in study area 1 (6 locations), the few sites meant we used a fixed 

effects intercept model (Eq. 4), in which a different intercept coefficient was estimated for each 

station 𝑘. But the increased number of motor stations in study area 2 (34 locations) allowed us to 

use the random effects intercept model (Eq. 3).  

 

𝑌𝑖𝑗 = 𝛽0𝑗 + ∑ 𝛽ℎ𝑥ℎ𝑖𝑗ℎ + 𝑅𝑖𝑗      (3a), where 
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𝛽0𝑗 = 𝛾00 + 𝑈0𝑗       (3b).  

 

𝑌𝑖𝑗 = 𝛽0𝑗 + ∑ 𝛽ℎ𝑥ℎ𝑖𝑗ℎ + 𝑅𝑖𝑗      (4a), where 

𝛽0𝑗 = ∑ 𝛾0𝑘𝐷𝑘𝑘        (4b), and 

𝐷𝑘 is a dummy variable equal to 1 for station 𝑘 and 0 otherwise.  

 

To address the study’s second objective—exploring variations across locations in the 

effect of area-wide air pollution on multimodal traffic volumes—we first modified the first 

objective models and allowed slopes for the air quality dummy variables to vary across count 

stations. Again, for pedestrian volumes in both of the study areas, this was a random effects 

slope model (Eq. 5), in which the random coefficients were normally distributed. For motor 

vehicle volumes in study area 1, this was a fixed effects slope model (Eq. 6), in which different 

coefficients were estimated for each station. For motor vehicle volumes in study area 2, this was 

a random effects slope model (Eq. 5) similar to that employed for pedestrian volumes. If the 

slopes were found to vary across locations—measured using likelihood-ratio tests versus the 

models for the first objective—we then tested whether 𝑔 level-two location characteristics (𝑧𝑔𝑗) 

were significant in predicting the intercept and air quality slope variations across locations. In the 

terminology of multilevel modeling, these effects are called cross-level interactions (𝛾𝑔ℎ), 

because they result in an interaction of a level-two variable (built or social environment) with a 

level-one variable (air quality). Only variables with significant interaction coefficients were 

retained in the final models. Due to the lack of transit data across multiple locations, we could 

not employ the second objective models for transit volumes. 
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𝑌𝑖𝑗 = 𝛽0𝑗 + ∑ 𝛽ℎ𝑗𝑥ℎ𝑖𝑗ℎ + 𝑅𝑖𝑗      (5a), where 

𝛽0𝑗 = 𝛾00 + ∑ 𝛾𝑔0𝑔 𝑧𝑔𝑗 + 𝑈0𝑗     (5b), and  

𝛽ℎ𝑗 = 𝛾ℎ0 + ∑ 𝛾𝑔ℎ𝑔 𝑧𝑔𝑗 + 𝑈ℎ𝑗     (5c).  

 

𝑌𝑖𝑗 = 𝛽0𝑗 + ∑ 𝛽ℎ𝑗𝑥ℎ𝑖𝑗ℎ + 𝑅𝑖𝑗      (6a), where 

𝛽0𝑗 = ∑ 𝛾0𝑘𝐷𝑘𝑘        (6b),  

𝛽ℎ𝑗 = ∑ 𝛾ℎ𝑘𝐷𝑘𝑘        (6c), and  

𝐷𝑘 is a dummy variable equal to 1 for station 𝑘 and 0 otherwise.  

 

Model estimation was performed using the “lme4” package in R (Bates et al., 2015).  
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3. RESULTS, STUDY AREA 1 

 

As defined in Chapter 2, we demarcated our study area into two regions. This chapter 

explains the model results for different modes in study area 1. First, we built a model for each 

mode (walking/cycling, driving, and transit) without locational parameters to meet our objective 

1. Then, two additional models were created to explain the locational variation of relationships 

between air quality and both pedestrian and motor vehicle traffic volumes. Since we had the 

overall transit ridership for the region (not for specific stops or routes), we could not explain 

locational variations of the air quality and transit ridership relationship. Models specific to each 

mode are discussed in the sections below. 

 

3.1 Driving 

Table 3-1 reports results of the fixed intercept model for motor vehicle traffic volumes. 

One of the air quality variables (orange) was positively and significantly associated with traffic 

volumes (β = 0.048, SE = 0.016, t = 3.053, p = 0.002). The positive association implies that 

driving increased during unhealthy (orange) air quality days by 4.9% when compared to days 

with good (green) air quality. The coefficient for yellow air quality was not significant, implying 

no significant difference in traffic volumes on yellow (moderate) versus green air quality days.  
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Table 3-1  

Motor vehicle traffic volumes, fixed intercept model 

Coefficient Estimate SE t-statistic p-value 

Intercept (station 301) 8.909 0.041 217.961 <0.001 

 Difference for station 363 1.084 0.008 143.615 <0.001 

 Difference for station 510 -0.662 0.007 -89.283 <0.001 

 Difference for station 511 -0.398 0.007 -53.463 <0.001 

 Difference for station 620 0.221 0.008 29.067 <0.001 

 Difference for station 622 0.948 0.008 126.064 <0.001 

Day of week (ref. = Weekday)     

 Saturday -0.116 0.006 -18.209 <0.001 

 Sunday -0.609 0.006 -95.359 <0.001 

Holiday (ref. = No holiday) -0.268 0.012 -22.245 <0.001 

Season (ref. = Winter)     

 Spring 0.101 0.007 14.393 <0.001 

 Summer 0.135 0.007 19.142 <0.001 

 Fall 0.113 0.007 16.210 <0.001 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.026 0.009 -4.213 <0.001 

 Light snow -0.071 0.041 -8.226 <0.001 

 Heavy rain -0.030 0.040 -0.758 0.449 

 Heavy snow -0.145 0.013 -11.288 <0.001 

Max temperature difference from average -0.001 0.000 -1.228 0.220 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.004 0.007 0.489 0.625 

 Orange (AQI = 100+) 0.048 0.016 3.053 0.002 

Notes: N = 3,963; adjusted R-squared = 0.961.  

 

Table 3-2 reports results of the fixed intercept and fixed slope model for motor vehicle 

traffic volumes, which involved interaction terms included between the air quality categories and 

each station. None of the air quality–station interaction terms were significant (p > 0.10), which 

implies that there was no significant difference in the relationship between air quality and motor 

vehicle traffic volumes across the six count stations. Because no significant slope variation was 

detected, we did not estimate a subsequent model to predict this variation from built and social 

environment variables.  
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Table 3-2  

Motor vehicle traffic volumes, fixed intercept and fixed slope model 

Coefficients Estimate SE t-statistic p-value 

Intercept (Station 301) 9.056 0.007 1137.596 <0.001 

 Difference for Station 363 1.083 0.008 132.976 <0.001 

 Difference for Station 510 -0.659 0.008 -82.432 <0.001 

 Difference for Station 511 -0.398 0.008 -49.547 <0.001 

 Difference for Station 620 0.218 0.008 26.587 <0.001 

 Difference for Station 622 0.943 0.008 116.956 <0.001 

Day of week (ref. = Weekday)     

 Saturday -0.116 0.006 -18.198 <0.001 

 Sunday -0.609 0.006 -95.323 <0.001 

Holiday (ref. = No holiday) -0.268 0.012 -22.247 <0.001 

Season (ref. = Winter)     

 Spring 0.100 0.006 14.425 <0.001 

 Summer 0.135 0.007 19.171 <0.001 

 Fall 0.112 0.006 16.24 <0.001 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.026 0.006 -4.202 <0.001 

 Light snow -0.070 0.008 -8.191 <0.001 

 Heavy rain -0.030 0.039 -0.756 0.449 

 Heavy snow -0.145 0.012 -11.277 <0.001 

Max temperature difference from average -0.0005 0.000 -1.216 0.224 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) (Station 301) -0.006 0.016 -0.391 0.695 

  Difference for Station 363 0.006 0.023 0.283 0.777 

  Difference for Station 510 -0.006 0.022 -0.264 0.791 

  Difference for Station 511 0.007 0.022 0.312 0.754 

  Difference for Station 620 0.021 0.023 0.931 0.351 

  Difference for Station 622 0.035 0.024 1.492 0.135 

 Orange (AQI = 100+) (Station 301) 0.076 0.038 1.963 0.049 

  Difference for Station 363 -0.027 0.054 -0.510 0.610 

  Difference for Station 510 -0.072 0.052 -1.372 0.170 

  Difference for Station 511 -0.052 0.053 -0.986 0.324 

  Difference for Station 620 -0.021 0.053 -0.401 0.688 

  Difference for Station 622 0.009 0.052 0.180 0.857 

Notes: N = 3,693; adjusted R-squared = 0.961.  

 

 

3.2 Pedestrian  

Table 3-3 reports results of the random intercept model for pedestrian volumes. The 

coefficient estimates for both the yellow (β = -0.023, SE = 0.023, t = -1.691, p = 0.091) and 

orange air quality days (β = -0.093, SE = 0.029, t = -3.204, p = 0.001) were negative and at least 

marginally significant. This implies that pedestrian volumes decreased during episodes of poor 
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air quality (compared to green days), especially on orange days (unhealthy for sensitive groups). 

The magnitude of decrease during orange days was significantly higher (8.8%) than that on 

yellow days (2.3%).  

 

Table 3-3  

Pedestrian volumes, random intercept model 

Coefficients Estimate SE df t-statistic p-value 

Intercept 4.989 0.162 37.310 30.738 <0.001 

Day of week (ref. = Weekday)      

 Saturday -0.357 0.012 27000 -30.403 <0.001 

 Sunday -1.008 0.012 27000 -86.497 <0.001 

Holiday (ref. = No holiday) -0.674 0.023 27000 -29.905 <0.001 

Season (ref. = Winter)      

 Spring 0.380 0.013 27000 29.004 <0.001 

 Summer 0.483 0.013 27000 38.158 <0.001 

 Fall 0.473 0.013 27000 36.371 <0.001 

Precipitation (ref. = No rain / no snow)      

 Light rain -0.083 0.012 27000 -7.150 0.000 

 Light snow -0.282 0.016 27000 -17.405 <0.001 

 Heavy rain -0.220 0.076 27000 -2.876 0.004 

 Heavy snow -0.421 0.024 27000 -17.197 <0.001 

Max temperature difference from average 0.004 0.001 27000 4.335 <0.001 

Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) -0.023 0.013 27000 -1.691 0.091 

 Orange (AQI = 100+) -0.093 0.029 27000 -3.204 0.001 

Notes: N = 27,053; # groups = 38; log-likelihood = -27,141; between-group variance = 0.99; 

residual variance = 0.43. 

 

Table 3-4 reports results of the random intercept and random slope model for pedestrian 

volumes. By estimating an earlier model (not shown), we found that there were significant 

random slopes for the air quality variables: a likelihood-ratio test found that the random intercept 

and slope model (log-likelihood = -27,124) was significantly better-fitting than the random 

intercept only model (log-likelihood = -27,141). Therefore, we estimated several models, each 

testing cross-level interactions with air quality involving built and social environment variables. 

As shown in Table 3-4, there were significant interaction effects for two variables: the 

percentage of 4-way intersections and average vehicle ownership. For the intersection variable, 
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there was a positive and significant interaction term with orange days (β = 0.005, SE = 0.02, t = 

2.736, p = 0.01) but not yellow days. This implies that the negative effect of orange air quality 

days on pedestrian volumes (see Table 3-3) was attenuated in places with a greater share of 4-

way intersections. For the vehicle ownership variable, there was a negative and significant 

interaction term with yellow days (β = -0.161, SE = 0.055, t = -2.942, p = 0.01) and a negative 

but not statistically significant interaction term with orange days (β = -0.200, SE = 0.125, t = -

1.600, p = 0.117). This implies that the negative effects of yellow and perhaps orange air quality 

days on pedestrian volumes (see Table 3-3) were enhanced in places with greater average 

household vehicle ownership.  
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Table 3-4 

Pedestrian volumes, random intercept and random slope model 

Coefficients Estimate SE df t-statistic p-value 

Intercept 0.069 1.229 31.590 0.056 0.956 

Day of week (ref. = Weekday)      

 Saturday -0.357 0.012 26960 -30.448 <0.001 

 Sunday -1.008 0.012 26960 -86.620 <0.001 

Holiday (ref. = No holiday) -0.674 0.022 26960 -29.947 <0.001 

Season (ref. = Winter)      

 Spring 0.380 0.013 26960 29.044 <0.001 

 Summer 0.483 0.013 26960 38.221 <0.001 

 Fall 0.473 0.013 26960 36.427 <0.001 

Precipitation (ref. = No rain / no snow)      

 Light rain -0.083 0.012 26960 -7.166 <0.001 

 Light snow -0.282 0.016 26960 -17.433 <0.001 

 Heavy rain -0.220 0.076 26960 -2.881 0.004 

 Heavy snow -0.421 0.024 26960 -17.211 <0.001 

Max temperature difference from average 0.004 0.001 26960 4.348 <0.001 

Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) 0.227 0.108 44.400 2.106 0.041 

 Orange (AQI = 100+) 0.005 0.247 41.080 0.022 0.983 

Built and social environment variables      

Percentage of commercial parcels 0.005 0.007 31.030 0.750 0.459 

Household income (median, $1,000)   0.044 0.018 31.050 2.419 0.022 

Population density (1,000 people/mi2) 0.390 0.079 31.020 4.910 0.000 

Vehicle ownership (mean) 0.423 0.431 31.400 0.981 0.334 

% 4-way intersections -0.004 0.007 31.510 -0.669 0.509 

Number of transit stops 0.110 0.037 31.050 2.974 0.006 

Cross-level interactions      

Yellow AQI with % 4-way intersections 0.000 0.001 44.280 0.292 0.772 

Orange AQI with % 4-way intersections 0.005 0.002 40.970 2.737 0.009 

Yellow AQI with Vehicle ownership -0.161 0.055 44.410 -2.944 0.005 

Orange AQI with Vehicle ownership -0.200 0.125 41.430 -1.600 0.117 

Notes: N = 27,053; # groups = 38; log-likelihood = -27,095; between-group variance = 0.45; 

residual variance = 0.43; random coefficient variance for yellow AQI = 0.003; random coefficient 

variance for orange AQI = 0.020.  

 

3.2.1 Posterior Slopes 

Because cross-level interaction terms are difficult to interpret in any type of regression 

model and even more difficult when they affect random slope coefficients, we also calculated 

what are called “posterior slopes” (Snijders & Bosker, 2012). Since the random air quality 

coefficients are not estimated by the model (just their mean and standard deviation), we used 

empirical Bayes estimation to let the model and data give us the “best” estimate of each 
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location’s slope coefficients. See a multilevel modeling textbook (Snijders & Bosker, 2012) for 

details on this calculation. Since the air quality coefficients were also interacted with built and 

social environment variables, we then multiplied each location’s values for these level-two 

variables with their respective coefficients, and added them to the random portion obtained 

through empirical Bayes estimation to get the total value of the posterior slopes for yellow and 

orange air quality days (vs. green days).  

Figure 3-1 plots these posterior slopes, first in a scatterplot (yellow vs. orange) and 

second in a combined plot vs. AQI. The left portion of the figure shows how most locations had 

a more negative orange coefficient than yellow coefficient, and how the posterior slopes were 

positively correlated (which is expected, since they are both conditional on the same data at each 

location). The right portion of the figure shows how air quality coefficients in the orange range 

(AQI = 101–150) were typically more extreme (mostly more negative, some are more positive) 

than coefficients in the yellow range (AQI = 51–100). In both portions of Figure 3-1, it appears 

one location had a much more negative orange coefficient than did all other locations.  
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Figure 3-1 

 

Figures showing pedestrian model posterior slopes for yellow and orange air quality levels 

(left: scatterplot; right: plot vs. AQI) 

 

  

 

 

Figure 3-1 plots these posterior slopes on a map for yellow (left) and orange (right) air 

quality days. In both cases, it appears that locations with positive coefficients tend to be 

concentrated along Main Street (running north–south) and in downtown Logan. Locations with 

more negative coefficients (including the location with the most negative coefficient) seem to be 

concentrated in the northeast portion of the city, near to the Utah State University campus.  
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Figure 3-2 

 

Maps showing pedestrian model posterior slopes for yellow (left) and orange (right) air quality 

levels 

 

 

 

 

3.3 Transit 

Table 3-5 reports results of the ordinary regression model for transit ridership in Cache 

County. It should be noted that we did not run a multilevel model for our transit data because we 

did not have location-specific data in the case of transit. Since, the transit service did not operate 

during Sundays and holidays in study area 1, their estimates are missing from the model. The 

estimates for both the yellow and orange air quality days were found to be negative but were not 

statistically significant.  



42  

 

 

Table 3-5  

CVTD bus transit ridership, ordinary regression model 

Coefficients Estimate SE t-statistic p-value 

Intercept 8.654 0.028 305.698 <0.001 

Day of week (ref. = Weekday)     

 Saturday -1.228 0.027 -45.856 <0.001 

 Sunday - - - - 

Holiday (ref. = No holiday) - - - - 

Season (ref. = Winter)     

 Spring -0.041 0.033 -1.240 0.215 

 Summer -0.360 0.032 -11.167 <0.001 

 Fall 0.070 0.033 2.100 0.036 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.044 0.029 -1.548 0.122 

 Light snow -0.101 0.041 -2.459 0.014 

 Heavy rain 0.142 0.247 0.573 0.567 

 Heavy snow -0.125 0.064 -1.954 0.051 

Max temperature difference from average -0.002 0.002 -0.732 0.464 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.013 0.034 -0.395 0.693 

 Orange (AQI = 100+) -0.044 0.067 -0.650 0.516 

Notes: N = 580; adjusted R-squared = 0.961. 
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4. RESULTS, STUDY AREA 2: WASATCH FRONT 

 

 Building from the models tested for study area 1, we refined them (by adding some 

location-specific variables) for study area 2. The approach taken was similar in approach to that 

of study area 1: first we estimated a model for each mode (motor vehicle, pedestrian, and transit), 

then added locational attributes to the available mode (motor vehicle and pedestrian), and finally 

graphically analyzed the locational distribution of relationships between air quality and traffic 

volumes (motor vehicle and pedestrian). Since we had the overall transit ridership for the region 

(not for specific stops or routes), we could not explain locational variations of the air quality and 

transit ridership relationship.   

 

4.1 Driving 

Table 4-1 reports results of the random intercept model for motor vehicle traffic volumes 

across the Wasatch Front. One of the air quality variables (yellow) was positively and 

(marginally) significantly associated with traffic volumes (β = 0.009, SE = 0.005, t = 1.858, p = 

0.063). The positive association implies that driving increased during moderate (yellow) air 

quality days when compared to days with good (green) air quality. The coefficient for orange air 

quality was negative and significantly associated with traffic volumes (β = -0.068, SE = 0.019, t 

= -3.652, p < 0.001), implying a decrease in traffic volumes on orange (unhealthy) versus green 

air quality days. There is a slight increase in yellow days (0.9%), compared to the much larger 

6.6% decrease in the orange days; this indicates a presence of a non-linear relationship between 

air quality and motor volumes in study area 2.  
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Table 4-1 

Motor vehicle traffic volumes, random intercept model  

Coefficients Estimate SE df t-statistic p-value 

Intercept 10.680 0.185 33 57.680 <0.001 

Day of week (ref. = Weekday)      

 Saturday -0.130 0.004 22950 -29.298 <0.001 

 Sunday -0.442 0.004 22950 -99.293 <0.001 

Holiday (ref. = No holiday) -0.266 0.008 22950 -31.323 <0.001 

Season (ref. = Winter)      

 Spring 0.077 0.004 22950 0.077 <0.001 

 Summer 0.131 0.005 22950 28.647 <0.001 

 Fall 0.071 0.004 22950 16.018 <0.001 

Precipitation (ref. = No rain / no snow)      

 Light rain -0.019 0.004 22950 -4.610 0.014 

 Light snow -0.070 0.007 22950 -10.030 <0.001 

 Heavy rain -0.226 0.034 22950 -6.600 <0.001 

 Heavy snow -0.164 0.010 22950 -16.551 <0.001 

Max temperature difference from average -0.001 0.000 22950 -3.868 <0.001 

Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) 0.009 0.005 22950 1.858 0.063 

 Orange (AQI = 100+) -0.068 0.019 22950 -3.652 <0.001 

Notes: N = 23,001 # groups = 34; log-likelihood = 1018.7; between-group variance = 1.16; residual 

variance = 0.052.  

 

Table 4-2 reports results of the random intercept and random slope model for motor vehicle 

volumes along the Wasatch Front. By estimating a model (not shown), we found that there were 

significant random slopes for the air quality variables: a likelihood-ratio test found that the random 

intercept and slope model (log-likelihood = 1074.5) was significantly better-fitting than the 

random intercept only model (log-likelihood = 1018.7). Therefore, we estimated several models, 

each testing cross-level interactions with air quality involving built and social environment 

variables. As shown in Table 4-2, there were significant interaction effects for median income. For 

the median income, there was a positive and significant interaction term with yellow days (β = 

0.0004, SE = 0.000, t = 2.37, p = 0.03) and also a similar but stronger interaction on orange days 

(β = 0.003, SE = 0.001, t = 3.24, p = 0.002). This implies that the positive effect of yellow air 

quality days on motor volumes (see Table 4-1) was enhanced in places with higher median income; 
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whereas, the negative effect of orange air quality days on motor volumes was attenuated in places 

with higher median income. 

 

Table 4-2 

Motor vehicle traffic volumes, random intercept and random slope model 

Coefficients Estimate SE df t-statistic p-value 

Intercept 13.690 1.050 22 13.037 <0.001 

Day of week (ref. = Weekday)      

 Saturday -0.156 0.004 20940 -34.736 <0.001 

 Sunday -0.473 0.005 20970 -104.792 <0.001 

Holiday (ref. = No holiday) -0.281 0.009 20980 -32.727 <0.001 

Season (ref. = Winter)      

 Spring 0.074 0.005 20940 16.323 <0.001 

 Summer 0.112 0.005 20760 0.112 <0.001 

 Fall 0.067 0.005 20880 14.781 <0.001 

Precipitation (ref. = No rain / no snow)      

 Light rain -0.015 0.004 20990 -3.701 <0.001 

 Light snow -0.065 0.007 20980 -9.206 <0.001 

 Heavy rain 13.690 0.037 20980 -6.549 <0.001 

 Heavy snow -0.245 0.010 20980 -15.669 <0.001 

Max temperature difference from average -0.001 0.000 20980 -3.213 <0.001 

Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) -0.053 0.019 24 -2.833 0.009 

 Orange (AQI = 100+) -0.178 0.078 46 -2.282 0.027 

Built and social environment variables      

Gross residential density -0.987 0.323 22 -3.053 0.006 

Household income (median, $1,000)   -0.014 0.008 22 -1.825 0.081 

Jobs per household -0.090 0.041 22 -2.205 0.038 

Percent of zero car households -10.870 7.534 22 -1.443 0.163 

Distance from population-weighted 

centroid to transit stop (m) -0.003 0.001 22 -3.622 0.001 

Jobs within 45 minutes auto travel time, 

network travel time weighted 0.000 0.000 22 3.253 0.003 

Number of schools 0.186 0.067 22 2.801 0.010 

Cross-level interactions      

Yellow AQI with median income 0.0004 0.000 18 2.37 0.029 

Orange AQI with median income 0.003 0.001 49 3.241 0.002 

Notes: N = 21,040; # groups = 31; log-likelihood = 1495.3, between-group variance = 0.68; residual 

variance = 0.049; random coefficient variance for yellow AQI = 0.0001; random coefficient variance for 

orange AQI = 0.001.  

 

4.1.1 Posterior Slopes 

We calculated posterior slopes for the motor vehicle model for study area 2 in a similar 

approach as discussed in Pedestrian results section of Chapter 3. Then, we plotted these posterior 
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slopes in Figure 4-1 first in a scatterplot (yellow vs. orange) and second in a combined plot vs. 

AQI. The left portion of the figure shows how most locations had a more positive yellow 

coefficient than orange coefficient for motor vehicle volumes, and how the posterior slopes were 

positively correlated (which is expected, since they are both conditional on the same data at each 

location). The right portion of the figure shows how air quality coefficients in the orange range 

(AQI = 101–150) were typically more extreme (mostly more negative, some were more positive) 

than coefficients in the yellow range (AQI = 51–100).  

 

Figure 4-1 

 

Figures showing motor vehicle model posterior slopes for yellow and orange air quality levels 

(left: scatterplot; right: plot vs. AQI) 

 

 

  
 

 

The posterior slopes for yellow and orange air quality levels for motor vehicle volumes are 

mapped in the figures below. Figure 4-2 plots motor vehicle model posterior slopes on a map for 
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yellow (left) and orange (right) air quality days. In both cases, it appears that locations with positive 

coefficients tend to be concentrated along the areas near the mountains: i.e. there is increase in 

motor vehicle volume near mountains. This might indicate to the increase in number of trips to 

escape the air pollution. Also, we can see more negative relationship during orange days. 

Especially, in areas closer to downtown SLC, we can see the increase observed on yellow days 

transform into a decrease during orange days. In overall, we see a decreasing trend on orange days, 

although it comes with more spatial variation, compared to the increasing trend on yellow days. 

 

Figure 4-2  

 

Maps showing motor vehicle model posterior slopes for yellow (left) and orange (right) air 

quality levels 
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4.2 Pedestrian 

Table 4-3 reports results of the random intercept model for pedestrian volumes in study 

area 2. The coefficient estimates for both the yellow (β = -0.058, SE = 0.002, t = -27.044, p 

<0.001) and orange air quality days (β = -0.061, SE = 0.007, t = -10.237, p < 0.001) were 

negative and significant. This implies that pedestrian volumes decreased during episodes of poor 

air quality (decrease of 5.6% on yellow days and decrease of 5.9% on orange days, when 

compared to green days). The results indicate an existence of similar pattern as that in study area 

1: i.e. pedestrian volumes tend to go down on days with poor air quality.  

 

Table 4-3 

Pedestrian volumes, random intercept model  

Coefficients Estimate SE df t-statistic p-value 

Intercept 4.910 0.039 869 125.33 <0.001 

Day of week (ref. = Weekday)      

 Saturday -0.354 0.002 627900 -194.856 <0.001 

 Sunday -0.809 0.002 627900 -445.482 <0.001 

Holiday (ref. = No holiday) -0.499 0.004 627900 -140.556 <0.001 

Season (ref. = Winter)      

 Spring 0.275 0.002 627900 146.318 <0.001 

 Summer 0.280 0.002 627900 151.760 <0.001 

 Fall 0.273 0.002 627900 147.231 <0.001 

Precipitation (ref. = No rain / no snow)   630100   

 Light rain -0.062 0.002 627900 -36.456 <0.000 

 Light snow -0.277 0.003 627900 -93.689 <0.001 

 Heavy rain -0.088 0.018 627900 -4.947 0.004 

 Heavy snow -0.484 0.004 627900 -114.899 <0.001 

Max temperature difference from average 0.004 0.000 628000 46.760 <0.001 

Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) -0.058 0.002 628000 -30.351 <0.001 

 Orange (AQI = 100+) -0.061 0.008 627900 -7.604 <0.001 

Notes: N = 628,826; # groups = 868; log-likelihood = -451,018; between-group variance = 1.32 

residual variance = 0.24.  

 

Table 4-4 reports results of the random intercept and random slope model for pedestrian 

volumes in the Wasatch Front. By estimating a model (not shown), we found that there were 

significant random slopes for the air quality variables: a likelihood-ratio test found that the 



49  

 

random intercept and slope model (log-likelihood = -450,241) was significantly better-fitting 

than the random intercept only model (log-likelihood = -451,018). Therefore, we estimated 

several models, each testing cross-level interactions with air quality involving built and social 

environment variables. As shown in Table 4-4, there were significant interaction effects for two 

variables: household median income and the percent of zero-car households. For the median 

income variable, there was a negative and significant interaction term with orange days (β = -

0.002, SE = 0.000, t = -3.963, p < 0.001) but the estimate was very small on yellow days. This 

implies that the negative effect of orange air quality days on pedestrian volumes (see Table 4-3) 

was amplified in places with higher median incomes. For the percent of zero-car household 

variable, there was a negative and significant interaction term with yellow days (β = -0.199, SE = 

0.056, t = -3.518, p < 0.001) and a negative but not statistically significant interaction term with 

orange days. This implies that the negative effects of yellow and perhaps orange air quality days 

on pedestrian volumes (see Table 4-3) were enhanced in places with more zero-car households.  
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Table 4-4 

Pedestrian volumes, random intercept and random slope model 

Coefficients Estimate SE df t-statistic p-value 

Intercept 4.202 0.219 833 19.211 <0.001 

Day of week (ref. = Weekday)      

 Saturday -0.358 0.002 607600 -196.364 <0.001 

 Sunday -0.810 0.002 607000 -445.707 <0.001 

Holiday (ref. = No holiday) -0.496 0.004 607400 -139.452 <0.001 

Season (ref. = Winter)      

 Spring 0.274 0.002 607200 145.501 <0.001 

 Summer 0.289 0.002 605300 154.943 <0.001 

 Fall 0.266 0.002 599100 142.954 <0.001 

Precipitation (ref. = No rain / no snow)      

 Light rain -0.059 0.002 607400 -34.350 <0.001 

 Light snow -0.270 0.003 607600 -91.325 <0.001 

 Heavy rain -0.108 0.018 607200 -6.012 0.004 

 Heavy snow -0.480 0.004 607600 -114.117 <0.001 

Max temperature difference from 

average 0.004 0.000 607900 45.048 

<0.001 

Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) -0.007 0.015 879 -0.442 0.658 

 Orange (AQI = 100+) 0.070 0.038 622 1.839 0.066 

Built and social environment variables      

Gross employment density (jobs/acre) 0.031 0.004 830 7.227 <0.001 

Household income (median, $1,000)   -0.008 0.001 831 -5.751 <0.001 

Jobs per household -0.009 0.004 830 -2.410 0.016 

Percent of zero car households 2.268 0.586 834 3.868 <0.001 

Total road network density 0.031 0.007 829 4.157 <0.001 

Jobs within 45 minutes auto travel time 0.000 0.000 829 -1.647 0.003 

Park area 0.001 0.001 827 0.922 0.356 

Number of schools 0.086 0.038 829 2.292 0.022 

Transit bus stops 0.077 0.008 829 9.221 <0.001 

Near a university 0.848 0.131 831 6.489 <0.001 

University break -0.480 0.006 607800 -86.452 <0.001 

Cross-level interactions      

Yellow AQI with median income 0.0005 0.000 865 -2.649 0.008 

Orange AQI with median income -0.002 0.000 685 -3.963 <0.001 

Yellow AQI with % zero-car household -0.199 0.056 855 -3.518 <0.001 

Orange AQI with % zero-car household -0.131 0.150 876 -0.878 0.380 

Notes: N = 609,255; # groups = 841; log-likelihood = -428,155; between-group variance = 0.622; 

residual variance = 0.235; random coefficient variance for yellow AQI = 0.008; random coefficient 

variance for orange AQI = 0.017.  

 

4.2.1 Posterior Slopes 

Similarly, the distribution of posterior slopes for pedestrian volumes in study area 2 is 

shown in Figure 4-3. The left portion of the figure shows how most locations had negative yellow 

and orange coefficients and how the posterior slopes were positively correlated. The right portion 
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of the figure shows how air quality coefficients in the orange range (AQI = 101–150) are 

distributed quite similar to the coefficients in the yellow range (AQI = 51–100), except for a few 

extreme cases.  

 

Figure 4-3  

 

Figures showing pedestrian model posterior slopes for yellow and orange air quality levels 

(left: scatterplot; right: plot vs. AQI) 

 

  
 

 

The posterior slopes for yellow and orange air quality levels for pedestrian volumes are 

mapped in the figures below. Since, the number of signals in pedestrian models was high, the 

map is divided into counties, and for two of the counties (Salt Lake and Utah), the downtown 

area is shown in a different map.  
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Figure 4-4 

 

Maps showing pedestrian model posterior slopes for yellow (left) and orange (right) air quality 

levels in Weber (top) and Davis (bottom) counties 
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Figure 4-4 plots pedestrian model posterior slopes on a map for yellow (left) and orange 

(right) air quality days in Davis and Weber counties. We can see a pattern where in orange days 

the change in pedestrian slope mostly decrease from yellow days. In places near Clearfield, the 

increase in yellow days reduces in magnitude and in places near Bountiful, the decrease in yellow 

days increases in magnitude. In both cases, it appears that red days seem to decrease the number 

of pedestrians in these counties.   

Figure 4-5 plots pedestrian model posterior slopes on a map for yellow (left) and orange 

(right) air quality days in Salt Lake county and Salt Lake downtown. We see a similar pattern for 

both yellow and red days in both the maps. During orange days, we can observe fewer locations 

with increases in pedestrian volumes. The magnitude of increase also decreases during the orange 

days. In general, the higher decreases are in the area near downtown and to the east of the 

downtown. The higher median income in the downtown area might have contributed to the higher 

decrease. The east area includes University of Utah and recreational parks (golf courses). This can 

explain the higher decrease as recreational trips could be forgone and students might opt in for 

online mode of learning.  
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Figure 4-5  

 

Maps showing pedestrian model posterior slopes for yellow (left) and orange (right) air quality 

levels in Salt Lake county (top) and Salt Lake downtown (bottom) 
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Figure 4-6 

 

Maps showing pedestrian model posterior slopes for yellow (left) and orange (right) air quality 

levels in Utah county (top) and Provo downtown (bottom) 
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Figure 4-6 plots pedestrian model posterior slopes on a map for yellow (left) and orange 

(right) air quality days in Utah county and Provo downtown area. On orange days, the pedestrian 

volumes seem to decrease from yellow days, but it is interesting to note that there are lots of 

stations which record an increase in pedestrian volumes (when compared to green days) as air 

pollution levels increase. This might indicate to a presence of altruistic response in the area as 

travelers might have shifted from automobiles to walking or walking plus transit. 

 

4.3 Transit 

Table 4-5 reports results of the model for UTA TRAX light-rail ridership. The coefficient 

estimates for the yellow (β = 0.084, SE = 0.04, t = 2.094, p = 0.037) was positive and significant. 

This implies that rail transit volumes increased during episodes of poor air quality (compared to 

green days), especially on yellow days (unhealthy for sensitive groups). The model suggests a 

slight decrease overall in orange days, but it is not statistically distinguishable from zero. Similarly, 

Table 4-6 reports results of the model for UTA FrontRunner commuter rail ridership. The 

coefficient estimates for the yellow (β = 0.035, SE = 0.025, t = 1.402, p = 0.161) was positive and 

insignificant, whereas the coefficient estimates for the red (β = -0.050, SE = 0.118, t = -0.428, p = 

0.668) was negative and not significant. We can observe the negative direction of coefficient 

estimates for poor air quality days although they were not statistically significant. Due to the 

regional nature of transit data, we could not study variations in these relationship across different 

locations. 
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Table 4-5 

UTA TRAX transit ridership, ordinary regression model 

Coefficients Estimate SE t-statistic p-value 

Intercept 10.846 0.061 177.498 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.474 0.037 -12.774 < 0.001 

 Sunday -1.092 0.037 -29.567 < 0.001 

Holiday (ref. = No holiday) -0.406 0.090 -4.497 0.000 

Season (ref. = Winter)     

 Spring -0.018 0.045 -0.409 0.682 

 Summer -0.220 0.065 -3.396 0.001 

 Fall 0.030 0.044 0.687 0.492 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.042 0.036 -1.188 0.235 

 Light snow 0.002 0.056 0.039 0.969 

 Heavy rain - -   

 Heavy snow -0.101 0.092 -1.093 0.275 

Max temperature difference from average 0.002 0.001 1.323 0.186 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.084 0.040 2.094 0.037 

 Orange (AQI = 100+) -0.026 0.201 -0.130 0.897 

Notes: N = 706; adjusted R-squared = 0.575.  

 

Table 4-6 

UTA FrontRunner transit ridership, ordinary regression model 

Coefficients Estimate SE t-statistic p-value 

Intercept 9.809 0.020 486.144 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.851 0.022 -38.986 < 0.001 

 Sunday -2.020 0.202 -10.007 < 0.001 

Holiday (ref. = No holiday) -0.927 0.049 -19.056 0.000 

Season (ref. = Winter)     

 Spring -0.027 0.024 -1.083 0.279 

 Summer -0.048 0.024 -1.994 0.047 

 Fall 0.130 0.024 5.311 0.000 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.026 0.022 -1.156 0.248 

 Light snow 0.049 0.036 1.358 0.175 

 Heavy rain - -   

 Heavy snow -0.164 0.060 -2.731 0.007 

Max temperature difference from average 0.001 0.001 0.523 0.601 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.035 0.025 1.402 0.161 

 Orange (AQI = 100+) -0.050 0.118 -0.428 0.668 

Notes: N = 595; adjusted R-squared = 0.759.  
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5. MODEL ENHANCEMENTS 

 

5.1 Introduction 

In chapters 3 and 4, we have addressed the first and second objectives of the study. 

Specifically, we quantified the effects of area-wide air pollution on multimodal traffic volumes 

and also explored locational variations in those effect (for motor vehicle and pedestrian traffic). 

However, the models used in those chapter were limited in following aspects: 

• During episodes of air pollution, people might want to postpone some out-of-home 

activities and shift some of their trips to a later day. The decreases seen in walking (both 

study area 1 and study area 2) and driving (study area 2) might involve trips shifting to 

another day. However, the current models could not explain any time lag effects that air 

pollution could have on the scheduling of trips.  

• Multilevel models used in Chapter 3 and 4 addressed within-station correlation of traffic 

volumes, but they did not account for spatial autocorrelation between traffic stations. 

Although the addition of social/built environment variables in the second level accounted 

for some spatial autocorrelation, the multilevel models used in both chapters indicated 

spatial autocorrelation (tested through Moran’s I). Addressing the spatial autocorrelation 

would give us better coefficient estimates for the air quality–traffic volume relationship, 

which would help us achieve the objectives of our study. 

• We studied multimodal volumes each in a different model wherein, they do not have 

relationship with one another. However, this is contrary to the real-life situation where 

unobserved factors affecting multimodal traffic volumes are likely correlated with each 

other. Addressing the relationships between the three traffic volume estimates (driving, 

pedestrian, and transit) would help us find better coefficient estimates in the model.  
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Thus, to address these limitations, in this model enhancement chapter, we mainly make changes 

to our previous model to achieve better coefficient estimates, and explain the time lag effects of 

air pollution to find any occurrences of trip shifting by introducing lagged variables.  

 

5.2 Methodology 

5.2.1 Time Lags 

In order to potentially capture the effects of air pollution on trip shifting, we introduced a 

new variable for air quality with a time lag of 1: i.e., lagged air quality would represent the 

preceding day’s air quality. This allowed us to study the effect of the preceding day’s air quality 

on a particular day alongside the effect of that day’s air quality. We added lagged air quality 

variables to the models in the following ways: 

• Equation 7 shows how the addition of time lag variables in the transit models across both 

study areas was represented.  

• Equation 8 represents the addition of time lag variables in the random intercept models: 

pedestrian volumes in study area 1, and both pedestrian and motor vehicle volumes in 

study area 2.  

• Equation 9 shows the addition of time lag variables in the fixed intercept model, for 

motor vehicle volumes in study area 1.   

Equations 7, 8, and 9 are modifications of Equations 1, 3, and 4, as explained in the Analysis 

section of Chapter 2. 

 

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜆1𝐴𝑄𝐼𝑖−1 + 𝑅𝑖     (7), where 

𝐴𝑄𝐼𝑖−1 = Air quality variable lagged by a day 
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𝜆1 = Time Lag Estimate 

 

𝑌𝑖𝑗 = 𝛽0𝑗 + ∑ 𝛽ℎ𝑥ℎ𝑖𝑗ℎ + 𝜆1𝐴𝑄𝐼𝑖−1+ 𝑅𝑖𝑗    (8a), where 

𝛽0𝑗 = 𝛾00 + 𝑈0𝑗       (8b).  

𝐴𝑄𝐼𝑖−1 = Air quality variable lagged by a day 

𝜆1 = Time Lag Estimate  

 

𝑌𝑖𝑗 = 𝛽0𝑗 + ∑ 𝛽ℎ𝑥ℎ𝑖𝑗 + 𝜆1𝐴𝑄𝐼𝑖−1ℎ + 𝑅𝑖𝑗    (9a), where 

𝛽0𝑗 = ∑ 𝛾0𝑘𝐷𝑘𝑘        (9b), and 

𝐷𝑘 is a dummy variable equal to 1 for station 𝑘 and 0 otherwise, 

𝐴𝑄𝐼𝑖−1 = Air quality variable lagged by a day 

𝜆1 = Time Lag Estimate  

 

5.2.2 Spatial Filters 

Multilevel models used for the random intercept model of pedestrian volumes in both 

study areas and motor vehicle volumes in study area 1 represent the within-group correlation but 

do not address the spatial autocorrelation present in the model itself. In order to address the 

spatial autocorrelation within the dataset and that remaining in the model, we implemented an 

eigenvector spatial filtered multilevel model (Chung & Griffith, 2011). A spatial filter—obtained 

through iterative reduction of spatial error (Park et al., 2022; Park & Kim, 2014)—was included 

in the random intercept models used for analysis in Chapter 3 and Chapter 4. Equation 10 

represents the addition of spatial lag variables in the random intercept models (used in both study 
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areas) and equation 11 represents the addition of spatial lag variable in random slope and 

intercept model with level 2 variables (locational attributes for each station).  

 

𝑌𝑖𝑗 = 𝛽0𝑗 + ∑ 𝛽ℎ𝑥ℎ𝑖𝑗ℎ + 𝜆1𝐸+ 𝑅𝑖𝑗     (10a), where 

𝛽0𝑗 = 𝛾00 + 𝑈0𝑗       (10b).  

𝐸 = Eigen Vector selected through iteration 

𝜆1 = Spatial Lag Estimate  

 

𝑌𝑖𝑗 = 𝛽0𝑗 + ∑ 𝛽ℎ𝑗𝑥ℎ𝑖𝑗ℎ + 𝜆1𝐸 + 𝑅𝑖𝑗     (11a), where 

𝛽0𝑗 = 𝛾00 + ∑ 𝛾𝑔0𝑔 𝑧𝑔𝑗 + 𝑈0𝑗     (11b), and  

𝛽ℎ𝑗 = 𝛾ℎ0 + ∑ 𝛾𝑔ℎ𝑔 𝑧𝑔𝑗 + 𝑈ℎ𝑗     (11c).  

𝐸 = Eigenvector selected through iteration 

𝜆1 = Spatial Lag Estimate  

 

Selection of Eigenvector 

The basic multilevel model was tested for residual autocorrelation using Moran’s I. If 

there was significant autocorrelation in the model (tested by the Moran’s I test: details in Table 

5-5), we created a spatial filter (eigenvector 𝐸) to whiten the model residuals. Doing so makes 

the residuals independent and identically distributed with a mean of zero: i.e., the residuals are 

not predictable anymore. For that, a set of spatial eigenvectors were created for each traffic count 

station (level 2 units) from eigen-decomposition of the following matrix (Griffith, 2003).  

 

(𝐼 − 1 ∙
1

𝑛

𝑇
) ∙ 𝑊 ∙  (𝐼 − 1 ∙

1

𝑛

𝑇
)              (12), where 
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𝑊 is a spatial weight matrix of size 𝑛 × 𝑛, and 𝑛 is the number of traffic count locations.  

 

The spatial weight matrix quantified spatial connectivity between two locations: the non-

zero entries in the weight matrix implied spatial connectivity between two locations. With the 

help of the weight matrix, a series of 𝑛 candidate eigenvectors were produced. An iterative 

procedure was then applied where each eigenvector was added to the model and the change in 

AIC was noted. The eigenvector yielding the largest reduction in AIC was selected for the final 

model. Thus, a final model with added eigenvector was tested for Moran’s I to see if the spatial 

autocorrelation existing in the model was removed or not. 

 

5.2.3 Seemingly Unrelated Regression (SUR) 

 In the case when there are multiple dependent variables that are correlated, and the 

residuals of the equations are correlated, one can use Seemingly Unrelated Regression (SUR) to 

help account for some of the errors. There could be some unexplained factors that might be 

affecting all the equations, for example in our case, economic conditions in a particular time 

might have affected the traffic volumes for each mode. This would yield a correlation between 

residuals of the equations and accounting for this residual would help us obtain a better 

coefficient estimates for the traffic-air quality relationship. SUR models are based on the 

Generalized Least Squares (GLS) principle, which considers the covariance structure of the error 

terms (Hennigsen & Hamann, 2007). The explicit consideration of covariance structure allows us 

to move beyond assuming independence of the error terms as in the Ordinary Least Squares 

(OLS) principle.  
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 For the SUR models, natural log of the multimodal traffic volumes were the dependent 

variables. The independent variables were the temporal and weather controls used in the 

multilevel models: holiday, temperature, precipitation category, holidays, season, day of week, 

and air quality index. (For more details, see the Data and Variables section in Chapter 3). To 

simplify the analysis, the study areas were split into three regions: 1) Cache County, 2) Salt Lake 

County, and 3) Salt Lake City. Instead of using the daily count for each signal, we calculated the 

average daily count for all traffic count stations in each region. Then, we used that average as the 

daily traffic count for each region for each mode. (This was done to allow for there to be a clear 

linkage between modes for the same place and time, and to make the model estimation 

computationally feasible.) The same weather station and air quality station used in the multilevel 

models of study area 1 was used for Cache County. For the Salt Lake region (both the county 

and city), weather station (Station = USW0002417) was used and air quality station (Site ID = 

490353006) was used.  

The equations used in the SUR model are: 

 

𝑌𝑚𝑜𝑡𝑜𝑟𝑖
= 𝛽0 + ∑ℎ 𝛽ℎ𝑥𝑚𝑜𝑡𝑜𝑟𝑖

+ 𝑅𝑚𝑜𝑡𝑜𝑟𝑖
    (12) 

𝑌𝑝𝑒𝑑𝑖
= 𝛽0 + ∑ℎ 𝛽ℎ𝑥𝑝𝑒𝑑𝑖

+ 𝑅𝑝𝑒𝑑𝑖
     (13) 

𝑌𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖
= 𝛽0 + ∑ℎ 𝛽ℎ𝑥𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖

+ 𝑅𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖
    (14) 

 

However, we allow for correlation between the residuals which are represented by the non-zero 

entries in the non-diagonal elements of the correlation matrix of residuals in Table 5-1.  
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Table 5-1  

Correlation matrix of residuals of equations in SUR 

 𝑹𝒎𝒐𝒕𝒐𝒓 𝑹𝒑𝒆𝒅 𝑹𝒕𝒓𝒂𝒏𝒔𝒊𝒕 

𝑹𝒎𝒐𝒕𝒐𝒓 1 𝜌(𝑚𝑜𝑡𝑜𝑟, 𝑝𝑒𝑑) 𝜌(𝑚𝑜𝑡𝑜𝑟, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡) 

𝑹𝒑𝒆𝒅 𝜌(𝑝𝑒𝑑, 𝑚𝑜𝑡𝑜𝑟) 1 𝜌(𝑝𝑒𝑑, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡) 

𝑹𝒕𝒓𝒂𝒏𝒔𝒊𝒕 𝜌(𝑡𝑟𝑎𝑛𝑠𝑖𝑡, 𝑚𝑜𝑡𝑜𝑟) 𝜌(𝑡𝑟𝑎𝑛𝑠𝑖𝑡, 𝑝𝑒𝑑) 1 

 

 

 

5.3 Results 

 

5.3.1 Time Lags 

We introduced the time lagged air quality variable in the base models for driving, 

pedestrian, and transit to study the effect of time lag in each mode. In this section, we only 

discuss the air quality coefficients from the model. For complete model results, see Appendix A.  

For motor vehicle volumes (Table 8-1), there was a negative and significant association 

between lagged air quality variables and driving. The coefficient estimates of both yellow (β = -

0.031, p < 0.001) and orange days (β = -0.033, p = 0.062) were negative and significant for 

lagged air quality index. It is interesting to note the positive and higher coefficient estimates for 

regular air quality index for same mode. This suggests that people are unable to quickly shift 

from automobiles to alternative modes. For the pedestrian volumes, the coefficient estimates for 

the lagged air quality variables in the time lag model were not significant (Table 8-2), which 

implies an absence of significant association between lagged air quality variables and pedestrian 

count. In the case of transit volumes, similar to the model in Table 3-5, the coefficient estimates 

for both lagged and unlagged air quality variable were not significant.  
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Table 5-2 

Time lag model results, study area 1 

 Without Time lag With Time Lag 

Coefficients Estimate p-value 

 

Estimate p-value 

Motor vehicle traffic volumes     

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.004   0.625 0.025  0.004 

 Orange (AQI = 100+) 0.048 0.002 0.073 <0.001 

Lagged Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) - - -0.031 <0.001 

 Orange (AQI = 100+) - - -0.033 0.062 

Pedestrian volumes     

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.023 0.091 -0.023 0.091 

 Orange (AQI = 100+) -0.093 0.001 -0.093 0.001 

Lagged Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) - - 0.007    0.550 

    Orange (AQI = 100+) - - -0.045 0.108 

Transit ridership (CVTD bus)   

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.013 0.693 -0.019 0.643 

 Orange (AQI = 100+) -0.044 0.516 -0.036 0.639 

Lagged Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) - - 0.035 0.388 

 Orange (AQI = 100+) - - -0.075 0.322 

 

A random intercept model with the introduction of time lagged air quality variable was run for 

motor volumes in study area 2 (  
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Table 8-4). The coefficient estimates for time lagged air quality variable for motor 

vehicle volumes were found to be significant. The estimate for orange days (β = -0.056, p = 

0.004) was negative and significant. Similarly, the coefficient estimates for lagged yellow days 

(β = 0.004, p = 0.027) was significant in the pedestrian model, but the magnitude of change was 

only 0.4%. Thus, the major time lag effect of air quality was observed on motor vehicle volumes 

during orange days. This hints at the inability of automobile users to quickly change their trip to 

alternative modes such as walking or walking plus transit. All of the transit model yielded 

insignificant lagged air quality coefficient estimates. 
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Table 5-3 

Time lag model results, study area 2 

 Without Time lag With Time Lag 

Coefficients Estimate 

p-

value  Estimate p-value 

Motor vehicle traffic volumes     

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.009 0.063 0.016 0.004 

 Orange (AQI = 100+) -0.068 <0.001 -0.049 0.012 

Lagged Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) - - -0.007 0.157 

 Orange (AQI = 100+) - - -0.056 0.004 

Pedestrian volumes     

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.058 <0.001 -0.058 <0.001 

 Orange (AQI = 100+) -0.061 <0.001 -0.061 <0.001 

Lagged Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) - - 0.004 0.027 

 Orange (AQI = 100+) - - -0.006 0.404 

Transit ridership (UTA TRAX)     

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.084 0.037 0.070 0.159 

 Orange (AQI = 100+) -0.026 0.897 -0.049 0.814 

Lagged Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) - - 0.022 0.647 

 Orange (AQI = 100+) - - -0.078 0.701 

Transit ridership (UTA FrontRunner)     

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.037 0.135 0.035 0.260 

 Orange (AQI = 100+) -0.048 0.683 -0.053 0.665 

Lagged Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) - - 0.003 0.917 

 Orange (AQI = 100+) - - 0.070 0.553 

 

5.3.2 Spatial Filters 

In this section, we discuss about how the addition of spatial filter changed the goodness 

of fit and coefficient estimates of our models in Chapter 3 and 4. We only report the Moran’s test 

result, AIC, between-station variance, air quality variable and other related variables that 

changed. For full model results, see Appendix B. 

In the case of pedestrian volumes in study area 1, the addition of a spatial filter could 

address spatial autocorrelation in the model with level 2 variables (model in Table 3-4). We can 

see the reduction of Moran’s I statistic from 0.145 to -0.031. Given the non-significant p-value in 
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the model with spatial filter, we can conclude the spatial distribution of feature values in the 

model to be random. Similarly, the AIC values of the model with spatial filter decreases to 

54,390 from 54,405, which indicates improvement in performance of the model. However, for 

random intercept model (model in Table 3-3) the addition of spatial filter manages only to reduce 

the AIC without significantly changing the presence of spatial autocorrelation.  

However, we did not see any changes in the air quality-pedestrian volume relationship in 

random intercept model. For the random intercept and random slope model, the noticeable 

changes were observed in the built and social environment variables. The variables that had 

significant interaction with air quality (vehicle ownership and percentage of 4-way intersections) 

both increased in magnitude by 0.282 and 0.003 respectively. This would lead to changes in the 

posterior slopes for poor air quality days at different locations which were calculated in Chapter 

3 and Chapter 4.  
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Table 5-4 

Spatial filter model results (Pedestrian volumes), study area 1 

 Without Spatial Filter With Spatial Filter 

Random Intercept Model   

Moran’s I 0.427 0.454 

p-value <0.001 <0.001 

AIC 54,404  54,392 

Between-group variance 0.9962 0.7372 

Air quality coefficient (ref. = Green)   

    Yellow (AQI = 50–99) -0.023 -0.023 

    Orange (AQI = 100+) -0.093 -0.093 

Random Intercept and Random Slope with locational variables 

Moran’s I 0.145 -0.031 

p-value 0.11 0.513 

AIC 54,405 54,390 

Between-group variance 0.446 0.267 

Air quality coefficient (ref. = Green)   

    Yellow (AQI = 50–99) 0.227 0.227 

    Orange (AQI = 100+) 0.005 0.005 

Built and Social Environment Variables with Significant Interaction 

Vehicle ownership (mean) 0.423 0.705 

% 4-way intersections -0.004 -0.001 

 

For the motor vehicle model in study area 2, the presence of spatial autocorrelation in the 

random intercept model (model in Table 4-1) is addressed by the addition of spatial filter 

(eigenvector) as we can see the reduction of Moran’s I statistic from 0.188 to 0.069. Given the 

non-significant p-value (0.25) in the model with spatial filter, we can conclude the spatial 

distribution of feature values in the model to be random. Similarly, the AIC values of the model 

with spatial filter decreases to -1896 from -1890 which indicates improvement in performance of 

the model. Similarly, for random intercept and random slope model with cross level interactions, 

a similar pattern follows. The addition of spatial filter reduces the AIC value. It is to be noted 

that addition of level 2 variables has already addressed for significant amount of spatial 

autocorrelation (Moran’s I: 0.126, p-value = 0.168) in the model without the spatial filter to 

begin with.  
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Similar to analysis in study area 1, we did not see any changes in the air quality-motor 

vehicle volume relationship in random intercept model for study area 2. For the random intercept 

and random slope model, a slight change was observed in the built and social environment 

variables. The variable that had significant interaction with air quality (household median 

income) changed in magnitude by 0.001. This would lead to change in the posterior slopes for 

poor air quality days at different locations which were calculated in Chapter 3 and Chapter 4.  

 

Table 5-5 

Spatial filter model results (Motor vehicle volumes), study area 2 

 Without Spatial Filter With Spatial Filter 

Random Intercept Model  

Moran’s I 0.188 0.069 

p-value 0.076 0.25 

AIC -1,890 -1,896 

Between-group variance 1.166 1.002 

Air quality coefficient (ref. = Green)   

    Yellow (AQI = 50–99) 0.009 0.009 

    Orange (AQI = 100+) -0.068 -0.068 

Random Intercept with locational variables 

Moran’s I 0.126 -0.012 

p-value 0.167 0.45 

AIC -2,924 -2,927 

Between-group variance 0.68 0.621 

Air quality coefficient (ref. = Green)   

    Yellow (AQI = 50–99) -0.053 -0.053 

    Orange (AQI = 100+) -0.178 -0.178 

Built and Social Environment Variables with Significant Interaction 

Household income (median, $1,000)   -0.014 -0.013 

 

For the pedestrian model in study area 2, the addition of spatial filter manages only to 

reduce the AIC slightly without significantly changing the presence of spatial autocorrelation. 

Given the significant p-value (<0.001) in the model with spatial filter, we can conclude the 

spatial distribution of feature values in the model is not random: i.e., spatial autocorrelation is 

still present. Similarly, the AIC values of the random intercept model with spatial filter decreases 

to 902202 from 902208 which indicates a slight improvement in performance of the model; 
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however, for random intercept and random slope model with cross level interactions, no change 

in AIC was observed. A computationally extensive model limited us from finding a set of best 

spatial filters to reduce the spatial autocorrelation in our model.  

Similar to preceding analysis with spatial filters, we did not see any changes in the air quality-

pedestrian volume relationship in random intercept model for study area 2. For the random 

intercept and random slope model, a slight change was observed in the built and social 

environment variables (All of the changes are reported in Appendix B,   
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Table 8-13). The variable that had significant interaction with air quality (percent of zero 

car households) changed in magnitude by 0.007. This would lead to change in the posterior 

slopes for poor air quality days at different locations which were calculated in Chapter 3 and 

Chapter 4.  

 

Table 5-6 

Spatial filter model results (Pedestrian volumes), study area 2 

  Without Spatial Filter        With Spatial Filter 

Random Intercept Model   

Moran’s I 0.647 0.64 

p-value <0.001 <0.001 

AIC 902208 902202 

Between-group variance 1.321 1.328 

Air quality coefficient (ref. = Green)   

    Yellow (AQI = 50–99) -0.058 -0.058 

    Orange (AQI = 100+) -0.061 -0.061 

Random Intercept with locational variables 

Moran’s I 0.623 0.623 

p-value <0.001 <0.001 

AIC 856384 856384 

Between-group variance 0.446 0.446 

Air quality coefficient (ref. = Green)   

    Yellow (AQI = 50–99) -0.007 -0.007 

    Orange (AQI = 100+) 0.070 0.070 

Built and Social Environment Variables   

Household income (median, $1,000)   -0.008 -0.008 

Percent of zero car households 2.268 2.275 

 

5.3.3 Seemingly Unrelated Regression (SUR) 

In this section, we compare the results from general linear models for each mode with 

Seemingly Unrelated Regression (SUR) for three regions: Cache County, Salt Lake Downtown, 

and Salt Lake City. In line with the scope of this thesis, we only report the coefficient estimates 

of air quality variables. For full model results, see Appendix C. 

As shown in Table 5-7, in the model for Cache County, pedestrian volume estimates for 

orange days and motor vehicle volume estimates are significant. The yellow day coefficient for 



73  

 

motor vehicle volumes in negative in both General Linear Model (GLM) (β = -0.023, p = 0.088) 

and Seemingly Unrelated Regression (SUR) (β = -0.021, p = 0.108). For orange days, the 

estimates are positive and significant (GLM: β = 0.058, p = 0.039; SUR: β = 0.063, p = 0.025). 

For pedestrian volumes, orange day estimates are negative and significant (GLM: β = -0.212, p = 

0.047; SUR: β = -0.182, p = 0.089); while yellow days estimate were found negative but 

statistically insignificant. The transit volumes were positive for poor air quality days in both of 

the models but were statistically indistinguishable from zero.  

In the case of motor vehicle volumes, SUR indicate a lower magnitude of decrease 

(compared to GLM) in motor vehicle volumes during yellow days; while they show an increased 

number of motor volumes (compared to GLM) during orange air quality days. Also, SUR 

indicates a lower magnitude of decrease in pedestrian volumes (compared to GLM) during 

orange days. Overall, we see a similar pattern of decrease in pedestrian volumes and an increase 

in driving volumes during poor air quality days as that observed in Chapter 3.  

It is interesting to note that the correlation of residuals between the motor and pedestrian 

is quite low, which indicates an appropriate capture of the relationship between dependent 

variables and traffic count in the model. The highest correlation is between pedestrian and 

transit, which is reasonable as most transit riders are pedestrians at the start and end of their trip. 
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Table 5-7 

SUR model results, Cache County 

 GLM SUR 

Coefficients Estimate p-val  Estimate p-val 

Motor Volumes     

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.023 0.088 -0.021 0.108 

 Orange (AQI = 100+) 0.058 0.039 0.063 0.025 

Pedestrian Volumes     

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.079 0.120 -0.070 0.164 

 Orange (AQI = 100+) -0.212 0.047 -0.182 0.089 

Transit Volumes     

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.061 0.658 0.061 0.658 

 Orange (AQI = 100+) 0.166 0.567 0.166 0.567 

Correlation of the Residuals     

Motor and Pedestrian        0.175     

Motor and Transit             0.299     

Transit and Pedestrian      0.321     

 

In the model for Salt Lake City, as shown in Table 5-8, only pedestrian volume estimates 

are significant during yellow air quality days. We observed a similar coefficient for both GLM 

and SUR models. (β = -0.108, p <0.001). This indicates an overall decrease in the pedestrian 

volumes during days with bad air quality. The limited number of observations during red days 

might have contributed to the insignificant coefficient estimates in both of the model. We see a 

decrease in both motor vehicle volumes and pedestrian volumes during days of poor quality, 

although the negative estimates for motor vehicle volumes (yellow: -0.002; red = -0.052) were 

statistically indistinguishable from zero. 

The SUR results do not differ from the results that we get from GLM. Nevertheless, the 

direction of estimates—i.e. decreases in motor vehicle and pedestrian volumes and increase in 

transit—is similar to the pattern observed in Chapter 4.  It is interesting to note that the 

correlation of residuals between the motor vehicle and pedestrian models is quite high which 
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might be indicating to the presence of some unobserved factor affecting both the models (for 

example, economical pattern in the area).  

 

Table 5-8 

SUR model results, Salt Lake City 

 GLM SUR 

Coefficients Estimate p-val  Estimate p-val 

Motor Volumes     

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.002 0.845 -0.002 0.845 

 Orange (AQI = 100+) -0.052 0.316 -0.052 0.316 

Pedestrian Volumes     

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.108 <0.001 -0.108 <0.001 

 Orange (AQI = 100+) -0.061 0.564 -0.061 0.564 

Transit Volumes     

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.071 0.596 -0.071 0.596 

 Orange (AQI = 100+) 0.062 0.927 0.062 0.927 

Correlation of the Residuals     

Motor and Pedestrian        0.553     

Motor and Transit             0.477     

Transit and Pedestrian      0.253     

 

We see a similar pattern of results for Salt Lake County to that of core Salt Lake City. In 

the model for Salt Lake county, as shown in Table 5-9, only pedestrian volume estimates are 

significant during yellow air quality days. We observed a similar coefficient for both GLM and 

SUR models (β = -0.045, p =0.015). This indicates an overall decrease in the pedestrian volumes 

during days with bad air quality. The limited number of observations during red days might have 

contributed to the insignificant coefficient estimates in both of the model. We see an increase in 

motor vehicle volumes during days of poor quality, although the positive estimates for motor 

vehicle volumes (yellow: 0.005; red = 0.020) were statistically indistinguishable from zero. 

The SUR results do not differ from the results that we get from GLM. It is interesting to 

note that the correlation of residuals between the motor and pedestrian is quite high which might 



76  

 

be indicating to the presence of some unobserved factor affecting both the models (for example, 

economical pattern in the area).  

 

Table 5-9 

SUR results, Salt Lake County (omitting Salt Lake City) 

 GLM SUR 

Coefficients Estimate p-val  Estimate p-val 

Motor Volumes     

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.005 0.505 0.005 0.505 

 Orange (AQI = 100+) 0.020 0.634 0.020 0.634 

Pedestrian Volumes     

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.045 0.015 -0.045 0.015 

 Orange (AQI = 100+) 0.039 0.676 0.039 0.676 

Transit Volumes     

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.071 0.596 -0.071 0.596 

 Orange (AQI = 100+) 0.062 0.927 0.062 0.927 

Correlation of the Residuals     

Motor and Pedestrian        0.406     

Motor and Transit             0.353     

Transit and Pedestrian      0.248     
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6. DISCUSSION 

   

6.1 Objective 1: Modal differences in the effects of area-wide air pollution on traffic 

volumes 

In line with the first objective of our study—to measure the effects of area-wide air 

pollution on multimodal traffic volumes and study how these effects differ by mode, by building 

separate models for walking, driving, and transit to observe the difference in effects across 

mode—we ran multilevel model for motor volume, pedestrian volume and transit ridership. The 

models are discussed in two different sections, one for each study area.  

 

6.1.1 Study Area 1: Cache County 

The results obtained from our models shed light on the effects of area-wide air quality on 

motor vehicle, pedestrian, and transit volumes. Table 3-1 and Table 3-3 inform us of the general 

increase in driving and decrease in walking on days with higher levels of air pollution. For 

orange days (AQI = 101–150, unhealthy for sensitive groups), an increase of 4.9% in driving 

volumes and a decrease of 8.8% in walking volumes were observed, compared to green days. 

Table 3-5Table 3-5 suggests that there were no significant changes in the transit volumes in 

study area 1.  

These findings could possibly be explained by a tendency of active commuters to avoid 

exposing themselves to outdoor air pollution by switching from walking (or walking plus public 

transit) to driving (an encapsulated mode of travel with sometimes lower exposure to air 

pollution, at least in terms of minutes). In addition, there could be a reduction of recreational 

trips made by active modes such as running or visiting parks.  
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6.1.2 Study Area 2: Wasatch Front 

In the case of study area 2, Table 4-1 and Table 4-3 inform us of the general increase in 

driving and walking on days with higher levels of air pollution in the area. For yellow days, an 

increase in 0.9% in driving volumes and a decrease of 5.6% in walking volumes were observed, 

compared to the green days. For orange days, we saw a change in pattern as a decrease of 6.6% 

in driving volumes and a decrease of 5.9% in walking volumes are expected, compared to green 

days. Similarly, an increase in transit ridership (only for UTA’s TRAX light-rail system) by 

8.8% was observed during yellow days.  

A non-linear effect of air quality on traffic volumes is observed in study area 2 during 

poor air quality days. There was an increase in the traffic volume slightly during yellow air 

quality days, but the driving volume went down much more during orange days. The pattern seen 

in yellow days was similar to that in study area 1 and could possibly be explained by a similar 

reasoning (switching from walking or walking plus transit to driving to avoid exposure). 

Alternatively, on orange days we saw a reduction in driving, which might be explained by the 

effectiveness of air quality alerts in circulation: i.e., people seem to be reducing their number of 

automobile trips.  

In general, the trend to use more automobile seemed to diminish in study area 2. The rise 

seen in yellow days was small compared to the 4.9% increase observed in study area 1, and in 

red days the pattern reversed i.e. there was a decrease in driving volumes. Better circulation of 

air quality alerts (there are a lot more Variable Message Signs (VMS) that show messages related 

to driving less on bad air quality days in study area 2) and options of teleworking (presence of 

more developed business areas in study area 2) could be potential explanations. Also, the 

availability of more public transit options could lead to the decrease in the driving volumes. The 
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simultaneous decrease in volumes of walking and driving during red days indicate a possibility 

of people forgoing their trips in study area 2; whereas, during yellow days, the significant change 

in transit ridership (plus its better accessibility) indicates possibility of walking/cycling trips 

shifting to transit.  

The combined increase and decrease in motor vehicle and pedestrian volumes in study 

area 1 suggest a strong probability of mode shifting. In study area 2, decrease in driving volumes 

along with pedestrian volumes indicate cases of people forgoing their trips. The urban nature of 

the Wasatch Front (study area 2) could probably explain the results obtained. In addition to 

people forgoing their trips, we can observe cases of mode shifts in some regions of study area 2 

like downtown Provo, where the driving volume might have shifted to walking or walking plus 

transit (increase in walking in maps of downtown Provo).  

 

6.2 Objective 2: Locational variations in relationships of air pollution with traffic 

volumes 

In line with the second objective of our study—to explore locational variations in the 

effects of area-wide air pollution on multimodal traffic volumes, by using multilevel modeling to 

represent the locational variations in each mode-specific model—we introduced cross-level 

interaction variables in the multilevel models discussed in Chapter 3. As transit ridership was not 

available for specific locations within the region (only aggregated for each study area), we could 

not look at the effect of location on the relationship between air quality and transit ridership. 

Again, we discuss findings for study area 1 first, followed by study area 2.  
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6.2.1 Study Area 1: Cache County 

For pedestrian volumes, as shown in Table 3-4, we found significant associations of the 

percentage of four-way intersections and average vehicle ownership with the slope of the air 

quality coefficients.  

The positive interaction between orange days and the percent of 4-way intersections (a 

measure of street network connectivity), informs us that in areas with high street connectivity, 

pedestrian volumes do not decrease as much on poor air quality days. Areas with more connected 

street grids allow more direct walking trips (Tal & Handy, 2012), which can shorten time 

exposed to air pollution and thus may make people walking in these areas less sensitive to 

polluted air. Also, good street network connectivity implies a business area—in Figure 3-2, 

notice how coefficients were less negative and more positive in downtown—which might 

involve mostly non-discretionary and work-related walk trips, which we expect to be less 

sensitive to poor air quality.  

On the other hand, there was a significant negative interaction for yellow (and almost 

significant for orange) days with average vehicle ownership. In other words, in neighborhoods 

with higher vehicle ownership, pedestrian volumes tend to decrease more on poor air quality 

days. One likely explanation is that greater vehicle ownership provides more opportunities 

(modal options) for escaping air pollution and shifting from higher-exposure modes like walking 

to less-exposed modes like driving a personal automobile. Conversely, neighborhoods with 

limited private vehicle access may not have such flexibility of modal shift.  

 Compared to walking, we did not find any significant variations across locations for the 

relationship between air quality and motor vehicle volumes. This may be attributed to the small 

number of stations (six) that were available for motor vehicle counts. Another explanation could 
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be the different spatial scales at which walking and driving take place. Let us assume that the 

travel behavioral differences in air quality responses are mostly due to who people are and where 

they live. If this is the case, then the shorter nature of walk trips will average these differences 

over a small spatial area, perhaps within one mile. Since automobile trips tend to be longer, then 

individual or neighborhood differences will be averaged over a larger scale, perhaps 5–10 miles. 

Thus, the differences that appear when comparing air quality relationships with traffic volumes 

across locations will be diminished for motor vehicle traffic compared to pedestrian traffic. 

Given the sparseness of our motor vehicle volume count locations, we could not test this 

hypothesis, but future work should try to see if this is happening.  

 

6.2.2 Study Area 2: Wasatch Front 

For pedestrian volumes, as shown in Table 4-4, we found significant associations of the 

median income with the slope of the air quality coefficients.  

The negative interaction between orange days (small estimate for yellow days) and the 

median income (indication of rich neighborhoods, higher vehicle ownership (Dargay & Gately, 

1999)), informs us that in areas with high average median income, pedestrian volume tends to 

decrease more on poor air quality days. One likely explanation is that areas with higher median 

income might provide more opportunities for escaping air pollution and shifting from higher-

exposure modes; higher number of vehicles in household provides options to switch from 

walking. Also, since higher median incomes are associated with tech-jobs, a significant portion 

of that demographics might have the option to work remotely in the case of days with bad air 

pollution.  
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The negative interaction between yellow days and percentage of zero-car households 

(indicating the demographics of an area), informs us that in areas with high percentage of zero-

car households, walking volume tend to decrease more on yellow days. Though low vehicle 

ownership contributing to the decrease in walking volume contrasts with the findings in study 

area 1 (in study area 1, higher vehicle ownership contributed to decrease in walking volumes), 

this could be explained by the locational attributes represented by percentage of zero-car 

households. For example, an area near university with students might have a higher number of 

zero-car households, but the composition of the area also means that the students might forgo a 

trip by shifting to online modes of learning. The number of people going out for recreational 

walks near those areas might significantly go down (Figure 4-5). 

For motor volumes, as shown in Table 4-2, we found significant associations of the 

median income with the slope of air quality coefficients. The positive interaction between orange 

days (small estimate for yellow days) and the median income (indication of rich neighborhoods, 

higher vehicle ownership), informs us that in areas with high average median income, motor 

volumes tend to decrease less on poor air quality days. Whereas, on yellow days, in areas with 

higher average median income, motor volumes tend to increase more. The positive interaction 

might have been produced by the relation of higher median income with vehicle ownership 

which allows for the trips made by walking, cycling to shift into automobiles. This aligns with 

the finding of pedestrian volume’s interaction with median income where pedestrian volume 

decreased in area with higher median income. The decreased volume of pedestrian might have 

accounted for the increase in motor volumes.  
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6.3 Time Lag 

 In both of the study areas, we observed significant estimates for time-lagged air quality 

variables for motor vehicle volumes only. In study area 1, there was 0.7% decrease in motor 

vehicle volumes if the preceding days’ air quality was yellow. Similarly, there was 4.9% 

decrease in motor vehicle volumes if the preceding day’s air quality was orange. In study area 2, 

a similar pattern followed as there was decrease of 5.6% in motor vehicle volumes if the 

preceding day’s air quality was orange. This indicates the slow assimilation of air quality alerts 

or people’s inability to make quick changes to their mode, especially if their mode-in-use is 

driving. This finding suggests that there may be barriers or constraints preventing people from 

making immediate changes to their transportation choices when faced with air quality concerns. 

 

6.4 Policy Implications 

This study informs stakeholders in air quality and transportation by highlighting the 

aggregate behavior of travelers during periods of area-wide air pollution, such as due to 

wintertime inversions or summertime ozone or wildfire smoke. These findings are especially 

relevant for efforts to affect changes in travel and other health-related behaviors through air 

quality alerts. The Utah Division of Air Quality issues alerts that are directly linked to the color-

coded AQI levels (Utah DEQ, 2022). For example, on orange days, the recommendation for 

sensitive groups is to: “Reduce prolonged or heavy exertion. It's OK to be active outside, but 

take more breaks and do less intense activities. Watch for symptoms such as coughing or 

shortness of breath.” Also, the Utah Department of Transportation encourages people to 

“TravelWise” (UDOT, 2022) and reduce driving during poor air quality days through the use of 

travel behavior change strategies such as carpooling, riding public transit, trip chaining, trip 
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shifting, and teleworking. Many employers (including the State of Utah) have mandatory (mostly 

vehicle) trip reduction programs that they can deploy on severe air pollution days. 

 From our study’s results in study area 1—Cache County, Utah—it appears that people 

are walking less, which could be an active response to the air quality alerts or to seeing (or 

breathing) the air pollution. However, we find that people do not seem to be driving less on poor 

air quality days; instead, motor vehicle traffic volumes were actually higher on orange air quality 

days, all else equal. This implies that air quality and travel behavior alerts are not effective at 

reducing driving, at least in study area 1. More and different strategies may be needed, including 

wider use of mandatory employer-based programs. Organizations should be encouraged to 

provide arrangement for telecommuting and flexible work arrangements which can reduce the 

number of trips in each mode during episodes of bad air quality (Giovanis, 2018; Kitou & 

Horvath, 2008). In cases of severe air quality, hard policies such as road pricing schemes could 

be introduced to decrease the number of motor vehicle volumes (Isaksen & Johansen, 2021; 

Simeonova et al., 2021). 

In contrast, in the Wasatch Front (study area 2), the number of people walking seems to 

have gone down along with the number of cars during orange days, which indicates an active 

response to the air quality alerts and/or air pollution. However, the results from time lag study 

suggests that if yesterday’s air quality was orange, then the reduction in motor volume is higher. 

This indicates the efficacy of air quality alerts increases after a certain period of time; perhaps 

people need some leeway to make a change in their travel practices. Policies could work in 

disseminating information on air quality prediction before the air quality worsens to consider the 

time required for travelers to change their behavior. This might appeal to the trend of using less 

automobiles which is manifested in study area 2. Policies and communication campaign can 
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emphasize the health benefits of reducing motor vehicle usage during poor air quality days, 

highlighting the collective impact of individual actions on air pollution reduction and public 

health. Furthermore, to amplify the magnitude of decrease, UTA could consider implementing 

free public transit during periods of bad air quality. If necessary, transportation agencies could 

also look at hard policies as suggested for study area 1.  

 

6.5 Limitations & Future Work 

This thesis has several shortcomings that could be remedied through future work. First, 

though this research explored changes in motor vehicle traffic volumes, pedestrian volumes, and 

transit ridership, it could not explain how the change in volume in different modes could have 

interlinked (due to the aggregate nature of the data). Precisely, it could not explain why driving 

increased and walking decreased on poor air quality days in study area 1 or why driving and 

walking both decreased on poor air quality days in study area 2. Other works could supplement 

this aggregate traffic volume analysis with more disaggregate analysis of travel diaries, travel 

behaviors derived from location-based services data, and/or travel surveys to understand how 

and why individuals change their travel patterns in response to poor air quality. Such studies 

could be better able to capture behavioral responses such as shifting modes or forgoing or 

rescheduling trips.  

Secondly, all of the models did not account for temporal autocorrelation, although we did 

attempt to structurally model the temporal patterns through the use of temporal control variables 

representing day-of-week and season. Future work could look into time series modeling to better 

address the impact of temporal autocorrelation. Thirdly, a lack of robust data for transit led to 

several limitations: it did not allow us to build multilevel model for transit ridership; we could 
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not examine bus ridership in study area 2; and we could not investigate locational variations in 

the relationship between air quality and transit ridership. For example, were there some areas 

which were more/less significantly affected by air quality? In the case of pedestrians, we could 

see that different regions within study area 2 had a varied response to air quality; the lack of 

locational data for transit did not allow us to study this possibility.  

Fourthly, this study did not account for the period during and since the COVID-19 

pandemic. After COVID-19, people’s ability and adaptation to teleworking has changed 

drastically (Belostecinic et al., 2021). Employees have been more flexible in the policy of 

teleworking, which means that during the periods of poor air quality, more travelers could 

respond by opting for teleworking. However, our study does not include the timeline during 

COVID-19, as it would complicate the inference of relationship between air quality and traffic 

volumes. There were lots of travel impacts during early phases of COVID which might not truly 

reflect the relationship between air quality and traffic volumes. Further studies could look into 

the relationship between air quality and multimodal traffic volumes during and after COVID by 

including adequate controls for COVID spread and response.  

Though the study defines the air quality impacts on traffic volume, it does not distinguish 

the different impact that might be present during different seasons i.e. winter and summer. 

Owing to the different types of air pollution (source/causes) and different travel options available 

during each season, we might see a different response in each season. For example, the escaping 

of air pollution by going to the mountains might be more common in summertime than during 

wintertime. Also, the shift from automobiles to walking is convenient in summer than during the 

cold winter.  However, the study does not segregate the air quality impacts into different seasons.  
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Furthermore, the effect air pollution has on travel behavior depends on the nature of trip 

i.e. if a trip is of recreational type rather than a work trip it has an increased chance of being 

affected by air pollution (Saberian et al., 2017). However, the study does not distinguish the trip 

into their types. Future studies could try to distinguish between trip purposes, either by location, 

or data source (e.g. Strava for recreational cycling), or some new data (e.g., Streetlight O/D) or 

proxies (e.g., roadway facility type). Moreover, the study could use an addition of control 

variables such as fuel cost which might have led to the changes in traffic volumes for each mode. 

In the time lag analysis, we considered the effects of yesterday’s air quality by adding 

lagged air quality variables. Though this approach allowed us to individually study yesterday’s 

air quality’s effect on today’s traffic volume, it did not address the correlation between 

yesterday’s air quality and today’s air quality. Incorporating the correlation between air quality 

of different days would help us address the issue. Furthermore, including time lag variable 

representing the number of recent days with poor air quality would help us study the change in 

behavior during prolonged periods of air quality.  

For the model enhancement part, we could not completely remove spatial autocorrelation 

from the random intercept and random slope model for pedestrian volumes in study area 2. The 

computationally intensive model that was used limited us from finding the best set of 

eigenvectors that could remove the spatial autocorrelation existing in the dataset. Similarly, for a 

combined study of all three modes in the seemingly unrelated regression models, we were 

limited by lack of data at the same level of spatial unit. We could not obtain traffic volumes for 

all mode from a single location, because count stations were not perfectly aligned in space. This 
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meant we had to calculate a regional aggregate for our study areas, which might have been 

greater in geographical scope than what we wanted.  

Despite these limitations, this thesis has been successful in addressing the limitations 

prominent in the field of research. The individual chapters have been built up from the 

limitations of the previous chapters. Firstly, the pedestrian models did not account for any 

similarity in unobserved factors affecting counts for stations that are located closer to each other; 

i.e., it ignored the spatial structure of the data. Accounting for potential spatial autocorrelation—

such as the use of a spatial lag term—in the model addressed this limitation in the model 

enhancement chapter. Also, the study prior to this had been done in a particular location (an 

approach similar to one taken in study area 1), so its findings may be limited to this or similar 

locations (e.g., small urban areas, university towns, and/or mountain valleys). But the 

incorporation of study area 2 examining larger urban areas with more non-automobile 

transportation options (and greater availability of frequent public transit, larger downtowns, more 

demographic diversity, etc.) allowed us to explore significant impacts of air pollution on 

multimodal traffic volumes.  

To conclude, our study made several contributions to the limited literature on how air 

pollution affects travel behaviors. First, it examined air quality effects on multiple transportation 

modes in the same general study area, finding differences in how much driving and walking 

changed (and, importantly, in which direction). Such modal findings within the same region are 

more comparable in our study than between other unimodal studies conducted in different 

regions. Second, we used more robust multilevel models to find and explain locational variations 

in how (pedestrian) volumes changed on poor air quality days. Third, we used time lag study to 
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find the effect of preceding day’s air quality on today’s traffic volumes. Such information gives 

insights that help to understand why travel behavior changes in response to air pollution.  
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8. APPENDICES 
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A. Time Lag 

 

Table 8-1  

 

Time Lag Model (Motor volumes), study area 1  

 
Coefficient Estimate SE t-statistic p-value 

Intercept (station 301) 8.909 0.041 217.961 <0.001 

 Difference for station 363 1.084 0.008 143.615 <0.001 

 Difference for station 510 -0.662 0.007 -89.283 <0.001 

 Difference for station 511 -0.398 0.007 -53.463 <0.001 

 Difference for station 620 0.221 0.008 29.067 <0.001 

 Difference for station 622 0.948 0.008 126.064 <0.001 

Day of week (ref. = Weekday)     

 Saturday -0.116 0.006 -18.209 <0.001 

 Sunday -0.609 0.006 -95.359 <0.001 

Holiday (ref. = No holiday) -0.258 0.012 -22.245 <0.001 

Season (ref. = Winter)     

 Spring 0.101 0.007 14.393 <0.001 

 Summer 0.135 0.007 19.142 <0.001 

 Fall 0.113 0.007 16.210 <0.001 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.026 0.009 -4.213 <0.001 

 Light snow -0.071 0.041 -8.226 <0.001 

 Heavy rain -0.030 0.040 -0.758 0.449 

 Heavy snow -0.145 0.013 -11.288 <0.001 

Max temperature difference from average -0.001 0.000 -1.228 0.220 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.025 0.008 2.819 0.004 

 Orange (AQI = 100+) 0.073 0.018 4.119 <0.001 

Lagged Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.031 0.008 -3.551 <0.001 

 Orange (AQI = 100+) -0.033 0.177 -1.868 0.062 

Notes: N = 3,936; adjusted R-squared = 0.961.  
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Table 8-2 

Time Lag Model (Pedestrian volumes), study area 1 

Coefficients Estimate SE df t-statistic p-value 

Intercept 4.988 0.162 37.3 30.739 <0.001 

Day of week (ref. = Weekday)      

 Saturday -0.358 0.012 26960 -30.418 <0.001 

 Sunday -1.008 0.012 26960 -86.410 <0.001 

Holiday (ref. = No holiday) -0.673 0.023 26960 -29.884 <0.001 

Season (ref. = Winter)      

 Spring 0.380 0.013 26960 28.991 <0.001 

 Summer 0.483 0.013 26960 38.157 <0.001 

 Fall 0.473 0.013 26960 36.345 <0.001 

Precipitation (ref. = No rain / no snow)      

 Light rain -0.083 0.012 26960 -7.159 0.000 

 Light snow -0.282 0.016 26960 -17.383 < 2e-16 

 Heavy rain -0.218 0.077 26960 -2.838 0.005 

 Heavy snow -0.425 0.025 26960 -17.311 < 2e-16 

Max temperature difference from average 0.004 0.001 26960 4.279 0.000 

Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) -0.023 0.013 26960 -1.687 0.092 

 Orange (AQI = 100+) -0.093 0.029 26960 -3.215 0.001 

 Lagged Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) 0.007 0.013 26960 0.588 0.557 

 Orange (AQI = 100+) -0.045 0.028 26960 -1.606 0.108 

Notes: N = 27,015; # groups = 38; log-likelihood = -27,162; between-group variance = 0.99; 

residual variance = 0.43. 
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Table 8-3 

Time Lag Model (Transit volumes), study area 1 

Coefficients Estimate SE t-statistic p-value 

Intercept 8.657 0.029 302.167 <0.001 

Day of week (ref. = Weekday)     

 Saturday -1.224 0.027 -45.456 <0.001 

 Sunday - - - - 

Holiday (ref. = No holiday) - - - - 

Season (ref. = Winter)     

 Spring -0.045 0.033 -1.329 0.184 

 Summer -0.367 0.032 -11.342 <0.001 

 Fall 0.066 0.034 1.947 0.052 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.047 0.029 -1.639 0.102 

 Light snow -0.107 0.041 -2.609 0.009 

 Heavy rain 0.142 0.246 0.575 0.566 

 Heavy snow -0.127 0.064 -1.988 0.047 

Max temperature difference from average -0.002 0.002 -0.720 0.472 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.019 0.041 -0.464 0.643 

 Orange (AQI = 100+) -0.037 0.078 -0.469 0.639 

Lagged air quality index (ref. = Green)      

 Yellow (AQI = 50–99) 0.035 0.041 0.863 0.388 

 Orange (AQI = 100+) -0.076 0.077 -0.990 0.323 

Notes: N = 580; adjusted R-squared = 0.802. 
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Table 8-4 

 

Time Lag Model (Motor volumes), study area 2 

 
Coefficients Estimate SE df t-statistic p-value 

Intercept 10.690 0.185 33 57.688 <0.001 

Day of week (ref. = Weekday)      

 Saturday -0.130 0.004 22910 -29.363 <0.001 

 Sunday -0.441 0.004 22910 -98.645 <0.001 

Holiday (ref. = No holiday) -0.257 0.009 22910 -29.632 <0.001 

Season (ref. = Winter)      

 Spring 0.075 0.005 22910 16.660 <0.001 

 Summer 0.129 0.005 22910 28.231 <0.001 

 Fall 0.069 0.004 22910 15.528 <0.001 

Precipitation (ref. = No rain / no snow)      

 Light rain -0.018 0.004 22910 -4.480 <0.001 

 Light snow -0.070 0.007 22910 -10.077 <0.001 

 Heavy rain -0.226 0.034 22910 -6.613 <0.001 

 Heavy snow -0.165 0.010 22910 -16.668 <0.001 

Max temperature difference from average -0.001 0.000 22910 -3.586 <0.001 

Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) 0.016 0.005 22910 2.853 0.004 

 Orange (AQI = 100+) -0.049 0.020 22910 -2.516 0.012 

Lagged Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) -0.008 0.005 22910 -1.414 0.157 

 Orange (AQI = 100+) -0.056 0.020 22910 -2.844 0.004 

Notes: N = 22,955 # groups = 34; log-likelihood = 980.3; between-group variance = 1.16; residual 

variance = 0.052.  
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Table 8-5 

 

Time Lag Model (Pedestrian volumes), study area 2 

 
Coefficients Estimate SE df t-statistic p-value 

Intercept 4.906 0.039 869 125.315 <0.001 

Day of week (ref. = Weekday)      

 Saturday -0.354 0.002 626900 -194.694 <0.001 

 Sunday -0.809 0.002 626900 -444.988 <0.001 

Holiday (ref. = No holiday) -0.499 0.004 626900 -140.421 <0.001 

Season (ref. = Winter)      

 Spring 0.275 0.002 626900 146.225 <0.001 

 Summer 0.280 0.002 626900 151.643 <0.001 

 Fall 0.273 0.002 626900 147.117 <0.001 

Precipitation (ref. = No rain / no snow)      

 Light rain -0.062 0.002 626900 -36.407 <0.000 

 Light snow -0.277 0.003 626900 -93.583 <0.001 

 Heavy rain -0.088 0.018 626900 -4.943 0.004 

 Heavy snow -0.484 0.004 626900 -114.768 <0.001 

Max temperature difference from average 0.004 0.000 627000 46.719 <0.001 

Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) -0.058 0.002 626900 -30.295 <0.001 

 Orange (AQI = 100+) -0.061 0.008 626900 -7.590 <0.001 

 Lagged air quality index (ref. = Green)      

 Yellow (AQI = 50–99) 0.004 0.002 626900 2.203 0.028 

 Orange (AQI = 100+) -0.007 0.008 626900 -0.835 0.404 

Notes: N = 627,816; # groups = 868; log-likelihood = -450,426; between-group variance = 1.32 

residual variance = 0.24.  
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Table 8-6 

Time Lag Model (UTA Trax), study area 2 
Coefficients Estimate SE t-statistic p-value 

Intercept 10.905 0.033 329.107 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.475 0.037 -12.755 < 0.001 

 Sunday -1.090 0.037 -29.301 < 0.001 

Holiday (ref. = No holiday) -0.397 0.091 -4.388 0.000 

Season (ref. = Winter)     

 Spring 0.015 0.039 0.392 0.695 

 Summer -0.148 0.039 -3.823 0.001 

 Fall 0.068 0.039 1.743 0.492 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.038 0.036 -1.033 0.302 

 Light snow 0.001 0.056 0.017 0.986 

 Heavy rain - -   

 Heavy snow -0.106 0.092 -1.155 0.248 

Max temperature difference from average 0.002 0.002 1.214 0.225 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.070 0.050 1.409 0.159 

 Orange (AQI = 100+) -0.049 0.206 -0.236 0.814 

Lagged air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.023 0.050 0.457 0.648 

 Orange (AQI = 100+) -0.078 0.205 -0.383 0.702 

Notes: N = 706; adjusted R-squared = 0.575.  

 

Table 8-7 

Time Lag Model (UTA Frontrunner), study area 2 
Coefficients Estimate SE t-statistic p-value 

Intercept 9.809 0.021 478.168 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.851 0.022 -38.937 < 0.001 

 Sunday -2.020 0.202 -9.996 < 0.001 

Holiday (ref. = No holiday) -0.926 0.049 -18.971 0.000 

Season (ref. = Winter)     

 Spring -0.026 0.025 -1.053 0.293 

 Summer -0.048 0.024 -1.997 0.046 

 Fall 0.129 0.025 5.268 0.000 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.027 0.022 -1.200 0.231 

 Light snow 0.046 0.036 1.287 0.199 

 Heavy rain - -   

 Heavy snow -0.165 0.060 -2.735 0.006 

Max temperature difference from average 0.001 0.001 0.527 0.598 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.035 0.031 1.126 0.261 

 Orange (AQI = 100+) -0.053 0.122 -0.433 0.665 

Lagged air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.003 0.031 0.104 0.917 

 Orange (AQI = 100+) 0.071 0.119 0.593 0.553 

Notes: N = 620; adjusted R-squared = 0.759.  
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B. Spatial Filters 

 

Table 8-8 

 

Study Area 1: Ped Volumes Random Intercept Model with Spatial Filters 

 
Coefficients Estimate SE df t-statistic p-value 

Intercept 4.989 0.162 37.310 30.738 <0.001 

Day of week (ref. = Weekday)      

 Saturday -0.357 0.012 27000 -30.403 <0.001 

 Sunday -1.008 0.012 27000 -86.497 <0.001 

Holiday (ref. = No holiday) -0.674 0.023 27000 -29.905 <0.001 

Season (ref. = Winter)      

 Spring 0.380 0.013 27000 29.004 <0.001 

 Summer 0.483 0.013 27000 38.158 <0.001 

 Fall 0.473 0.013 27000 36.371 <0.001 

Precipitation (ref. = No rain / no snow)      

 Light rain -0.083 0.012 27000 -7.150 0.000 

 Light snow -0.282 0.016 27000 -17.405 <0.001 

 Heavy rain -0.220 0.076 27000 -2.876 0.004 

 Heavy snow -0.421 0.024 27000 -17.197 <0.001 

Max temperature difference from average 0.004 0.001 27000 4.335 <0.001 

Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) -0.023 0.013 27000 -1.691 0.091 

 Orange (AQI = 100+) -0.093 0.029 27000 -3.204 0.001 

Spatial Filter (E12) -3.213 0.859 36 -3.471 0.001 

Notes: N = 27,053; # groups = 38; log-likelihood = -27,179; between-group variance = 0.737; 

residual variance = 0.43. 
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Table 8-9 

 

Study Area 1: Ped Volumes Random Intercept and Random Slope Model with Spatial Filters 

 
Coefficients Estimate SE df t-statistic p-value 

Intercept 0.069 1.229 31.590 0.056 0.956 

Day of week (ref. = Weekday)      

 Saturday -0.357 0.012 26960 -30.448 <0.001 

 Sunday -1.008 0.012 26960 -86.620 <0.001 

Holiday (ref. = No holiday) -0.674 0.022 26960 -29.947 <0.001 

Season (ref. = Winter)      

 Spring 0.380 0.013 26960 29.044 <0.001 

 Summer 0.483 0.013 26960 38.221 <0.001 

 Fall 0.473 0.013 26960 36.427 <0.001 

Precipitation (ref. = No rain / no snow)      

 Light rain -0.083 0.012 26960 -7.166 <0.001 

 Light snow -0.282 0.016 26960 -17.433 <0.001 

 Heavy rain -0.220 0.076 26960 -2.881 0.004 

 Heavy snow -0.421 0.024 26960 -17.211 <0.001 

Max temperature difference from average 0.004 0.001 26960 4.348 <0.001 

Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) 0.227 0.108 44.400 2.106 0.040 

 Orange (AQI = 100+) 0.005 0.247 41.080 0.022 0.984 

Built and social environment variables      

Percentage of commercial parcels 0.005 0.005 30 1.027 0.313 

Household income (median, $1,000)   0.031 0.014 30 2.169 0.038 

Population density (1,000 people/mi2) 0.310 0.064 30 4.861 0.000 

Vehicle ownership (mean) 0.705 0.338 30 2.084 0.046 

% 4-way intersections -0.001 0.005 30 -0.225 0.824 

Number of transit stops 0.107 0.029 30 3.696 0.001 

E12 -2.541 0.534 30 -4.727 <0.001 

Cross-level interactions      

Yellow AQI with % 4-way intersections 0.000 0.001 44.280 0.292 0.772 

Orange AQI with % 4-way intersections 0.005 0.002 40.970 2.737 0.009 

Yellow AQI with Vehicle ownership -0.161 0.055 44.410 -2.966 0.005 

Orange AQI with Vehicle ownership -0.200 0.125 41.430 -1.597 0.118 

Notes: N = 27,053; # groups = 38; log-likelihood = -27,163; between-group variance = 0.267; 

residual variance = 0.43; random coefficient variance for yellow AQI = 0.003; random coefficient 

variance for orange AQI = 0.020.  
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Table 8-10 

 

Study Area 2: Motor Volumes Random Intercept Model with Spatial Filters 

 
Coefficients Estimate SE df t-statistic p-value 

Intercept 10.680 0.172 32 62.220 <0.001 

Day of week (ref. = Weekday)      

 Saturday -0.130 0.004 22950 -29.298 <0.001 

 Sunday -0.442 0.004 22950 -99.293 <0.001 

Holiday (ref. = No holiday) -0.266 0.008 22950 -31.323 <0.001 

Season (ref. = Winter)      

 Spring 0.077 0.004 22950 17.234 <0.001 

 Summer 0.131 0.005 22950 28.647 <0.001 

 Fall 0.071 0.004 22950 16.018 <0.001 

Precipitation (ref. = No rain / no snow)      

 Light rain -0.019 0.004 22950 -4.610 0.014 

 Light snow -0.070 0.007 22950 -10.030 <0.001 

 Heavy rain -0.226 0.034 22950 -6.600 <0.001 

 Heavy snow -0.164 0.010 22950 -16.551 <0.001 

Max temperature difference from average -0.001 0.000 22950 -3.868 <0.001 

Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) 0.009 0.005 22950 1.858 0.063 

 Orange (AQI = 100+) -0.068 0.019 22950 -3.652 <0.001 

Spatial Filter (E11)  -2.533 1.001 32 -2.53 0.017 

Notes: N = 23,001 # groups = 34; log-likelihood = 965; between-group variance = 1.001; residual 

variance = 0.052.  
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Table 8-11 

 

Study Area 2: Motor Volumes Random Intercept and Random Slope Model with Spatial 

Filters 

 
Coefficients Estimate SE df t-statistic p-value 

Intercept 13.690 1.050 22 13.037 <0.001 

Day of week (ref. = Weekday)      

 Saturday -0.156 0.004 20940 -34.736 <0.001 

 Sunday -0.473 0.005 20970 -104.792 <0.001 

Holiday (ref. = No holiday) -0.281 0.009 20980 -32.727 <0.001 

Season (ref. = Winter)      

 Spring 0.074 0.005 20940 16.323 <0.001 

 Summer 0.112 0.005 20760 0.112 <0.001 

 Fall 0.067 0.005 20880 14.781 <0.001 

Precipitation (ref. = No rain / no snow)      

 Light rain -0.015 0.004 20990 -3.701 <0.001 

 Light snow -0.065 0.007 20980 -9.206 <0.001 

 Heavy rain -0.245 0.037 20980 -6.548 <0.001 

 Heavy snow -0.157 0.010 20980 -15.669 <0.001 

Max temperature difference from average -0.001 0.000 20980 -3.213 <0.001 

Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) -0.053 0.019 24 -2.833 0.009 

 Orange (AQI = 100+) -0.178 0.078 46 -2.282 0.027 

Spatial Filter (E11)  -1.834 1.025 21 -1.790 0.088 

Built and social environment variables      

Gross residential density -1.004 0.309 21 -3.250 0.004 

Household income (median, $1,000)   -0.013 0.008 21 -1.765 0.092 

Jobs per household -0.123 0.043 21 -2.873 0.009 

Percent of zero car households -6.460 7.649 21 -0.845 0.408 

Distance from population-weighted 

centroid to transit stop (m) -0.003 0.001 21 -3.355 0.003 

Jobs within 45 minutes auto travel time, 

network travel time weighted 0.000 0.000 21 3.287 0.004 

Number of schools 0.182 0.064 21 2.862 0.009 

Cross-level interactions      

Yellow AQI with median income 0.0004 0.000 18 2.370 0.029 

Orange AQI with median income 0.003 0.001 51 3.244 0.002 

Notes: N = 21,040; # groups = 31; log-likelihood = 1497.8, between-group variance = 0.62; residual 

variance = 0.049; random coefficient variance for yellow AQI = 0.0001; random coefficient variance 

for orange AQI = 0.001.  
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Table 8-12 

 

Study Area 2: Ped Volumes Random Intercept Model with Spatial Filters 

 
Coefficients Estimate SE df t-statistic p-value 

Intercept 4.464 0.043 1271 103.963 <0.001 

Day of week (ref. = Weekday)      

 Saturday -0.354 0.002 627900 -194.856 <0.001 

 Sunday -0.809 0.002 627900 -445.482 <0.001 

Holiday (ref. = No holiday) -0.499 0.004 627900 -140.556 <0.001 

Season (ref. = Winter)      

 Spring 0.275 0.002 627900 146.318 <0.001 

 Summer 0.280 0.002 627900 151.760 <0.001 

 Fall 0.273 0.002 627900 147.231 <0.001 

Precipitation (ref. = No rain / no snow)   630100   

 Light rain -0.062 0.002 627900 -36.456 <0.000 

 Light snow -0.277 0.003 627900 -93.689 <0.001 

 Heavy rain -0.088 0.018 627900 -4.947 0.004 

 Heavy snow -0.484 0.004 627900 -114.899 <0.001 

Max temperature difference from average 0.004 0.000 628000 46.760 <0.001 

Spatial Filter (E8)  -2.816 1.149 866 -2.450 0.015 

Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) -0.058 0.002 628000 -30.351 <0.001 

 Orange (AQI = 100+) -0.061 0.008 627900 -7.604 <0.001 

Notes: N = 628,826; # groups = 868; log-likelihood = -451,084; between-group variance = 1.32 

residual variance = 0.24.  
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Table 8-13 

 

Study Area 2: Ped Volumes Random Intercept and Random Slope Model with Spatial Filters 

 
Coefficients Estimate SE df t-statistic p-value 

Intercept 4.184 0.221 832 18.965 <0.001 

Day of week (ref. = Weekday)      

 Saturday -0.358 0.002 607600 -196.364 <0.001 

 Sunday -0.810 0.002 607000 -445.707 <0.001 

Holiday (ref. = No holiday) -0.496 0.004 607400 -139.452 <0.001 

Season (ref. = Winter)      

 Spring 0.274 0.002 607200 145.501 <0.001 

 Summer 0.289 0.002 605300 154.943 <0.001 

 Fall 0.266 0.002 599100 142.954 <0.001 

Precipitation (ref. = No rain / no snow)      

 Light rain -0.059 0.002 607400 -34.350 <0.001 

 Light snow -0.270 0.003 607600 -91.325 <0.001 

 Heavy rain -0.108 0.018 607200 -6.012 0.004 

 Heavy snow -0.480 0.004 607600 -114.117 <0.001 

Max temperature difference from average 0.004 0.000 607900 45.048 <0.001 

Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) -0.007 0.015 879 -0.441 0.659 

 Orange (AQI = 100+) 0.070 0.038 622 1.838 0.067 

Spatial Filter (E8)  -0.527 0.827 828 -0.637 0.524 

Built and social environment variables      

Gross employment density (jobs/acre) 0.031 0.004 829 7.206 <0.001 

Household income (median, $1,000)   -0.008 0.001 831 -5.541 <0.001 

Jobs per household -0.009 0.004 829 -2.428 0.015 

Percent of zero car households 2.275 0.587 833 3.879 <0.001 

Total road network density 0.032 0.008 828 4.202 <0.001 

Jobs within 45 minutes auto travel time 0.000 0.000 828 -1.738 0.083 

Park area 0.001 0.001 826 0.937 0.349 

Number of schools 0.085 0.038 828 2.24 0.025 

Transit bus stops 0.077 0.008 828 9.208 < 2e-16 

Near a university 0.845 0.131 830 6.458 0.000 

University break -0.480 0.006 607800 -86.452 < 2e-16 

Cross-level interactions      

Yellow AQI with median income 0.0005 0.000 865 -2.649 0.008 

Orange AQI with median income -0.002 0.000 685 -3.963 <0.001 

Yellow AQI with % zero-car household -0.199 0.056 855 -3.518 <0.001 

Orange AQI with % zero-car household -0.131 0.150 876 -0.878 0.380 

Notes: N = 609,255; # groups = 841; log-likelihood = -428,155; between-group variance = 0.622; 

residual variance = 0.235; random coefficient variance for yellow AQI = 0.008; random coefficient 

variance for orange AQI = 0.017.  
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C. Seemingly Unrelated Regression (SURs)  

 

Table 8-14 

Salt Lake City (Downtown): Motor Vehicle Volumes General Linear Model 
Coefficients Estimate SE t-statistic p-value 

Intercept 10.614 0.008 1264.317 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.284 0.010 -28.790 < 0.001 

 Sunday -0.539 0.010 -54.952 < 0.001 

Holiday (ref. = No holiday) -0.437 0.019 -23.212 < 0.001 

Season (ref. = Winter)     

 Spring 0.079 0.010 7.944 < 0.001 

 Summer 0.060 0.010 5.918 < 0.001 

 Fall 0.060 0.010 6.054 < 0.001 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.018 0.009 -1.931 0.054 

 Light snow -0.060 0.014 -4.141 0.000 

 Heavy rain - -   

 Heavy snow -0.228 0.023 -9.793 < 0.001 

Max temperature difference from average 0.001 0.000 1.738 0.083 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.002 0.010 -0.195 0.846 

 Orange (AQI = 100+) -0.052 0.052 -1.002 0.317 

Notes: N = 700; adjusted R-squared = 0.856.  

 

Table 8-15  

Salt Lake City (Downtown): Pedestrian Vehicle Volumes General Linear Model 
Coefficients Estimate SE t-statistic p-value 

Intercept 6.638 0.017 386.895 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.267 0.020 -13.258 < 0.001 

 Sunday -0.702 0.020 -35.037 < 0.001 

Holiday (ref. = No holiday) -0.553 0.038 -14.394 < 0.001 

Season (ref. = Winter)     

 Spring 0.160 0.020 7.842 < 0.001 

 Summer 0.119 0.021 5.713 < 0.001 

 Fall 0.148 0.020 7.288 < 0.001 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.066 0.019 -3.427 0.001 

 Light snow -0.184 0.029 -6.268 0.000 

 Heavy rain - -   

 Heavy snow -0.486 0.048 -10.204 < 0.001 

Max temperature difference from average 0.004 0.001 4.110 0.000 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.109 0.021 -5.178 0.000 

 Orange (AQI = 100+) -0.061 0.106 -0.577 0.564 

Notes: N = 700; adjusted R-squared = 0.723.  
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Table 8-16 

Salt Lake City (Downtown): Transit Ridership General Linear Model 
Coefficients Estimate SE t-statistic p-value 

Intercept 10.886 0.109 99.442 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.438 0.129 -3.407 < 0.001 

 Sunday -1.037 0.128 -8.112 < 0.001 

Holiday (ref. = No holiday) -4.219 0.245 -17.203 < 0.001 

Season (ref. = Winter)     

 Spring 0.001 0.130 0.010 0.992 

 Summer -0.155 0.133 -1.167 0.243 

 Fall 0.181 0.130 1.398 0.162 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.188 0.122 -1.543 0.123 

 Light snow -0.033 0.187 -0.177 0.860 

 Heavy rain - -   

 Heavy snow -0.698 0.304 -2.300 0.022 

Max temperature difference from average 0.008 0.005 1.536 0.125 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.071 0.134 -0.530 0.597 

 Orange (AQI = 100+) 0.062 0.679 0.091 0.927 

Notes: N = 700; adjusted R-squared = 0.343.  
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Table 8-17 

 

Salt Lake City (Downtown): Seemingly Unrelated Regression (SURs) for Motor, Pedestrian, 

and Transit Volumes 

 
Coefficients Estimate SE t-statistic p-value 

Motor      

Intercept 10.614 0.008 1264.317 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.284 0.010 -28.790 < 0.001 

 Sunday -0.539 0.010 -54.952 < 0.001 

Holiday (ref. = No holiday) -0.437 0.019 -23.212 < 0.001 

Season (ref. = Winter)     

 Spring 0.079 0.010 7.944 < 0.001 

 Summer 0.060 0.010 5.918 < 0.001 

 Fall 0.060 0.010 6.054 < 0.001 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.018 0.009 -1.931 0.054 

 Light snow -0.060 0.014 -4.141 0.000 

 Heavy rain - -   

 Heavy snow -0.228 0.023 -9.793 < 0.001 

Max temperature difference from average 0.001 0.000 1.738 0.083 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.002 0.010 -0.195 0.846 

 Orange (AQI = 100+) -0.052 0.052 -1.002 0.317 

Pedestrian     

Intercept 6.638 0.017 386.895 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.267 0.020 -13.258 < 0.001 

 Sunday -0.702 0.020 -35.037 < 0.001 

Holiday (ref. = No holiday) -0.553 0.038 -14.394 < 0.001 

Season (ref. = Winter)     

 Spring 0.160 0.020 7.842 < 0.001 

 Summer 0.119 0.021 5.713 < 0.001 

 Fall 0.148 0.020 7.288 < 0.001 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.066 0.019 -3.427 0.001 

 Light snow -0.184 0.029 -6.268 0.000 

 Heavy rain - -   

 Heavy snow -0.486 0.048 -10.204 < 0.001 

Max temperature difference from average 0.004 0.001 4.110 0.000 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.109 0.021 -5.178 0.000 

 Orange (AQI = 100+) -0.061 0.106 -0.577 0.564 

Transit     

Intercept 10.886 0.109 99.442 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.438 0.129 -3.407 < 0.001 

 Sunday -1.037 0.128 -8.112 < 0.001 

Holiday (ref. = No holiday) -4.219 0.245 -17.203 < 0.001 

Season (ref. = Winter)     

 Spring 0.001 0.130 0.010 0.992 

 Summer -0.155 0.133 -1.167 0.243 

 Fall 0.181 0.130 1.398 0.162 

Precipitation (ref. = No rain / no snow)     
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 Light rain -0.188 0.122 -1.543 0.123 

 Light snow -0.033 0.187 -0.177 0.860 

 Heavy rain - -   

 Heavy snow -0.698 0.304 -2.300 0.022 

Max temperature difference from average 0.008 0.005 1.536 0.125 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.071 0.134 -0.530 0.597 

 Orange (AQI = 100+) 0.062 0.679 0.091 0.927 

 

Table 8-18 

 

Correlation of Residuals 

 
 Motor Ped Transit 

Motor 1.000 0.553 0.477 

Ped 0.553 1.000 0.253 

Transit 0.477 0.253 1.000 

 

Table 8-19 

 

Model Metrics for SUR Salt Lake City (Downtown) 

 
 

N DF SSR MSE RMSE R2 Adj R2 

Motor 700 687 5.393 0.007 0.088 0.855 0.853 

Ped 700 687 22.529 0.032 0.181 0.727 0.723 

Transit 700 687 917.085 1.334 1.155 0.354 0.343 
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Table 8-20  

 

Salt Lake County: Motor Vehicle Volumes General Linear Model 

 
Coefficients Estimate SE t-statistic p-value 

Intercept 11.453 0.007 1628.333 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.175 0.008 -21.215 < 0.001 

 Sunday -0.513 0.008 -62.661 < 0.001 

Holiday (ref. = No holiday) -0.279 0.016 -17.703 < 0.001 

Season (ref. = Winter)     

 Spring 0.046 0.008 5.508 < 0.001 

 Summer 0.070 0.009 8.189 < 0.001 

 Fall 0.061 0.008 7.338 < 0.001 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.016 0.008 -2.005 0.045 

 Light snow -0.074 0.012 -6.138 0.000 

 Heavy rain - -   

 Heavy snow -0.229 0.020 -11.746 < 0.001 

Max temperature difference from average < 0.001 0.000 0.982 0.326 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.006 0.009 0.666 0.506 

 Orange (AQI = 100+) 0.021 0.044 0.477 0.634 

Notes: N = 701 ; adjusted R-squared = 0.868.  

 

 

 

Table 8-21  

 

Salt Lake County: Pedestrian Volumes General Linear Model 

 
Coefficients Estimate SE t-statistic  p-value 

Intercept 5.170 0.015 338.232  < 0.001 

Day of week (ref. = Weekday)      

 Saturday -0.357 0.018 -19.882  < 0.001 

 Sunday -0.686 0.018 -38.595  < 0.001 

Holiday (ref. = No holiday) -0.415 0.034 -12.114  < 0.001 

Season (ref. = Winter)      

 Spring 0.182 0.018 10.048  < 0.001 

 Summer 0.116 0.019 6.286  < 0.001 

 Fall 0.206 0.018 11.409  < 0.001 

Precipitation (ref. = No rain / no snow)      

 Light rain -0.061 0.017 -3.581  0.001 

 Light snow -0.203 0.026 -7.743  0.000 

 Heavy rain - -    

 Heavy snow -0.498 0.042 -11.755  < 0.001 

Max temperature difference from average 0.004 0.001 4.597  0.000 

Air quality index (ref. = Green)      

 Yellow (AQI = 50–99) -0.045 0.019 -2.432  0.015 

 Orange (AQI = 100+) 0.040 0.095 0.417  0.677 

 Notes: N = 701; adjusted R-squared = 0.767.  
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Table 8-22 

 

Salt Lake County: Transit Volumes General Linear Model 

 
Coefficients Estimate SE t-statistic p-value 

Intercept 10.886 0.109 99.442 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.438 0.129 -3.407 < 0.001 

 Sunday -1.037 0.128 -8.112 < 0.001 

Holiday (ref. = No holiday) -4.219 0.245 -17.203 < 0.001 

Season (ref. = Winter)     

 Spring 0.001 0.130 0.010 0.992 

 Summer -0.155 0.133 -1.167 0.243 

 Fall 0.181 0.130 1.398 0.162 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.188 0.122 -1.543 0.123 

 Light snow -0.033 0.187 -0.177 0.860 

 Heavy rain - -   

 Heavy snow -0.698 0.304 -2.300 0.022 

Max temperature difference from average 0.008 0.005 1.536 0.125 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.071 0.134 -0.530 0.597 

 Orange (AQI = 100+) 0.062 0.679 0.091 0.927 

Notes: N = 701; adjusted R-squared = 0.343.  
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Table 8-23 

 

Salt Lake County: Seemingly Unrelated Regression (SURs) for Motor, Pedestrian, and Transit 

Volumes 

 
Coefficients Estimate SE t-statistic p-value 

Motor      

Intercept 11.453 0.007 1628.333 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.175 0.008 -21.215 < 0.001 

 Sunday -0.513 0.008 -62.661 < 0.001 

Holiday (ref. = No holiday) -0.279 0.016 -17.703 < 0.001 

Season (ref. = Winter)     

 Spring 0.046 0.008 5.508 < 0.001 

 Summer 0.070 0.009 8.189 < 0.001 

 Fall 0.061 0.008 7.338 < 0.001 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.016 0.008 -2.005 0.045 

 Light snow -0.074 0.012 -6.138 0.000 

 Heavy rain - -   

 Heavy snow -0.229 0.020 -11.746 < 0.001 

Max temperature difference from average < 0.001 0.000 0.982 0.326 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.006 0.009 0.666 0.506 

 Orange (AQI = 100+) 0.021 0.044 0.477 0.634 

Pedestrian     

Intercept 5.170 0.015 338.232 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.357 0.018 -19.882 < 0.001 

 Sunday -0.686 0.018 -38.595 < 0.001 

Holiday (ref. = No holiday) -0.415 0.034 -12.114 < 0.001 

Season (ref. = Winter)     

 Spring 0.182 0.018 10.048 < 0.001 

 Summer 0.116 0.019 6.286 < 0.001 

 Fall 0.206 0.018 11.409 < 0.001 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.061 0.017 -3.581 0.001 

 Light snow -0.203 0.026 -7.743 0.000 

 Heavy rain - -   

 Heavy snow -0.498 0.042 -11.755 < 0.001 

Max temperature difference from average 0.004 0.001 4.597 0.000 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.045 0.019 -2.432 0.015 

 Orange (AQI = 100+) 0.040 0.095 0.417 0.677 

Transit     

Intercept 10.886 0.109 99.442 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.438 0.129 -3.407 < 0.001 

 Sunday -1.037 0.128 -8.112 < 0.001 

Holiday (ref. = No holiday) -4.219 0.245 -17.203 < 0.001 

Season (ref. = Winter)     

 Spring 0.001 0.130 0.010 0.992 

 Summer -0.155 0.133 -1.167 0.243 

 Fall 0.181 0.130 1.398 0.162 

Precipitation (ref. = No rain / no snow)     
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 Light rain -0.188 0.122 -1.543 0.123 

 Light snow -0.033 0.187 -0.177 0.860 

 Heavy rain - -   

 Heavy snow -0.698 0.304 -2.300 0.022 

Max temperature difference from average 0.008 0.005 1.536 0.125 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.071 0.134 -0.530 0.597 

 Orange (AQI = 100+) 0.062 0.679 0.091 0.927 

 

Table 8-24 

 

Correlation of Residuals: SUR Salt Lake County 

 
 Motor Ped Transit 

Motor 1.000 0.405 0.353 

Ped 0.405 1.000 0.248 

Transit 0.353 0.248 1.000 

 

 

Table 8-25 

 

Model Metrics for SUR Salt Lake County 

 
 

N DF SSR MSE RMSE R2 Adj R2 

Motor 701 688 3.792 0.006 0.074 0.871 0.869 

Ped 701 688 17.910 0.026 0.161 0.771 0.767 

Transit 701 688 917.129 1.333 1.155 0.355 0.344 
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Table 8-26  

 

Cache County: Motor Volumes General Linear Model 

 
Coefficients Estimate SE t-statistic p-value 

Intercept 9.445 0.011 837.821 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.069 0.012 -5.817 < 0.001 

 Sunday -0.553 0.012 -46.357 < 0.001 

Holiday (ref. = No holiday) -0.232 0.023 -10.253 < 0.001 

Season (ref. = Winter)     

 Spring 0.091 0.013 6.923 < 0.001 

 Summer 0.115 0.013 8.834 < 0.001 

 Fall 0.100 0.013 7.656 < 0.001 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.027 0.012 -2.242 0.025 

 Light snow -0.058 0.016 -3.615 0.000 

 Heavy rain -0.033 0.076 -0.432 0.666 

 Heavy snow -0.168 0.024 -6.858 0.000 

Max temperature difference from average -0.001 0.001 -0.833 0.405 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.023 0.013 -1.711 0.088 

 Orange (AQI = 100+) 0.058 0.028 2.065 0.039 

Notes: N = 701; adjusted R-squared = 0.78.  

 

Table 8-27 

 

Cache County: Pedestrian Volumes General Linear Model 

 
Coefficients Estimate SE t-statistic p-value 

Intercept 5.871 0.043 137.275 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.613 0.045 -13.575 < 0.001 

 Sunday -1.296 0.045 -28.655 < 0.001 

Holiday (ref. = No holiday) -1.013 0.086 -11.797 < 0.001 

Season (ref. = Winter)     

 Spring 0.106 0.050 2.131 0.033 

 Summer 0.029 0.049 0.579 0.563 

 Fall 0.458 0.049 9.280 < 0.001 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.046 0.045 -1.033 0.302 

 Light snow -0.321 0.061 -5.238 0.000 

 Heavy rain -0.008 0.290 -0.029 0.977 

 Heavy snow -0.327 0.093 -3.525 < 0.001 

Max temperature difference from average 0.000 0.003 -0.119 0.905 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.079 0.051 -1.556 0.120 

 Orange (AQI = 100+) -0.213 0.107 -1.984 0.048 

Notes: N = 694; adjusted R-squared = 0.63.  
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Table 8-28  

 

Cache County: Transit Volumes General Linear Model 

 
Coefficients Estimate SE t-statistic p-value 

Intercept 8.403 0.115 73.126 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -1.028 0.122 -8.411 < 0.001 

 Sunday -8.351 0.122 -68.227 < 0.001 

Holiday (ref. = No holiday) - - - - 

Season (ref. = Winter)     

 Spring 0.085 0.135 0.629 0.530 

 Summer -0.238 0.134 -1.776 0.076 

 Fall 0.062 0.134 0.464 0.643 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.095 0.122 -0.777 0.438 

 Light snow -0.261 0.167 -1.565 0.118 

 Heavy rain 0.043 0.788 0.055 0.956 

 Heavy snow -0.435 0.252 -1.729 0.084 

Max temperature difference from average -0.006 0.009 -0.701 0.484 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.061 0.138 0.443 0.658 

 Orange (AQI = 100+) 0.167 0.291 0.572 0.567 

Notes: N = 694; adjusted R-squared = 0.87.  
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Table 8-29 

 

Cache County: Seemingly Unrelated Regression (SURs) for Motor, Pedestrian, and Transit 

Volumes 

 
Coefficients Estimate SE t-statistic p-value 

Motor      

Intercept 9.439 0.011 837.644 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.065 0.012 -5.468 < 0.001 

 Sunday -0.548 0.012 -46.009 < 0.001 

Holiday (ref. = No holiday) -0.148 0.022 -6.664 < 0.001 

Season (ref. = Winter)     

 Spring 0.095 0.013 7.239 < 0.001 

 Summer 0.117 0.013 9.035 < 0.001 

 Fall 0.101 0.013 7.765 < 0.001 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.026 0.012 -2.167 0.031 

 Light snow -0.059 0.016 -3.627 0.000 

 Heavy rain -0.032 0.076 -0.412 0.680 

 Heavy snow -0.172 0.024 -7.049 0.000 

Max temperature difference from average -0.001 0.001 -0.842 0.400 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.022 0.013 -1.609 0.108 

 Orange (AQI = 100+) 0.063 0.028 2.241 0.025 

Pedestrian     

Intercept 5.832 0.043 136.525 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -0.587 0.045 -13.018 < 0.001 

 Sunday -1.270 0.045 -28.097 < 0.001 

Holiday (ref. = No holiday) -0.499 0.081 -6.136 < 0.001 

Season (ref. = Winter)     

 Spring 0.131 0.050 2.638 0.009 

 Summer 0.044 0.049 0.901 0.368 

 Fall 0.467 0.049 9.456 < 0.001 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.041 0.045 -0.912 0.362 

 Light snow -0.322 0.061 -5.258 0.000 

 Heavy rain 0.001 0.290 0.003 0.998 

 Heavy snow -0.355 0.093 -3.832 0.000 

Max temperature difference from average 0.000 0.003 -0.134 0.894 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) -0.071 0.051 -1.393 0.164 

 Orange (AQI = 100+) -0.183 0.107 -1.702 0.089 

Transit     

Intercept 8.403 0.115 73.126 < 0.001 

Day of week (ref. = Weekday)     

 Saturday -1.028 0.122 -8.411 < 0.001 

 Sunday -8.351 0.122 -68.227 < 0.001 

Holiday (ref. = No holiday) - - - - 

Season (ref. = Winter)     

 Spring 0.085 0.135 0.629 0.530 

 Summer -0.238 0.134 -1.776 0.076 
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 Fall 0.062 0.134 0.464 0.643 

Precipitation (ref. = No rain / no snow)     

 Light rain -0.095 0.122 -0.777 0.438 

 Light snow -0.261 0.167 -1.565 0.118 

 Heavy rain 0.043 0.788 0.055 0.956 

 Heavy snow -0.435 0.252 -1.729 0.084 

Max temperature difference from average -0.006 0.009 -0.701 0.484 

Air quality index (ref. = Green)     

 Yellow (AQI = 50–99) 0.061 0.138 0.443 0.658 

 Orange (AQI = 100+) 0.167 0.291 0.572 0.567 

 

Table 8-30 

 

Correlation of Residuals: SUR Cache County 

 
 Motor Ped Transit 

Motor 1.000 0.321 0.299 

Ped 0.321 1.000 0.473 

Transit 0.299 0.473 1.000 

 

Table 8-31 

 

Model Metrics: SUR Cache County 

 
 

N DF SSR MSE RMSE R2 Adj R2 

Motor 701 688 3.792 0.006 0.074 0.871 0.869 

Ped 694 680 118.727 0.175 0.418 0.619 0.612 

Transit 694 681 834.881 1.226 1.107 0.874 0.872 
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