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Abstract: Shortly after the COVID-19 pandemic impacted air traffic, industry bodies warned 
of the potential increase in wildlife strike risk. Prior to the pandemic, wildlife strikes were 
already a concern to the industry. We sought to evaluate industry warnings using interrupted 
time series analysis of wildlife strike trends in the United States. Using pre-pandemic wildlife 
strike trends, we compared a forecast of the expected monthly strike rates through the 
COVID-19 impact period (March 2020 to December 2020) to the actual wildlife strike rates 
for the same period. Our results showed an increase in wildlife strike rates in 5 out of the 10 
months analyzed, supporting the need for careful consideration of wildlife strike risk through 
the industry’s recovery.
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The outbreak of the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) and its 
associated disease, COVID-19, had a signifi-
cant impact on aviation globally. As nations 
responded to the health emergency, global air 
traffic was cut. Local lockdowns, border restric-
tions, traveler uncertainty, and economic de-
cline made flight operations either unfeasible or 
uneconomic (Hotle and Mumbower 2021). At 
its worst, U.S. domestic movements were <30% 
of their pre-COVID-19 levels and had only re-
turned to approximately 60% by the end of 2020 
(Airlines for America 2021).

The potential for the air traffic and financial 
downturn to have an impact on wildlife hazard 
management at airports was highlighted in in-
dustry guidance within months of the dramatic 
decline. Both the International Civil Aviation Or-
ganization (ICAO 2020) and the European Union 
Aviation Safety Agency (EASA 2020) identified 
the reduction in air traffic and impact on wildlife 
hazard management resources as having the po-
tential to adversely impact aviation safety. These 
concerns were echoed by industry groups in-
cluding the Flight Safety Foundation (FSF 2020) 
and the Australian Aviation Wildlife Hazard 
Working Group (AAWHG 2020).

Either through an increased presence of wild-
life on quieter airports, an inability of airport 

operators to maintain their wildlife control pro-
grams, or a combination of these (ICAO 2020), 
airport operators were warned the risk of wild-
life strike could increase (EASA 2020). Wildlife 
strikes are collisions between aircraft and wild-
life that are considered a serious concern for the 
aviation industry in both safety and economic 
terms (Metz et al. 2020). Since the early days of 
modern heavier-than-air flight, wildlife strikes, 
often called bird strikes, have resulted in death, 
destruction, damage, and other negative effects 
on flights. As of October 27, 2021, 534 fatalities 
and 618 aircraft hull losses were attributed to 
wildlife strikes (Shaw and Dolbeer 2021). While 
such catastrophic outcomes are rare, relatively 
lower impacts, such as damage and diversions, 
cost the worldwide industry >$1.2 billion USD 
annually (Allan 2000) and the U.S. industry 
$205 million USD in 2019 (Dolbeer et al. 2021).

Given the impact of wildlife strikes on the 
aviation industry and the warnings issued 
by regulators and industry bodies, this study 
sought to confirm if the global disruption 
caused by COVID-19 coincided with an inter-
ruption to the long-term wildlife strike trends 
in the United States. If such an interruption was 
identified, this would validate the concerns 
raised by ICAO and others as well as support 
subsequent research into more specific relation-
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ships between the COVID-19 disruption and 
wildlife strikes.

In the United States, where wildlife strike 
reports have been centrally collated since 
1995, long-term trends show a steady increase 
in reported wildlife strikes through the end of 
2015 (Dolbeer et al. 2018). However, this trend 
is not attributed to an increase in actual wild-
life strikes but to improvements in reporting 
practices, generally, and at airports, in particu-
lar (Dolbeer 2015, Dolbeer et al. 2018). Other 
drivers behind wildlife strike trends include 
successful conservation efforts leading to in-
creases in hazardous bird populations and 
quieter aircraft types that reduce the detection 
and avoidance capability of wildlife (Dolbeer 
et al. 2021). The impact of increasing air traffic 
movements can be removed by using wildlife 
strike rate, typically expressed in the United 
States in terms of strikes per 100,000 aircraft 
movements.

The focus of wildlife strike risk management 
falls on the airport environment as >90% of re-
ported wildlife strikes occur during the phases 
of flight that occur within the vicinity of the air-
port (ICAO 2017, Dolbeer et al. 2021). In addi-
tion to airports being a point of convergence for 
operating aircraft, the airport environment con-
sists of a variety of habitats that are attractive to 
wildlife, as noted by DeVault et al. (2013). 

For these reasons, certificated airports are re-
quired to monitor wildlife hazards and, when a 
hazard is detected, take immediate action. Such 
action may include the development and im-
plementation of a wildlife hazard management 
plan (WHMP; Federal Aviation Administration 
[FAA] 2018). The procedures designed to con-
trol the wildlife hazard are a significant com-
ponent of a WHMP and include designation 
of responsible personnel, ongoing monitoring, 
control measures, and communication proto-
cols. During COVID-19-related lockdowns and 
as a result of the economic situation, there ex-
isted the potential for these procedures to be 
disrupted (EASA 2020, ICAO 2020).

Therefore, we focused our study on the cer-
tificated airport environment due to the poten-
tial for both air traffic reductions and disrupted 
wildlife hazard control measures to have a mea-
surable effect on established wildlife strike re-
porting trends. There was little direct research 
found on the potential relationships at play in 

this scenario. Dolbeer and Begier (2012) found 
no relationship between aircraft movements 
and adverse-effect wildlife strikes. In a similar 
vein, Soldatini et al. (2010), noted that, for some 
species, aircraft and other human disturbances 
may have a negligible effect. The potential rea-
son for this lack of research lies in the apparent 
“unprecedented impact” of COVID-19 on air 
traffic (Airports Council International 2021).

The nature of wildlife strike report trends 
lends itself to the use of time series analysis. 
Where observations of a variable have or can be 
taken sequentially in time, they may be ordered 
by time and subjected to the statistical techniques 
encompassed by time series analysis (Yaffee and 
McGee 2000, Box et al. 2015). The aggregation of 
time-stamped wildlife strike data into monthly 
totals and the subsequent division by monthly 
totals for air traffic movements provides a uni-
variate time series of wildlife strike rate along a 
uniform timeline based on months. 

While aggregating wildlife strike data into 
annual or monthly totals is common in wildlife 
hazard research, a review of wildlife strike lit-
erature identified minimal research using time 
series analysis techniques. Ruhe (2000) used 
time series migration patterns in examining the 
efficacy of bird count practices, and Shwiff and 
Sterner (2002) used time series analysis as part of 
developing a framework for cost-benefit analy-
sis of wildlife hazard management programs. 
Kelly et al. (2000) briefly mentioned time series 
analysis in their paper on weather radar and the 
avian hazard advisory system; however, it was 
only in the context of future research. 

The nature of the social impact brought on by 
the COVID-19 pandemic lends itself to the use 
of interrupted time series analysis techniques. 
This approach has been used in the analysis 
of suicide (Bergmans and Larson 2021, Leske 
et al. 2021), alcohol purchases (Anderson et 
al. 2020), and childhood body mass index in-
creases (Weaver et al. 2021) resulting from CO-
VID-19-related policies and social effects. We 
employed these techniques to identify if the im-
pact of COVID-19 on air traffic and the aviation 
industry in the United States coincides with an 
increased wildlife strike rate.

Methods
We used the Box-Jenkins approach as out-

lined by Yaffee and McGee (2000) and Dimri 
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air traffic movements, and wildlife strike rates. 
The initial identification of the interruption 
was made visually using the air traffic move-
ment time series. Despite the announcement 
of travel restrictions between the United States 
and China in January 2020 (Corkery and Kar-
ni 2020), the total movements for January and 
February 2020 were similar to the totals for the 
same months the previous year. March 2020, 
on the other hand, showed a month-on-month 
decrease where an increase was expected. This 
aligns with broader travel advisories issued 
during that month (FAA 2021b). Therefore, the 
first month of the interrupted time series was 
set at March 2020 (index row 74).

We separated the complete time series into 
the pre-interruption period or historical time 
series (n = 74) and the post-interruption period 
or COVID-19 time series (n = 10). The histori-
cal time series was further divided into a train-
ing time series (n = 59) and a test time series (n 
= 15) for use in verifying the sensitivity of the 
forecasts produced by the time series analysis 
model.

Development of ARIMA model
The Box-Jenkins approach to time series 

analysis is centered around the development of 
an Autoregressive Integrated Moving Average 
(ARIMA) model that approximates the behav-
ior of a known time series and facilitates out-
of-sample forecasting (Yaffee and McGee 2000). 
Using Python programming, the pmdarima.
auto_arima process (Smith 2020) was applied 
to the training time series. This automated pro-
cess identified the optimal model as ARIMA (1, 
0, 0)(1, 1, 0)12, which was confirmed through 
a review of the Akaike Information Criterion 
(AIC) results showing this model achieved the 
lowest valid score (AIC = 269.330). The residu-
als for this model showed a normal distribution 
and no autocorrelation, which supported the 
assumption that the identified model was valid. 

The ARIMA model’s performance was as-
sessed against the test time series with a set of 
goodness of fit measures calculated (Yaffee and 
McGee 2000, Hyndman and Athanasopoulos 
2018). The results showed acceptable perfor-
mance in model fitness for the test subset based 
on the training model forecast (Table 1). Using 
the complete pre-interruption time series, a 
forecast from March 2020 through December 

et al. (2020) combined with a process known 
as interrupted time series analysis to conduct 
our study (McDowall et al. 1980). The approach 
uses a pre-interruption (pre-COVID-19) time 
series model to develop a counterfactual model 
against which post-interruption (post-COV-
ID-19) observations may be compared.

Data sources and preparation
The wildlife strike report data we used for 

this study were sourced from the FAA Wildlife 
Strike Database (FAA 2021a). The wildlife strike 
report sample was limited to the period 2014 to 
2020 (inclusive, n = 100,846) and was not filtered 
for adverse outcome such as negative effect on 
flight, damage, or injury. This would ensure 
that the reported data represented a high pro-
portion of wildlife strike events (Dolbeer 2015, 
Metz et al. 2020) and that sufficient time periods 
would be available for use in the development 
of the time series model.

We downloaded air traffic data from the Bu-
reau of Transportation Statistics (BTS 2021). 
This data consisted of flights undertaken by U.S. 
carriers with revenue >$20 million per year and 
by foreign carriers servicing >10,000 passengers 
per month to and from the United States (BTS 
2021). The data were structured as monthly to-
tals for domestic flights, international flights, 
and total flights. Since wildlife strike rates are 
based on aircraft movements, total movements 
were calculated as the monthly domestic flights 
total multiplied by 2, for each take-off and land-
ing, plus the monthly international flights total, 
for the corresponding take-off or landing occur-
ing within the United States. 

Because the wildlife strike database included 
reports from operators not included in the BTS 
data, airports not located in the United States, 
non-certificated airports in the United States, 
reports not attributable to either, and reports 
of strikes >457.2 m (>1,500 feet) above airport 
elevation, those records that could not be con-
firmed as having occurred at a U.S. certificated 
airport and involving a tracked carrier were ex-
cluded from the time series analysis. 

We applied filters to the FAA Wildlife Strike 
Database to extract the final data to be used in 
the creation of the wildlife strike time series (n = 
35,649). To assist in the visualization and iden-
tification of the air traffic downturn, we created 
monthly time series for wildlife strike numbers, 
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The diagnostic variation between the per-
formance of the test model versus the coun-
terfactual model also supported this conclu-
sion. The optimal ARIMA model performed 
well through the pre-interruption test time 
series with low prediction error and percent-
age prediction error scores, and high levels of 
proportion of variance (R2 = 0.980–0.974; Table 
1). In contrast, the forecast for the interrupted 
period performed markedly poorer. The results 
for Mean Prediction Error and Mean Percent-
age Prediction Error highlighted this variation 
in performance. The model proportion of vari-
ance measures showed a corresponding reduc-
tion with the Amemiya’s adjusted R2 as low as 
0.719. These results supported the conclusion 
that the actual wildlife strike rate during the 
COVID-19 impacted period deviated from the 
pre-interruption trends and forecast.

Discussion
Our analysis showed that the COVID-19 pan-

demic coincided with an adverse deviation in 
the wildlife strike rate within the United States 
through the spring and summer period of 2020. 
The ARIMA-model-based forecast, acting as a 
counterfactual to the hypothesized interrup-
tion that occurred in March 2020, indicated that 
wildlife strike rates from May 2020 onward were 
increasing well above the forecast with monthly 
rates exceeding the 95% confidence interval of 
the model through May to September 2020. 

These results support the emphasis placed 

2020 (inclusive) was produced (n = 10). The 
pmdarima.auto_arima process produced pre-
dicted values as well as lower and upper con-
fidence limits (α = 0.05) for each month in the 
forecast period. 

Results
A visual review of the 3 time series con-

structed from the data showed a clear inter-
ruption to both the wildlife strike numbers and 
air traffic movements beginning in March 2020 
(Figure 1). This interruption affected both the 
time series trend as well as the regular seasonal 
variations. The wildlife strike rate, however, 
appeared to maintain a similar trend and sea-
sonality through the post-interruption period 
when compared to the pre-interruption period 
(Figure 2). The interrupted time series included 
the initial “spring” peak in May 2020 and the 
more pronounced peak from mid-summer 
through mid-fall (July 2020 to October 2020) 
before returning to the winter low season.

However, on closer inspection, the wildlife 
strike rates recorded for May through Sep-
tember (inclusive) exceeded the 95% upper 
confidence level for each month (Table 2). This 
indicated that the wildlife strike rate through 
this period deviated from the pre-interrup-
tion forecast and had increased in real terms 
through spring and summer 2020. These results 
confirmed that, for at least these 5 months, the 
wildlife strike rate was adversely impacted fol-
lowing the COVID-19 pandemic interruption. 

Table 1. Goodness of fit measures for the test and interrupted series 
subsets comparing actual and predicted values of wildlife strike rates in 
the United States from January 2019 to December 2019 and March 2020 to 
December 2020, respectively.

Time series subset
Pre-interruption 
test time series

Interrupted 
time series

Mean Predicted Error 1.24 5.87
Mean Percentage Prediction Error 3.87% 11.76%
Mean Absolute Error 1.80 5.88
Mean Absolute Percentage Error 7.80% 11.83%
Root Mean Square Error 2.40 8.68

R2 0.980 0.812

Adjusted R2 0.978 0.789

Amemiya’s adjusted R2 0.974 0.719
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Figure 1. Time series for wildlife strikes, movements, and wildlife strike rates from January 2014 to 
December 2020 (inclusive) in the United States (data sources: Bureau of Transportation Statistics 
2021, Federal Aviation Administration 2021a).

Figure 2. Comparison of actual and predicted values of wildlife strike rates from March 2020 to  
December 2020 (inclusive) in the United States (data sources: Bureau of Transportation Statistics 
2021, Federal Aviation Administration 2021a).



438 Human–Wildlife Interactions 16(3)

the observed impact is the result of opportu-
nistic adaptations by wildlife at quieter airports 
(AAWHG 2020) or disruption to wildlife con-
trol measures (AAWHG 2020, FSF 2020, ICAO 
2020) is not yet clear. While this study includes 
air traffic movements in its analysis, it is impor-
tant to note that these results make no inference 
on the potential causal nature of having re-
duced traffic at airports, any potential increase 
in wildlife numbers, and subsequent wildlife 
strike rates. As the above guidance material 
notes, any increase in wildlife hazard may re-
sult from either reduced traffic levels, changes 
to wildlife hazard management practices, or 
other ecological or behavior changes.

Further interrupted time series analyses 
could identify the relative impact of traffic lev-
els and wildlife hazard management activities 
on the wildlife strike rate. Data at the airport 
level may show, if sufficient, more direct re-
lationships between traffic levels and wildlife 
strike rate or wildlife control measures and 
wildlife strike rate. While there are data suffi-
ciency limitations in conducting this research, 
this analysis could deepen our understanding 
of the causes behind the wildlife strike rate in-
crease observed here.

Management implications
This research and future research may have 

wider implications than just the impact of CO-

on wildlife hazard management through the 
COVID-19 pandemic by international, nation-
al, and industry bodies (AAWHG 2020, EASA 
2020, FSF 2020, ICAO 2020). They highlight the 
importance of reviewing wildlife control prac-
tices impacted by COVID-19, inspecting and 
surveying the airport environment to assess 
the wildlife now present, and to revise WHMPs 
considering these potential changes.

The limitations of this research can be divided 
into 2 broad categories, the first relating to data 
completeness and the second regarding causal 
inferences drawn from the results. With respect 
to data completeness, wildlife strike data have 
well-documented issues with under-reporting 
(Civil Aviation Authority 2006, Dolbeer 2015, 
Dolbeer et al. 2021). To address this issue, the 
historical data set was limited to 2014 onward. 
This data show consistent trends in reporting 
(overall and seasonal) that support the time se-
ries analysis techniques used. 

In addition to under-reporting, the complete 
wildlife strike dataset exceeded the scope of 
the air traffic movements data set. The filters 
applied to the wildlife strike data provide for 
valid analysis of this sector of this industry, but 
they mask wildlife strike rate changes that may 
or may not have occurred within the commuter 
and general aviation sectors and the airports 
that support them.

On the topic of causal inferences, whether 

Table 2. Comparison of actual and predicted values of wildlife strike rates in the United States from 
March 2020 to December 2020 based on an Autoregressive Integrated Moving Average (ARIMA)  
(1, 0, 0)(1, 1, 0)12 model.
Month Actual value ARIMA forecast

Predicted 
value

95% Lower 
confidence level

95% Upper 
confidence level

Exceed 
limits

March 2020 16.20 15.03 9.99 20.61
April 2020 27.28 25.98 20.21 31.75
May 2020 45.80 37.94 32.09 43.79 *
June 2020 42.83 31.26 25.40 37.13 *
July 2020 62.34 48.26 42.39 54.12 *
August 2020 63.52 55.86 49.99 61.72 *
September 2020 61.79 49.89 44.02 55.75 *
October 2020 48.95 46.79 40.93 52.66
November 2020 25.80 24.48 18.62 30.35
December 2020 14.59 14.64 8.77 20.51
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VID-19. It could provide lessons and guidance 
to individual airport operators experiencing 
isolated air traffic changes or seeking to make 
changes to their wildlife hazard management 
plan. Our analysis of data captured during 
this historical period could facilitate quasi-ex-
perimental findings to support the continued 
development of research in the wildlife hazard 
management field.

For now, this validation of the warnings of 
the aviation safety impact from COVID-19 
helps those sectors of the industry still manag-
ing the risk of restarting aviation. The ICAO 
(2021) is currently supporting member states 
through the challenge posed by airport closures 
and reduced operations with guidance mate-
rial, training, and expertise. While wildlife haz-
ard management is just a component of these 
efforts, the findings outlined above show that 
the aviation industry has been impacted in pro-
found and subtle ways. Managing the return 
of pre-COVID-19 air traffic levels will require 
careful and continued consideration of the risks 
present in the COVID-19 impact environment.
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