
Citation: Kulyukin, V.A. On the

Computability of Primitive Recursive

Functions by Feedforward Artificial

Neural Networks. Mathematics 2023,

11, 4309. https://doi.org/10.3390/

math11204309

Academic Editor: Ke-Lin Du

Received: 30 August 2023

Revised: 29 September 2023

Accepted: 9 October 2023

Published: 16 October 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On the Computability of Primitive Recursive Functions by
Feedforward Artificial Neural Networks
Vladimir A. Kulyukin

Department of Computer Science, Utah State University, Logan, UT 84322, USA; vladimir.kulyukin@usu.edu

Abstract: We show that, for a primitive recursive function h(x, t), where x is a n-tuple of natural
numbers and t is a natural number, there exists a feedforward artificial neural network N(x, t), such
that for any n-tuple of natural numbers z and a positive natural number m, the first m + 1 terms of
the sequence {h(z, t)} are the same as the terms of the tuple (N(z, 0), . . . , N(z, m)).

Keywords: computability theory; theory of recursive functions; artificial neural networks

MSC: 03D75; 03D80

1. Introduction

Primitive recursive functions describe, albeit incompletely, the intuitive notion of a
number-theoretic algorithm, a deterministic procedure to transform numerical inputs to
numerical outputs in finitely many steps. This perception of primitive recursive functions
as intuitive counterparts of number-theoretic algorithms may be rooted in the fact that any
primitive recursive function can be mechanically constructed from a set of initial functions
with finitely many applications of simple, well-defined operations of composition and
primitive recursion. These functions and some of their properties have been investigated by
Gödel [1], Péter [2,3], Kleene [4], Davis [5], and Rogers [6] in their studies of formal systems,
foundations of mathematics, and computability theory. Although the confinement of the
construction procedure to two operations may at first seem restrictive, many functions
on natural numbers ordinarily encountered in mathematics and computer science are, in
fact, primitive recursive (cf., e.g., Ch. 3 in [7]). Primitive recursive functions have been
used to investigate the foundations of functional programming. Colson [8] presents a
computational model in which a primitive recursive function is viewed as a rewriting
system and gives a non-trivial necessary condition for an algorithm to be representable
in the system. Paolini et al. [9] define a class of recursive permutations, which they call
Reversible Primitive Permutations (RPP), and formalize it as a language that is sufficiently
expressive to represent all primitive recursive functions. Petersen [10] uses induction and
primitive recursion to develop resource conscious logics where the repeated recycling
of assumptions, e.g., repeated applications of the successor function f (n) = n + 1 to
enumerate natural numbers, has costs.

Feedforward artificial neural networks have their origin in the research by McCulloch
and Pitts [11], which describes neural events with propositional logic. McCulloch and
Pitts assume that the human nervous system is a finite set of neurons, each of which has
an excitation threshold. When a neuron’s threshold is exceeded, the neuron generates an
impulse that propagates to other neurons across synapses connecting them to the origin
of the impulse. A fundamental insight by McCulloch and Pitts is that if the response of a
neuron can be formalized as a logical proposition specifying its stimulus, then behaviors of
complex networks of neurons can, in principle, be described with symbolic logic. Artificial
neural networks entered mainstream computer science almost half a century after the
research by McCulloch and Pitts when Rumelhart, Hinton, and Williams [12] discovered
backpropagation, a method for training networks to modify synapse weights by minimizing

Mathematics 2023, 11, 4309. https://doi.org/10.3390/math11204309 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11204309
https://doi.org/10.3390/math11204309
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8778-5175
https://doi.org/10.3390/math11204309
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11204309?type=check_update&version=1

Mathematics 2023, 11, 4309 2 of 16

error between the output and the ground truth. Different types of such networks have been
shown to be universal approximators of some classes of functions (e.g., [13–15]). Artificial
neural networks are increasingly used in embedded artificial intelligence (AI) systems,
i.e., systems that run on computational devices with finite amounts of computer memory
(e.g., [16]). We will refer to embedded AI as finite AI to emphasize the fact that finite
AI systems are realized on computational devices with finite amounts of computational
memory.

In this investigation, we seek to relate, in a formal way, primitive recursive functions
and feedforward artificial neural networks by investigating whether it is possible, for a
given primitive recursive function, to construct a feedforward artificial neural network
that arbitrarily computes many values of the function’s co-domain from the correspond-
ing values of the function’s domain. We hope that our investigation contributes to the
knowledge of the classes of functions that can be not only approximated, but provably
computed by feedforward artificial neural networks. In particular, we formalize feedfor-
ward artificial neural networks with recurrence equations, propose a formal definition
of the concept of N-computability, i.e., the property of a function to be computed by a
feedforward artificial neural network N, and prove several lemmas and theorems to show
how feedforward artificial neural networks can be constructed to arbitrarily compute many
consecutive values of any primitive recursive function. Since these networks consist of
finite sets of neurons and are used in some finite AI systems [17,18], our investigation will
be of interest to mathematicians and computer scientists interested in the computability
theory of finite AI.

The remainder of our article is organized as follows. In Section 2, we review sev-
eral definitions of primitive recursive functions starting with the original definition by
Gödel [1] and proceeding to the later definitions by Kleene [4], Davis [5], Rogers [6], and
Davis et al. [7], and Meyer and Ritchie [19]. This section gives the reader a historical bird’s
eye view of how the concept of primitive recursive function and its formalization have
co-evolved in time. In Section 3, we state the notational conventions and give the definition
of a primitive recursive function we use in this article. This section is intended for reference.
In Section 4, we offer a formalization of feedforward artificial neural networks in terms of
recursive equations. In Section 5, we prove several lemmas and theorems that form the
bulk of our theoretical investigation. In Section 6, we present some perspectives on the
obtained results and summarize our conclusions in Section 7.

2. Recursive Functions

Gödel [1] (Sec. 2, p. 157) describes the class of number-theoretic functions as the
class of functions whose domains are non-negative integers or n-tuples thereof and whose
values are non-negative integers. Gödel [1] (Sec. 2, pp. 157–159) states that a number-
theoretic function φ(x1, x2, . . . , xn) is recursively defined in terms of the number-theoretic
functions ψ(x1, x2, . . . , xn−1) and µ(x1, x2, . . . xn+1) if φ is obtained from ψ and µ by the
following schema:

φ(0, x2, . . . , xn) = ψ(x2, . . . , xn),
φ(k + 1, x2, . . . , xn) = µ(k, φ(k, x2, . . . , xn), x2, . . . , xn),

(1)

where the equalities hold for all k, x2, . . . , xn. Gödel [1] (Sec. 2, p. 159) defines a number-
theoretic function φ to be recursive if there exists a finite sequence of number-theoretic
functions φ1, φ2, . . ., φn = φ, where each function φi, 1 ≤ i ≤ n, is a natural number
constant, the successor function x + 1, or is defined from two preceding functions with
Schema (1) or from one preceding function by substitution, i.e., the replacement of the
arguments of a preceding function with some other preceding functions.

Kleene [4] (Chap. IX, § 43, p. 219) defines a number-theoretic function to be primitive
recursive if it is definable by a finite number of applications of the six schemata in (2), where
m and n are positive integers, i is an integer such that 1 ≤ i ≤ n, q is a natural number,

Mathematics 2023, 11, 4309 3 of 16

and ψ, χ1, . . . , χm, and χ are number-theoretic functions with the indicated numbers of
arguments.

(I) φ(x) = x + 1;
(I I) φ(x1, . . . , xn) = q;
(I I I) φ(x1, . . . , xn) = xi;
(IV) φ(x1, . . . , xn) = ψ(χ1(x1, . . . , xn), . . . , χm(x1, . . . , xn));

(Va)

{
φ(0) = q,
φ(y + 1) = χ(y, φ(y));

(Vb)

{
φ(0, x2, . . . , xn) = ψ(x2, . . . , xn),
φ(y + 1, x2, . . . , xn) = χ(y, φ(y, x2, . . . , xn), x2, . . . , xn).

(2)

Schema (I) defines the successor function, Schema (II) defines constant functions, and
Schema (III) defines identity functions, which Kleene denotes with the symbol Un

i . Kleene
defines the functions satisfying Schemata (I), (II), and (III) in (2) as initial functions. Schema
(IV) in (2) obtains φ from ψ, χ1, . . . , χm by substitution. Schemata (Va) and (Vb) obtain φ from
χ or from χ and ψ, respectively, by primitive recursion. Kleene [4] (Chap. XI, § 55, p. 275)
defines a function to be general recursive in functions ψ1, . . . , ψl if there is a system E of
equations which defines φ recursively from ψ1, . . . , ψl .

Davis [5] (Chap. 2, Sec. 2, p. 36) defines the operation of composition as the opera-
tion to obtain the function h(x(n)) from the functions f (y(m)), g1(x

(n)), . . . , gm(x(n)) with
Schema (3).

h(x(n)) = f (g1(x
(n)), . . . , gm(x(n))), (3)

where y(m) and x(n) are tuples of natural numbers with m and n elements, respectively.
Davis [5] (Chap. 3, Sec. 4, p. 48) defines the operation of primitive recursion as the
operation that uses Schema (4) to construct the function h(x(n+1)) from the total functions
f (x(n)) and g(x(n+2)), where x(n), x(n+1), and x(n+2) are tuples of natural numbers with n,
n + 1, and n + 2 elements, respectively.

h(0, x(n)) = f (x(n))
h(z + 1, x(n)) = g(z, h(z, x(n)), x(n)).

(4)

For a set of natural numbers A, Davis [5] (Chap. 3, Sec. 4, p. 49) defines an A-primitive
recursive function or a function primitive recursive in A as a function that can be obtained by
a finite number of applications of composition (cf. Schema (3)) and primitive recursion (cf.
Schema (4)) from the following j functions:

(1) CA(x);
(2) S(x) = x + 1;
(3) N(x) = 0;
(4) Un

i (x1, . . . , xn) = xi, 1 ≤ i ≤ n,

(5)

where CA(x) is the characteristic function of A (i.e., CA(x) is a total function such that
CA(x) = 1 if x ∈ A and CA(x) = 0 if x 6∈ A), and S(x) and Un

i are identical to Kleene’s
Schemata (I) and (III) in (2). Davis [5] (Chap. 3, Sec. 4, p. 49) defines a function f to be
primitive recursive if it is ∅-primitive recursive, where ∅ denotes the empty set.

Rogers [6] (Chap. 1, § 1.2, p. 6) defines the class C of primitive recursive functions as
the smallest class of functions such that

(1) All constant functions λx1x2 · · · xk[m], are in C, 1 ≤ k, 0 ≤ m;
(2) The successor function λx[x + 1] is in C;
(3) All identity functions λx1 · · · xk[xi] are in C, 1 ≤ i ≤ k;

Mathematics 2023, 11, 4309 4 of 16

(4) If f is a function of k variables in C and g1, . . . , gk are functions in C of m variables each,
then the function λx1 · · · xm[f (g1(x1, . . . , xm), . . . , gk(x1, . . . , xm))] is in C, 1 ≤ k, m;

(5) If h is a function of k + 1 variables in C, and g is a function of k− 1 variables in C, then
the unique function f of k variables satisfying Schema (6) is also in C, 1 ≤ k.

f (0, x2, . . . , xk) = g(x2, . . . , xk),
f (y + 1, x2, . . . , xk) = h(y, f (y, x2, . . . , xk), x2, . . . , xk).

(6)

Davis et al. [7] (Chap. 3, Sec. 3, p. 42) defines as initial the functions s(x) = x + 1,
n(x) = 0, and un

i (x1, . . . , xn) = xi, 1 ≤ i ≤ n, and defines a function to be primitive
recursive if it can be obtained from the initial functions by a finite number of applications
of composition or primitive recursion where primitive recursion is defined by Schema (7)
(Chap. 3, Sec. 2, p. 40 in [7]) and Schema (8) (Chap. 3, Sec. 2, p. 41 in [7]). In Schema (7), k
is a natural number and g is a total function of two variables. In Schema (8), f and g are
total functions of n and n + 2 variables, respectively.

h(0) = k,
h(t + 1) = g(t, h(t))

(7)

h(x1, . . . , xn, 0) = f (x1, . . . , xn),
h(x1, . . . , xn, t + 1) = g(t, h(x1, . . . , xn, t), x1, . . . , xn).

(8)

2.1. Computability and Turing Machines

Davis [5] (Chap. 1, Sec. 2, p. 10) gives the following definition of partially computable
and computable functions.

Definition 1. An n-ary function f (x1, . . . , xn) is partially computable if there exists a Turing
machine Z such that

f (x1, . . . , xn) = Ψ(n)
Z (x1, . . . , xn).

In this case, we say that Z computes f . If, in addition, f (x1, . . . , xn) is a total function, then
it is called computable.

In subsequent chapters of his monograph (cf. Chap. 2 and Chap. 3 in [5]), Davis
separates the notion of computability from Turing machines to make it possible “to demon-
strate the computability of quite complex functions without referring back to the original
definition of computability in terms of Turing machines” (cf. Ch. 3, Sec. 1, p. 41 in [5]).

Davis et al. [7] (Chap. 2) continue this treatment of computability by designing
the programming language L and then defining partially computable and computable
functions in terms of L programs, viz., finite sequences of L instructions. In L, the unique
variable Y is designated as the output variable to store the output of an L program P on a
given input. X1, X2, ... are input variables and Z1, Z2, ... are internal variables. All variables
refer to natural numbers. L has conditional dispatch instructions, line labels, elementary
arithmetic operations, comparisons of natural numbers, and macros.

Davis et al. [7] (Chap. 2, Sec. 3, p. 27) define a computation of an L program P on
some inputs x1, . . . , xm, and m > 0, as a finite sequence of snapshots (s1, . . . , sk), where each
snapshot si, 1 ≤ i ≤ k, k > 0 specifies the number of the instruction in P to be executed
and the value of each variable in P , and where each subsequent snapshot is uniquely
determined by the previous snapshot (Theorem 3.2, Chap. 4, Sec. 3, pp. 74–75 in [7]).
The snapshot s1 is the initial snapshot, where the values of all input variables are set to
their initial values, the program instruction counter is set to 1, i.e., the number of the first
instruction in P , and the values of all the other variables in P are set to 0. The snapshot sk
in (s1, . . . , sk) is a terminal snapshot, where the instruction counter is set to the number of

Mathematics 2023, 11, 4309 5 of 16

the instructions in P plus 1. If some program P in L takes m inputs X1 = x1, X2 = x2, . . .,
Xm = xm, then

Ψ(m)
P (x1, x2, . . . , xm) =

{
Y in sk if (s1, . . . , sk) is a computation, k ≥ 1,
↑ otherwise.

(9)

The definitions of partially computable and computable functions are made by Davis
et al. [7] (Chap. 2, Sec. 4, p. 30) in terms of L programs as follows.

Definition 2. An n-ary function f is partially computable if f is partial and there is a L program
P such that Equation (10) holds for all x1, . . . , xn.

f (x1, . . . , xn) = Ψ(n)
P (x1, . . . , xn). (10)

Definition 3. A n-ary function f is computable if it is total and partially computable.

Equation (10) in Definition 2 is interpreted so that f (x1, . . . , xn) is defined if and
only if Ψ(n)

P (x1, . . . , xn) is defined. This treatment of computable functions in terms of
programs in a formal language is by no means the only one in the literature. For example,
as early as 1967, Meyer and Ritchie [19] formalize primitive recursive functions as loop
programs consisting of assignment and iteration statements similar to DO statements of
the programming language FORTRAN.

2.2. Computability of Primitive Recursive Functions

Davis et al. [7] (Chap. 3, Sec. 3, p. 42) introduce the concept of a primitive recursively
closed (PRC) class of functions, which is a class of total functions that contains the initial
functions and any functions obtained from the initial functions by a finite number of appli-
cations of composition or primitive recursion. Davis et al. [7] (Chap. 3, Sec. 3, pp. 42–43)
show that (1) the class of computable functions is PRC; (2) the class of primitive recursive
functions is PRC; and (3) a function is primitive recursive if and only if it belongs to every
PRC class. A corollary of (3) is that every primitive recursive function is computable.

Péter [2,3] shows it is possible to define functions in terms of recursive equations
that are not primitive recursive. In particular, Péter demonstrates that all unary primitive
recursive functions are enumerable, i.e., φ0(x), φ1(x), φ2(x), . . . is an enumeration, with
repetitions, of all unary primitive recursive functions. By Cantor’s diagonalization (cf., e.g.,
pp. 6–8 in [4]), the unary function f (x) = φx(x) + 1 is not in the enumeration and, hence,
not primitive recursive. While f is not primitive recursive, it is computable (cf. Definition 3).
Thus, the class of primitive recursive functions is a proper subset of computable functions
and, in and of itself, cannot completely capture the intuitive notion of a number-theoretic
algorithm. Péter’s argument suffers no loss of generality, insomuch as any n-ary primitive
recursive function, n > 1, can be reduced to an equivalent unary primitive recursive
function (cf., Theorems 9.1 and 9.2, Chap. 4, Sec. 9, p. 108 in [7]). Kleene’s separation of
recursive functions into general recursive and primitive recursive may have been influenced
by Péter’s discovery (cited by Kleene [4] in Chap. XI, § 55, p. 272).

Rogers [6] (Chap. 1, § 1.2, p. 8) defines the Ackermann generalized exponential, a function
for which there is no primitive recursive derivation, and formalizes it with the following
recursive equations:

f (0, 0, y) = y,
f (0, x + 1, y) = f (0, x, y) + 1,
f (1, 0, y) = 0,
f (z + 2, 0, y) = 1,
f (z + 1, x + 1, y) = f (z, f (z + 1, x, y), y).

Mathematics 2023, 11, 4309 6 of 16

3. Notational Conventions and Definitions

If f is a function, dom(f) and codom(f) are the domain and the co-domain of f . The
expression f : A 7→ B abbreviates the logical conjunction dom(f) = A ∧ codom(f) = B,
for some sets A and B. A function f is partial on A if dom(f) is a proper subset of A, i.e.,
dom(f) ⊂ A. If f is partial on A and a ∈ A, the following statements are equivalent: (1)
a ∈ dom(f); (2) f is defined on a; (3) f (a) is defined; (4) f (a) ↓. The following statements
are also equivalent: (1) a 6∈ dom(f); (2) f is undefined on a; (3) f (a) is undefined; (4) f (a) ↑.
If dom(f) = A, then f is total on A.

The notation (a1, . . . , an) is used to denote ordered n-tuples or, simply, n-tuples over
some set of numbers A. We will use bold lower-case variables, e.g., a, x, y, to refer to
n-tuples. Thus, a = (13, 17, 19) is a 3-tuple over the set of natural numbers N = {0, 1, 2 . . .}.
We will use the symbol N+ to denote the set of positive natural numbers. If x = (x1, . . . , xn)
is an n-tuple over A, then x[j], 1 ≤ j ≤ n, refers to individual elements of x. Thus, if x =
(2, 3, 5, 7, 11), then x[1] = 2, x[2] = 3, x[3] = 5, x[4] = 7, x[5] = 11. The individual elements
of an n-tuple are not required to be distinct. If x is an n-tuple, then dim(x) = n, i.e., the
number of elements in x. The 0-tuple is denoted as (). In calculus, a sequence is an ordered
set of numbers in a one-to-one correspondence with N or N+ (cf., e.g., Taylor [20], § 1.62,
p. 67). Thus, if f : N→ N, then { f (n)} denotes the sequence f (0), f (1), . . . , f (m), . . . with
countably many elements or terms. In computability theory, the term sequence sometimes
refers to an n-tuple (cf., e.g., Ch. 3, p. 60 in [7]). Thus, in order to avoid confusion, when we
want to emphasize the fact that we are dealing with a finite number of ordered elements,
we refer to the collection of these elements as a finite sequence, a tuple, or an m-tuple, where
m is the number of the elements.

For n > 0, An is the n-th Cartesian power of A, i.e., An = {(a1, . . . , an)|ai ∈ A, 1 ≤ i ≤
n}. Thus, if f : R2 7→ N, dom(f) = {(x1, x2)|x1, x2 ∈ R}, where R is the set of real numbers.
We use statements like a ∈ An to mean that a is an n-tuple over A. We do not distinguish
between 1-tuples and individual elements, e.g., a = (a), a ∈ A, and h(a) = h((a)) for some
function h.

In formalizing feedforward artificial neural networks, it is sometimes convenient to
treat n-tuples as vectors. Therefore, we occasionally use symbols like ~x, ~y, ~z to denote
n-tuples. If ~x ∈ An, then dim(~x) = n and ~x[j], 1 ≤ j ≤ n, is the j-th element of ~x. E.g., if
~x = (1, 1, 11) ∈ N3, then ~x[1] = ~x[2] = 1 and ~x[3] = 11. If a ∈ An and~a ∈ An, and a[j] =
~a[j], 1 ≤ j ≤ n, then a = ~a. If f : An 7→ Bm, 0 < n, m, then f (x1, . . . , xn) = f (~x) = f (x) =
f (~x[1], . . . ,~x[n]) = f (x[1], . . . , x[n]) = ~y = y = (~y[1], . . . ,~y[m]) = (y[1], . . . , y[m]). The empty
tuple is discarded in function arguments. E.g., if h : N 7→ N, then h((), t) = h(t, ()) = h(t),
t ∈ N. We occasionally separate individual arguments of functions from the remaining
arguments combined into tuples. E.g., if f : Nn+2 7→ N, 0 < n, then, for z ∈ Nn, x ∈ N,
y ∈ N, f (z, x, y) = f (z[1], . . . , z[n], x, y) = f (w), where z[i] = w[i], 1 ≤ i ≤ n, and
w[n + 1] = x, w[n + 2] = y. If f is a function that maps a1 ∈ An1

1 , . . ., ak ∈ Ank
k to c ∈ Cm,

for some sets A1, . . . , Ak, 0 < nj, m, 1 ≤ j ≤ k, then f : An1
1 , . . . , Ank

k 7→ Cm.
A total function P : An 7→ {0, 1} is a predicate, where 1 arbitrarily designates logical

truth and 0 logical falsehood. The symbols ¬, ∧, ∨, → respectively refer to logical not,
logical and, logical or, and logical implication. P(x) is a shorthand for P(x) = 1, and ¬P(x)
is a shorthand for P(x) = 0. If P and Q are predicates, then ¬P ∨Q is logically equivalent
to P → Q, i.e., ¬P ∨ Q ≡ P → Q. The symbols ∃ and ∀ refer to the logical existential
(there exists) and universal (for all) quantifiers, respectively. Thus, the statement (∃x)P(x)
is logically equivalent to the statement that P(x) holds for at least one x in dom(P), while
the statement (∀x)P(x) is logically equivalent to the statement that P(x) holds for every x
in dom(P).

Let, for 0 < k, n, f : Nk 7→ N, gj : Nn 7→ N, 1 ≤ j ≤ k, and x ∈ Nn. We use the
following definitions of composition and primitive recursion in our article. A function of
h : Nn 7→ N is obtained from f , gj by composition if h is obtained from f , gj by Schema (11).

h(x) = f (g1(x), ..., gk(x)). (11)

Mathematics 2023, 11, 4309 7 of 16

Let k ∈ N and φ : N2 7→ N be total. A function h : N 7→ N is obtained from φ by
primitive recursion if it is obtained from φ by Schema (12).

h(0) = k,
h(t + 1) = φ(t, h(t)).

(12)

Let f : Nn 7→ N and g : Nn+2 7→ N be total, then h : Nn+1 7→ N is obtained from f and
g by primitive recursion if h is obtained from f and g by Schema (13), where x ∈ Nn.

h(x, 0) = f (x),
h(x, t + 1) = g(t, h(x, t), x).

(13)

If ~x ∈ Nn, Schema (13) can be expressed with the vector notation as

h(~x, 0) = f (~x),
h(~x, t + 1) = g(t, h(~x, t),~x).

(14)

Let the set of initial functions consist of

s(x) = x + 1, x ∈ N;
n(x) = 0, x ∈ N;
un

i (x1, . . . , xn) = un
i (~x) = ~x[i] = un

i (x) = x[i] = xi, 1 ≤ i ≤ n,~x = x ∈ N.
(15)

Definition 4. A function is primitive recursive if it can be obtained from the initial functions by a
finite number of applications of Schemata (11)–(13).

A corollary of Definition 4 is that if f is primitive recursive, then there is a sequence of
functions φ1, . . . , φn = f such that φi, 1 ≤ i ≤ n, is either an initial function or is obtained
from the previous functions in the sequence by composition or primitive recursion.

4. Feedforward Artificial Neural Networks

A feedforward artificial neural network Nz is a finite set of neurons, each of which is
connected to a finite number of the neurons in the same set through the synapses, i.e.,
directed weighted edges (cf. Figure 1). The neurons are organized into l layers E1, . . . ,El ,
where E1 is the input layer, El is the output layer, and Ee, 1 < e < l are the hidden layers.
We use the term network synonymously with the term feedforward artificial neural network.

Figure 1. A 3-layer feedforward artificial neural network. Layer 1 includes the input neurons n1
1

and n1
2. Layer 2 includes the neurons n2

1, n2
2, n2

3. Layer 3 includes the neurons n3
1, n3

2. The two
arrows incoming into n1

1 and n1
2 signify that layer 1 is the input layer. The two arrows going out of

n3
1 and n3

2 signify that layer 3 is the output layer. The weight of the synapse from ne
i to ne+1

j is we
i,j,

1 ≤ e ≤ 3. E.g., w1
1,1 is the weight of the synapse from n1

1 to n2
1 and w2

3,1 is the weight of the synapse
from n2

3 to n3
1.

Mathematics 2023, 11, 4309 8 of 16

Let zz denote the number of layers in Nz and ne
i refer to the i-th neuron in layer Ee,

1 ≤ e ≤ zz. The function nnz(e) : N+ 7→ N+ specifies the number of neurons in layer Ee of
Nz. We assume that Nz is fully connected, i.e., there is a synapse from every neuron in layer
Ee to every neuron in layer Ee+1, 1 ≤ e < zz. Each synaptic weight we

i,j (cf. Figure 1) is a real
number. The vector ~we is the vector of all synaptic weights in Nz from Ee to Ee+1. Thus,

~we =
(

we
1,1, . . . , we

1,nnz(e+1), . . . , we
nnz(e),1, . . . , we

nnz(e),nnz(e+1)

)
.

We let ~w0 = () and assume, without loss of generality, that, for any synaptic weight
we

i,j, 0 ≤ we
i,j ≤ 1, because, if that is not the case, we

i,j can be so scaled. No loss of generality
is introduced with the assumption of full connectivity, because if full connectivity is not
required, appropriate synaptic weights are set to zero. If, on the other hand, a given
network is not fully connected, synapses with zero weights can be added as needed to
make the network fully connected.

Each ne
i , e > 1 computes an activation function

αe
i

(
~ae−1, ~we−1

)
: Rdim(~ae−1),Rdim(~we−1) → R, (16)

where ~ae−1 is the vector of the activations of the neurons in layers Ee−1, dim(~ae−1) =
nnz(e− 1), and dim(~we−1) = nnz(e− 1)nnz(e). If ~x is the input to Nz, then~a1 = ~x. For the
input layer, we have

α1
i (~x, ~w0) = α1

1(~x, ()) = ~x[i], 1 ≤ i ≤ nnz(1). (17)

The term feedforward means that the activations of the neurons are computed layer
by layer from the input layer to the output layer, because the activation functions of the
neurons in the next layer require only the weights of the synapses connecting the current
layer with the next one and the activation values, i.e., the outputs of the activation functions
of the neurons in the current layer. If ~x is the input vector, then

~a1 =
(

α1
1

(
~x, ()

)
, . . . α1

nnz(1)

(
~x, ()

))
= ~x,

~ae =
(

αe
1

(
~ae−1, ~we−1

)
, . . . , αe

nn(e)

(
~ae−1, ~we−1

))
, 1 < e < zz.

(18)

The feedforward activation function fz that computes the activations of Nz layer by
layer can be defined as

fz(~x, 0) = ~x,

fz(~x, e + 1) =
(

αe+1
1

(
fz

(
~x, e
)

, ~we
)

, . . . , αe+1
nn(e+1)

(
fz

(
~x, e
)

, ~we
))

.
(19)

Thus, fz(~x, 0) = fz(~x, 1) = ~a1 = ~x = x and fz(~x, e) = ~ae, 1 ≤ e ≤ zz. If Nz maps
~a1 ∈ An to~bzz ∈ Bm, for some sets A and B, we define the function ζz : An → Bm computed
by Nz as

ζz(~x) = fz(~x, zz). (20)

Definition 5. A function f : An → Bm, for some sets A and B, is N-computable if there is a
network Nz such that, for all ~x = x ∈ An,

ζz(~x) = f (~x, zz) = ~y = ζz(x) = f (x, zz) = y ∈ Bm.

If Nz computes f , we refer to Nz as N f (·) and use the expression N f (·) : An 7→ Bm as
a shorthand for ζz : An 7→ Bm. Furthermore, if Nz computes f , then, for ~x = x ∈ An, the
expressions ζz(~x), ζz(x), Nz(~x), Nz(x) are equivalent in that

ζz(~x) = Nz(~x) = ~y = ζz(x) = Nz(x) = y ∈ Bm. (21)

Mathematics 2023, 11, 4309 9 of 16

A network Nz can include other networks. Let Nj and Nk be two networks such
as ζ j : Am 7→ Bn and ζk : Bn 7→ Ck, for some sets A, B, C, and 0 < m, n, k. Then we
can construct a new network Nl by feeding the output of Nj to Nk so that ζl : Am 7→ Ck

(cf. Figure 2). We can generalize this case to a network that includes arbitrarily many
networks whose outputs are the inputs to another network whose output is the output of
the entire complex network (cf. Figure 3). Formally, let Nz1 , . . . ,Nzl be networks such that
ζz1 : Inz1 → Okz1 , . . . , ζzl : Inzl → Okzl for some sets I and O, 0 < nzi , kzi , and 1 ≤ i ≤ l. Let,
for some set S, a network Nj compute the function

ζ j : Okz1 , Okz2 , . . . , Okzl → Sm

so that

ζz(~xz1 , . . . ,~xzl) = ζ j(ζz1(~xz1), . . . , ζzl (~xzl)) =~s ∈ Sm,~xzi ∈ Inzi , 1 ≤ i ≤ l.

Then, for ~xzi ∈ Inzi such that ~xzi = xzi , 1 ≤ i ≤ l,

Nz(xz1 , . . . , xzl) = Nz(y) = Nj(Nz1(xz1), . . . ,Nzl (xzl)) = s ∈ Sm, (22)

where y = (xz1 [1], . . . , xz1 [nz1], . . . , xzl [1], . . . , xzl [nzl]), and s =~s.

Figure 2. A chain network Nl that consists of two networks Nj (top) and Nk (second from the top).
The two bottom networks are functionally identical pictogrammatic renderings of the same network
Nl . In the third network from the top the output y of Nj is made explicit. In the bottom rendering of
Nl , y is implicit in the arrow from Nj to Nk. In sum, the output of Nj is given to Nk, and the output
of Nk is the output of Nl . Thus, Nl maps x to z.

Figure 3. A network Nz that includes networks Nz1 , . . . ,Nzl that take xz1 , . . . , xzk as inputs and give
their outputs to network Nj (cf. Equation (22)). Thus, Nz maps xz1 , . . . , xzk to s.

Mathematics 2023, 11, 4309 10 of 16

We use the symbol Nid to denote an identity network such that, for~a = a ∈ An, 0 < n,
ζid(~a) =~a = ζid(a) = a. One can think of Nid as a single layer network of n neurons, where
α1

i (~a, ()) =~a[i] = α1
i (a, ()) = a[i], 1 ≤ i ≤ n.

Our formalization of feedforward artificial neural networks as finite sets of neurons
and synapses organized in finitely many layers is in compliance with the original definition
by McCulloch and Pitts (Sec. 2, p. 103 in [11]) who state that the neurons of a given network
may be assigned designations c1, c2, . . ., cn. It is also in compliance with the subsequent
definition by Rumelhart, Hinton, and Williams [12] as well as with modern treatments of
neural networks by Nielsen [17] and Goodfellow, Bengio, and Courville [18] that continue
to describe neural networks as finite sets of neurons and synapses.

5. N-Computability of Primitive Recursive Functions

Lemma 1. The initial functions are N-computable.

Proof. Let Nn(·) : N 7→ N be a network with a single input node n1
1 and a single output

node n2
1 such that w1

1,1 = 0 and α2
1(~a

1, ~w1) = ~a1[1]~w1[1]. Then, ζn(·)(x) = α2
1((x)(0)) =

x · 0 = 0 = n(x), x ∈ N. Let Ns(·) : N 7→ N be a network with a single input node
n1

1 and a single output node n2
1 such that w1

1,1 = 1 and α2
1(~a, ~w) = ~a[1]~w1[1] + 1. Then,

ζs(·)(x) = α2
1((x), (1)) = xw1

1,1 + 1 = s(x), x ∈ N. Let Nun
i (·) : Nn 7→ N, 1 ≤ i ≤ n, n > 0 be

a network with n input nodes n1
1, . . . , n1

n and one output node n2
1. Let w1

i = 1, w1
j = 0, i 6= j,

1 ≤ j ≤ n, and

α2
1(~a

1, ~w1) =
n

∑
j=1

~a1[j]~w1[j].

Then, if~a = a ∈ Nn,

ζun
i (·)(~a) = α2

1(~a
1, ~w1) =~a[i] = α2

1(a, ~w1) = a[i] = un
i (a[1], . . . , a[n]).

We abbreviate Nun
i (·) as Nu(·), because n and i are always evident from the context.

Lemma 2. Let x ∈ Nn, n > 0. Let cn
i (x), 1 ≤ i ≤ n, be defined as

cn
i (x) =


un

1 (x) if i = 1,
un

2 (x) if i = 2,
. . .
un

n(x) if i = n.

The cn
i is N-computable.

Proof. Since un
i is primitive recursive, cn

i is primitive recursive, by the definition by cases
theorem and its corollary (cf. Theorem 5.4, Chap. 3, Sec. 5, pp. 50–51 in [7]). Let Ncn

i (·)
be a network with n + 1 input nodes n1

1, . . . , n1
n+1, where the first n nodes receive the n

corresponding values of x ∈ Nn, and the last node n1
n+1 receives 1 ≤ i ≤ n. Let Ncn

i (·)
have one output node n2

1 and let w1
j,k = 1, 1 ≤ j ≤ n. Let the activation function of n2

1 be
defined as

α2
1(~a

1, ~w1) =


~a1[1]~w1[1] if~a1[n + 1] = 1,
~a1[2]~w1[2] if~a1[n + 1] = 2,
. . .
~a1[n]~w1[n] if~a1[n + 1] = n.

Mathematics 2023, 11, 4309 11 of 16

Then,

ζcn
i
(x, j) = x[j] = un

j (x) = cn
j (x).

We abbreviate Ncn
i (·) as Nc(·).

Lemma 3. Let f be a N-computable function of k arguments, k > 0, and g1, ..., gk be N-computable
functions of n arguments each, n > 0. Let a function h of n arguments be obtained from f , g1, . . . , gk
by Schema (11). Then, h is N-computable.

Proof. Let f , g1, . . . , gk be computable by N f (·) : Nk 7→ N, Ng1(·) : Nn 7→ N, . . . ,Ngk(·) :
Nn 7→ N. Then let Nj : Nn 7→ N be a network such that, for x ∈ Nn,

Nj(x) = N f (·)(Ng1(·)(x), . . . ,Ngk(·)(x)).

Then, for z ∈ Nn, we have

Nj(z) = N f (·)(Ng1(·)(z), . . . ,Ngk(·)(z)) = f (g1(z), . . . , gk(z)) = h(x),

whence

ζ j(x) = h(x).

Lemma 4. Let k ∈ N. Then k is N-computable.

Proof. Let Nn(·) and Ns(·) be as constructed in Lemma 1. Let {Ns(·)}k, k ≥ 0 denote a
network that consists of a finite sequence of k networks Ns(·), where the first Ns(·) receives
its input from Nn(·) and each subsequent Ns(·) receives its input from the previous Ns(·)
(cf. Figure 2). Let {Ns(·)}0 = Nn(·). Let NJk (0) = {Ns(·)}k(Nn(·)(0)). Let sk(x) denote k
compositions of s(x) with itself, i.e., s1(x) = s(x), s2(x) = s(s(x)), etc. Then,

NJ0(0) = {Ns(·)}0(Nn(·)(0)) = 0;
NJ1(0) = {Ns(·)}1(Nn(·)(0)) = s(0) = 1;
NJ2(0) = {Ns(·)}2(Nn(·)(0)) = s2(0) = 2;

· · ·
NJk (0) = {Ns(·)}k(Nn(·)(0)) = sk(0) = k.

By induction on k, ζJk (0) = k. By construction, ζJk (n) = k, n ∈ N.

The next lemma, Lemma 5, is a technical result for Lemma 6. The function x .− y is
primitive recursive (cf. Chap. 3, Sec. 4, p. 46 in [7]).

Lemma 5. Let the function x .− y : N2 → N be defined as

x .− y =

{
x− y if x ≥ 0,
0 if x < y.

(23)

Then, x .− y is N-computable.

Proof. Let N .−(·) have two input nodes n1
1, n1

2 and one output node n2
1. Let w1

1,1 = w1
2,1 = 1

and let

α2
1(~a

1, ~w1) =

{
~a1[1]~w1 −~a1[2]~w1[2] if~a1[1] ≥~a1[2],
0 if~a1[1] <~a1[2].

Mathematics 2023, 11, 4309 12 of 16

Then, for~a = a ∈ N2, we have

ζ .−(·)

(
~a
)
= α2

1(~a
1, ~w1) =~a1[1] .−~a[2] = α2

1(a, ~w1) = a[1] .− a[2].

Definition 6 confines the notion of N-computability of some function f (x, t) to the
N-computability of the first k elements of the sequence { f (x, t)}, t ∈ N.

Definition 6. A function f : An ×N→ Bm, for some sets A and B, is N-computable elementwise
for any k > 0 if there is a network Nz such that, for any z ∈ An, the first k + 1 terms of the sequence

{ f (z, j)} = f (z, 0), f (z, 1), . . . , f (z, k), . . .

are the same as the terms of the tuple

(N(z, 0), N(z, 1), . . . , N(z, k)),

i.e., f (z, i) = N(z, i), 0 ≤ i ≤ k.

Thus, if a function f (x, t) is N-computable, it is N-computable elementwise for any
positive k.

Lemma 6. Let φ : N2 7→ N be N-computable elementwise and h(t) be a function obtained from φ
by Schema (12). Then, h is N-computable elementwise.

Proof. Let φ be computable elementwise by Nφ(·). Let Nh̃0
(0) = NJk (0) = k as constructed

in Lemma 4. In the equations below, we abbreviate Nn(·)(0) as 0, NJk (0) as k, NJt(0) as
NJt , N .−(·)(x, y) as x .− y, and Nh̃i

(i) as Nh̃i
. Let

Nh̃0
= k,

Nh̃t+1
= Nφ(·)

(
NJt ,Nh̃t

)
.

(24)

By induction on t, h(t) = Nh̃(·)(t) (cf. Figure 4). Let

Nh(·)(t) = Nc(·)

(
Nh̃0

, . . . ,Nh̃m
, t + 1

)
, 0 ≤ t ≤ m, m > 0. (25)

Then, the first m + 1 terms of the sequence {h(t)} are the same as the terms of the
tuple (Nh(·)(0), . . . ,Nh(·)(m)) (cf. Figure 5 for m = 3).

Figure 4. Networks Nh̃(1), Nh̃(2), Nh̃(3) constructed with Schema (24) in Lemma 6. Note that 0 and k
denote Nn(·)(0) and NJk (0), respectively.

Mathematics 2023, 11, 4309 13 of 16

Figure 5. Network Nh(·)(t), 0 ≤ t ≤ 3, constructed with Equation (25) in Lemma 6. Since h(0) =
Nh(·)(0), h(1) = Nh(·)(1), h(2) = Nh(·)(2), h(3) = Nh(·)(3), the first four terms of the sequence {h(t)}
are the same as the terms of the 4-tuple (Nh(·)(0),Nh(·)(1),Nh(·)(2),Nh(·)(3)).

Lemma 7. Let f : Nn 7→ N and g : N2 7→ N be N-computable elementwise and h : Nn+1 7→ N be
a function obtained from f and g by Schema (13). Then h is N-computable elementwise.

Proof. Let x ∈ Nn and y ∈ Nn+2, n > 0, such that y = (y1, y2, x[1], . . . , x[n]). Let f and g
be N-computable elementwise by N f (·) and Ng(·), respectively. Let us abbreviate Nh̃x,t

(x, t)
as Nh̃x,t

and let

Nh̃x,0
= N f (·)(x),

Nh̃x,t+1
= Ng(·)

(
t,Nh̃x,t

, x
)

.
(26)

By induction on t, h(x, t) = Nh̃x,t
. Let

Nh(·)(x, t) = Nc(·)

(
Nh̃x,0

, . . . ,Nh̃x,m
, t + 1

)
, 0 ≤ t ≤ m, m > 0. (27)

Then the first m + 1 terms of the sequence {h(x, t)}, i.e., h(x, 0), . . . , h(x, m), agree
elementwise with the tuple (Nh(·)(x, 0), . . . ,Nh(·)(x, m)).

Figures 6 and 7 illustrate sample constructions of Lemma 7. If we treat h(t) as a
shorthand for h((), t), then Lemmas 6 and 7 give us the following theorem.

Figure 6. Network Nh̃(x,3), constructed with Schema (26) in Lemma 7. Note that 0 denotes Nn(·)(0),
and Nid is the identity network.

Mathematics 2023, 11, 4309 14 of 16

Figure 7. Network Nh(·)(x, t), 0 ≤ t ≤ 3, constructed with Equation (25) in Lemma 7. Since
h(x, 0) = Nh(·)(x, 0), h(x, 1) = Nh(·)(x, 1), h(x, 2) = Nh(·)(x, 2), h(x, 3) = Nh(·)(x, 3), the first four
terms of the sequence {h(x, t)}, i.e., h(x, 0), h(x, 1), h(x, 2), h(x, 3), are the same as the terms of the
tuple (Nh(·)(x, 0),Nh(·)(x, 1),Nh(·)(x, 2),Nh(·)(x, 3)).

Theorem 1. Let h(x, t) be a primitive recursive function, x ∈ Nn, n ≥ 0. Then h(x, t) is
N-computable elementwise.

We can ask if the elementwise N-computability of h(x, t) (cf. Definition 6) can be
generalized to N-computability. In other words, is it possible to have the sequences
{h(x, t)} and {N(x, n)} agree term by term, i.e., h(x, t) = N(x, t)? Since N has a finite set
of neurons organized into a finite number of layers, N can compute, per Lemmas 6 and 7,
only the first m + 1 values of h(x, t), i.e., h(x, t), 0 ≤ t ≤ m, although m can be an arbitrarily
large natural number. Thus, the answer to this question is negative.

Let us assume that Nh(x,t) in Theorem 1 is allowed to have countably many neurons
so that the number of neurons in the hidden layers of Nh(x,t) is countable. Let ζN(x, t) be
the function computed by Nh(x,t). Since countably many neurons can be added to Nh(x,t)
to compute h(x, t), for any t, we have the sequence {ζN(x, t)} = {N(x, t)}, on the one
hand, and the sequence {h(x, t)}, on the other hand. Let f (x, t) = h(x, t)− ζN(x, t). Since
h(x, t) = ζN(x, t), for any t ∈ N, { f (x, t)} is vacuously convergent, i.e., limt→∞ f (x, t) = 0.
Hence, we have the following theorem.

Theorem 2. Let h(x, t) be a primitive recursive function, x ∈ Nn, n ≥ 0. Then there is a network
N(x, t) with countably many neurons such that for any z ∈ Nn, the sequences {h(z, t)} and
{ζN(z, t})} agree term by term, i.e., h(z, t) = ζN(z, t), t ∈ N.

6. Discussion

As mathematical objects, feedforward artificial neural networks are more computa-
tionally powerful than primitive recursive functions inasmuch as the former can compute
functions over real numbers whereas the latter, by definition, cannot. E.g., one can define a
network that computes the sum of n real numbers, which no primitive recursive function
can compute. However, the situation changes when networks cease to be mathematical
objects and become computational objects by being realized on finite memory devices. A
finite memory device is a computational device with a finite amount of memory available
for numerical computation [21]. Such a device is analogous to a human scribe with a
pencil and an eraser who is to carry out a numerical computation by writing and erasing
symbols from a finite alphabet on a finite number of paper sheets. Finite memory devices
are different from finite state automata of classical computability theory (e.g., a determin-
istic finite state machine (Chap. 2, Sec. 2.2 in [22]), non-deterministic finite state machine

Mathematics 2023, 11, 4309 15 of 16

(Chap. 2, Sec. 2.3 in [22]), a Mealy or Moore machine (Chap. 2, Sec. 2.7 in [22], a push down
automaton (Chap. 5 in [22]), or a Turing machine (Chap. 6 in [7]), because the latter do not
put any bounds on the number of cells in their tapes available for computation. A finite
state automaton of classical computability becomes a finite memory device only when the
number of its tape cells available for computation is bounded by a natural number.

A real number x is signifiable on a finite memory device Dj if and only if the finite
amount of memory on Dj can hold its sign, where a sign is a sequence of arbitrary symbols
from a finite alphabet [21]. Thus, if the alphabet is { “.”, “0”, “1”, “2”, “3”, “4”, “5”, “6“, “7”,
“8”, “9” } and Dj has 8 memory cells to represent a real number, then the real numbers 1.41,
1.414, 1.4142, 1.41421, 1.414213 are signifiable on Dj as “1.41”, “1.414”, “1.4142”, “1.41421”,
“1.414213”, respectively, whereas the real numbers 1.4142135, 1.41421356, 1.414213562,
1.4142135623, and 1.41421356237 are not. A consequence of the finite amount of memory is
that the set of real numbers signifiable on Dj is finite and, hence, vacuously countable. To
put it differently, Cantor’s theorem (§ 2 in [23]) does not apply insomuch as the number of
signifiable reals on Dj in any interval (α . . . β), α, β ∈ R, α < β, is finite. Consequently, all
computation of a feedforward artificial neural network Nz : Rn 7→ Rm, 0 < n, m, realized
on Dj, can be packed into a unique natural number Ωz such that there exists a primitive
recursive function f̃ : N 7→ N such that ζz(~x) =~a if and only if f̃ (x̃) = ã, where ~x uniquely
corresponds to x̃ and~a to ã (cf. Theorem 1, pp. 15–17 in [21]). Theorem 1 is, after a fashion,
the converse of Theorem 1 in [21] in the sense that it shows how one can construct a network
from a primitive recursive function.

Theorem 2 shows that all values of a primitive recursive function can be computed
exactly by a feedforward artificial neural network if the network is allowed to have count-
ably many neurons. This purely theoretical result contributes to the growing collection of
universality theorems on feedforward neural networks and various classes of functions (cf.
Ch. 4 in [17]). Thus, Hornik et al. [13] show that multilayer feedforward networks with a
single hidden layer of neurons with arbitrary squashing activation functions can approxi-
mate any Borel measurable function from one dimensional space to another to any desired
degree of accuracy so long as the number of the neurons in the hidden layer is unbounded.
Gripenberg [14] shows that the general approximation property of feedforward perceptron
networks is achievable when the number of perceptrons in each layer is bounded but the
number of layers is allowed to grow to infinity and the perceptron activation functions
are continuously differentiable and not linear. Guliyev and Ismailov [15] show that single
hidden layer feedforward neural networks with the fixed weights of one and two neurons
in the hidden layer approximate any continuous function on a compact subset of the real
line and proceed to demonstrate that single layer feedforward networks with fixed weights
cannot approximate all continuous multivariate functions.

We conclude our discussion with a caveat about universality results of feedforward
neural networks with unbounded numbers of neurons. While these results provide
valuable theoretical insights, they may not hold much sway with computer scientists
interested in computability properties of finite AI, because networks with unbounded
numbers of neurons cannot be realized on computational devices with finite amounts of
computational memory.

7. Conclusions

We have formalized feedforward artificial neural networks with recurrence equations
and proposed a formal definition of the concept of N-computability, i.e., the property of
a function to be computed by a feedforward artificial neural network N. We have shown
that, for a primitive recursive function h(x, t), where x is an n-tuple of natural numbers and
t is a natural number, there exists a feedforward artificial neural network N(x, t) such that
for any n-tuple of natural numbers z, the first m + 1 terms of the sequence {h(z, t)} agree
elementwise with the tuple (N(z, 0), . . . ,N(z, m)), for any positive natural number m. Our
investigation contributes to the knowledge of the classes of functions that can be computed
by feedforward artificial neural networks. Since such networks are used in some finite AI

Mathematics 2023, 11, 4309 16 of 16

systems, our investigation may be of interest to mathematicians and computer scientists
interested in the computability theory of finite AI.

Funding: This research received no external funding.

Data Availability Statement: No new data were created.

Acknowledgments: The author is grateful to the four anonymous reviewers for their feedback.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Gödel, K. On formally undecidable propositions of Principia Mathematica and related systems I. In Kurt Gödel Collected Works

Volume I Publications 1929–1936; Feferman, S., Dawson, J.W., Kleene, S.C., Moore, G.H., Solovay, R.M., van Heijenoort, J., Eds.;
Oxford University Press: Oxford, UK, 1986.

2. Péter, R. Konstruktion nichtrekursiver funktionen. Math. Ann. 1935, 111, 42–60. [CrossRef]
3. Péter, R. Recursive Functionen; Academinai Kiado: Budapest, Hungary, 1951.
4. Kleene, S.C. Introduction to Metamathematics; D. Van Nostrand: New York, NY, USA, 1952.
5. Davis, M. Computability and Unsolvability; Dover Publications, Inc.: New York, NY, USA, 1982.
6. Rogers, H., Jr. Theory of Recursive Functions and Effective Computability; The MIT Press: Cambridge, NY, USA, 1988.
7. Davis, M.; Sigal, R.; Weyuker, E. Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science, 2nd ed.;

Harcourt, Brace & Company: Boston, MA, USA, 1994.
8. Colson, L. About primitive recursive algorithms. Theor. Comput. Sci. 1991, 83, 57–69. [CrossRef]
9. Paolini, L.; Piccolo, M.; Roversi, L. A class of recursive permutations which is primitive recursive complete. Theor. Comput. Sci.

2020, 813, 218–233. [CrossRef]
10. Petersen, U. Induction and primitive recursion in a resource conscious logic—With a new suggestion of how to assign a measure

of complexity to primitive recursive functions. Dilemmata Jahrb. ASFPG 2008, 3, 49–106.
11. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133.

[CrossRef]
12. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
13. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 5,

359–366. . [CrossRef]
14. Gripenberg, G. Approximation by neural networks with a bounded number of nodes at each level. J. Approx. Theory 2003, 122,

260–266. https://.. [CrossRef]
15. Guliyev, N.; Ismailov, V. On the approximation by single hidden layer feedforward neural networks with fixed weights. Neural

Netw. 2019, 98, 296–304. [CrossRef]
16. Zhang, Z.; Li, J. A review of artificial intelligence in embedded systems. Micromachines 2023, 14, 897. [CrossRef]
17. Nielsen, M. Neural Networks and Deep Learning; Determination Press: San Francisco, CA, USA, 2015.
18. Goodfellow, I.; Bengio, Y.; Courville, A. Neural Networks; MIT Press: Cambridge, MA, USA, 2016.
19. Meyer, M.; Ritchie, D. The complexity of loop programs. In Proceedings of the ACM National Meeting, Washington, DC, USA, 30

August 1967; pp. 465–469.
20. Taylor, A.E. Advanced Calculus; Ginn & Company: Boston, MA, USA, 1955.
21. Kulyukin, V.A. On correspondences between feedforward artificial neural networks on finite memory automata and classes of

primitive recursive functions. Mathematics 2023, 11, 2620. [CrossRef]
22. Hopcroft, J.E.; Ullman, J.D. Introduction to Automata Theory, Languages, and Computation; Narosa Publishing Hourse: New Delhi,

India, 2002.
23. Cantor, G. On a property of the class of all real algebraic numbers. Crelle’s J. Math. 1874, 77, 258–262.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/BF01472200
http://dx.doi.org/10.1016/0304-3975(91)90039-5
http://dx.doi.org/10.1016/j.tcs.2019.11.029
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1038/323533a0
.
http://dx.doi.org/10.1016/0893-6080(89)90020-8
https://.
http://dx.doi.org/10.1016/S0021-9045(03)00078-9
http://dx.doi.org/10.1016/j.neunet.2017.12.007
http://dx.doi.org/10.3390/mi14050897
http://dx.doi.org/10.3390/math11122620

	Introduction
	Recursive Functions
	Computability and Turing Machines
	Computability of Primitive Recursive Functions

	Notational Conventions and Definitions
	Feedforward Artificial Neural Networks
	N-Computability of Primitive Recursive Functions
	Discussion
	Conclusions
	References

