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ABSTRACT

AN ENSEMBLE APPROACH FOR MAPPING SNOW WATER EQUIVALENT IN UTAH

by

Logan Schneider, Master of Science

Utah State University, 2023

Major Professor: Brennan Bean, Ph.D.
Department: Mathematics and Statistics

April 1st snow water equivalent (SWE) estimates of the mountain snowpack are used by many

western states for water management planning. Land-based weather stations provide accurate mea-

sures of local snowpack characteristics but, due to limited spatial coverage, struggle to characterize

state or regional landscapes with consistent accuracy. On the contrary, high resolution national level

gridded climate products, including SWE estimates, struggle to appropriately characterize local

snowpack conditions in mountainous terrain. This study investigates the accuracy and bias of SWE

predictions throughout Utah and explores an ensemble approach to provide improved estimates of

snowpack characteristics by using local land-based measurements to dynamically update national

level products. This process shows marginal decreases in variance and provides a template that can

be used to explore different weighting schemes in the future. The R package rsnodas provides

the framework for implementing the ensemble method of combining predictions from multiple data

sources, which has the advantage of improving the stability of the predictions over time and space.

This thesis includes a discussion of the challenges and potential opportunities for improving cur-

rently available SWE products for operational use.

(63 pages)
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PUBLIC ABSTRACT

AN ENSEMBLE APPROACH FOR MAPPING SNOW WATER EQUIVALENT IN UTAH

Logan Schneider

Mountain snowpack is an important resource for water management planning in Utah. Snow

water equivalent (SWE) is the amount of water contained in a snowpack. A few organizations pre-

dict SWE throughout the United States but struggle making accurate predictions in mountainous

regions. Weather stations provide accurate measurements of SWE but have limited spatial coverage

that hinders the ability to make accurate estimates statewide. This thesis examines the accuracy

of current models and proposes using local weather measurements to improve upon national level

predictions. An R statistical software package named rsnodas implements this process while al-

lowing the public access to a variety of temperature and SWE datasets. The package also provides

a method for combining predictions from different data sources, which has the advantage of im-

proving the stability of the predictions over time and space. This thesis includes a discussion of the

general merits of the map combination approach along with potential avenues for improvement in

the future.
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CHAPTER 1

INTRODUCTION

Snowmelt runoff is a major source of summer water for the western United States (Mote et al.,

2005; Serreze et al., 1999). Sustainable water resource management plans rely upon accurate esti-

mates of the water available in the springtime snowpack (Lv et al., 2019). Snow water equivalent

(SWE), a measure of the water present within a snowpack, is measured manually via snow courses,

where wintertime hikers take snow cores along a particular path every month, or automatically via

Snowpack Telemetry (SNOTEL) stations, which use steel pillows filled with antifreeze to auto-

matically record the weight of snow and the water content every hour. Historically, both sets of

stations have been used to forecast water availability, though many of the old snow courses have

been replaced by the modern SNOTEL stations.

April 1st SWE estimates are used to identify trends of snowpack conditions for effective wa-

ter management planning (Bohr and Aguado, 2001). SNOTEL and Snow Course stations provide

accurate land-based measurements of local snowpack characteristics but, due to limited spatial cov-

erage, struggle to characterize changes in the snowpack across the landscape. There are satellite-

based products that aim to characterize region-level snowpack trends and provide an alternative to

the land-based measurement approach by inferring the water content of the snowpack using radia-

tion (Frei et al., 2012). Two notable snowpack data sources that make use of satellite information

include the National Oceanic and Atmospheric Administration’s Snow Data Assimilation System

(SNODAS) and University of Arizona (UA) datasets. Both use a combination of satellite infor-

mation, atmospheric modeling, and land-based weather station measurements to provide gridded

estimates of SWE for the conterminous United States at a daily resolution. The method by which

the different data sources are combined is unclear, as will be explored in Chapter 2. A third data

product named Daymet uses daily meteorological observations to estimate the variables of mini-

mum and maximum temperature (Tmin and Tmax) and precipitation (PPT) which are used to infer

SWE (Thornton et al., 2021a).
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Overall, each data source struggles to explain the complex nature of SWE in Utah. Daymet

provides SWE estimates at a one kilometer resolution. In a preliminary investigation and analysis,

Daymet estimates on April 1st SWE tend to severely underpredict and display a bias when com-

pared to the measured SWE recorded at SNOTEL stations. In contrast, the model that UA utilizes

deriving SWE displayed less bias than Daymet, but provides estimates at a lower resolution of four

kilometers. This lower resolution smooths over some of the sharp changes in SWE that are typically

observed in mountainous regions. Even SNODAS, which is the best of the three gridded products

in terms of accuracy and resolution, has demonstrated struggles to predict SWE in mountainous

regions. For example, Clow et al. (2012) evaluated SNODAS in the Colorado Rocky Mountains

and reported that only 30% of SWE variance was explained in alpine regions. These shortcomings

highlight the need for local snow models that address region-specific trends not fully captured in

continental scale models.

Christensen and Sain (2012) highlighted the increasing use of ensembles or collections of

models for estimating environmental processes. The approach in this thesis implements similar

strategies by combining national-level gridded climate products with state-level snow load mod-

els generated using land based observations to produce ensemble estimates of SWE in near real

time. In a recent study, Yang et al. (2022) proposed combining ground-based observations with

satellite-derived snow data using a linear regression model to improve real-time SWE predictions

in the Sierra Nevada mountains in California. These authors combined ground snow pillow SWE

measurements, physical geographic data, physically-based historical SWE patterns, and satellite-

observed daily mean fractional snow-covered area (DMFSCA) in a linear regression model. One

goal of their study was to inspect the influence of satellite DMFSCA. This was determined by a

comparison of linear regression models of land-based measurements with and without the infor-

mation of DMSCA from satellite observations. The integration of this satellite information, in-situ

measurements, and historical patterns decreased bias and increased model performance in terms of

R2 as compared to SNODAS and a National Water Model (Gochis et al., 2018) for the water years

of 2013-2017.

The ensemble method presented in this thesis shares certain similarities and differences with
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the approach taken by Yang et al. (2022). The main distinction lies in the fact that Yang et al.

(2022) incorporated physically-based historical SWE patterns, which we did not include in the cur-

rent effort. Instead, we developed an ensemble method that utilizes SWE measurements, elevation,

and climate data to construct a generalized additive model (GAM) with splines on sphere (SOS)

to account for possible non-linear trends, as opposed to a linear regression model. This model dif-

fers from traditional interpolation techniques which seek to fit the input data exactly at the sampled

location. Instead, the GAM approach focuses on capturing general patterns in the SWE over eleva-

tion and temperature, using a location-specific adjustment provided by the SOS step. The state-level

model is then dynamically combined with the national-level SNODAS model, where increased pref-

erence is given to the state-level approach in the parts of Utah with the highest spatial density of

land-based measurements. It is this dynamic combination of state and national-level models based

on land-based station spatial density that is the primary novel contribution of this thesis.

This strategy of combining ground-based and remote sensing by observation density has shown

improvements when compared to SNODAS estimates in the state of Utah. Utah is characterized

with diverse elevations and landscapes, including mountain ranges and red rock desert. Figure 1.1

displays the state’s boundaries and elevation because our primary focus will be the snowpacks in

these elevated and mountainous regions.

Figure 1.2 displays the ensemble process. Using the station observation, a GAM is created and

used to generate a gridded map of SWE estimates. A monotonic function is applied to the station

density to get the maps of weights that are multiplied to the GAM map while the remaining weights

are applied to the satellite estimates like SNODAS. The products are then added together to get

the final SWE predictions. This methodology utilizes predictions, like SNODAS estimates, without

knowing all the climate and temperature variables to fully recreate a model.

Chapter 4 discusses the results from the ensemble of SNODAS and ground-based observa-

tions which displays a decrease in standard deviation of the errors. The median of the errors of the

blending technique is not as volatile or have as large of a spread in the median bias over the years

but does display an underestimation bias. This study highlights the value of implementing multiple

sources and models for estimating SWE. This process and framework suggests multiple avenues of
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Fig. 1.1: Map of the elevations in Utah.

exploration with promise to provide better regional predictions of SWE in mountainous areas like

Utah. The potential information gained by the use of this method leads to making more educated

decisions with water management in Utah and can be implemented easily from the GitHub R pack-

age, rsnodas, can be found at https://github.com/lschneider93/rsnodas. The

methodology outlined in this thesis has the flexibility to allow for and include different criteria that

can be implemented. For example, another criteria that could be used is to include some measure

of agreement or similarity of outputs from different models or the use of different variables. One

caution with the ensemble approach is an over-aggressive regression to the mean, which can smooth

over important variability in the SWE of the snowpack across the landscape.

The remainder of this thesis proceeds with Chapter 2 investigating the advantages and disad-

vantages of each source with information on available software to download data from SNODAS,

Daymet, UA, PRISM climate maps, and SNOTEL measurements. Chapter 3 describes the method-

ology of constructing a model using land-based SWE measurements that can be integrated with the

national-level SWE data products. This approach uses the spatial density of the land-based weather

stations as the means of blending the local and national models. In short, greater regard will be

https://github.com/lschneider93/rsnodas
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Fig. 1.2: Process of the ensemble approach. The top row maps are multiplied by the weight maps
located directly below and added together to get the final map.
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given to the local model in locations with a relatively high spatial density of land-based station

measurements. The results and software contributions will be presented in Chapter 4, followed by

a discussion about potential improvements, challenges, and future work in Chapter 5. Appendix A

includes a vignette that explains and displays of the capabilities and functionality of the R package

rsnodas. Appendix B discusses challenges from data sources with preliminary results and graph-

ics to demonstrate why certain data sources were not included in the ensemble process. Appendix

C concludes with a discussion about different models and methods that were implemented and the

process of determining to use a GAM with the specified variables.
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CHAPTER 2

DATA SOURCES AND SOFTWARE

Snow Data Assimilation System (SNODAS), Parameter-elevation Regressions on Independent

Slopes Model (PRISM), University of Arizona (UA), and Daymet supply data for climate variables

such as precipitation, minimum and maximum temperature, vapor pressure, and variables of impor-

tance to snowpack. Each data source is considered for inclusion in the ensemble modeling approach

described further in Chapter 3. This chapter discusses what each data source provides including

their strengths and weaknesses. Table 2.1 lays out a summary of the variables and spatial resolution

that each data source offers. Appendix B provides more information of the preliminary analysis

conducted about UA and Daymet.

Table 2.1: Table of the variables available for the data sources of SNODAS, PRISM, UA, and
Daymet.

Data Source Resolution Variables available

SNODAS 1 km SWE, SnD, SM,
SSP, SBS, PPT, SPT

PPT, Tmin, Tmax,
PRISM 4 km∗ TDmean, VPmin, VPDmax,

Elev, SOLTOTAL

UA 4 km SWE and SnD

Daymet 1 km Tmin, Tmax, PPT,
VP, SR, SWE

∗maps available at 800 meter resolution for a fee.

One product of this thesis is software that conveniently downloads the previous data types.

This software is discussed further in Chapter 2.6.
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2.1 Snow Data Assimilation System (SNODAS)

SNODAS is a national data product that provides daily estimates of multiple snowpack prop-

erties at a one kilometer resolution (Shuman and Ambrose, 2003), including:

• SWE (mm)

• snow depth (SnD)

• snow melt runoff (SM)

• sublimation from the snow pack (SSP)

• sublimation of blowing snow (SBS)

• solid and liquid precipitation (PPT)

• snow pack average temperature (SPTave)

SNODAS integrates satellite, airborne platforms, and ground stations with model estimates to esti-

mate these variables since 2004. Barrett (2003) provided further insight on the process of SNODAS

utilizes, “Each day, analysts decide whether or not to use remote sensing and ground based obser-

vations to update the snow water equivalent state in the model.” This use of multiple sources of

data, analysts to decide on using information, and the high resolution of estimates are strengths of

SNODAS and allow for providing useful SWE estimates. Although SNODAS informs readers of

the data they use, they fail to provide information on how they blend the different data sources in

the modelling process.

A few challenges with remote sensing SWE observations using microwaves is the limited abil-

ity to measure deep snow, snow under forest canopies, and redistributed snow (Kinar and Pomeroy,

2015; Lv et al., 2019). SNODAS SWE estimates in mountainous regions struggle explaining the

distribution of SWE and researchers have tried to improve their estimates by using linear regression

and other methods ((Clow et al., 2012; Yang et al., 2022). SNODAS has been providing estimates

since September 2003 which makes it impossible to observe long-term changes in snowpack. It will

be shown in Appendix B that SNODAS provides the highest resolution and estimates of SWE cur-

rently available and still displays evidence of bias from time to time. Information about SNODAS
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daily estimates are available and steps for downloading data in near real-time are available at the

following link:

https://nsidc.org/data/g02158

2.2 Parameter-elevation Regressions on Independent Slopes Model (PRISM)

Since 1895 to the present, the PRISM climate group has maps for the following climate ele-

ments:

• precipitation (PPT)

• minimum and maximum temperature (Tmin and Tmax)

• mean dew point (tdmean)

• minimum and maximum vapor pressure deficit (vpdmin and vpdmax)

• elevation (Elev)

• total global shortwave solar radiation on a horizontal surface (soltotal)

The PRISM climate group gathers observations from a variety of climate stations with the

goal of identifying short and long term patterns in the climate variables over time (Oregon State

University, 2014). The geographic and temporal resolution varies by product. PRISM provides

yearly, monthly, and annual maps at a four kilometer resolution for free.

PRISM maps are used for the climate information provided to make a map of predictions from

a model. The variables used in the model were PPT and Elev. Mean or average temperature were

considered in the model for predicting SWE. Overall, this data source provides a lot of information

and numerous opportunities for exploration. Other alternatives to download the data and access

more information about available products offered by PRISM can be obtained through the link

below:

https://prism.oregonstate.edu/

https://nsidc.org/data/g02158
https://prism.oregonstate.edu/
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2.3 University of Arizona (UA)

UA provides daily estimate maps of the United States since October 1981 at a four kilometer

resolution for the following variables:

• snow water equivalent (SWE)

• snow depth (SnD)

UA estimates are derived using climate variables from PRISM along with SWE and snow depth

measurements from SNOTEL, Snow Course, and cooperative observer network (COOP) stations.

All of these are used as input into a snow density model that provides the final, mapped estimates

(Broxton et al., 2017).

One big advantage of UA is that it contains over forty years of data. One potential use of all this

data is modeling trends in snow over time. When compared to the on-site measurements, the UA

predictions tends to underestimate. One possible explanation is due to the inability to characterize

the sharp changes in mountainous snowpack using a four kilometer resolution grid. One potential

remedy is to downscale map estimates to a smaller resolution like one kilometer. This process

of producing a finer resolution can be obtained by utilizing available climate variable maps, for

instance elevation or annual precipitation, at a finer resolution to downscale map estimates. Efforts

to improve UA are not explored in this thesis. More information about the UA product is made

available at the following website:

https://nsidc.org/data/nsidc-0719/versions/1#

2.4 Daymet

Daymet provides daily, monthly, and annual maps at a one kilometer resolution for North

America since 1980 and Puerto Rico since 1950 (Thornton et al., 2021a). It includes the following

variables:

• precipitation (PPT)

• SWE

https://nsidc.org/data/nsidc-0719/versions/1#


11

• minimum and maximum temperature (Tmin and Tmax)

• vapor pressure (VP)

• shortwave radiation (SR)

Estimates are provided through statistical modeling techniques that use ground-based observa-

tions as input. It uses a simple model to estimate SWE and admits that the purpose of these estimates

is to validate other Daymet outputs, rather than to use their SWE estimates directly. The authors

actually encourage researchers to derive their own SWE models if that is the primary variable of

interest (Thornton et al., 2021b). Preliminary analysis of Daymet for April 1st 2015 confirmed that

SWE predictions were too inaccurate as predictions were about half of the values recorded at SNO-

TEL station locations. However, Daymet provides other temperature and climate-related variables

that could be used to downscale other SWE products, such as the UA data. More information about

Daymet and its available data offerings is available at the following link:

https://daymet.ornl.gov/getdata

2.5 Snowpack Telemetry (SNOTEL)

Manual collection of snowpack data has been done since the 1920s and Utah has records that

date back to 1912 (Julander and Bricco, 2006). The automated versions or SNOTEL sites began to

be installed in the late 1970s and early 1980s and provide information on snowpack. Table 2.2 shows

there are 896 sites spread across Utah, Arizona, California, Colorado, Idaho, Montana, New Mexico,

Nevada, Oregon, Washington, Wyoming, Alaska, and South Dakota (Hufkens, 2020). Figure 2.1

shows the locations of SNOTEL stations in the United States excluding stations in Alaska and South

Dakota. SNOTEL stations provide hourly and daily measurements of the following variables:

• precipitation (PPT)

• temperature

• snow depth (SnD)

• snow water equivalent (SWE)

https://daymet.ornl.gov/getdata


12

Table 2.2: Table that details the number of SNO-
TEL sites located in each state.

State Number of Sites

Alaska 77
Arizona 23
California 34
Colorado 116
Idaho 86
Montana 92
New Mexico 29
Nevada 56
Oregon 81
South Dakota 2
Utah 125
Washington 76
Wyoming 89

The goal of the SNOTEL network is to “provide information for runoff volume forecasting

using empirical relationships between point values of SWE, antecedent soil moisture, historical

temperature and precipitation data and observed runoff.” (Molotch and Bales, 2005). SNOTEL

stations estimate the rate of snowmelt by utilizing climate variable like temperature, weight, SnD,

and SWE. The SnD measurements at these sites are not as accurate as the SWE readings. SWE

measurements from these sites are used to validate gridded SWE estimates. It is important to note

that the SWE values collected at SNOTEL stations may not be representative of the average value

in the gridded one kilometer area. For example, a SNOTEL station covered in shade while the

rest of the surrounding landscape lacks shade cover will over represent SWE. However, the SWE

observations that SNOTEL stations provide are the best estimate for the “true” ground SWE values.

SNOTEL data will be useful in creating GAMs or other models to predict SWE based on variable

information.

2.6 Software

Each data source provides user guides on how to store, access, and download their products.

Additionally, there are other websites, GitHub and Comprehensive R Archive Network (CRAN), or

platforms designed to store and share software capable of performing certain tasks through functions
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Fig. 2.1: Active SNOTEL sites throughout the western United States as of 2022. The sites in Alaska
and South Dakota are not pictured.

and R packages. R is an open-source software built for to manipulate and store data, compute

statistics, and generate graphics. All graphics and computations in this thesis were completed in

R (R Core Team, 2021). After considerable effort of searching on GitHub and CRAN, there were

multiple R packages able to facilitate direct downloading of data from Daymet and SNODAS into

R. However, there were no packages or functions available to download the UA data. In order to

access the UA data, the user must create an Earthdata account to manually download the data, which

is provided via nc files that contain an entire calendar year of data.

The R package daymetr (Hufkens et al., 2018) was used for downloading daymet data.

Daymetr is supported by CRAN, which generally means that the software is less error-prone and

likely to be supported long term. snowdl (Smith, 2021) is another R package on GitHub that has
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the capability to download Daymet and SNODAS. However, the robustness of the snowdl R pack-

age is in question. While attempting to download data for two specific days, only one day’s data

was successfully gathered. An error prevented the data retrieval for the second day.

One method to download PRISM data is using the R package prism (Hart and Bell, 2015),

available on CRAN. This package was effective and efficient in downloading PRISM data. It allows

the user to set up a directory or location to store all the PRISM files and has functions to quickly

plot, find, and manage the climate data files.

The following sources on GitHub are capable of downloading SNODAS data:

• R package snowdl (Smith, 2021)

• R package snodasr (Marinos, 2020)

• R package rwrfhydro (National Center for Atmospheric Research, 2019)

• Bash scripts NOHRSC SNODAS (Burakowski, 2017)

NOHRSC SNODAS used only bash scripts and was not useful in downloading data in R. rwrfhydro

has multiple functions that allowed for downloading data but are difficult to use. snodasr and

snowdl both had general public licenses (GPL) and useful code. snowdl could download data

from Daymet and proved rather effective with downloading SNODAS data and provided an option

to download in parallel. however, the robustnesss of snowdl is in question due to a failure to

download data for a random date that was chosen. snodasr was a user-friendly package with

simple and effective functions that provided insight on downloading data with date-specific issues

that other R packages, like snowdl, failed to address.

An R package rsnodas was created as part of this thesis and incorporates functionality

from snowdl and snodasr while adding more options of downloading other types of data that

SNODAS offers. rsnodas allows users to use one package to download data from SNODAS,

PRISM, and SNOTEL stations. Supplemental instructions and examples of using rsnodas will be

demonstrated in the Appendix A. A development version of the R package rsnodas is available

on GitHub and can be found at https://github.com/lschneider93/rsnodas

https://github.com/lschneider93/rsnodas
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In contrast to the gridded climate products, the land-based SNOTEL measurements can also

be downloaded using an R package called snotelr (Hufkens, 2020). snotelr is user-friendly

and provides examples of how to download information for locations. Although easy to use, one

problem was comparing the downloaded data from snotelr to another function available in the

created GitHub package rsnodas. snotelr reports SWE values with one position after the

decimal point while rsnodas reports two values after the decimal point.
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CHAPTER 3

METHODOLOGY

Ensemble modeling is a process that includes averaging the output from independently created

models to estimate an outcome of interest. Ensemble models aggregate predictions from each base

model in hopes of reducing the generalization error of the final estimate (Kotu and Deshpande,

2014). The general idea behind the ensemble process is the belief that each individual model is

unbiased, but collectively the average knowledge of the models can result in the reduction of noise,

variance, and bias. Consolidating multiple model outputs effectively requires identifying which

model(s) perform best in a given situation.

A common ensemble approach is taking the average of the outputs or adding weights to each

output based on some criteria like distance or similarity. The ensemble approach in this thesis

involves combining a map of estimates from a GAM using ground-based measurements of the snow

pack with gridded SWE products from SNODAS. The predicted maps are weighted based on the

relative spatial density of the the SNOTEL measurement locations. This means more weight will

be given to the GAM outputs in areas with a higher density of land-based stations. The dynamic

ensemble approach outlined in this thesis creates a framework for future, more complex, spatial

ensemble approaches that combine larger sets of gridded and land-based model estimates.

3.1 Generalized Additive Models

This dynamic ensemble approach involves building a model based on in-situ measures and con-

verting them to spatial gridded predictions. This thesis uses a generalized additive model (GAM)

with splines on the sphere (SOS) to create these maps. A GAM can account for non-linear effects

but uses a framework similar to linear regression. The method replaces the coefficients (βi) of a

linear regression with smoothing functions (si). Each smoothing function is “fit using a scatterplot

smoother (e.g., a cubic smoothing spline or kernel smoother), and provide an algorithm for simulta-

neously estimating all smoothing function” (Hastie et al., 2009). These functions allow GAMs to fit
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a large variety of data and can be used in conjunction with regularization to avoid overfitting. This

is often accomplished using some form of penalized regression and leave one out cross-validation

which helps generalize the model to account for new data points (Wood, 2017).

One thing to note is that GAMs do not model interaction terms and are not as easy to interpret

as linear regression models because there is no parametric model summary. However, GAMs can

provide understanding about the relationships between response and explanatory variables when

compared to other machine learning algorithms like random forest or support-vector machines.

Let uα represent α = 1, . . . n measurement locations (either a pair of lat/long values for

geographical coordinates or a pair of x/y values for Cartesian coordinates) and let u∗ represent an

arbitrary location of interest. Further, let X represent an n× p matrix of explanatory variables (not

including geographical location) and x1 represents the first column of X . Finally, let ẑl(u∗) denote

the estimate of the variable of interest from the model at the location of interest using the land-based

observations. The predictions from the GAM model can then be represented mathematically as

ẑl(u
∗|X(uα)) = s0 + s1 (x1) + s2 (x2) + . . .+ sk (xp) . (3.1)

Spatial modeling assumes that there is predictive power in the location of the observations

beyond that captured in traditional explanatory variables. A geographic smoothing spline with

position (ssos), using the longitude and latitude, will be added to the equation 3.1. This additional

term, ssos, models spatial patterns on a spherical surface using a “splines on the sphere” approach

(Wahba, 1981; Wood, 2003). The end result will be an estimation of variable at a location using

position and climate variables in the represented as

ẑl(u
∗|X(uα)) = s0 + s1 (x1) + s2 (x2) + . . .+ sk (xk) + ssos (u

∗) + ϵi. (3.2)

Other mapping approaches, including random forest and linear regression, were used in pre-

dicting SWE. The random forests highlighted variables of importance such as Elev, PPT, but failed

to provide smoothly varying characterizations of the landscape. Linear regression worked well at

some locations but struggled to have the flexibility to describe the climate patterns throughout the
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state of Utah. GAMs proved to explain some SWE distribution patterns while providing less er-

rors in cross-validation. The generalized additive model implemented in this thesis included the

variables of latitude and longitude, elevation, slope, annual precipitation, and aspect or orientation.

3.2 Ensemble Methodology

After determining the satellite predicts and ground based model(s) that will be used in inter-

polation. The second step of dynamic ensemble approach is to determine the optimal weights for

combining satellite and land model predictions. The previous subsection describes how to get the

estimate of the land-based observations, ẑl(u∗). There are other satellite estimates ẑs(u∗) provided

by other services such as SNODAS, UA, Daymet, or any combination of the three. The ground

or land-based model predictions are weighted, based on observation density (f(ρ)), and combined

with other gridded predictions. This method can be used over any spatially reference area (R) in

which there are multiple model estimates and land-based stations taking measurements. Let ẑ(u∗)

represent the estimate of the variable of interest and with the subscripts of c, l, and s. Each subscript

represents the following: the combined estimate, the land-based model estimate (ẑl(u∗)), and the

other satellite source estimate (ẑs(u∗)). Below is an equation of how to calculate the combined

estimate of the variable of interest at an arbitrary location.

ẑc(u
∗) = f(ρ(u∗)) · ẑl(u∗|X(uα)) + (1− f(ρ(u∗))) · ẑs(u∗) (3.3)

One way to allow for other multiple satellite source predictions like UA and Daymet is by

expanding and adding models, m, and weights, λi to each of those satellite estimates. This is

represented mathematically as

ẑc(u
∗) = f(ρ(u∗)) · ẑl(u∗|X(uα)) + (1− f(ρ(u∗))) ·

m∑
i=1

λiẑs,i(u
∗) (3.4)

where 0 ≤ f(ρ(u)) ≤ 1, 0 ≤ λi ≤ 1, and
∑m

i=1 λi = 1.

The function, f(ρ(u∗)), applied to the location’s point density (ρ(u∗) must be monotonically

increasing so as to give less weight to land based model predictions as station density decreases.
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The output, a value in the interval of [0, 1], determines the weight or percentage of the estimate that

will be given to the land based model. The remaining percentage, 1−f(ρ(u∗)), is going to be given

to the predictions of the other satellite source model, ẑs(u∗).

One challenge with this method is that the weighting is almost completely arbitrary. This

allows for exploration of nearly endless and different weighting schemes and functions. However,

there should a process to incorporate data-driven rules to determine the weighting scheme and or

function applied to the density. The data-drive rules could use information from previous year

differences or a measure of similarity between model outputs.
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CHAPTER 4

RESULTS

The process of this ensemble approach was used to predict the April 1st SWE estimates from

2004 to 2021. This approach involved combining the SNODAS and GAM model predictions. The

theory of combining SNODAS and UA was explored but smaller errors were obtained when UA was

excluded. Different weight schemes could implement UA SWE predictions and Daymet climate

variables in the future. Figure 4.1 compares the SWE estimates of SNODAS and UA in 2020.

Fig. 4.1: Gridded SWE predictions in Utah for 2020 from SNODAS (left) and UA Gridded Products
(right).

A GAM based on SNOTEL stations and using PRISM climate variables produces a map of

predictions throughout Utah. This model uses the variables, annual precipitation, elevation, slope,

aspect and location in terms of latitude and longitude to give a map of gridded SWE predictions

throughout Utah. A density map is calculated based on station observation locations. A simple

function utilizes the density to return an output between zero and one that determines the weight
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given to the GAM model. The function takes the density value at a location and divides by the max

density value. Effectively, 100% is the max weight the ground-based model is allowed. The map of

weights is multipled to the map of gridded SWE predictions to produce the weighted SWE predic-

tions. Figure 4.2 displays the process to create the final gridded weighted GAM SWE predictions

in Utah for 2020. This weighting allows the designed model to be implemented in the same spatial

locations as data points obtained.

Fig. 4.2: (Three stage-process of SWE predictions in Utah using 2020 data: (Left) Initial prediction
map generated from the GAM model; (Middle) The weighting, based on station density; (Right)
The resulting map of SWE predictions integrating the weights into the GAM for the year 2020.

Before a comparison of each model, it is crucial to understand how errors are calculated. In-

situ or ground-based measurements are the primary way to validate satellite-derived maps, such as

SNODAS and UA, but site specific measurement conditions may make it such that the land-based

measurement is not be representative of the surrounding landscape. The result from subtracting the

model predicted value from the ground based value measures the error. A positive residual or error

denotes an under-prediction and a negative error denotes an over-prediction. In order to improve the

accuracy of SWE predictions, this ensemble process explores using different schemes and compares

the residuals with the three models (SNODAS, GAM, and the Ensemble). The max weight given to
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the GAM is 100% and the blended model predictions will shift percentages between the GAM and

SNODAS model by giving more or less depending on station density.

As previously discussed, this weighting approach is intuitive, but arbitrary. There is not a real

technique or criteria to establish the weights given to each model. One way to try to incorporate

data into deciding the weights would be incorporating previous year(s) differences.

4.1 Cross-validated Results

10 fold cross-validation validates the results from the ensemble approach. This process in-

volves using 90% of the data to predict on the remaining ten percent and repeats this procedure ten

times. This type of cross validation provides an accurate representation of the bias and variance,

even with a small dataset, that is present in the model. The figures below illustrate the bias and

variance of each model.

It is important to recognize that the standard deviation of the errors decreases with time for all

models shown in Figure 4.3. The GAM standard deviation of the errors is consistently higher than

the other models except for in the years of 2014 and 2022. Generally the performance of SNODAS

and the combined SNODAS and GAM model are quite comparable. The big difference between

these models is that the combined or ensemble models displays more stability that is highlighted in

2014 and 2022. SNODAS displays an increase in the standard deviation of the errors for 2014 and

2022, which is notably absent in the combined SNODAS and GAM model. This suggests that the

ensemble model is less susceptible to extreme variations in the errors between years.

A similar story is reflected in the medians of the errors. The SNODAS and GAM models

have years when they are unbiased but the median of the errors fluctuates between higher and lower

values. The stability gained from the ensemble methodology is promising, but does display a slight

underestimation bias. Although the ensemble does generally underpredict, it is important to note

that these predictions are estimating for a one kilometer area, and it seems as though SNOTEL

stations tend to generally receive higher accumulations of snow than the one kilometer squares that

contain them. These are at two different spatial resolutions and it is difficult to decide, without more

SWE measurements, how accurate the ensemble model preforms.
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Fig. 4.3: The 10-fold cross-validated median value (top) and standard deviation (bottom) of the
residuals for SNODAS, GAM, and their ensemble for each year.

The spread of the errors for each models varies from year to year but the ensemble tends to

exhibit similar outliers and variance as SNODAS. The GAM interquartile range of the residuals

always contains zero, indicating less severe bias, but displays the highest variance of the models.

The residual distributions in 2015 and 2020 of each model are depicted in Figure 4.4. In 2015,

the errors from the GAM model look approximately normal and unbiased because the boxplot is

centered around zero and roughly symmetric. It is important to note that the GAM model residuals

display a much larger interquartile range. The distribution of the errors from SNODAS has the

smallest interquartile range but looks to be biased since zero is not contained in the interquartile

range. The ensemble model’s has qualities of both the GAM and SNODAS error distributions

seeing that the interquartile range contains zero but covers a larger range of values compared to

SNODAS. Each model displays a similar number of outliers.

The residual distributions in 2020 shows that SNODAS performed the best because it is not
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bias and exhibits the smallest variance but exhibits two extreme outliers. The ensemble method has a

slightly larger interquartile range and has outliers slightly less extreme compared to SNODAS. The

GAM residuals look to be approximately normal and non-biased but displays the largest interquartile

range and has two extreme outliers.

Ultimately, this ensemble approach displays marginal improvements of variance and bias. This

evidence shows that the ensemble models are a promising approach for improving SWE predictions

in Utah, but more work needs to be done to determine the best function for assigning weights

based on station density. This work demonstrates that a combination of models can develop better

predictions overall.
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Fig. 4.4: The distribution of residual values for each model display the spread of errors for April 1st
in 2015 and 2020.
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CHAPTER 5

CONCLUSIONS

5.1 Challenges

A common challenge with new strategies for analyzing spatial data is scalability. The pro-

cess of creating a grid of estimates at a one km resolution or finer resolution is computationally

expensive. However, this issue can be mitigated by focusing on improving predictions for smaller

regions, and deferring fully to national products for continental scale analyses. Another issue to

consider is the potential loss of valuable information when averaging all the predictions in the en-

semble process. This is especially true when individual models are superior to the other models in

the ensemble, making the user better off to use a single product rather than an average of many. One

potential fix is to incorporate another criteria of previous year accuracy comparisons. This could

be something to help weigh the model and help determine regions that models generally under or

over-predict.

Another challenge is that there are between 80 and 130 land-based observations throughout

Utah in a given day. This is a relatively small amount of data for predicting over all of Utah.

The scale at which snow changes is finer than current available measurements and the process of

validating the results requires leaving out a percentage of these observations. The removal of ten

percent of the observations will not make a major difference in predictability, but in practice the

ensemble model will include every in-situ observation and hopefully improve the accuracy and

lower variance. However, the general lack of ground-based observations of SWE makes it difficult

to effectively validate the land-based models we produce, let alone the ensemble models.

Another ongoing challenge is determining best practices for handling NA’s or missing values

in mapped values. The current ensemble approach propagates missing values included in any one

of the ensemble predictions. For example, UA does not provide an estimate for Burt Miller Ranch.

Any ensemble that incorporates UA will not yield any estimates at that location. One option is to
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change the NA’s to 0’s but often the NA’s reflect a body of water like the Great Salt Lake. In the

case of an NA, that location could be checked on another satellite resources to verify if it is NA or

not.

5.2 Future Work

There is a lot of exploration available with this methodology because this is a process of com-

bining the outputs of different models. The first thing is to try to implement more complex weight-

ing schemes of more than two SWE mapped estimates. This framework allows for the dynamic

weighting to be based on criteria besides station density, such as the level of agreement of model

predictions of SNODAS and UA or other data sources. Christensen and Sain (2012) suggested an

alternative to calculate weights by using a measure of covariance between the mapped values in-

stead of station or observation density. Additional opportunities for improvement include the use

of additional climate variables to help overcome the sparse spatial distribution of weather stations

measuring SWE directly. There are multiple ways to do interpolation and the performance of other

types of models and utilizing other variables could be analyzed and compared. Specifically, other

variables such as vapor pressure, max temperature (as indicated in Figure C.1 of Appendix C),

vegetation index warrant further study due to their potential impact on SWE. An investigation into

historical trends could provide insight into long-term changes in snowpack conditions to help im-

prove predictions of SWE and could be incorporated in the modeling process. Future work might

also incorporate the agreement and disagreement of the already established models. For example,

if the SNODAS and UA have a big disagreement, then we could give more weight to ground-based

models. This could be coupled with historical difference fields at that location. Other studies utilized

previous year differences in their model and that strategy could be implemented in this approach by

including previous years difference.

5.3 Reflection

Droughts are becoming an increasing concern throughout the US and especially in Utah. The

ability to accurately estimate the amount of water from the mountainous snowpacks is crucial for

summer water management. The current models and methods of predicting SWE have challenges
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that have been identified in this thesis. Each of these sources showed evidence of bias and high

errors due to the complexity of predicting SWE. This thesis has shown that the ensemble model

approach displayed a decrease in standard deviation of the errors and promise in mitigating the

weaknesses of individual data sources, while still preserving their strengths.

The software available to download and access the data sources involved multiple R packages.

One key contribution of this thesis was the amalgamation of multiple sources of code to one package

that allows users to download, store, access and explore the ensemble methodology. This approach

outlines and highlights the value of combining remote and land observations to better estimate SWE.

This dynamic approach, employing ensemble techniques, can be applied to other spatial variables

with groups of individual models or data sources. The framework of this method has the flexibility

to accommodate different weighting schemes and try different criteria for the dynamic weighting.

The GitHub R package, rsnodas, discussed in this thesis provides a framework of combining

gridded and point data based on spatial density. The functions in rsnodas allow users the ability

to download climate data from a variety of sources, calculate spatial density, and create a map of

predictions. This allows for exploration and optimizing the data sources’ information to make better

SWE predictions.

5.4 Software Acknowledgements

The ensemble approach in this thesis attempts to improve current products’ SWE predictions

in Utah by utilizing SNOTEL station data. This is accomplished by understanding the current soft-

ware available for downloading the data. All computations and figures in this thesis were completed

in R (R Core Team, 2021) using the following spatial statistics packages: sf (Pebesma, 2018), stars

(Pebesma, 2021), terra (Hijmans, 2021), and spatstat (Baddeley and Turner, 2005). The package

dplyr (Wickham et al., 2022), was used for data manipulation and wrangling, and ggplot2 (Wick-

ham, 2016) was used for data visualizations.

A portion of this thesis involves the software contributions on GitHub at the following https://

github.com/lschneider93/rsnodas. The R package, rsnodas, allows users to down-

load data from SNODAS, Daymet, and PRISM maps and variables. Functions from the rsnodas

https://github.com/lschneider93/rsnodas
https://github.com/lschneider93/rsnodas


29

package are used to create density maps of observations and generating a map of estimates given

data points. rsnodas has the capabilities to read in the SNOTEL station data and extract the SWE

information. Most of the figures presented in this thesis incorporated functions from this package

in order to obtain results.
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APPENDIX A

Package Vignette

Appendix A contains a copy of a software vignette associated with the rsnodas R software

package. The package is available on GitHub at https://github.com/lschneider93/

rsnodas. A vignette is a combination of text and code that guides a reader through an extended

example using the software of interest. This particular vignette shows how to develop ensemble

maps that combine GAM models of SNOTEL station measurements with gridded SWE estimates

available from SNODAS. Note that the rsnodas package allows for the use of other models to

create gridded predictions beyond those demonstrated in the vignette.

https://github.com/lschneider93/rsnodas
https://github.com/lschneider93/rsnodas
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1 Introduction

This rsnodas package allows users to access, clean, visualize, and analyze data from the following sources:

• Snow Data Assimulation System (SNODAS)

• University of Arizona (UA)

• Parameter-elevation Regressions on Independent Slopes Model (PRISM)

• Historical Climatology Network daily (GHCND) which provides access to Snow Telemetry (SNOTEL)
stations

SNODAS, UA, and PRISM provide data in the form of gridded rasters for the contiguous United States.
A summary of the variables and resolution assoicated with each data source is provided in the table below.
GHCND provides in-situ measurements, spatial point data, with different temporal scales. This package
focuses on downloading the daily maps and measurements from SNODAS, PRISM, and GHCND. UA data
currently can not be downloaded using this R package and must be downloaded manually after creating and
signing into an Earthdata account. Please refer to their links for more information about each data product.

The following table lists the data products and spatial resolution of each data source. Note that like PRISM
allows users to download data at the 4km resolution for free but charge a fee for their maps at a 800m
when it is their daily, monthly, or yealy data. Their 30 year normal (i.e. average) maps are free at the 800m
resolution and are currently from 1991-2020. These 30 year maps change from year to year and are free at
the 800m resolution.

Data Source Resolution Variables available
Snow water equivalent (SWE), Snow Depth (SnD),

Snow Melt runoff (SM), Precipitation (PPT),
SNODAS 1 km Sublimation from Snow pack (SSP),

Sublimation of blowing snow (SBS),
Snow pack Temperature (SPT)

PPT, Elevation (Elev), Mean dew point (TDmean),
PRISM 4 km Min/Max vapor pressure deficit (VPmin and VPDmax),

800 m∗ Min/Max Temperature (Tmin and Tmax),
Total global shortwave solar radiation (SOLTOTAL)

UA 4 km SWE and SnD

Daymet 1 km Tmin, Tmax, PPT, SWE,
Shortwave radiation (SR), Water vapor pressure (VP)

∗maps available at 800 meter resolution for a fee.

This vignette uses functions from tidyverse, ggplot2, sf, and the stars package and will be loaded now.

library(tidyverse)
library(sf)
library(stars)
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1.1 Installation

rsnodas is available on GitHub and can be installed with devtools:

# install.packages("devtools")
library(devtools)
install_github("lschneider93/rsnodas")

The vignette will first proceed with a demonstration of how to download SNODAS, SNOTEL, and PRISM
data. After downloading all of those sources of data, the vignette will show the process of creating a raster
of predictions and calculating station density. The blending of SNODAS and a Generalized Additive model
can then be explored.

2 Downloading SNODAS, PRISM, and SNOTEL data

2.1 SNODAS

The function download_snodas allows us to choose the variables we want to download. Note that the dates
inputted in this function need to be in ‘YYYY-MM-DD’ or ‘YYYY-M-D’ format. The function format_date
allows users to easily create character vectors with dates in the needed format. format_date function can
be applied inside of the download_snodas for mass downloading. The following example shows how to
download snow water equivalent for the masked area of the US into a folder called ‘snodas_data’ in our
working directory.

# Download Snodas SWE data for April 1st in 2021
snodas_2021 <- download_snodas(dates = format_dates(day = 1,

month = 4,
year = 2021),

masked = TRUE,
overwrite = TRUE,
remove_zip = TRUE,
data_saved = "swe",
out_dir = paste0(getwd(), "/snodas_data"),
GTiff = FALSE) #

After downloading SNODAS, you can crop it to the area or state of interest. These next portion of code
gets a shape file of Utah from the maps package, crops the SNODAS map to the state of Utah, and creates
a visual by using ggplot2.

# Get an shape of utah from the maps package
ut_map <- maps::map("state", plot = FALSE, fill = TRUE) %>%

sf::st_as_sf() %>%
dplyr::filter(ID == "utah") %>%
sf::st_transform(crs = sf::st_crs(snodas_2021[[1]]))

# Crop the maps to just the state of utah and name the values to be "SWE Value"
snodas_ut_2021 <- sf::st_crop(snodas_2021[[1]], ut_map)
names(snodas_ut_2021) <- "SWE\nValue\n(mm)"

# Plot SNODAS April 1st 2021 SWE map of Utah with blue outline
ggplot() +
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stars::geom_stars(data = snodas_ut_2021) +
geom_sf(data = ut_map, fill = "NA", size = 1, color = "blue") +
ggtitle("2021 SNODAS SWE predictions") +
scale_fill_viridis_c(option = "A", limits = c(0, 850), na.value = "transparent") +
labs(x = "Longitude", y = "Latitude") +
theme(plot.title = element_text(hjust = 0.5, size = 16),

axis.text.x = element_text(angle = 45, hjust = 1),
text = element_text(size = 13),
legend.position = "right")
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2.2 Download PRISM climate data

The PRISM climate group has been provided climate maps since 1895 for the Precipitation (PPT), Minimum
and maximum temperature (Tmin and Tmax), Minimum and maximum vapor pressure deficit (vpdmin and
vpdmax), mean dew point (tdmean), Elevation (Elev), and total global shortwave solar radiation.

Most of this data from PRISM can be downloaded by utilizing the R package, prism, and more examples and
information is available at this link. This package has three separate functions to download daily, monthly,
and yearly data and store them in different file paths to keep them organized.

In comparison, we’ve created the download_prism function to seamlessly download daily, monthly, and
yearly PRISM climate data and stores all the data files in one directory. This will be optimal for decreasing
time and effort later to create a model for prediction. The alternatives are to manually or by use prism
functions to download PRISM data and move all PRISM files into one directory. Currently, download_prism
is limited to only download daily, monthly, or yearly data and can not be used to download PRISM’s 30
year normal maps.
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The follow example will download monthly precipitation from January 2021 until March 2021 and store in
the folder called ‘prism_data’ in your working directory.

# Example of downloading 4km monthly precipitation maps from Jan. 2021 - March 2021
download_prism(sp_res = "4km",

data = c("ppt"),
t_res = "monthly",
start_date = as.Date("2021-01-01"),
end_date = as.Date("2021-03-15"),
out_dir = paste0(getwd(), "/prism"))

## [1] "Downloading month 1 of 3"
## [1] "Downloading month 2 of 3"
## [1] "Downloading month 3 of 3"

Note that all PRISM files need to be in the same location in order to use the function gam_to_df in a later
section.

2.3 Download SNOTEL

The data-raw folder contains an script titled DATASET that shows how to download the all SNOTEL
data by using download_all_ghcnd_stations. Note that there is more than 30 gigabytes of data and
this will take time to download. The functions download_all_ghcnd_stations, get_station_data, and
get_state_data come from a currently private snowload2 package (authors Jadon Wagstaff and Brennan
Bean) and is replicated here with the permission from the authors. get_station_data and get_state_data
are for the purpose of sifting through all the data to get the stations in a specific state. These functions were
used to create the dataset april_1_snotel_data which is included as a dataset internal to the rsnodas
package

# Code to download all stations in your working directory. A file path could
# have been used instead of ".".
### This code downloads 30 GB of data and will take hour to download
# download_all_ghcnd_stations(directory = ".")

# april 1st data for SNOTEL stations in Utah and subset to just April 1st, 2021.
snotel_ut <- rsnodas::april_1_snotel_data
snotel_ut_2021 <- snotel_ut[snotel_ut$DATE == "2021-04-01", ]

3 GAM to Data frame to Raster

This section will use the point data provided by SNOTEL sites and climate variable maps from PRISM
to create estimates. The process of creating gridded raster estimates will be demonstrated in a three-step
process. The first step is to create a data frame with the Longitude, Latitude, and extract PRISM climate
variable information for every grid cell in the area of interest. This is accomplished by using the gam_to_df
function. This function only looks in one directory and it is vital that all PRISM data files are in one
directory.

This example shows creating a data frame with the Longitude, Latitude, and monthly precipitation values
from March 2021 in Utah.
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# creation of a data frame with all the PRISM variables of precipitation
gam_2021 <- gam_to_df(model_data = snotel_ut_2021,

raster_template = snodas_ut_2021,
path_to_prism = paste0(getwd(), "/prism"),
model_x <- c("ppt_2021_03"),
model_y <- c("VALUE"),
coords = c("LONGITUDE", "LATITUDE"))

head(gam_2021, 5)

## LONGITUDE LATITUDE ppt_2021_03
## 1 -114.0458 42.00417 18.2794
## 2 -114.0375 42.00417 18.5215
## 3 -114.0292 42.00417 18.5215
## 4 -114.0208 42.00417 18.5215
## 5 -114.0125 42.00417 18.5215

The second step is to build a model with the SNOTEL stations data. Any model that can use the predict
function will work here. A commmon model used for spatial data is a Generalized Additive Model (GAM).
This is because GAMs account for non-linear effects and can use splines on the sphere (SOS) which account
for the spherical shape of the earth. GAMs were calculated by using the function gam from the package mgcv
and more information is available at this link.

The following code creates a GAM with the SNOTEL station information using March 2021 PRISM monthly
precipitation.

# This allows users to explore using different models with the monthly precipitation 2021.
model <- mgcv::gam(data = snotel_ut_2021,

VALUE ~ s(LONGITUDE, LATITUDE, bs = "sos", k = 25) + s(ppt_2021_03),
method = "REML")

# This is another example of a model that uses elevation, slope and precipitation.
# NOTE: In order to run this You MUST download elevation and store it in the same folder.
# model <- mgcv::gam(data = snotel_ut_2021,
# VALUE ~ s(LONGITUDE, LATITUDE, bs = "sos", k = 25) + s(ppt_2021_02) +
# s(slope) + s(elevation), method = "REML")

The final step predict the output with the variables throughout the area of interest and create a gridded
output of predictions. This is accomplished by using the df_to_raster that takes the previously created
model and data frame to create a raster.

Below is an example of creating a raster predicting snow water equivalent (SWE) using the previous model
using elevation, slope and precipitation from March and the data frame with all the points in the area of
Utah.

# After creating a model, we can make predictions of SWE with the information available.
gam_rast <- df_to_raster(model = model,

data_frame = gam_2021,
raster_template = snodas_ut_2021)

# Crop the map to just the state of utah and name the values to be "SWE Value"
gam_rast <- sf::st_crop(gam_rast, ut_map)
names(gam_rast) <- "SWE\nValue\n(mm)"
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ggplot() +
stars::geom_stars(data = gam_rast) +
geom_sf(data = ut_map, fill = "NA", size = 1, color = "blue") +
ggtitle("2021 GAM SWE predictions") +
scale_fill_viridis_c(option = "A", limits = c(0, 850), na.value = "white") +
theme_void() +
theme(legend.position = "right")
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3.1 Station Density

We have created a map of SWE estimates throughout Utah using point data and climate information. There
are already products, like SNODAS, that estimate SWE throughout the US. SNODAS currently provides the
best SWE estimates but is known to struggle predicting in mountainous regions. This map of SWE estimates
created using SNOTEL stations has the potential to provide better information in mountain regions. The
final map generated by blending SNODAS and the SNOTEL map would not rely solely on one prediction
but on SNOTEL information and SNODAS. The goal of blending these maps is to use local information
from SNOTEL sites to improve the global predictions that SNODAS provides. The combining of these maps
should reduce the variance of the error of the predictions. In order to blend these maps together, we need
to blend based on some criteria. This vignette will blend these two maps based on station density.

We are going to blend and weight each map by observation or station density. This uses the
points_to_density_stars function to produce a raster of weights. The sigma argument will influ-
ence the kernel density calculation to include a larger or smaller distance. Changing the max_weight
argument gives more weight to the Generalized Additive model or the model from the in-situ measurements.
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The max weight needs to be within the range of 0-1. This weight is a percentage that does not allow
negative percentages or percentages exceeding 100.

This creates a density map of all the SNOTEL stations in 2021.

dens_2021 <- points_to_density_stars(sp_points = snotel_ut_2021,
coords = c("LONGITUDE", "LATITUDE"),
raster_template = snodas_ut_2021,
sigma = 15000,
max_weight = 1,
flat_crs = "+proj=utm + zone=12 + datum=WGS84")

# Crop the map to just the state of utah and name the values to be "SWE Value"
dens_2021 <- sf::st_crop(dens_2021, ut_map)
names(dens_2021) <- "Weights"

ggplot() +
stars::geom_stars(data = dens_2021) +
geom_sf(data = ut_map, fill = "NA", size = 1, color = "blue") +
ggtitle("2021 Station Density") +
scale_fill_viridis_c(option = "D", na.value = "white") +
theme_void() +
theme(legend.position = "right")
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It is important to note that the station density follows the Wasatch Mountains. The data collected from
SNOTEL stations are important to predicting how much water is contained in the snowpacks for flood
forecasting and water management. Therefore, it is important that we understand how much water is in the
mountain snowpacks.
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3.2 Ensemble SNODAS and GAM predictions

Lastly, the blend_raster function will blend the rasters together with the weights associated. This function
could be used to apply weight to any two raster and can be applied to multiple types of spatial problems.
It is not necessary to use the GAM for the land-based predictions if that does not apply to your problem.
Currently, this function only allows the blending of two maps together. We are going to use all the previous
maps to create a final prediction or estimate of SWE.

This is blending the SNODAS and GAM model based on the SNOTEL station density.

comb_map <- blend_raster(raster_sate = snodas_ut_2021,
raster_land = gam_rast,
weights = dens_2021)

# Crop the map to just the state of utah and name the values to be "SWE Value"
comb_map <- sf::st_crop(comb_map, ut_map)
names(comb_map) <- "SWE\nValue\n(mm)"

ggplot() +
stars::geom_stars(data = comb_map) +
geom_sf(data = ut_map, fill = "NA", size = 1, color = "blue") +
ggtitle("2021 Ensemble SWE Predictions") +
scale_fill_viridis_c(option = "B", limits = c(0, 850), na.value = "white") +
labs(x = "Longitude", y = "Latitude") +
theme_void() +
theme(legend.position = "right")
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4 Conclusion

This package allows users to download, store, and access multiple types of information available from
SNODAS, PRISM, and SNOTEL. These data sources can explore multiple types of modeling techniques
for spatial data with the objective to provide local improvements to currently available national gridded
climate and snow products.
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APPENDIX B

Data Limitations

This thesis introduced multiple gridded SWE data products, including SNODAS, UA, and

Daymet in Chapter 2. However, SNODAS was the only data source used to demonstrate the ensem-

ble process. This appendix provides a justification for the inclusion of SNODAS and the exclusion

of UA and Daymet in the ensemble demonstration. Although UA and Daymet were not utilized

in the final ensemble models, they provide additional information that could be explored in future

research.

SNODAS, Daymet, and UA are data sources that provide estimates of snow water equivalent.

A comparative time series plot shows the median and standard deviation of the errors from each data

source for each year from 2004 to 2020. Figure B.1 displays the performance of each data source

in predicting SWE in Utah.

Figure B.1 shows that the median of the errors for SNODAS are consistently distributed within

a narrow range of approximately 0 to 50. UA’s median value of the errors are slightly higher than

SNODAS and fluctuate in the range of 25 to 125. Daymet’s median value of the errors are volatile

as they fall in the range of values from 25 to 375. This SNODAS displays the lowest median error,

which suggests that it is the most accurate of the three data sources. UA’s gridded products are in

four-kilometer resolution, which makes it challenging to accurately capture the changes of SWE

in mountainous regions. Due to this lower resolution, the model often underestimates SWE when

compared to SNOTEL station SWE measurements. This highlights the need for higher resolution

modeling techniques to more accurately characterize the variability of SWE in Utah. Daymet and

SNODAS provide estimates at a one kilometer resolution. However, Daymet utilizes a simple model

that fails to consistently capture the variability of mountain snowpack at the end of the season

(Thornton et al., 2021b).

Figure B.1 shows the standard deviation of the errors, which reveals that SNODAS generally

has a lowest standard deviation of the three sources, indicating that the estimates are more consis-
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tent. UA outperforms Daymet with a lower standard deviation but does not outperform SNODAS.

Daymet utilizes a simple model to create SWE estimates that struggles to characterize the mountain

snowpack in Utah. This is seen as the Daymet’s standard deviation of the errors is generally the

highest value when compared to UA and SNODAS.

The comparison of the median and standard deviation of the errors show that SNODAS dis-

plays less bias and variance than Daymet and UA and will be incorporated in the ensemble approach.

SNODAS yielded the most precise SWE estimates in representing ground based measurements of

SWE. UA and Daymet were excluded in the ensemble approach due to their consistently higher

residuals.

The ensemble approach used in this thesis did not include data from Daymet or UA. However,

both sources of data have the potential to improve our understanding of mountainous snowpacks.

SNODAS has a limited amount data dating back to 2004, while UA and Daymet provide a much

longer historical record with data stretching back to 1980. The additional twenty years of data

available from UA could be used to investigate and model long-term snowpack trends with the po-

tential to gain valuable insight on factors that influence snowpacks in Utah and in different regions.

Daymet’s SWE estimates were found to consistently have higher residuals than UA’s. However,

Daymet provides gridded climate and temperature products at a finer resolution than UA’s. This

finer resolution may be preferred when modeling snow water equivalent in topographically com-

plex areas.

In summary, SNODAS was implemented into the ensemble approach because the median and

standard deviation of the residuals were regularly smaller than Daymet or UA in predicting SWE

throughout Utah. Daymet and UA were not included in the ensemble approach but have the po-

tential to provide valuable insights into mountainous snowpacks. UA’s historical data can be used

to investigate long-term snowpack trends and Daymet’s higher resolution of climate and tempera-

ture gridded products can provide supplemental information that could be useful in the modeling

process.
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Fig. B.1: The 10-fold cross-validated median value (top) and standard deviation (bottom) of the
residuals of SNODAS, UA, and Daymet.
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APPENDIX C

Model Limitations

This thesis introduced an ensemble method that involved combining a SWE product and a

land-based model to improve SWE estimates in Chapter 4. There were multiple types of models

that were explored but only the generalized additive model was used. This appendix explains the

other machine learning models that were investigated before settling on GAMs, namely random

forests, support vector machines, and kriging. The exploration of these alternative models guided

our variable selection choices for the GAM models presented in this thesis.

Random forests created in R (R Core Team, 2021) and using the package randomForest

were initially used to try to identify key variables in predicting SWE. Figure C.1 displays a variable

importance plots from a random forest model.

Each year’s random forest produced a similar variable importance plots to the one shown in

Figure C.1. It is important to note that the variables that have ( normal ) means it is the average

monthly and annual conditions over the preceding 30 years. The variables of 30-year normal-

ized annual precipitation (ppt normal annual), elevation (ELEVATION), 30-year normalized vapor

pressure (vpdmax normal annual), and 30-year normalized max temperature (tmax normal annual)

were generally being flagged as some of the most important variables, but often in a different order.

The R package e1071 (Meyer et al., 2021) was used to create support vector machines which

is another machine learning algorithm investigated using to primarily due to their potential to pro-

duce partial dependence plots. These partial dependence plots involved using the R package pdp

(Greenwell, 2017). Partial dependence plots can provide a better understanding of the relationship

between an independent variable, such as annual precipitation, and response variable like SWE.

Partial dependence plots show how the predicted response variable changes as a function of a spe-

cific independent variable while controlling for the effects of all other variables in the model. This

can help identify the relationship between variables that are commonly missed by most machine

learning methods. Figure C.2 displays all the partial dependence plots of annual precipitation and
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Fig. C.1: The variable importance plot of the random forest for the year 2015.

shows how the each year since 2004 follows a similar trend.

However, many of the variables from the variable importance plots were already known to

be important to predicting SWE. The partial dependence plots provided very little useful informa-

tion about the SWE prediction process not already available in much simpler models. This was

confirmed by the results of Figure C.5, which show that the cross-validated accuracy of the other

models were no better, and often worse, than those obtained with the GAM model.

Fig. C.2: A partial dependence plot of annual precipitation. Each line represents a partial depen-
dence curve for each year from 2004 to 2022.
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Spatial methods were considered in addition to the previously mentioned machine learning

methods for predicting SWE. Variograms were explored because of their ability to quantify spatial

autocorrelation, which measures the degree of similarity between values at different locations in

geographic space. Positive spatial autocorrelation occurs when observations that are close to each

other in space tend to have similar values (Bivand et al., 2008). The following variograms were

created using the R package gstat (Gräler et al., 2016). Figure C.3 is the variogram when using

the errors from SNODAS.

Fig. C.3: This variogram displays the spatial correlation of the SNODAS SWE residuals in Utah.
The residuals are calculated as the difference between the reported SWE and SNODAS SWE esti-
mates.

The X-axis of a variogram represents the distance between pairs of sample locations or at

SNOTEL sites. The Y-axis represents the semivariance, which is inversely related to the spatial

covariance when the covariance exists. This means the larger values of the semi-variance indi-

cate lower relatedness between the observations. Generally points that are further away have an

increase variability or provide less information about a given location. An increasing variogram

would indicate that the values of nearby locations provide more information about the value at a
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given location. In contrast, a decreasing variogram would suggest that further apart locations have

a higher correlation in values. It should be emphasized that the variogram of the SNODAS errors

shows a decreasing trend, indicating that SNODAS effectively captures the spatial component of

SWE. The elevation-based variogram (Figure C.4) displays a relatively flat line, indicating that spa-

tial autocorrelation is constant across all distances and providing little to no information about the

values at any location.

Fig. C.4: This variogram displays the spatial correlation of the residuals of a log-linear model in
Utah. The log-linear model accounts for elevation’s role in SWE and the residuals are calculated as
the difference between the reported SWE and log-linear model SWE estimates.

Figure C.5 displays the standard deviation of the cross validated errors from the GAM and

random forest. The cross-validated errors from the random forest model are slightly higher relative

to the GAM. The GAM was selected because of its accuracy with a few variables and no hyper-

parameter tuning.

This appendix explored different machine learning models, including random forests, support

vector machines, and generalized additive models (GAMs), to improve SWE estimates. Random

forests and support vector machines were useful in identifying important variables and their rela-
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Fig. C.5: The standard deviations of the errors of the ten-fold cross validation from the GAM and
Random Forest models since 2004.

tionship with SWE. Variograms were used to investigate the spatial structure of the residuals of

SNODAS model and a log-linear model that utilized elevation. The residuals were model output

relative to the observed SWE values at SNOTEL stations throughout the state. The lack of structure

in the variograms indicate that no spatial autocorrelation can be detected in the residuals, which ex-

plains why we chose to not pursue traditional spatial modeling approaches in this thesis. Overall, the

machine learning models and variograms were not used in the ensemble approach because GAMs

provided accurate cross-validated errors and is commonly implemented for spatial data because the

ability to model with splines on the sphere. Future work may entail exploring other random forest

models because their performance was comparable to GAMs. The ensemble process utilized GAMs

because they outperformed the other models that were explored while also having a simpler model
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form in this appendix.
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