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ABSTRACT 

Comparing Commonly Used Aquatic Habitat Modeling Methods for Native Fishes 

by 

Eryn K. Turney, Master of Science 

Utah State University, 2023 

Major Professor: Dr. Sarah E. Null  

Department: Watershed Sciences    

Accurate estimates of species distribution and habitat are critical to effectively 

incorporate ecological objectives, which protect native fish, into water management. 

However, no standard methods have been developed to compare predictive accuracy of 

models developed for different objectives, extents, and with different outputs. In this 

study, I compared three commonly used aquatic habitat modeling methods which 

predicted Bonneville Cutthroat Trout and Bluehead Sucker distribution in the Bear River 

Watershed (UT, ID, WY) at a monthly timestep. Models included an existing hydraulic-

habitat model, an existing habitat threshold model, and a geospatial model developed as 

part of this study. Environmental conditions used as predictors in each model were 

validated with field observations where applicable. Model predicted suitable habitat for 

both species was validated using three metrics of predictive performance conducive to 

presence-only datasets; including proportion of reaches with fish presence observations 

correctly classified given a binary threshold, weighted proportion of reaches with fish 

presence observations correctly classified given continuous suitability predictions, and 
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weighted proportion of reaches with fish presence observations correctly classified with 

an adjustment factor based on model parsimony. For the geospatial model, total upstream 

catchment area was the most important predictor of both Bonneville Cutthroat Trout and 

Bluehead Sucker habitat suitability, and land use was a secondary important predictor for 

Bonneville Cutthroat Trout. Validation of environmental predictors reflected satisfactory 

to poor fit in all models—no observed conditions were well represented by model 

estimates—a function of either outdated, incorrect, or over-generalized input data. 

Validating models with fish presence data showed habitat threshold and geospatial 

models were similarly accurate for Bonneville Cutthroat Trout, and the habitat threshold 

model performed best for Bluehead Sucker. However, model performance was sensitive 

to threshold and performance criteria selection. Habitat predictions from simple, 

generalizable methods which incorporate biological characteristics of the species of 

interest  are most useful to incorporate native fish conservation into water management 

models as ecological objectives. 

(121 pages) 
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PUBLIC ABSTRACT 

Comparing Commonly Used Aquatic Habitat Modeling Methods for Native Fishes   

Eryn Turney 

Water resources are managed for a variety of human needs, including agriculture, 

industrial and municipal consumption, hydropower generation, and recreation. There has 

been a recent push to incorporate habitat needs of aquatic wildlife into water management 

models alongside these other uses, particularly as competition for limited water resources 

in a changing climate has reduced instream flow and contributed to declining native fish 

populations. Habitat models are used to estimate species distributions and differentiate 

between suitable and unsuitable habitat based on variables important to a given species, 

but are not usually incorporated into water management models. Because there are many 

ways of modeling habitat and no standard way to compare model accuracy, for this 

research I used three methods of comparing the accuracy of three commonly used habitat 

modeling approaches to identify best methods for estimating Bonneville Cutthroat Trout 

and Bluehead Sucker habitat in the Bear River Watershed (UT, ID, WY). I also explored 

how well variables used in making each model’s predictions compared with real-world 

conditions based on field observations. I determined total upstream catchment area was 

the most important large-scale variable for predicting both Bonneville Cutthroat Trout 

and Bluehead Sucker habitat suitability, and nearby land use was also important for 

Bonneville Cutthroat Trout. I showed none of the models’ variables reflected real-world 

conditions observed in summer 2022, which suggests data commonly used to build 

habitat models like these can be outdated, incorrect, or over-simplified. Finally, I 
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determined simple habitat models which incorporated aspects of water quality or species 

biology, rather than simply available water quantity, best predicted both Bonneville 

Cutthroat Trout and Bluehead Sucker presence, though performance metrics chosen to 

evaluate model accuracy influenced results. Simpler methods that incorporate species-

specific biological criteria are best to include in water management models so fish 

conservation can be easily and accurately included as a demand for water resources 

alongside other uses. 
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INTRODUCTION 

Water management and reservoir operations models quantify water that is stored 

and released to satisfy dynamic human demands. These models have traditionally 

represented ecosystem needs as minimum instream flows, which are regulatory targets 

often with little ecological meaning, but increasingly incorporate quantifiable aquatic 

habitat extent as ecological objectives (Alafifi and Rosenberg, 2020; Jager and Smith, 

2008; Null et al., 2021, 2020). For this reason, developing simple and accurate habitat 

suitability models is an ongoing challenge for water resources management. 

Habitat models use physical and biotic predictors which most influence species 

occupation to estimate habitat suitability in a given area, and these predictions can be 

used to estimate potential species distribution (Kearney, 2006; Mouton et al., 2007). 

Hereafter, “habitat models” generally refers to both models that estimate habitat 

suitability, as well as species distribution models (SDM).  

Accurate habitat model estimates of native fish habitat extent throughout 

watersheds are crucial for conservation managers to identify reaches to  preserve, and 

then prioritize restoration in degraded reaches (Barry et al., 2006; Suding and Hobbs, 

2009; Yi et al., 2017). However, there are a variety of methods and predictors used to 

create aquatic habitat models, which can yield different suitability or distribution 

estimates over the same area. This begs the question: do differences in accuracy or 

precision justify the use of particular models or approaches? Specifically, do 

generalizable methods that are simpler to develop have both sufficient accuracy and 

precision to be used in place of data-hungry methods? If habitat models created with 

alternative approaches and/or predictors yield similar predictions, scientists and managers 
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should use those which are least data-intensive and simplest to meet management 

objectives. However, if more data intensive and complex approaches yield significantly 

higher predictive accuracy or a heightened level of precision needed for a specific 

management goal, then those approaches may be justified.  

Previous comparisons regarding predictive performance of habitat models focus 

within certain ‘families’. For instance, there have been many studies comparing 

predictive capabilities statistical habitat modeling approaches (Barry et al., 2006; Guisan 

and Zimmermann, 2000; Knudby et al., 2010; Palialexis et al., 2011; Steen et al., 2006; 

Valavi et al., 2021), but entirely separate comparisons for hydraulic-habitat models 

developed with preferences functions to quantify usable habitat area (Yi et al., 2014). 

Though there are review papers which discuss pros and cons of differing model families 

(Ahmadi-Nedushan et al., 2006; Jowett and Davey, 2007; Yi et al., 2017), comparing 

predictive performance across families has not been explored. This is partially because 

there is no standard method of comparing approaches given different assumptions and 

outputs across model types. 

For this study, I compared the predictive accuracies of a hydraulic-habitat model 

(HYD), a habitat threshold model (THRESH), and a geospatial model (GEO). All are 

commonly used methods for estimating habitat suitability or extent and have not 

previously been compared to one another. All models estimated suitable habitat extent for 

Bonneville Cutthroat Trout (Oncorhynchus clarkii utah) and Bluehead Sucker 

(Catostomus discobolus) in the Bear River Watershed (UT, WY, ID, USA). The HYD 

model was developed by Alafifi and Rosenberg (2020), the THRESH model was 

developed by Goodrum and Null (2022), and I developed the GEO model. I validated 
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each model’s habitat predictions using three metrics of predictive accuracy, including: 1) 

proportion of occupied reaches correctly classified given a binary threshold, 2) weighted 

proportion of correctly classified occupied reaches given continuous suitability 

predictions, and 3) a variant of method 2 with an adjustment factor based on degree of 

model parsimony. Performance metrics used in model comparison were calculated given 

each model’s respective extent. My primary research questions included:  

1. What geospatial variables best predict Bonneville Cutthroat Trout and Bluehead 

Sucker habitat distribution in the Bear River Watershed? 

2. How accurately do the HYD, THRESH, and GEO models predict Bonneville 

Cutthroat Trout and Bluehead Sucker presence given each model’s total 

respective extent?  

1.1 Habitat Modeling Approaches and Literature Review  

Most aquatic habitat modeling for fishes has been conducted at the reach scale 

using species preference functions to estimate suitability (a gradient from unsuitable (0), 

to suitable(1)) for a given continuous variable; most commonly site-specific streamflow, 

velocity, depth, or substrate size (Jowett and Davey, 2007; Lamouroux and Capra, 2002; 

Parasiewicz and Dunbar, 2001; Vadas and Orth, 2001; Vezza et al., 2015; Yi et al., 

2017). These methods are generally referred to as hydraulic-habitat models. This 

modeling method has been increasingly criticized in recent years for inaccurately 

representing potential suitable habitat due to inaccuracies in either hydraulic data used as 

predictors or in preference functions (Booker, 2016; Fausch et al., 2002; Steen et al., 

2008a). Further, though high-resolution data can be very precise, it is difficult to 
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generalize across large spatial extents, to other regions, or to other species (Boavida et al., 

2014; Freeman et al., 1997; Moir et al., 2005). 

Models created for larger spatial extents may incorporate biological or water 

quality predictors into preference functions to delineate suitable versus unsuitable 

habitats. Commonly used non-hydraulic predictors include stream temperature, dissolved 

oxygen levels, concentration of Total Suspended Solids (TSS) or nutrients, landform 

characteristics, stream connectivity, predation risk, and food availability (Boavida et al., 

2014, 2013; Brenden et al., 2007; Elith and Leathwick, 2009; Lamouroux et al., 1998; 

Mouton et al., 2007; Vezza et al., 2015; Wurtsbaugh et al., 2014). These models could 

also be site-specific, or basin- or state-scale from publicly available sources, leading to 

more generalized approaches. Again, however, these methods are dependent on 

knowledge of species biology.  

Geospatial models typically use predictive algorithms to estimate species 

distribution and/or habitat suitability over large spatial extents. These models are often 

coarser in resolution than site-specific hydraulic-habitat models. Data used as predictors 

are widely available and often open-source (Steen et al., 2008a) and can be used as 

proxies when a more specific variable of interest is unavailable (Argent et al., 2003; 

Boavida et al., 2014; Brenden et al., 2006; Dauwalter et al., 2011; Kristensen et al., 2012; 

Meixler, 2021). These models have become increasingly popular in recent years to 

estimate fish and macroinvertebrate habitat suitability (Brotons et al., 2004; Elith et al., 

2006; Falke, 2006; Guisan and Zimmermann, 2000; Hirzel et al., 2002; Mugodo et al., 

2006; Peterson and Vieglais, 2001; Phillips and Dudık, 2008; Smith and Kraft, 2005; 

Valavi et al., 2021; Zorn et al., 2002), and are commonly referred to as species 
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distribution models (SDM). Unlike approaches based on species preference functions, 

SDM methods utilize species presence data and algorithms to determine patterns based 

on predictor variables to calculate probability of occurrence. SDMs can be constructed 

with either presence only or presence-absence data (Brotons et al., 2004; Valavanis et al., 

2008a; Ward et al., 2009). For example, MaxEnt, Support Vector Machines (SVM), and 

the Genetic Algorithm for Rule-Set Prediction (GARP) work with presence-only 

observational data, whereas Random Forest, Artificial Neural Networks (ANN), Boosted 

Trees, and Classification Trees require use of absence data as well. While these methods 

are designed to cooperate with collinear variables and work with combinations of 

continuous and categorical variables (Armstrong et al., 2003; Jorde et al., 2001), they are 

collectively criticized for their black box methodology (Phillips et al., 2017) and both 

algorithm selection and species prevalence are known to significantly impact model 

performance (Benkendorf and Hawkins, In Review; Li and Wang, 2013; Manel et al., 

2001; Valavi et al., 2021). 
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METHODS 

2.1 Species of Interest in the Bear River Watershed 

Study extent was the Bear River Watershed, which is located in the northeastern 

corner of the Great Basin and spans 19,425 km² through Utah, Idaho, and Wyoming (Fig. 

1). The Bear River Watershed is the largest watershed in the U.S. that does not terminate 

to an ocean (“The Bear River Watershed Information System,” 2017; U.S. Fish and 

Wildlife Service, 2013). Instead, the mainstem Bear River flows to Bear River Migratory 

Bird Refuge then to Great Salt Lake. The Bear River contributes the most streamflow to 

Great Salt Lake, with a mean annual flow (MAF) of 1.2 million acre-feet at Corinne, just 

upstream of Great Salt Lake.   
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Fig. 1. The Bear River Watershed with summer 2022 field sampling sites. 

 

 

 

In many ways, the Bear River Watershed is representative of western U.S. 

watersheds. Land within the Bear River Watershed has been altered through its multi-use 

history, with land uses including extensive agriculture, grazing, logging, urban 

development, and oil and gas exploration (“The Bear River Watershed Information 

System,” 2017; Toth et al., 2009, 2005; U.S. Fish and Wildlife Service, 2013). The flow 

regime has been manipulated to satisfy needs for both irrigation and hydropower, with a 

rapidly expanding human population.  This ever-expanding development of the basin’s 

land and water resources have resulted in adverse effects on native fish abundance and 
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overall suitable habitat availability within the basin (Toth et al., 2005; U.S. Fish and 

Wildlife Service, 2013). Competition for a limited water supply for both human and 

ecological needs is a typical problem in the American West; including the Great Basin, 

Colorado Basin, and Columbia Basins (Buraeu of Reclamation, 2021; DeRose et al., 

2015; Hall, S.A., et al., 2022; Utah Water Science Center, 2018). 

The Bear River Watershed is characterized by hot, dry summers and cold winters, 

with an overall climate classified as semi-arid continental (Hillyard and Keeley, 2012; 

“The Bear River Watershed Information System,” 2017). Snowmelt is the primary source 

of water to the Bear River (Goodrum, 2020; Toth et al., 2005). With competing demands 

for river water, climate change further exacerbates the struggle to maintain adequate 

instream conditions for aquatic species due to reduced streamflow and warming 

temperatures (Ficklin et al., 2018; U.S. Fish and Wildlife Service, 2013).  

Bonneville Cutthroat Trout (BCT) and Bluehead Sucker (BHS) are two fish 

species native to the Bear River Watershed and larger Great Basin.  Throughout the Great 

Basin, BHS are estimated to occupy approximately 47% of their historic range, and BCT 

are estimated to occupy as little as 33% of their historic range (Budy et al., 2015, 2007; 

Maloney, 2017). While range reductions have not been documented for either species 

within the Bear River Watershed (Fig. 2), both species have experienced substantial 

decline in population abundance, attributed at least in part to high sensitivity to 

anthropogenic disturbance (Budy et al., 2012).  
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Fig. 2. Historic and current distribution of Bonneville Cutthroat Trout (BCT) and 

Bluehead Sucker (BHS) in the Bear River Watershed (Western Division of the American 

Fisheries Society, 2011a, 2011b). 

 

 

BCT are a charismatic game species and Utah’s state fish, leading to considerable 

advocacy for their conservation within the watershed (Utah Wildlife Action Plan Joint 

Team, 2015).  BHS are a non-game species rarely focused on in media or conservation 

campaigns, but are considered an indicator species of overall aquatic ecosystem health 

(Thompson, 2016). Both species are listed as Species of Greatest Conservation Need 

(SGCN), to preclude listing under the federal Endangered Species Act (ESA), in Utah 

and Wyoming, though not in Idaho (Idaho Department of Fish and Game, 2016; Utah 

Wildlife Action Plan Joint Team, 2015; Wyoming Game and Fish Department, 2017). 

Listing as a SGCN spurs management actions designed to restore critical habitat, which 
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are detailed in State Wildlife Action Plans (SWAP). Inconsistent listing and subsequent 

management planning across state boundary lines within the watershed makes cohesive 

habitat conservation initiatives and land/water management difficult. 

BCT and BHS prefer pool-riffle habitats with vegetative cover and gravel to 

cobble size substrate for spawning. Adults of both species use swift-moving riffles for 

foraging, where larger substrates are more common and support algae growth and 

invertebrate populations (Budy et al., 2012, p. 2; Ptacek et al., 2005; Walsworth and 

Budy, 2015; Webber et al., 2012). Adult BCT feed in pool-adjacent riffles where they can 

conserve energy, and juveniles and fry of both species prefer backwaters refuges as 

warmer water temperatures aid growth (Lokteff, 2014; Webber et al., 2012; White and 

Rahel, 2008). BCT, in particular, prefer cold and clean headwater streams, though both 

species tolerate and have been observed in the turbid, warmer mainstem Bear River 

Watershed—as  long as there is a functional riparian zone to supply adequate structure, 

cover, shade, and abate warm water temperatures (Budy et al., 2007, 2006; Ptacek et al., 

2005). 

Stream temperature, specifically, is important for habitat suitability for BCT 

(Goodrum and Null, 2022). The lethal temperature threshold for BCT is 24.2 degrees 

Celsius and chronic exposures to greater than 22 degrees Celsius is stressful (Budy et al., 

2007; Hillyard and Keeley, 2012; Johnstone, 2000; Johnstone and Rahel, 2003). Though 

BHS are thought to be more temperature tolerant, the temperature tolerance of BHS 

native to the Bear River Watershed is unknown because most research has been 

conducted for Colorado River BHS, which are actively being split into a distinct 

subspecies (Hopken et al., 2013; Maloney, 2017; Unmack et al., 2014; Webber et al., 
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2012). There are likely local adaptations to habitat conditions between BHS native to the 

Colorado River Basin and those native to the Bear River Watershed (Bangs et al., 2020; 

Webber et al., 2012). 

Dams and diversions reduce streamflow which can warm stream temperatures. It 

is common for managed reaches of the Bear River to approach or exceed the lethal 

temperature threshold for BCT in hottest months of the year (Hillyard and Keeley, 2012). 

In-stream barriers also fragment habitats and reduce overall habitat complexity (Kraft et 

al., 2019). Generally, alteration of the natural flow regime through human development 

and/or changing environmental conditions creates conditions favorable to non-native 

species (Budy et al., 2007; Dobos et al., 2016; Dzara et al., 2019; Jager and Smith, 2008; 

Kraft et al., 2019; U.S. Fish and Wildlife Service, 2013; Walsworth and Budy, 2015; 

Worthington et al., 2016). While streamflow in the Bear River Watershed was 

manipulated to satisfy agricultural demands as early as the 1850s (DeRose et al., 2015; 

Null and Wurtsbaugh, 2020), increasing consumptive water uses and a warming climate 

have increased the abundance of non-native species such as Brook, Rainbow, and Brown 

Trout, as well as Largemouth and Smallmouth Bass (Wyoming Game and Fish 

Department, 2017). While BCT and BHS sometimes co-exist with non-native species, 

increased abundance of non-natives, particularly Brown Trout, reduces the abundance of 

native BCT and BHS in the Bear River Watershed (Budy et al., 2008, 2007; Budy and 

Gaeta, 2017; Dauwalter et al., 2011; Thompson, 2016; Walsworth and Budy, 2015; 

Webber et al., 2012; Wyoming Game and Fish Department, 2017). 

 

2.2 Modeling 
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Workflow for this research is shown in Fig. 3, and includes developing the GEO 

model, validating environmental conditions for all three models, and quantifying model 

accuracy. Fig. 4 details predictors for each model. 

 

 
Fig. 3. Research workflow with data used for each step. 
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Fig. 4. Predictors for each model. 

 

 

2.2.1 Existing Models 

2.2.1.1 Hydraulic-Habitat (HYD) Model  

The one-dimensional HYD model predicted habitat suitability at a monthly 

timestep for BCT and Brown Trout (Salmo trutta), using stream temperature and channel 

depth based on 2003 streamflow as predictors. The extent of the model was the Lower 

Bear River Watershed. For this model, habitat suitability was expressed as a continuous 

value from 0-1, where 0 represented unsuitable conditions, and 1 was perfectly suitable. 

This value was derived from probabilistic species- and life stage-specific preferences for 

channel depth constrained by a maximum temperature threshold, and represents the 

probability of species occurrence based on environmental conditions in a given reach 

(Alafifi and Rosenberg, 2020). Should the maximum temperature threshold be exceeded 

in a reach, habitat suitability was assumed to be 0.  
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A monthly timestep was used because both streamflow and stream temperature 

fluctuate depending on the time of year, which results in different habitat suitability 

estimates for the same reaches over the course of a year. This coincides with aquatic 

species habitat use and preferences changing throughout the year.  

Habitat suitability was ultimately used in this model to calculate Weighted Usable 

Area (WUA) and quantify benefits of environmental water allocations. This model was 

developed using General Algebraic Modeling System (GAMS) software. In an 

experimental scenario, BHS habitat preference functions were applied to a reduced extent 

to compare total WUA to that calculated for Brown Trout (Alafifi, 2018; Alafifi and 

Rosenberg, 2020), but were not included in the published model. For model comparison, 

calculations were extended to the model’s full extent.  

The model’s spatial extent was based on observed fish presence locations. It 

included the mainstem Bear River between Idaho-Utah state line and Great Salt Lake, 

and portions of major tributaries.  The model assumed uniform channel width and depth 

within reaches. This model represents a much larger spatial extent than most hydraulic 

models are designed for, and with that has an unusually coarse resolution. Median reach 

length was 24.3 km (15.1 miles), with a minimum of 4.5 km (2.8 miles), and a maximum 

of 127.2 km (79 miles), though this was an outlier (Fig. 5). The model’s habitat quality 

estimates were validated with expert opinion and fish presence data from Trout Unlimited 

(TU) and were not made publicly available (Alafifi and Rosenberg, 2020). 
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Fig. 5. Modeled reach lengths for the Hydraulic-Habitat (HYD) model, with the mean 

and outliers shown with the boxplot, and the overall distribution shown with the violin 

plot. 

 

 

2.2.1.2 Habitat Threshold (THRESH) Model 

The THRESH model predicted habitat suitability for BCT and BHS at a monthly 

timestep in streams throughout Utah (Goodrum, 2020; Goodrum and Null, 2022). 

Species-specific thresholds for stream gradient and streamflow were used as predictors in 

classifying suitable BCT and BHS habitat, and stream temperature was also included as a 

predictor for BCT models. Again, a monthly timestep was used because both streamflow 

and stream temperature change over the course of a year, resulting in temporally dynamic 

habitat suitability estimates. Habitat suitability for this model was expressed as a binary 

classification for each month, with 0 and 1 reflecting unsuitable and suitable habitat, 

respectively. In this case, habitat suitability was not a function of species preference, but 
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related to biological limits for modeled species making habitat either lethal or non-lethal. 

Stream temperature data was from 2000-2018, and streamflow data was based on the 

National Hydrography Dataset (NHD), from 1971-2000. The model was developed in 

ArcGIS Pro and R Programming Language to test accurate, simple, and generalizable 

models which could be paired with water management models. 

The model’s spatial extent includes all perennial Utah streams, using data from 

the NHD stream network. Reach divisions were altered to begin and end at points of 

known and expected instream barriers, resulting in far more, and shorter, reaches than the 

NHD. Median reach length was 2.2 km (1.4 miles), with a minimum of 0.02 m (0.07 ft), 

and a maximum of 200.4 km (124.5 miles) (Fig. 6). The majority of modeled reaches 

were comparable in extent to the median reach length, with reaches less than a meter 

representing less than 0.2% of modeled reaches, and reaches exceeding approximately 6 

km considered outliers. Environmental input data was validated with measured 

conditions and model performance was validated with fish presence data using Chi-

Square Effect Size tests (Goodrum and Null, 2022). 
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Fig. 6. Modeled reach lengths for the Habitat Threshold (THRESH) model, with the 

mean and outliers shown with the boxplot, and the overall distribution shown with the 

violin plot (note that x-axis scale differs from Fig. 5).  

 

 

2.2.2 Geospatial (GEO) Model Development  

I developed the GEO Model to estimate habitat suitability for both BCT and BHS 

throughout the Bear River Watershed using open-source geospatial data, fish presence 

data acquired from state agencies, and the maximum entropy (MaxEnt) algorithm. 

Habitat suitability was expressed as a continuous value from 0-1, where 0 represented 

unsuitable conditions, and 1 was perfectly suitable; the same as the HYD model. Again, 

this value referred to the probability of species occupation given the effects of predictors. 

Month-specific models were developed to match the format of the HYD and THRESH 

models used in model comparison efforts, as well as to explore how species habitat 

preferences may change as a result of predictors with monthly or seasonal variability. The 

GEO model was constructed in R version 4.1.2 using the dismo and SDMtune packages 
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(Hijmans et al., 2022; R Core Team, 2021; Vignali et al., 2020a) using a vector-based 

format.  

Model extent was identical to the Bear River Watershed portion of the THRESH 

model, though reach resolution differed. The GEO model used default reaches 

determined by NHD, an effect of junction points between stream network lines; which 

includes intermittent and ephemeral streams. Median reach length for the GEO model 

was 1.9 km (1.2 miles), with a minimum of 1.3 m (4.3 feet), and a maximum of 26.9 km 

(16.7 miles) (Fig. 7). Reaches greater than approximately 5 km were considered outliers. 

Workflow detailing creation of this model is shown in Fig. 8. 

 

 

 
Fig. 7. Modeled reach lengths for the Geospatial (GEO) model, with the mean and 

outliers shown with the boxplot, and the overall distribution shown with the violin plot 

(note that x-axis scale differs from Figs. 5 and 6).  
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Fig. 8. Geospatial (GEO) model development workflow. 
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2.2.2.1 Habitat Prediction with MaxEnt 

MaxEnt is an open-source, machine learning algorithm and utilizes presence-only 

observations to predict species distribution by determining the maximum possible extent 

of suitable habitat given the calculated influence of environmental predictors (Phillips et 

al., 2006). MaxEnt is best known for predicting terrestrial species habitat suitability and 

distribution, where raster data are used with species presence points to predict suitable 

area, but has also been used in fish distribution modeling, where model extent is 

restricted to a river network using a vector-based approach. Each vector (or row of a data 

frame), represents a reach that is either occupied or unoccupied by a species of interest 

(Schmidt et al., 2020; Taylor et al., 2020; Worthington et al., 2016). I used a vector-based 

approach. 

In MaxEnt models, habitat suitability is determined by comparing the range of 

environmental conditions in species occupied areas to the total range of environmental 

conditions within a model’s extent; hereafter referred to as the background (Elith et al., 

2011; Merow et al., 2013; Phillips et al., 2017; Phillips and Dudık, 2008; Phillips and 

Elith, 2013). A ratio between the range of conditions at points or reaches with species 

presence observations to the range of those same conditions over entire background is 

calculated, where environmental conditions in occupied areas become limiting factors for 

estimating habitat suitability and potential distribution (Elith et al., 2011; Merow et al., 

2013). Predictor importance is determined by permuting the tolerable limits of each 

predictor through iterative model runs, where the larger the range of conditions, the less 

important the predictor (Phillips, 2017). 
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MaxEnt runs quickly with a built-in regularization strategy to avoid overfitting, 

which is needed for correlated ecological variables and small sample sizes (Merow et al., 

2013; Valavi et al., 2021; Worthington et al., 2016). Additionally, R packages such as 

SDMtune have been specifically developed to reduce variable correlation and improve 

parameter tuning when training algorithm-based models like MaxEnt. These packages 

use iterative model fitting processes to compare the performance of tuned models to an 

original model. I selected the simplest model without reducing performance (Dorji et al., 

2020; Valavi et al., 2021; Vignali et al., 2020b). However, MaxEnt relies heavily on 

species prevalence—or number of presence observations across a study area the 

algorithm uses to learn habitat preferences from—and prevalence has a greater effect on 

SDM performance than algorithm selection or parameter tuning (Benkendorf and 

Hawkins, In Review). When compared to newer SDM techniques such as Support Vector 

Machines (SVM) or the Genetic Algorithm for Rule-Set Prediction (GARP), MaxEnt 

remains among the best performing methods when used in combination with methods to 

adjust for sampling bias and low prevalence (Barber et al., 2021; Benkendorf and 

Hawkins, In Review; Fourcade et al., 2014; Kramer-Schadt et al., 2013). 

 

2.2.2.2 Model Workflow 

2.2.2.2.1 Data Preparation 

Variables considered for reach scale model fitting were either directly available 

from NHD data tables, created using the riverDist package in R, or derived from 

continuous rasters (Table 1). Variables with cumulative impacts on downstream reaches 

were summarized for all reaches within HUC-12 basins using the Zonal Statistics tool in 
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ArcPro to calculate either the mean or mode for continuous or categorical variables, 

respectfully. I summarized predictors this way as opposed to delineating individual 

contributing watershed polygons for each reach to reduce computational effort and to 

focus on local effects. Climatic, hydrologic, and land cover data were the only predictors 

which had a temporal component. Most of the variables included were common proxies 

for in-stream conditions; such as air temperature as a stand-in for water temperature, 

which are highly correlated (Goodrum, 2020; Goodrum and Null, 2022).  

 

Table 1 

Geospatial (GEO) model predictor variables, data sources, resolution, intended proxy, 

and calculation methods.  

 

Variable Data Source Raster Data 

Resolution 

Proxy Method for 

Calculated 

Variables 

Average monthly 

air temperature 

PRISM 2020 30m Water 

temperature 

- 

Total monthly 

precipitation  

PRISM 2020 30m Water 

availability, 

streamflow 

- 

Barrier density by 

HUC-12 

Calculated, 

Goodrum 

2020 

- Connectivity Kernel density of 

“Instream 

barriers” layer, 

search radius 

based on 

Silberman’s Rule 

of Thumb 1986; 

mean over HUC-

12 

Distance to 

headwater  

Calculated, 

USGS NHD 

- - riverDist 

package: Line 

distance via 

stream network  

Distance to nearest 

reservoir 

Calculated, 

USGS NHD 

- - riverDist 

package: Line 

distance via 

stream network  
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Elevation USGS 

National Map 

10m - - 

Major geologic type 

by HUC-12 

USGS SGMC - Substrate 

size 

Majority class by 

HUC-12 

Land cover by 

HUC-12 

Reclassified, 

National Land 

Cover Dataset 

2016 

30m Water 

quality  

Reclassified into 

6 categories: 

Open Water/Ice, 

Developed, 

Forested, 

Shrub/Scrub, 

Agricultural/Ran

geland, Wetlands; 

majority class by 

HUC-12 

Percent Mean 

Annual Flow 

(MAF) 

Calculated, 

USGS NHD 

Stream 

Network  

- Streamflow, 

velocity, 

continuity of 

groundwater 

Monthly percent 

of annual flow by 

reach 

Percent canopy 

cover by HUC-12 

National Land 

Cover Dataset 

2016 

30m Temperature 

regulation, 

LWD input 

Mean over HUC-

12 

Percent impervious 

cover by HUC-12 

National Land 

Cover Dataset 

2016 

30m Human 

development 

Mean over HUC-

12 

Road density by 

HUC-12 

Calculated, 

Bureau of 

Transportation 

Statistics 

10m Human 

development 

Kernel density of 

“Detailed Roads” 

layer, search 

radius based on 

Silberman’s Rule 

of Thumb 1986; 

mean over HUC-

12 

Soils Calculated, 

USEPA 

Basins 

- Substrate 

size 

Mean over HUC-

12 

Stream order USGS 

National 

Hydrography 

Dataset 

- Habitat 

diversity 

and stream 

temperature  

- 

Total contributing 

catchment area 

USGS 

National 

Hydrography 

Dataset 

- Velocity, 

width, 

depth, 

gradient 

- 

 

 



24 

In order to develop separate monthly models, I created input data for each month 

by intersecting the 15 predictor variables relevant to each month, if applicable, with my 

stream network. I also intersected fish presence data for each species with the stream 

network, to determine if a given reach could be classified as species present. All reaches 

were viable background in all months, but reaches could be classified as species present 

if at least one fish presence observation was located within that reach.  

Fish presence data included observations acquired over the last 20 years from 

state wildlife agencies including Utah Division of Wildlife Resources (UDWR), Idaho 

Department of Fish and Game (IDFG), Wyoming Department of Game and Fish 

(WDGF), Trout Unlimited, as well as private researchers (Smith, 2022) and are 

considered representative of both species’ current distribution. Fish presence data was not 

time stamped, so models fitting for each month reflected identical presence reaches, even 

though it is likely these data were collected between May-October of each year. Here I 

assumed suitable habitat extent would be far more restricted in sampled months, making 

these occupied reaches at least viable, if not preferred, over the full year.  

In sum, there were 549 of 3055 reaches with at least one BCT observation, and 19 

of 3055 reaches with at least one BHS observation in all months of the year. With such a 

substantial difference in the number of presence reaches between species, it should be 

noted while there are certainly more sampling efforts targeted at BCT, it is also likely 

there is extremely low prevalence of BHS in the Bear River Watershed (Bangs and 

Douglas, 2017; Thompson, Paul, 2015).  

In an initial effort to create more parsimonious models, I fit several MaxEnt 

models for both species using all 15 variables to determine which were least influential 
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on results, as well as used the plotCor function available in the SDMtune package in R to 

identify highly correlated variables. With this information, I manually eliminated eight 

variables from my input dataset (barrier density per HUC-12, distance to headwater, 

distance to nearest reservoir, major geologic type per HUC-12, percent canopy cover per 

HUC-12, percent impervious cover per HUC-12, soils, and stream order) which were 

highly correlated or consistently unimportant in these preliminary model runs. The 

following seven variables were included in model runs: average monthly air temperature, 

total monthly precipitation, elevation, land use per HUC-12, percent MAF, road density 

per HUC-12, and total upstream catchment area.  

 

2.2.2.2.2 Model Fitting  

I used multiple iterations of MaxEnt models in an ensemble to best understand the 

influence of different landscape-scale variables for BCT and BHS distribution in each 

month. For a single iteration, MaxEnt models were created for all months, which 

compared environmental conditions at a random sample of the background (static for all 

months) to conditions in occupied reaches. Conditions at a new random sample of the 

background were compared to conditions in occupied reaches for each subsequent 

iteration. Number of iterations was based on the number of background random samples 

needed to adequately represent the study area, or where I began to observe stability in 

predictions. I used 10 iterations to estimate suitable habitat for  BCT, and 1000 iterations 

for BHS.  

Random samples of the background were created by downsampling based on a 

BCT density layer, similar to using a bias file in raster-based applications of MaxEnt 



26 

(Barber et al., 2021; Fourcade et al., 2014; Kramer-Schadt et al., 2013), to adjust for low 

prevalence and sampling bias. Downsampling reduced extent of the background by 

selecting a random subset of background reaches equal the number of reaches with 

species presence (Benkendorf and Hawkins, In Review). Doing so based on a species 

density layer forces MaxEnt to draw a greater proportion of these random background 

samples from areas with more species observations, reducing the inclusion of potentially 

unsampled reaches in the background sample; where lack of presence may not reflect 

unsuitable habitat and could skew model results (Elith and Leathwick, 2009; Hirzel et al., 

2002; Li et al., 2011; Phillips, 2012; Phillips and Elith, 2013). I used the BCT density 

layer for BHS as well because there were not enough presence observations to create a 

density layer for BHS. This assumes BCT and BHS utilize similar habitat in the basin, 

and/or that sampling efforts for both species would have likely been conducted in similar 

areas. This coincides with understanding of common limiting factors for both species’ 

distributions in the Bear River Watershed; such as instream barriers fragmenting habitats 

and excluding potential suitable habitat area from species occupation (Budy et al., 2007; 

Kraft et al., 2019; Walsworth and Budy, 2015).    

With a random sample selected, I fit an initial model for each month using a 

training partition representing 75% of available presence and background reaches, where 

the remaining 25% of reaches were withheld as a test partition to be used in model tuning 

steps. It is important to note creating training/test partitions and cross-validating for 

model fitting and evaluation are the most common approaches for creating and validating 

geospatial models (Elith et al., 2011; Merow et al., 2013; Vignali et al., 2020b). Cross-

validation methods are heavily utilized when species occurrence data is limited, but has 
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received criticism for overfitting and/or inflating indicators of model performance (Olden 

et al., 2002). Ultimately I elected to use training and test partitions because with limited 

species presence data and given subsequent steps of this research, I wanted to limit bias 

from validating the model with the very data used to create it. 

Tuning steps removed correlated variables (using varSel within the SDMtune 

package), optimized two MaxEnt parameters (the regularization multiplier, or 

“smoothing” effect, and the number of within model iterations used in fitting; using 

optimizeModel within the SDMtune package), and reduced variables with low 

contribution effects (using reduceVar within the SDMtune package) by using 

optimization algorithms to iteratively compare performance of a tuned model to 

performance of the initial model (Vignali et al., 2020b). The initial model was replaced if 

performance improved.  

When model tuning was completed, I used the function evaluate within the 

SDMtune package to apply the final tuned model to the full dataset, and determine 

suitability predictions expressed as a continuous value between 0 (unsuitable) and 1 

(suitable), performance metrics, MaxEnt suggested thresholds for calculating binary 

suitability predictions, and model parameter values. Performance metrics included Area 

Under the Receiver Operating Characteristic Curve (AUC), True Skill Statistic (TSS), 

and Symmetric Extremal Dependence Index (SEDI).  AUC and TSS can be poor 

performance indicators for presence-only models, especially those with extremely low 

species prevalence (Ferro and Stephenson, 2011; Wunderlich et al., 2019). I included 

them because they have traditionally been standards of SDM or GEO model 

performance, and are generally still reported (Allouche et al., 2006; Leroy et al., 2018; 
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Lobo et al., 2008). SEDI is useful for presence-background models with low prevalence 

(Ferro and Stephenson, 2011; Wunderlich et al., 2019). 

 

2.2.2.2.3 Ensemble Summary 

Median monthly suitability, performance metrics, thresholds, and parameter 

values were calculated across all MaxEnt iterations. I used median suitability estimates 

across all iterations for comparisons  with the HYD and THRESH models in validation 

steps.  

As predictor variables and their importance could vary among iterations, variable 

importance is reported as a Weighted Permutation Importance (WPI) by season. To 

calculate this, I first counted the frequency of each variable’s inclusion in each month’s 

final model across all iterations, then summarized this count by season: spring, summer, 

fall, and winter. Next, I averaged the permutation importance of each variable included in 

a month’s final model across all iterations by season. I multiplied this average seasonal 

permutation importance by the seasonal inclusion count to determine seasonal WPI.  

Using an ensemble approach, I was able to account for more of the background than if I 

only used one downsampled partition, and effects of low prevalence and sampling bias 

were reduced in individual model runs. By summarizing across many iterations and 

unique presence/background partitions, I reduced the likelihood of overfitting models 

based on overfit outliers (and conversely, particularly poorly fit outliers). 

 

2.3 Model Validation 
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For this research, I validated both environmental predictors used in models, as 

well as predictive accuracy of the models. Both types of validation are uncommon (Elith 

and Leathwick, 2009; Vezza et al., 2015), but important as validation ensures reliability 

of predictions and provides a basis for recommending model applicability to other 

locations and/or species (Olden et al., 2002; Valavanis et al., 2008b). 

 

2.3.1 Environmental Data Collection 

Again, though fish presence data were not time-stamped, they are considered 

representative of both species’ current distribution by state agencies and Trout Unlimited. 

Environmental predictors of all models were validated with observed conditions from 

2022 in an effort to understand how accurately models represented current habitat 

conditions, and could from there reliably predict habitat quality and species distribution 

potential. 

I sampled stream depth, velocity, and temperature in the mainstem Bear River 

between June-October 2022 to validate environmental variables in the HYD model 

(stream temperature, stream depth, and streamflow), two of three variables in the 

THRESH model (stream temperature and streamflow), and percent mean annual flow as 

a function of streamflow in the GEO model. I used a HACH FH950 flowmeter, a 

Teledyne RiverPro Acoustic Doppler Current Profiler (ADCP), and Onset HOBO water 

temperature Pro v2 and water level data loggers to take measurements at 20 sites where 

there was public access or an adjacent road (Fig. 1). 

Sampling efforts were focused on the mainstem Bear River where models 

overlapped, and which makes up most of the modeled extent of the HYD model. 
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Hydraulic models are infrequently field-validated because data collection efforts are 

time-consuming and expensive (Barker et al., 2018; Brenden et al., 2007; Rosenfeld et 

al., 2011; Williams et al., 2013). Though the HYD model was previously calibrated with 

field-collected data from three sites (Alafifi and Rosenberg, 2020), I hoped to further 

validation efforts by determining how comparable stream conditions in 2022 were to 

estimates based on streamflows in 2003. Environmental conditions in the THRESH 

model were previously extensively validated with environmental data (Goodrum and 

Null, 2022). Because both the THRESH and GEO model use the NHD to estimate 

percent MAF, I could have used results of Goodrum & Null’s (2022) validation efforts to 

represent quality of fit for this variable in GEO model. However, because the THRESH 

model included streams throughout all of Utah, I wanted to recalculate fit metrics 

specifically within the Bear River Watershed, the extent of the GEO model, where I 

expected results to be different than the trend based on all perennial streams across Utah.  

 

2.3.2 Environmental Data Validation 

I used the coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE) 

index, and percent bias (PBIAS) to compare observed conditions at point locations from 

2022 to model estimates for each variable (D. N. Moriasi et al., 2015, 2007; Goodrum 

and Null, 2022). Reach lengths varied between model types, so point estimates applied to 

the reach the point fell within. The HYD model had long reaches, so this validation 

assumed site-scale conditions were uniform throughout reaches.  

Though the THRESH an GEO model estimates were based on monthly averages 

from the NHD (1971-2000), it is useful to show how well 1971-2000 NHD estimates fit 
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current streamflow conditions. HYD model estimates were based on streamflow observed 

in 2003, so I ranked mean annual flows (MAF) for the full period of record at USGS 

Station 10126000 (Bear River near Corinne, UT) to determine if streamflows were 

similar enough in 2003 and 2022 to be compared (Oregon State University, 2002). 

Corinne is the farthest downstream stream gage in the Bear River Watershed, and is 

proximal to Cutler Dam and Reservoir, a small, but major reservoir in the basin. There is 

limited water storage in Cutler Reservoir, equivalent to 8,563 acre-feet (Olson, 2022). 

This makes up less than 1% of the total MAF for the Bear River Watershed.  Streamflow 

measurements at Corinne do neglect the effects of some additional diversions and 

tributary inputs downstream. However, these effects scale accordingly across wet and dry 

years, allowing streamflow here to stand as a proxy for flows for the full basin. 

Across the full streamflow record at Corinne (1950-2022 with 5 years missing 

between 1958-1963; a total of 67 years), 2003 was a dry water year, equivalent to ~33.0 

% MAF. 2022 was also dry, but slightly less so, and MAF was ~40.7% of average. 2003 

was the second driest year on record and 2022 was seventh driest (U.S. Geological 

Survey, 2016). I also analyzed years from 2000-present, a period where the western USA 

has experienced a prolonged drought (Williams et al., 2020). Within this period, 2003 

streamflow was ~47.5% of average and was the driest year on record. 2022 was the fifth 

driest. While 2003 and 2022 were close enough to be comparable, validation results were 

expected to reflect 2022 streamflow and depth as slightly greater than modeled estimates 

from 2003. 

 

2.3.3 Quantifying Model Accuracy 
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There were no commonly used metrics of predictive accuracy applicable for all 

models compared here. The three models used in this comparison were created for 

different purposes with distinct extents and reach lengths, and outputs in different forms. 

Fish absence data were unavailable, making quantifying model predictive accuracy in 

reaches without presence observations impossible (for models both incorrectly predicting 

unoccupied reaches as suitable habitat, as well as correctly predicting unoccupied reaches 

as unsuitable habitat). Sparse presence observations (particularly for the HYD model 

extent), eliminated traditional statistical methods such as Generalized Linear Models, 

Linear Mixed Effects Models, and Generalized Linear Mixed Effects Models to 

determine differences in presence-only model predictive accuracy.  

My validation efforts were restricted to those reaches with presence observations, 

in which I could correctly classify occupied reaches that predicted suitable habitat, and 

incorrectly classify occupied reaches that predicted unsuitable habitat. This 

correct/incorrect classification method worked regardless of whether model output was a 

probability of occurrence or an expected lethal/non-lethal classification. I developed three 

metrics to compare model predictive accuracy given differences in model extent, 

threshold selection, and type of model output in occupied reaches. Extents of models 

used in this comparison with fish presence data are shown in Fig. 9. Table 2 reports 

counts of reaches with fish presence observations for model type. 

 

Table 2 

Reaches with fish presence observations per model extent. 

 

Model Total 

Reaches 

Reaches with BCT 

Observations 

Reaches with BHS 

Observations 

HYD 24 9 4 
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GEO 3055 549 19 

THRESH 31147 1321 73 

 

 

 
Fig. 9. Fish presence data with the extent of each model. 
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2.3.3.1 Method 1: Threshold-based Proportion of Correctly Classified Reaches (TPC) 

In the most intuitive method of determining predictive accuracy, I reported model 

performance as the proportion of reaches with presence observations correctly classified 

as suitable habitat given a threshold across each model’s full extent (TPC). A single fish 

presence observation in a reach predicted suitable habitat yields a correct classification, 

and a single fish presence observation in a reach predicted unsuitable habitat yields an 

incorrect classification. Incorrect classifications suggest models underpredict suitable 

habitat. TPC is represented by the following equation, where i represents a reach with a 

confirmed species presence, and n represents the total count of reaches with observed 

species presence: 

 

𝑇𝑃𝐶 =
∑ 𝐵𝑖𝑛𝑎𝑟𝑦 𝑆𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖

𝑛
𝑖  

𝑛
 

 

For the GEO and HYD models, a threshold was needed to reclassify continuous 

habitat suitability to binary suitability. For both the HYD and GEO models, I included a 

threshold of 0.5 to differentiate suitable versus unsuitable reaches, an ecologically 

intuitive boundary. For the GEO model, I calculated TPC at two additional thresholds 

commonly used in conservation applications of MaxEnt; the Minimum Training Presence 

(MTP) and 10th Percentile Minimum Training Presence (10PMTP) thresholds (Dorji et 

al., 2020; Liu et al., 2016; Radosavljevic and Anderson, 2014; Shcheglovitova and 

Anderson, 2013). These thresholds represent the lowest predicted suitability value among 

all occupied reaches, and the 10th percentile of suitability values among all occupied 

reaches, respectfully. MTP assumes habitat must be suitable wherever an individual is 
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observed. 10PMTP recognizes species may occasionally be found temporarily inhabiting 

lesser quality areas, although these reaches may not be suitable for permanent occupation 

(Cecina Babich Morrow, 2019). To select another threshold for the HYD model, I 

conducted a sensitivity analysis of the suitability threshold to illustrate how it influenced 

habitat suitability. In the sensitivity analysis, the greatest drop in TPC at a step of 0.01 

from 0-1 was 0.01 for both species, and this was used as the second threshold. 

 

2.3.3.2 Method 2: Weighted Proportion of Correctly Classified Reaches (WPC)  

For a second metric, I aimed to avoid choosing a threshold, so I calculated the 

proportion of the sum of continuous suitability predictions to total reaches with observed 

fish presences over each model’s full extent, resulting in a weighted proportion of 

correctly classified reaches (WPC). WPC is represented by the following equation, where 

i represents a reach with a confirmed species presence, and n represents the total count of 

reaches with observed species presences: 

 

𝑊𝑃𝐶 =
∑ 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑆𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖

𝑛
𝑖  

𝑛
 

 

By nature, this method almost always resulted in lower predictive accuracy 

estimates for the HYD and GEO models compared to threshold-based approaches like 

TPC unless a chosen threshold resulted in incorrect classifications. For example, should 

the HYD or GEO model have three reaches with species presence observations, each with 

habitat suitability predictions of 0.75, then the WPC suitability values would be 0.75, or 

75%. In calculating TPC, if the threshold chosen was less than or equal to 0.75, then each 
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of these reaches would have been classified fully correct, leading to a TPC of 1, or 100%. 

However, if the threshold used to determine suitable or unsuitable habitat had been 

greater than 0.75, each of these reaches would have been misclassified, leading to a TPC 

of 0, or 0%. Because THRESH model outputs were binary, WPC was identical to TPC 

from method 1 for the THRESH model.  

 

2.3.3.3 Method 3: Adjusted Weighted Proportion of Correctly Classified Reaches 

(𝑊𝑃𝐶𝐴𝑑𝑗) 

 

Since the THRESH model can potentially classify all reaches with a suitability of 

value of 1 and thus principally outcompete the other two models using the WPC method, 

I adjusted the WPC calculation by the proportion of a weighted unsuitable reach length 

over total reach length. This method favors predicting suitable habitat in reaches at and 

around occupied reaches, and not extraneously, and with that provides an indicator of 

both model precision and accuracy. This metric is unit-less and continuous between 0 and 

1, with higher values indicating better model performance. This calculation is below, 

where i represents a given reach, and n represents the total number of reaches within a 

model’s extent: 

 

𝑊𝑃𝐶𝐴𝑑𝑗 = 𝑊𝑃𝐶 ∗ (1 −
∑ 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑆𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖 ∗ 𝑅𝑒𝑎𝑐ℎ 𝐿𝑒𝑛𝑔𝑡ℎ

𝑖
𝑛
𝑖

∑ 𝑅𝑒𝑎𝑐ℎ 𝐿𝑒𝑛𝑔𝑡ℎ𝑖
𝑛
𝑖

) 

 

If a model predicted all suitable habitat (suitability value of 1) in all reaches, then 

WPC would equal 1 as all presence observations would occur in suitable habitat. 

However, with zero reaches predicted unsuitable, the adjustment factor would equal 0, 
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resulting in a 𝑊𝑃𝐶𝐴𝑑𝑗 of 0. Should models with a WPC of 0.75, for example, reflect a 

gradient of suitability predictions across a modeled extent of 500 km equal to 100 km of 

suitable habitat, this would adjust WPC by a factor of 0.8, resulting in a 𝑊𝑃𝐶𝐴𝑑𝑗 of 0.6. 

Should suitable habitat extent be even less, for example 50 km, a WPC of 0.75 would be 

adjusted by a factor of 0.9, resulting in a 𝑊𝑃𝐶𝐴𝑑𝑗 of 0.675.  

As predicted suitable habitat extent declined, the adjustment factor approached 1, 

resulting in a 𝑊𝑃𝐶𝐴𝑑𝑗 closer in value to the non-adjusted WPC. However, models with a 

low WPC maintain low performance even at extremely low proportions of predicted 

suitable habitat. For example, should a model reflect a WPC of 0.1 but have an estimated 

suitable extent of only 1 km of the total 500 km, the adjustment factor would equal .998, 

resulting in a 𝑊𝑃𝐶𝐴𝑑𝑗 of 0.0998. So, in combination a high WPC, 𝑊𝑃𝐶𝐴𝑑𝑗 can approach 

its maximum of 1. However, this is near theoretically impossible as all reaches with 

presence observations would need to be correctly classified, with almost zero other areas 

predicted suitable (Fig. 10).   
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Fig. 10. Models with a high Weighted Proportion of Correctly Classified Reaches (WPC) 

but large total predicted suitable habitat extent (dot symbol) approach the optimal 

Adjusted WPC (WPCAdj)  as they predict less suitable area (star symbol). 
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RESULTS 

3.1 Geospatial (GEO) Model Results 

3.1.1 Variable Importance 

 Of the seven variables included in model runs for BCT, between 2-5 variables 

were retained in the final model fits to predict species distribution depending on the 

month and iteration. Total upstream catchment area was most frequently selected as an 

important variable across all months, and consistently had the highest Weighted 

Permutation Importance (WPI) of ~50% across all seasons (Fig. 11). Total upstream 

catchment area had a negative overall relationship with habitat suitability (Fig. 12); 

where lower upstream catchment areas were associated with higher habitat suitability 

values. Land use was the second most important variable across all seasons (Fig. 11), 

with BCT more often observed in forest-dominated HUC-12 basins (Fig. 13). In spring, 

average monthly temperature, and in fall, precipitation closely followed land use in WPI 

(Fig. 11). Summer months reflected greatest spread in variable importance, with 

proportion of WPI nearly equal among land use, road density, average monthly 

temperature, and precipitation (Fig. 11). Elevation was consistently found least influential 

throughout the year, and was not correlated with total upstream catchment area (Fig. 11). 

This is because in the Bear River Watershed, there are tributary reaches with low total 

upstream catchment area located at variable elevations all over the watershed. The overall 

relationships between the less important variables used in model fitting and habitat 

suitability are included in the Appendix (Figs. A1-A5). 
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Fig. 11. Weighted Permutation Importance (WPI) of variables by season for Bonneville 

Cutthroat Trout (BCT) model runs. 

 

 

 

Fig. 12. Total upstream catchment area for Bonneville Cutthroat Trout (BCT) occupied 

reaches compared to all reaches, with mean values for each category shown in dotted 

lines (left) and mean MaxEnt probability of occurrence at different upstream areas across 

all months and ensemble iterations, with a 95% confidence interval (right). 
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Fig. 13. Land use in Bonneville Cutthroat Trout (BCT) occupied reaches compared to all 

reaches (left) and MaxEnt probabilities of occurrence by land use category for all months 

and ensemble iterations. 

 

 

 

 Out of 1000 ensemble iterations for BHS, between 1-6  variables were retained 

in the final model fits to predict species distribution depending on the month and 

iteration. With only 19 species presence observations, ideally individual models would 

only be fit with 1-2 predictors (Peduzzi et al., 1996, 1995; Vittinghoff and McCulloch, 

2007). However, it is impossible to ensure MaxEnt only uses a specific number of 

predictors in the final fit. With this, there were less obvious trends in selected important 

variables across iterations than in BCT model runs; with the exception of total upstream 

catchment area as consistently the most important predictor across all seasons (average 

WPI of about 25% for the full year) (Fig. 14). For BHS, total upstream catchment area 

had an overall horizontal relationship with habitat suitability (Fig. 15); where BHS were 

found to generally prefer reaches with higher total upstream catchment area than the 

study area mean. Beyond this, there was no clear second-best predictor across all seasons, 
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with relatively even WPI among the remaining 6 variables (Fig. 14). These less definitive 

results are likely due to individual models being overfit to small datasets. The overall 

relationships between the less important variables used in model fitting and habitat 

suitability are included in the Appendix (Figs. A6-A11). 

 

 

 
Fig. 14. Weighted Permutation Importance (WPI) of variables by season for Bluehead 

Sucker (BHS) model runs. 
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Fig. 15. Total upstream catchment area for Bluehead Sucker (BHS) occupied reaches 

compared to all reaches, with mean values for each category shown in dotted lines (left) 

and mean MaxEnt probability of occurrence at different upstream areas across all months 

and ensemble iterations, with a 95% confidence interval (right). 

 

 

 

3.1.2 Performance Criteria, Parameters, and Thresholds  

 Median monthly GEO model performance metrics, threshold values, and 

optimized MaxEnt parameters for BCT and BHS model runs are reported in Table 3 and 

4; respectively columns 2-8, 9-10, and 11-12. Per Komac et al (2015), models with an 

AUC of 0.8 or greater, and a TSS of 0.6 or greater, reflect good to excellent model fit. 

SEDI ranges from -1 to 1, with 1 indicating perfect model fit, and 0 no better than 

random. The default regularization multiplier is 1, and the default iterations used to fit a 

given training dataset is 500 (Vignali et al., 2020b). 

 In BCT training and testing models, model optimizers increased both the 

regularization multiplier and iterations per fit from defaults. No months were classified as 

good to excellent fit when evaluated by AUC or TSS, though some were close. However, 

AUC and TSS performance values were consistent between training and test partitions. 
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When evaluated by SEDI, a threshold of 0.5 to differentiate suitable versus unsuitable 

habitat performed far better than lower thresholds (MTP and 10PMTP), though overall, 

model fit was mediocre. There were a few instances where SEDI could not be computed, 

which occurs when any of the following occurs: 1) there are 0 presence observations 

found in predicted suitable habitat, 2) there are 0 presence observations are found in 

predicted unsuitable habitat, 3) there are 0 instances of a lack of presence observations in 

predicted suitable habitat, 4) there are 0 instances of a lack of presence observations in 

predicted unsuitable habitat (Ferro and Stephenson, 2011). Further, high counts of 

predicted suitable reaches without presence observations can result in a very low SEDI. 

Thus, it is not surprising for a higher threshold (more exclusive) to lead to a higher SEDI, 

where there is less predicted suitable habitat overall.  

 Trained BHS models reflected excellent model fit when evaluated by AUC or 

TSS (Komac et al., 2016). Model performance declined considerably in all months, 

however, when models were evaluated using test partitions. SEDI model fit was very 

good regardless of threshold, though it could not be computed for any threshold in June. 

There were generally major differences between MTP and 10PMTP thresholds, with the 

MTP threshold consistently equal to 0 and the 10PMTP threshold usually equal to 0.63 . 

However, MTP and 10PMTP thresholds were occasionally close in value. With only 19 

reaches with presence observations, the MTP and 10PMTP thresholds equal the two 

lowest predicted suitability values among occupied reaches. So, values equal to zero 

show that even with an ensemble approach, BHS models in all months did not accurately 

represent BHS habitat preference given conditions at all reaches with species 

observations. Sparse species distribution data hampered model fitting.
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Table 3 

Bonneville Cutthroat Trout (BCT) Model Fit Metrics (median values of 10 iterations). 

 

Month Train 

AUC 

Test 

AUC 

Train 

TSS 

Test 

TSS 

SEDI: 

MTP 

SEDI: 

10PMTP 

SEDI: 

0.5 

MTP 10PMTP Reg. 

Mult. 

MaxEnt 

Iterations 

Jan 0.75 0.74 0.39 0.38 0.14 0.14 0.56 0.04 0.3 2.75 4390 

Feb 0.78 0.75 0.45 0.4 NA NA 0.68 0.05 0.3 2.6 3740 

Ma 0.78 0.74 0.42 0.38 0.46 0.46 0.65 0.03 0.31 2.7 4200 

Apr 0.77 0.73 0.4 0.39 0.35 0.35 0.59 0.05 0.32 3.2 4610 

May 0.79 0.75 0.44 0.4 0.33 0.33 0.64 0.02 0.26 2.1 4680 

Jun 0.77 0.74 0.41 0.4 0.31 0.31 0.62 0.03 0.29 2.1 5060 

Jul 0.78 0.76 0.42 0.4 0.45 0.45 0.63 0.05 0.31 2.95 4990 

Aug 0.79 0.76 0.45 0.42 NA NA 0.64 0.01 0.29 2.9 4420 

Sep 0.77 0.74 0.41 0.38 0.21 0.21 0.64 0.03 0.25 2.25 4550 

Oct 0.77 0.73 0.41 0.37 0.17 0.17 0.61 0.05 0.27 2.55 5930 

Nov 0.78 0.77 0.44 0.42 0.15 0.15 0.66 0.03 0.27 1.85 4240 

Dec 0.75 0.74 0.39 0.39 0.25 0.25 0.54 0.05 0.32 2.85 5670 
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Table 4 

Bluehead Sucker (BHS) Model Fit Metrics (median values of 1000 iterations). 

 

Month Train 

AUC 

Test 

AUC 

Train 

TSS 

Test 

TSS 

SEDI: 

MTP 

SEDI: 

10PMTP 

SEDI: 

0.5 

MTP 10PMTP Reg. 

Mult. 

MaxEnt 

Iterations 

Jan 0.92 0.75 0.85 0.5 0.77 0.77 0.8 0 0.63 1 500 

Feb 0.93 0.75 0.85 0.5 0.77 0.77 0.79 0 0.63 1 500 

Ma 0.95 0.75 0.85 0.5 0.78 0.78 0.8 0 0.63 1 500 

Apr 0.93 0.69 0.85 0.5 0.72 0.72 0.77 0 0.63 1 500 

May 0.92 0.69 0.85 0.5 0.69 0.69 0.72 0 0 1 500 

Jun 0.95 0.75 0.92 0.5 NA NA NA 0 0.63 1 500 

Jul 0.92 0.63 0.85 0.5 0.67 0.67 0.72 0 0 1 500 

Aug 0.94 0.72 0.85 0.5 0.76 0.76 0.7 0 0.07 1 500 

Sep 0.93 0.75 0.85 0.5 0.75 0.75 0.78 0 0.63 1 500 

Oct 0.92 0.75 0.85 0.5 0.7 0.7 0.73 0 0 1 500 

Nov 0.95 0.75 0.92 0.5 0.76 0.76 0.79 0 0.63 1 500 

Dec 0.94 0.75 0.92 0.5 0.79 0.79 0.81 0 0.63 1 500 
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3.2 Model Validation  

3.2.1 Environmental Conditions  

Overall, real-world conditions between June-October 2022 were not accurately 

represented by any of the three modeling methods compared. The HYD, THRESH, and 

GEO models all overestimated streamflow, and the THRESH and HYD models 

underestimated stream temperature. These results were generally expected due to 

comparing point measurements in a particularly hot, dry year to monthly averages over 

full reaches; and in the case of the HYD model, summarized over particularly large 

spatial extents.  

 

Table 5 

Environmental data validation using 2022 field observations and model input estimates. 

Color coding represents quality of fit: red = not satisfactory, orange = satisfactory, yellow 

= good, green = very good (D. N. Moriasi et al., 2015, 2007).  

 

Model Parameter Adjusted 𝐑𝟐
 PBIAS NSE 

HYD Streamflow 0.221 4.6 -1.46 

HYD Average Depth -0.026 18.3 -1.75 

GEO/THRESH Streamflow 0.357 30.9 -3.27 

THRESH Temperature 0.599 -27.5 -1.59 

 

 

 

The HYD model used streamflow measurements from 2003 to predict channel 

depth and subsequently habitat suitability for BCT and BHS. Though streamflow was 

slightly higher in 2022 compared to 2003 based on ranked water years using streamflow 

data at Corinne, both streamflow and stream depth estimates should have been 

comparable to observed conditions in 2022 assuming channel morphology was 

unchanged.  
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Stream conditions in 2022 were not well represented by HYD model estimates 

(Table 5). Negative NSE values indicate using average observed streamflow 

measurements were less variable than model estimates. Adjusted R2
 values reflect a near 

random fit for both streamflow (Fig. 16) and channel depth (Fig. 17), which is likely 

attributed to effects of extreme outliers on small sample sizes. Positive PBIAS values 

indicated model predictions were greater than observed conditions; the opposite of what 

was expected given 2003 was an extremely dry water year.  

Both the THRESH and GEO models used percent MAF as a predictor, both based 

on NHD monthly averages. Though the THRESH model’s full extent far exceeds the 

Bear River Watershed, Table 5 presents results for just the Bear River Watershed to 

match the observation dataset. Overall, observed streamflow in 2022 in the Bear River 

Watershed was not well represented by NHD estimates (Fig. 18). NSE values were 

negative indicating average observed streamflow was less variable than modeled 

estimates, and large positive PBIAS value shows the THRESH and GEO models 

overestimated streamflow. Adjusted R2
 values also indicate a poor fit (Table 5). These 

findings, however, were not surprising because I expected modern conditions such as 

those observed in 2022 to reflect drier conditions than estimates from the NHD (1971-

2000).   

Stream temperature estimates were made for each reach of the THRESH model. 

The relationship between observed and modeled stream temperature reflected satisfactory 

model performance given adjusted R2
 (Table 5).  However, NSE was negative, indicating 

poor model fit, and a large PBIAS estimate showed model estimates were often much 

lower than observed conditions (Fig. 19). This too is unsurprising, given observations 
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were restricted only to the mainstem Bear River, and during one of the hottest years on 

record (National Drought Mitigation Center, 2023). 

 

 
Fig. 16. Relationship between observed and modeled streamflow (discharge) in the 

Hydraulic-Habitat (HYD) model. Gage site observations (2001-2022) were included to 

visually compare with 2022 field observations. The dashed line indicates a 1:1 

relationship.   
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Fig. 17. Relationship between average observed and modeled channel depth in the 

Hydraulic-Habitat (HYD) model. The dashed line indicates a 1:1 relationship.   

 

 

 

 
Fig. 18. Relationship between observed streamflow (discharge) versus average monthly 

National Hydrography Dataset (NHD) estimates used in the Geospatial (GEO) and 

Habitat Threshold (THRESH) models. Gage site observations (2001-2022) were included 
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to visually compare with 2022 field observations. The dashed line indicates a 1:1 

relationship.   

 
Fig. 19. Relationship between observed stream temperatures and Habitat Threshold 

(THRESH) model stream temperatures. NorWeST 2000-2018 measurements within the 

Bear River Watershed were included to visually compare with 2022 field observations. 

The dashed line indicates a 1:1 relationship. Yellow shaded areas represent temperatures 

considered stressful for Bonneville Cutthroat Trout (BCT), and red shaded areas 

represent temperatures that exceed the BCT lethal threshold. 

 

 

 

Though impossible to capture by a performance metric, it is important to 

emphasize how models often simplify conditions, such as assuming a rectangular channel 

when true channel cross-sections are more complex (Fig. 20). Field measurements 

reflected a much wider reach, but with comparable average channel depth. Different 

channel morphologies can result in great differences in the relationship between 

streamflow and stream velocity. 



52 

 
Fig. 20. Hydraulic-Habitat (HYD) modeled (top) and observed (bottom) channel 

morphology in the mainstem Bear River reach upstream of Oneida Reservoir, UT. 

 

 

 

In a final notable point again not measurable by metrics suggested by Moriasi et 

al. (2015), I compared observed mainstem Bear River stream temperatures between June 

and October 2022 and HYD model thresholds (Fig. 21). In summer months, particularly 

July and August, observed temperatures in nearly all of the mainstem Bear River 

exceeded the HYD threshold for BCT temperature suitability (Alafifi and Rosenberg, 

2020), as well as the BCT lethal limit throughout most of the modeled extent. I also 

observed occasional exceedance of the maximum expected temperature for the full extent 

of the HYD model, though this was independent of species thresholds, in downstream 

reaches toward Great Salt Lake in these months. Stream temperature observations along 
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the mainstem Bear River in summer 2022 were consistently warmer than observations at 

NorWeST sites between 2000-2018 at gages both along the mainstem and in tributaries, 

as well. This exemplifies how outdated, static model conditions such as these can be 

inappropriate in a changing climate. Depending on the model developer’s intent, 

exceedance of threshold such as this could have implications for determining whether or 

not reaches could be considered viable habitat, altering habitat quality estimates, and 

subsequently changing management implications.   

 

 
Fig. 21. Observed average monthly stream temperatures within the Hydraulic-Habitat 

(HYD) model extent from June-October 2022. NorWeST measurements within the Bear 

River Watershed show in-stream temperatures from 2000-2018, where small dark gray 

points are observations from tributary sites and larger light gray points are from 

mainstem sites. Yellow shaded area reflects the temperature range considered stressful 

for Bonneville Cutthroat Trout (BCT), where areas shaded in red reflect exceedance of 

the lethal threshold. The dashed line labeled “BCT threshold” is the HYD model 

temperature threshold. The dashed line labeled “expected maximum” is the maximum 

temperature expected within the HYD model extent. 
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3.2.2 Quantifying Model Accuracy  

3.2.2.1 Threshold-based Proportion of Correctly Classified Reaches (TPC) 

The THRESH and GEO models created with either MTP or 10PMTP thresholds 

were 100% accurate in correctly classifying occupied reaches as suitable over the full 

year (Table 6). The HYD model with binary suitability threshold determined by 

sensitivity analysis ranked third for predicting suitable BCT habitat, followed by the 

GEO model with a threshold of 0.5. The HYD model created with a threshold of 0.5 

performed worst for predicting BCT habitat by this metric. These results show all three 

models perform well for predicting BCT habitat if thresholds are carefully selected, and 

threshold selection for models with continuous habitat suitability affects model 

performance.  

 

Table 6 

Threshold-based Proportion of Correctly Classified Reaches (TPC: expressed as a 

percentage) for Bonneville Cutthroat Trout (BCT) models, calculated using median 

predictions across model iterations for each month. SA means threshold determined by 

Sensitivity Analysis, and ME means MaxEnt determined thresholds (Minimum Training 

Presence (MTP) and 10th Percentile Minimum Training Presence (10PMTP)) results were 

combined because they were identical. 

 
Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 % % % % % % % % % % % % 

HYD (0.5) 67 44 0 0 0 0 0 0 50 33 33 56 

HYD (SA) 83 89 83 83 86 88 83 83 83 83 83 89 

GEO (0.5) 73 76 80 76 72 73 80 71 75 74 73 68 

GEO (ME) 100 100 100 100 100 100 100 100 100 100 100 100 

THRESH 100 100 100 100 100 100 100 100 100 100 100 100 
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All models created for BHS appeared to perform well and exhibited a narrower 

range in performance across model types (Table 7). This is likely because across all 

model types, most of the modeled extents were predicted suitable (regardless of threshold 

selected for the HYD and GEO models), resulting in most if not all reaches with presence 

observations correctly classified as suitable habitat. The HYD model with a threshold 

selected by sensitivity analysis correctly classified 100% of occupied reaches as suitable 

habitat for all months. The HYD model with a threshold of 0.5 was 100% accurate for all 

months except in winter, and the THRESH model was nearly perfectly accurate over the 

full year. All GEO models perform identically, except in August, where there was a slight 

decrease in performance for the model evaluated based on a threshold of 0.5. GEO 

models were consistently slightly less accurate than other model types, except where 

winter predictions made by the HYD model with a threshold of 0.5 were notably worse 

(though still overall quite good). Again, setting different thresholds within model type 

affected accuracy of predictions, if even slightly. 

 

Table 7 

Threshold-based Proportion of Correctly Classified Reaches (TPC: expressed as a 

percentage) for Bluehead Sucker (BHS) models, calculated using median predictions 

across model iterations for each month. 

 

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 % % % % % % % % % % % % 

HYD (0.5) 75 75 100 100 100 100 100 100 100 100 100 75 

HYD (SA) 100 100 100 100 100 100 100 100 100 100 100 100 

GEO (0.5) 94 94 94 94 88 100 88 88 94 88 94 94 

GEO (ME) 94 94 94 94 88 100 88 94 94 88 94 94 

THRESH 97 97 99 99 99 99 99 99 99 99 99 99 
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3.2.2.2 Weighted Proportion of Correctly Classified Reaches (WPC) 

WPC was calculated to assess model performance without introducing 

assumptions regarding threshold selection. For BCT models, the THRESH model 

correctly predicted occupied reaches as suitable with 100% accuracy in all months, the 

GEO model averaged 64% correct classifications, and the HYD model averaged 29% 

correct classifications for all months. WPC for the HYD model was especially poor 

between March and August (Table 8). For BHS models, the THRESH and HYD models 

performed similarly. The THRESH model averaged 99% correct classifications, and the 

HYD averaged 95% correct classifications. The GEO model performed worst with an 

average of 67% correctly  classified occupied reaches in all months (Table 9).  

 

Table 8 

Weighted Proportion of Correctly Classified Reaches (WPC: expressed as a percentage) 

for Bonneville Cutthroat Trout (BCT) models, calculated using median predictions for 

Geospatial (GEO) models across iterations for each month. 

 

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 % % % % % % % % % % % % 

HYD 55 45 3 3 3 3 3 3 53 53 54 64 

GEO 64 65 66 65 64 64 66 64 63 64 64 64 

THRESH 100 100 100 100 100 100 100 100 100 100 100 100 

 

 

Table 9 

Weighted Proportion of Correctly Classified Reaches (WPC: expressed as a percentage) 

for Bluehead Sucker (BHS) models, calculated using median predictions for Geospatial 

(GEO) models across iterations for each month. 

 

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
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 % % % % % % % % % % % % 

HYD 86 81 96 100 100 100 100 100 99 99 95 79 

GEO 67 70 79 72 63 67 67 62 62 64 68 58 

THRESH 97 97 99 99 99 99 99 99 99 99 99 99 

 

 

 

3.2.2.3 Adjusted Weighted Proportion of Correctly Classified Reaches (𝑊𝑃𝐶𝐴𝑑𝑗) 

Adjusted WPC was calculated to compare models without selecting thresholds 

and to normalize WPC based on the weighted proportion of modeled extent predicted 

suitable, because WPC was biased towards models that predicted suitable habitat almost 

everywhere. This WPC adjustment benefited models which exhibited greater discernment 

in predicting suitable habitat (Figs. 22 and 23). Values reported in tables are unitless, but 

are bounded between 0 and 1. Values closer to 0 or 1 reflect worse or better performance, 

respectively. 

For BCT models, the GEO model averaged best performance throughout the year, 

though the HYD model performed best in winter months. The THRESH model 

performed worst by this metric given an annual average, though slightly better than the 

HYD model in summer months year (Table 10).  The GEO model performed best among 

BHS models as well, with the THRESH and HYD models performing similarly in all but 

summer months where the HYD model performed substantially worse (Table 11).  

 

Table 10 

Adjusted Weighted Proportion of Correctly Classified Reaches (unitless) for Bonneville 

Cutthroat Trout (BCT) models, calculated using median predictions for Geospatial 

(GEO) models across iterations for each month. 

  

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
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HYD 0.49 0.4 0.03 0.03 0.03 0.03 0.03 0.03 0.47 0.48 0.48 0.54 

GEO 0.36 0.4 0.39 0.37 0.4 0.38 0.38 0.39 0.38 0.37 0.39 0.36 

THRESH 0 0 0 0 0 0.09 0.15 0.03 0 0 0 0 

 

 

Table 11 

Adjusted Weighted Proportion of Correctly Classified Reaches (unitless) for Bluehead 

Sucker (BHS) models, calculated using median predictions for Geospatial (GEO) models 

across iterations for each month.  

 

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

HYD 0.25 0.31 0.13 0 0 0 0 0 0.22 0.17 0.2 0.26 

GEO 0.53 0.54 0.6 0.54 0.49 0.53 0.51 0.48 0.49 0.5 0.53 0.47 

THRESH 0.25 0.25 0.24 0.24 0.24 0.27 0.27 0.24 0.25 0.24 0.24 0.25 

 

 

 
Fig. 22. Adjusted Weighted Proportion of Correctly Classified Reaches (WPCAdj) as a 

function of Weighted Proportion of Correctly Classified Reaches (WPC) expressed as a 

percent, and percent of total habitat predicted suitable for Bonneville Cutthroat Trout 

(BCT) models.  
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Fig. 23. Adjusted Weighted Proportion of Correctly Classified Reaches (WPCAdj) as a 

function of Weighted Proportion of Correctly Classified Reaches (WPC) expressed as a 

percent, and percent of total habitat predicted suitable  for Bluehead Sucker (BHS) 

models.  
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DISCUSSION 

Model types compared differed in performance depending on threshold selection, 

model development choices, and performance metric selection. None of the models 

compared were particularly representative of real-world environmental conditions, 

though some provided more believable estimates of habitat availability, and better 

context for species preferences, than others. Overall, the THRESH and GEO models 

performed best for BCT, and the THRESH model performed best for BHS. Habitat 

model selection should be based on management goals, but generalized habitat models, 

such as the THRESH model, that incorporate both hydrologic and species-specific 

biological predictors may be best for use in conjunction with water management. 

However, considering model results across types may prove useful for managers looking 

to maximize both habitat model accuracy and precision. This additional precision could 

be gained through combining process-based models results, like the THRESH model, 

with empirical model results, like the GEO model.   

 

4.1 Geospatial (GEO) Model Habitat Predictors for Bonneville Cutthroat Trout (BCT) 

and Bluehead Sucker (BHS) 

There has been a recent flux of studies comparing how accurately variables 

representing different spatial scales predict aquatic habitat suitability. These studies 

demonstrate that landscape-scale variables can adequately predict species distribution and 

may even more accurately represent species habitat preference than traditional microscale 

variables because landscape variables act as a surrogate, or proxy, for local conditions 
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through stream hierarchical theory (Creque et al., 2005; Frissell et al., 1986; Maxwell et 

al., 1995; Richards et al., 1996). When microscale variables have been included in 

models, they have not significantly improved overall predictive accuracy (Falke, 2006; 

Kristensen et al., 2012; Meixler and Bain, 2012; Steen et al., 2008b). 

In my ensemble application of MaxEnt, Total Upstream Catchment Area had 

highest WPI of landscape-scale predictors for BCT and BHS habitat suitability. As 

shown in Figs. 12 and 15, BCT prefer reaches with lower total upstream catchment area, 

while BHS prefer reaches with medium to high total upstream catchment area. Even 

though there are proportionally more reaches within the GEO model extent with lower 

total upstream catchment area, BCT were not found as often as would be randomly 

expected in reaches with greater total upstream catchment area (Fig. 12). BHS on the 

other hand, were found less often than would be expected in reaches with lower total 

upstream catchment area (Fig. 15). 

For BCT models, land use consistently ranked as second most important 

throughout the year. Land use is often used as a predictor in fish habitat modeling, 

particularly in geospatial modeling (Dauwalter et al., 2011; Giacomazzo et al., 2020; Joy 

and Death, 2004; Meixler and Bain, 2012). Land use encapsulates many other habitat 

characteristics such as water quality and development. For example, streams located 

proximal or downstream of agricultural or grazing areas can have poor water quality due 

to sediment and nutrient inputs (Richards et al., 1996; Worthington et al., 2016), and 

development is an indicator of human influence (Argent et al., 2003; McKenna and 

Johnson, 2011; Van Sickle et al., 2004). Both land and water in the Bear River Watershed 

have been developed to meet human needs. These alterations to natural systems have 
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harmed native species, particularly construction of in-stream barriers that fragment 

habitat, including dams, culverts, and road crossings (Budy et al., 2007; Dzara et al., 

2019; Kraft et al., 2019; Walsworth and Budy, 2015; Worthington et al., 2016).  

Based on the results of the GEO model, BCT preferred forested areas (Fig. 13). 

The Bear River Watershed has extensive agriculture and rangeland, as well as shrub-

scrub dominated landscapes. In the Bear River Watershed, total upstream catchment area 

has a monotonically negative relationship with percent of canopy cover (Spearman’s 

coefficient of -0.47), where reaches with less total upstream catchment area have greater 

percentage of forest cover. Percent of canopy cover also has a monotonically negative 

relationship with mean monthly air temperature, where reaches with less canopy cover 

have greater mean monthly air temperatures (Spearman’s coefficient of -0.41). Air 

temperature and atmospheric conditions affect stream temperatures in warmer months 

(Goodrum, 2020; Goodrum and Null, 2022). While stream temperature is the single most 

important variable in determining habitat suitability for salmonids, reaches with greater 

canopy cover can also have more large woody debris (LWD). LWD creates habitat 

complexity, including opportunities for cover and foraging potential (Bocchiola, 2011; 

Mugodo et al., 2006; Wheaton et al., 2004).  

Results suggest BCT prefer forested reaches with lower total upstream catchment 

area which are correlated with lower in-stream temperatures and great habitat complexity. 

This coincides with prior knowledge of BCT ecology (Goodrum and Null, 2022).  

However, in the Bear River Watershed, it is likely in-stream barriers have fragmented 

habitats, so BCT preference for lower total upstream catchment area may be an effect of 

fitting an empirical model to a fragmented river network rather than a natural preference 
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of the species. Additionally, the lack of a timestamp for fish presence datasets likely 

affected the importance of predictors that had a temporal component.  

There is little evidence to support or dispute the findings of BHS models because 

most BHS research has focused on the neighboring Colorado Basin, where BHS is soon 

to be described as a genetically distinct species (Bangs and Douglas, 2017; Dauwalter et 

al., 2011; Hopken et al., 2013; Unmack et al., 2014). While geospatial modeling 

approaches could be an excellent approach to further clarify habitat use and preference of 

BHS native to the Bear River Watershed, more comprehensive sampling records are 

needed. Small sample sizes could be attributed to either limited sampling efforts or true 

species rarity in the basin, but I suspect the BHS presence dataset could have included 

observations from distinct metapopulations with different local adaptations and habitat 

preferences (Bangs and Douglas, 2017; Thompson and Burnett, 2019; Webber et al., 

2012). The results suggesting BHS prefer greater total upstream catchment area is likely a 

result of fitting models to remnant populations in the basin. Better understanding BHS 

habitat needs and preferences in the Bear River Watershed is a priority (Webber et al., 

2012).  

 

4.2 Model Comparison and Predictive Accuracy 

Comparing models with different extents, outputs, underlying assumptions, 

validation datasets, and intended uses was complicated. The THRESH model predicted 

habitat to be suitable, or non-lethal, nearly everywhere in all months for both species. 

With this, it consistently performed well regardless of validation metric used, though was 



64 

not always best. When calculating TPC, the GEO models based on either MTP or 

10PTMP thresholds performed just as well as the THRESH model for BCT, and all 

models performed similarly for BHS. For BCT models, both the HYD and GEO models 

performed much better when evaluated at relatively low thresholds, but significantly 

dropped in performance when applying a higher threshold (0.5). In particular, the HYD 

model with a threshold of 0.5 performed markedly the worst for BCT. This is likely 

because at these lower thresholds, again, most reaches within the modeled extent were 

predicted to be suitable habitat. The effect of threshold selection on TPC was less 

pronounced for BHS models. When compared using WPC as the performance metric, 

unsurprisingly the THRESH model still performed best for BCT,  and the THRESH and 

HYD models far outperformed the GEO model for BHS. This is unsurprising because 

most of the THRESH and HYD extents were predicted suitable for both species. With 

𝑊𝑃𝐶𝐴𝑑𝑗 as the performance metric, the THRESH and HYD models were heavily 

penalized for this (especially for BHS models), and the GEO model performed best.  

As the THRESH model was created over the largest spatial extent, with coarse 

variables, and calibrated with the largest presence dataset, this approach is highly 

generalized and it is surprising for it to result in higher predictive accuracy than the HYD 

model in particular, which was developed for the smallest extent, with finer scale 

parameters and a smaller calibration dataset. This can be attributed to these fine 

resolution predictors being aggregated over the largest spatial extents. Even if scaled up, I 

would still not expect the HYD model to perform as well given its inaccurate, but 

specific, nature likely not fitting an even more diverse dataset (Wheaton et al., 2018). The 

GEO model, between the other two methods in regards to spatial extent, would be 
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expected to be more generalized than the HYD model, but more specific than the 

THRESH model, and would be expected to perform well at reduced extents, but poorer if 

scaled up without being updated to population-scale datasets. I observed this effect, 

where there was usually a gradient in model performance relative to model generality and 

scale, except in cases where extremely low thresholds were chosen to calculate 

proportion of correct classifications. 

 

4.2.1 Threshold Selection 

As demonstrated by my first performance metric, TPC, threshold selection clearly 

plays a major role when evaluating predictive accuracy of binary habitat model 

predictions. Not all models may be intended to be used with thresholds. Though lower 

thresholds for models with continuous outputs lead to a greater number of correct 

classifications and apparent predictive accuracy, lowering thresholds may simply over-

estimate suitable habitat or over-generalize a model that performs relatively well on its 

own.   

It is common in geospatial modeling to select thresholds close to the estimated 

value of species prevalence (expressed as the proportion of occupied habitat to total 

suitable habitat; between 0 and 1), similar to those I reported (Benkendorf and Hawkins, 

In Review; Dorji et al., 2020; Liu et al., 2016).  As demonstrated where estimated MTP 

and 10PMTP thresholds for my BHS GEO models approached or were equal to zero, 

poor model fit resulted in most or all of the modeled extent being classified as suitable 

habitat.  
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Habitat suitability in the HYD model was dependent on channel depth. The 

threshold to determine the line between suitable and unsuitable habitat selected by 

sensitivity analysis resulted in channel depths of .2 m for BCT and .02 m for BHS. 

Though BCT and BHS can survive in extremely shallow water, selection of a low 

threshold such as this may not indicate differences between high and low habitat quality, 

but temporarily survivable and outright lethal conditions. Similarly, habitat suitability in 

the THRESH model was dependent on known biological thresholds for stream 

temperature, gradient, and streamflow. These thresholds are considered to represent the 

lethal limits for species and are based on findings in laboratory studies (Johnstone and 

Rahel, 2003). Particularly in regards to lethal thermal limits, these thresholds may not 

reflect the true lethal limit for locally adapted populations, or individual variation. 

Additionally, summarizing conditions at the reach scale based on biological thresholds 

which may or may not be locally applicable could result in either vast over- or 

underprediction of habitat quality due to missing effects of spatial heterogeneity. Even 

should the mean temperature of a reach be thermally viable for occupation, should the 

only reasonable habitat available within that reach based on other conditions (velocity, 

for example) have inhospitable temperatures, then that model may overestimate habitat 

quality. Conversely, should the mean temperature of a reach be expected to exceed the 

thermal threshold for a species, it is likely there are still pockets of non-lethal conditions 

which would make excellent temporary refuge if even not perfect habitat.  

In any of the models compared, threshold selection for determining habitat 

suitability resulted in suitable habitat predicted nearly everywhere. Because of this, in 

validation steps, models appeared to perform with near perfect predictive accuracy. In 
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truth, it is unclear if model performance was a result of over-generalized suitability 

predictions or genuine accuracy (Escalante et al., 2013; Liu et al., 2016; Radosavljevic 

and Anderson, 2014). Regardless of appropriateness of threshold selection or calculated 

accuracy, nuance provided by continuous habitat suitability estimates is lost when 

converting predictions to binary estimates. Particularly when integrating ecological 

objectives into water management models, use of thresholds in habitat suitability 

modeling must be carefully considered, because over-estimations or over-generalizations 

of habitat suitability across large extents could unintentionally de-prioritize ecological 

objectives relative to other objectives if there is no perceived urgency. 

 

4.2.2 Performance Metrics and Validation Data 

Model validation has been emphasized in this study because it is important to 

evaluate how representative they are of the real world, as well as model performance. 

Without extensive validation, model accuracy can be misrepresented (Mouton et al., 

2007), but without validation at all, there is no justification for a model’s usefulness.  

None of the models sufficiently represented real-world channel conditions as 

observed in summer of 2022. The HYD model assumed simple channel shapes and 

channel uniformity. As discussed, a rectangular channel does not accurately represent 

real-world channel conditions, and oversimplifies spatial heterogeneity of rivers with 

differing velocities and depths along a cross section. These differences provide 

meaningful habitat opportunities for fish. Two- and 3-dimensional models typically use 

measured data for channel shape, and provide more detail for lateral and longitudinal 
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channel variation. The HYD model in this study was unique compared to other hydraulic-

habitat models because reach resolution was quite coarse, with median reach length 24.3 

km. Combined with outdated streamflow estimates, 1D hydraulic models with extremely 

large reaches result in inaccurate estimations of channel conditions over large spatial 

extents.  

The THRESH and GEO models had coarse resolution as well. Most variables in 

the GEO model had 30 m resolution which could not be validated, and data were 

summarized at the HUC-12 scale. THRESH model temperature estimates were based on 

5 km resolution data, and gradient estimates from a 10m Digital Elevation Model (DEM). 

It was beyond the scope of this project to validate stream gradient. While air temperature 

was an excellent proxy for stream temperature (Goodrum, 2020; Goodrum and Null, 

2022), increasing frequency of hot years as a result of climate change can underestimate 

stream temperatures. Hydrologic variables in both models were based on the NHD, which 

has a resolution of 1 km, and is also a generalized and somewhat outdated approach for 

estimating channel conditions.  

The relationship between my field observations in the Bear River Watershed in 

2022 and average monthly NHD estimates could be an indicator for relationships 

between other ungaged streams and the NHD in the modern era. This is notable because 

while the NHD is commonly used in modeling efforts to represent streamflow, it may not 

be well suited in heavily regulated systems subject to dewatering of stream reaches or 

sites affected by climate warming or increased variability. Streamflow overestimates 

affect in-stream temperature estimates as well, which lead to inaccurate estimates of 

habitat quality for native fish. More extensive and potentially region-specific validations 
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of this effect may be necessary before inclusion of these estimates as model predictors, 

particularly for drought periods in the American West.  

When validating habitat suitability models, presence-absence datasets provide 

more context for the accuracy of model predictions. Species presence is not always 

synonymous with habitat suitability (Valavanis et al., 2008b), and rapidly changing 

habitat quality due to climate change, land development, or extreme events can lead to 

increased abundance in poor quality reaches (Brotons et al., 2004), or render preferred 

habitats inaccessible (Ward et al., 2009). Including true absence data can aid in 

determining suitable versus unsuitable conditions because absences can reflect low 

suitability (or accessibility), as well as provide insight to model overprediction (Brotons 

et al., 2004). Presence-absence datasets are uncommon, though, as determining true 

absence is difficult with migratory species where species occupation can be heavily 

subject to environmental stochasticity (Leroy et al., 2018; Ward et al., 2009). 

The presence-only validation dataset I had was sparse and likely biased, given 

presence observations were almost certainly collected between late spring to early fall, 

and most sampling efforts are geared towards wadable tributary reaches. Knowing dates 

of observations would have improved modeling efforts and created a better understanding 

of how habitat preferences for BCT and BHS change throughout the year. When 

validating model performance with presence-only datasets, I recommend calculating 

proportion of correct classifications when model outputs are binary, or WPC when model 

outputs are continuous. As previously discussed, selection of a threshold to distinguish 

suitable from unsuitable conditions is key when calculating proportion of correct 

continuous classifications, so it is ideal to use this method with binary model results. 
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Conversely, WPC does not require a threshold and can provide clearer insights to 

compare model performance when outputs are continuous. However, it is difficult to 

differentiate effects of model output and model performance when WPC is used to 

compare models with both binary and continuous outputs. With large sample sizes (much 

greater than what I had available), Generalized Linear Models or Generalized Linear 

Mixed Effects Models with binary distributions can determine differences in model 

performance with presence-only data, but require selection of a threshold (Elith et al., 

2006; Valavi et al., 2021). These methods can further differentiate between monthly 

habitat predictions, and provide a metric of statistical significance in regards to relative 

model performance.  

Other methods I explored for determining habitat model performance, but do not 

recommend for presence-only validation, include commonly used metrics such as AUC, 

TSS, and SEDI, and my 𝑊𝑃𝐶𝐴𝑑𝑗 method. Each of these methods move beyond simply 

indicating model accuracy to a validation dataset, and further provide inferences 

regarding model precision. However, all of these methods are either sensitive to sample 

size, outliers, or make assumptions about areas with unknown occupation. Because SEDI 

is a relatively new performance metric in presence-background modeling applications 

(Wunderlich et al., 2019), it was valuable to explore its practicality with my models.  

Despite SEDI’s intended use with models created with small datasets, when evaluating 

my models, I discovered prevalence still affected accuracy, particularly when most of a 

modeled extent was predicted to be suitable habitat. As far as my 𝑊𝑃𝐶𝐴𝑑𝑗 method, 

though this may be useful in differentiating model performance in instances where there 

is known to be a gradient in habitat suitability across a study extent, it may excessively 
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penalize models representing study areas where all area is truly viable habitat. Large 

study areas with little unsuitable habitat, however, are increasingly unlikely given the 

extensive human-caused habitat alteration common to the American West in a changing 

climate, and penalizing overfit/over-generalized models may be less of a risk for fish 

conservation than overpredicting suitable habitat extent.  

 

4.2.3 Non-native Species 

Though the THRESH model was unique in including biologically relevant criteria 

for both species, none of the physical habitat models compared here incorporated 

locations of competing and predatory nonnative species (Boavida et al., 2014; Dauwalter 

et al., 2011; Freeman et al., 1997). As previously mentioned, there are many non-native 

fish species in the Bear River Watershed known to compete with and prey on native fish; 

including Brook, Rainbow, and Brown Trout, Largemouth and Smallmouth Bass, as well 

as many others. Brown Trout, notably, are known to coexist with BCT and BHS, but in 

some cases, high abundance of nonnative species could make otherwise suitable habitat 

completely unsuitable; particularly for BHS (Budy et al., 2008, 2007; Budy and Gaeta, 

2017; Walsworth and Budy, 2015). 

Based on predictions made by the GEO model (Fig. 24), Brown Trout occupy 

both unsuitable and suitable habitat for BCT and BHS. While there are instances where 

both BCT and BHS are observed in reaches also occupied by Brown Trout, Brown Trout 

presence may partially explain lack of BCT and BHS observations in otherwise predicted 
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suitable habitat. BCT and BHS concentrations are highest in predicted suitable areas 

where Brown Trout were not found, which may be an outcome of competitive exclusion.  

It would be advantageous to incorporate non-native fish distribution into habitat 

modeling efforts, and this would be most helpful with comprehensive presence-absence 

datasets. Brown Trout occupation locations shown here are from UDWR and TU, and 

such sparse observations may not accurately reflect species distribution. Exploring the 

relationship between continuous habitat suitability model predictions with Rainbow or 

Brown Trout abundance could be a promising future step. Areas with moderate to high 

suitability estimates that are unoccupied by native fish could stand as a proxy for greater 

non-native abundance, potentially explaining unoccupied suitable habitat (Souza et al., 

2022; Stephens et al., 2015; Weber et al., 2017).  Also, though Rainbow Trout are non-

native, they are genetically similar to BCT, and managers and habitat modelers could use 

Rainbow Trout presence or presence-absence data to validate BCT habitat models and 

understand if predictions could be overly conservative.. 

  



73 

Fig. 24. Geospatial (GEO) model habitat suitability predictions for Bonneville Cutthroat 

Trout (BCT) (A) and Bluehead Sucker (BHS) (B) with reaches occupied by Brown Trout 

symbolized in black. 

 

 

4.3 Management Implications 

Fish and wildlife management plans are typically implemented by states, and can 

be inconsistent across neighboring state boundary lines. This makes managing species 

and incorporating ecological objectives into water management difficult, because 

watershed boundaries cross political boundaries. Political divisions like this are 

immaterial to migratory species such as fish (Berger et al., 2021; U.S. Fish and Wildlife 

Service, 2013). In transboundary watersheds, each state needs cohesive knowledge of 

native species distribution, status, and habitat preferences for water management models 

to effectively incorporate ecological objectives related to habitat conservation. 

Simple and consistent methods for estimating species distribution or habitat 

suitability over large spatial extents can serve as a starting point for state agencies and 

biologists who must develop State Wildlife Action Plans (SWAP). It would be ideal for 

modeling efforts geared towards species within transboundary basins to either be 

implemented over entire basins, or for communication efforts be made for consistent 

modeling approaches across boundary lines. With uniformity, there could be easier 

incorporation of consistent ecological objectives into water management models. 

Every modeling method has assumptions, limitations, and benefits that are 

affected by data quality and used to calibrate models, parameters, and underlying 

algorithms (Araújo et al., 2019; Valavi et al., 2021). Each habitat modeling method 



74 

compared here has some unique limitations, and some are common to all. The choice of 

which method to use should be carefully weighed based on unique objectives behind 

modeling efforts and how well a method could meet those objectives.  

Based on findings in this study, I recommend using the THRESH model approach 

for ease of implementation over large spatial extents and for different species, ability to 

be incorporated with water management models given inclusion of local hydrologic 

conditions, data availability, and meaningful incorporation of species-specific, 

biologically-relevant parameters. However, it important to recognize the univariate 

preference functions, often referred to as Habitat Suitability Indices, that are combined 

with hydraulic- or threshold-type models to estimate habitat suitability have been 

criticized for not meeting assumptions of independence among variables, and for 

misrepresenting habitat needs of populations locally adapted to stressful environmental 

conditions (Boavida et al., 2013; Mäki-Petäys et al., 1997; Mouton et al., 2007; Vezza et 

al., 2015). I emphasize that it is critical to validate and/or calibrate models to yield 

accurate model results. 

When selecting habitat modeling methods to use in conjunction with water 

management modeling, it is important to consider differences among habitat models. 

Habitat models with binary outputs may be best for understanding where suitable habitat 

should be, and may not sufficiently represent the gradients between lethal and non-lethal 

habitats that are critical for protecting fragmented and/or threatened species. Thus, 

determining additional limiting influences on species occupation may be needed. Models 

with continuous outputs can yield more detail pertaining to these gradients, and this detail 

may be most advantageous across alternative management objectives. This is a difference 
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between accuracy and precision, or representing the fundamental (historical or potential) 

versus realized (current) niche of a target species. 

In this study, empirical model results that yielded continuous outputs were 

accurate and precise, but did not reflect hydrologic conditions as influential variables. 

Without a tie to hydrologic conditions, it would be difficult to effectively incorporate 

habitat model estimates into water management models because water management 

models track streamflow and water deliveries to competing objectives. For example, 

water management models simulate or optimize proposed management strategies like 

water conservation, water markets, or managed aquifer recharge, and understanding 

effects on streamflow, stream temperature, and aquatic habitat suitability is needed for 

holistic water management (Edwards and Null, 2019; Kirk et al., 2020). However, 

empirical models may be useful in combination with results of process-based modeling 

methods to increase precision of estimates, reinforce distribution estimates, clarify 

current limiting factors for a target species, or to direct conservation efforts to high-

priority areas. 

Should empirical models be integrated with other methods, it is important to 

remember that they can narrowly estimate suitable habitat extent, realistically 

representing the realized niche of restricted remnant populations rather than historical—

or potential—habitat. Geospatial modeling approaches in particular, which incorporate 

algorithms to predict habitat suitability, require programming or GIS experience, and 

time and skill to interpret results. Performance of empirical models can be subject to 

algorithm selection, and precautions must be taken to avoid the negative effects of low 

prevalence, spatial bias, and overfitting on model estimates (Benkendorf and Hawkins, In 
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Review; Elith and Leathwick, 2009; Leroy et al., 2018; Olden et al., 2002; Phillips et al., 

2017; Ryo et al., 2021; Sofaer et al., 2019; Vezza et al., 2015). However, suitable habitat 

from validated and accurate empirical models that falls within predicted suitable habitat 

from process-based methods could have high conservation importance, particularly for 

threatened or endangered species. For example, should fish and wildlife conservation 

managers be involved in selecting appropriate sites for dam construction, empirical 

model results could identify lesser quality current habitat areas that would not impede 

migration patterns or fragment threatened populations from higher quality habitat areas.  

In regards to management implications for both BCT and BHS in the Bear River 

Watershed, I would expect inconsistency in action recommendations based on the model 

type chosen. If using the THRESH model to make decisions, suitable habitat is predicted 

everywhere for both species so no conservation actions are needed. If the GEO model 

were used to inform management, suitable habitat is estimated to be spotty, which could 

result in de-prioritizing conservation in reaches that are occupied by fish species of 

interest.  

I recommend using results from the THRESH and GEO model to inform decision 

making for BCT in the Bear River Watershed, and using the THRESH model alone for 

BHS. While the GEO model was limited by fish presence datasets used in model fitting, 

habitat suitability estimates for BCT are believable and useful between May-October (the 

season observations likely came from). THRESH model estimates for BCT were also 

accurate. HYD model habitat estimates for BCT are likely inaccurate due to poor input 

data. Together, the THRESH and GEO models could provide context for habitat use and 

preference of BCT in the Bear River Watershed. For BHS, GEO model estimates were 
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likely overfit and HYD model estimates were subject to inaccurate model inputs, so I 

recommend the THRESH model alone. 
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CONCLUSION 

 In this study, I demonstrated landscape-scale variables are adequate predictors of 

habitat suitability for aquatic species, and have provided support for existing 

understanding of BCT and BHS habitat use and preference in the Bear River Watershed. 

I have collected data to support previous studies which suggest parameters used in 

hydraulic-habitat models can be inaccurate. While it is not optimal to compare modeling 

methods across varying extents and with different intended uses, I have identified several 

methods of evaluating predictive performance of three commonly used aquatic habitat 

modeling methods with presence-only data. By these methods, I determined threshold 

and geospatial modeling approaches performed best for BCT, and the threshold approach 

performed best for BHS. I also emphasized when multiple approaches appear to yield 

high accuracy, differences between methods may only be better understood by validating 

model predictions with presence-absence data, which can provide insight on whether or 

not models overpredict. 

There is more to model selection, however, than just considering predictive 

accuracy. Model choice should be highly dependent on management objectives. Models 

that provide distinction between suitable and unsuitable habitat, rather than those that 

predict habitat suitability everywhere, are most beneficial in determining areas of critical 

habitat, restoration potential, or understanding rationale for suspected species absence, 

while more generalized models may be most useful for understanding potential niche. 

However, should intended function of a habitat model be to assert needs of native fish in 

water management models, there may be distinctive differences in ease of incorporation 

between habitat model types. Based on results of this study, I would recommend 
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modeling approaches similar to the habitat threshold model compared here. In an era of 

climatic change and increasing human demands on water resources, this should be a 

major consideration, as it is essential for water management models to incorporate native 

fish needs as ecological objectives. 
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Fig. A1. Elevation in Bonneville Cutthroat Trout (BCT) occupied reaches compared to 

all reaches, with mean values for each category shown in dotted lines (left) and mean 

MaxEnt probability of occurrence at different elevations across all months and ensemble 

iterations, with a 95% confidence interval (right). 

 

 

 

 
Fig. A2. Road density in Bonneville Cutthroat Trout (BCT) occupied reaches compared 

to all reaches, with mean values for each category shown in dotted lines (left) and mean 

MaxEnt probability of occurrence at different road densities across all months and 

ensemble iterations, with a 95% confidence interval (right). 

 

 

 



100 

 
Fig. A3. Percent mean annual flow (calculated using monthly averages for streamflow) in Bonneville Cutthroat Trout (BCT) occupied 

reaches compared to all reaches, with mean values for each category shown in dotted lines (left) and mean MaxEnt probability of 

occurrence at different values for each month, across all ensemble iterations with a 95% confidence interval (right). Plots included for 

all months selected for use in model fitting in at least one ensemble iteration. 
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Fig. A4. Monthly precipitation totals in Bonneville Cutthroat Trout (BCT) occupied reaches compared to all reaches, with mean 

values for each category shown in dotted lines (left) and mean MaxEnt probability of occurrence at different values for each month, 

across all ensemble iterations with a 95% confidence interval (right). Plots included for all months selected for use in model fitting in 

at least one ensemble iteration. 
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Fig. A5. Average monthly air temperature in Bonneville Cutthroat Trout (BCT) occupied reaches compared to all reaches, with mean 

values for each category shown in dotted lines (left) and mean MaxEnt probability of occurrence at different values for each month, 

across all ensemble iterations with a 95% confidence interval (right). Plots included for all months that were selected for use in model 

fitting in at least one ensemble iteration.
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Fig. A6. Elevation in Bluehead Sucker (BHS) occupied reaches compared to all reaches, 

with mean values for each category shown in dotted lines (left) and mean MaxEnt 

probability of occurrence at different elevations across all months and ensemble 

iterations, with a 95% confidence interval (right). 

 

 

 

 
Fig. A7. Land use in Bluehead Sucker (BHS) occupied reaches compared to all reaches 

and MaxEnt probabilities of occurrence by land use category for all months and ensemble 

iterations. 
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Fig. A8. Road density in Bluehead Sucker (BHS) occupied reaches compared to all 

reaches, with mean values for each category shown in dotted lines (left) and mean 

MaxEnt probability of occurrence at different road densities across all months and 

ensemble iterations, with a 95% confidence interval (right). 
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Fig. A9. Percent mean annual flow (calculated using monthly averages for streamflow) in Bluehead Sucker (BHS) occupied reaches 

compared to all reaches, with mean values for each category shown in dotted lines (left) and mean MaxEnt probability of occurrence 

at different values for each month, across all ensemble iterations with a 95% confidence interval (right). Plots included for all months 

selected for use in model fitting in at least one ensemble iteration. 
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Fig. A10. Monthly precipitation totals in Bluehead Sucker (BHS) occupied reaches compared to all reaches, with mean values for 

each category shown in dotted lines (left) and mean MaxEnt probability of occurrence at different values for each month, across all 

ensemble iterations with a 95% confidence interval (right). Plots included for all months selected for use in model fitting in at least 

one ensemble iteration. 
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Fig. A11. Average monthly air temperature in Bluehead Sucker (BHS) occupied reaches compared to all reaches, with mean values 

for each category shown in dotted lines (left) and mean MaxEnt probability of occurrence at different values for each month, across all 

ensemble iterations with a 95% confidence interval (right). Plots included for all months that were selected for use in model fitting in 

at least one ensemble iteration. 
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