
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations, Spring
1920 to Summer 2023 Graduate Studies

8-2023

Generalizing Deep Learning Methods for Particle Tracing Using Generalizing Deep Learning Methods for Particle Tracing Using

Transfer Learning Transfer Learning

Shubham Gupta
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Gupta, Shubham, "Generalizing Deep Learning Methods for Particle Tracing Using Transfer Learning"
(2023). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 8908.
https://digitalcommons.usu.edu/etd/8908

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations, Spring 1920 to Summer 2023 by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8908&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F8908&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8908?utm_source=digitalcommons.usu.edu%2Fetd%2F8908&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

GENERALIZING DEEP LEARNING METHODS FOR PARTICLE TRACING USING

TRANSFER LEARNING

by

Shubham Gupta

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

Steve Petruzza, Ph.D. John Edwards, Ph.D.
Major Professor Committee Member

Shuhan Yuan, Ph.D. D. Richard Cutler, Ph.D.
Committee Member Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2023

ii

Copyright © Shubham Gupta 2023

All Rights Reserved

iii

ABSTRACT

Generalizing Deep Learning Methods for Particle Tracing using Transfer Learning

by

Shubham Gupta, Master of Science

Utah State University, 2023

Major Professor: Steve Petruzza, Ph.D.
Department: Computer Science

Visualization of vector fields is very important for understanding flow behaviour in different

domains of science and engineering. Particle tracing is one of the most popular methods to simulate

particle transport, reveal flow patterns, and understand the behavior of the flow-field around critical

points. However, this technique requires expensive numerical integration in space and time. The use

of AI and particularly deep learning based techniques have shown to be able to speed up this process

and provide accurate results. However, such models have limited practical use, as they perform

well only on the specific use case they are trained for. In this work we present a methodology to

generalize the use of deep learning for particle tracing using transfer learning. We demonstrate the

performance of our approach through a series of experimental studies that address the most common

simulation design scenarios: varying time span, Reynolds number, and problem geometry. Our

results show that transfer learning can be effectively used to generalize and accelerate the training

and practical adoption of deep learning models for visualization of unsteady flows.

(40 pages)

iv

PUBLIC ABSTRACT

Generalizing Deep Learning Methods for Particle Tracing using Transfer Learning

Shubham Gupta

Particle tracing is a very important method for scientific visualization of vector fields, but it

is computationally expensive. Deep learning can be used to speed up particle tracing, but existing

deep learning models are domain-specific. In this work, we present a methodology to generalize the

use of deep learning for particle tracing using transfer learning. We demonstrate the performance

of our approach through a series of experimental studies that address the most common simulation

design scenarios: varying time span, Reynolds number, and problem geometry. The results show

that our methodology can be effectively used to generalize and accelerate the training and practical

use of deep learning models for visualization of unsteady flows.

v

sreyan sva-dharmo vigunah
para-dharmat sv-anusthitat

sva-dharme nidhanam sreyah
para-dharmo bhayavahah

- Krishna, Bhagavad Gita

”It’s better to commit mistakes on the path that one’s soul is meant to walk on, than to live a

perfect life on a path that is not meant for one’s soul.”

vi

ACKNOWLEDGMENTS

First and foremost, I am deeply grateful to my major professor, Dr. Steve Petruzza, for his

unwavering support and mentorship. Dr. Petruzza’s expertise, insightful feedback, and dedication

to academic excellence have been crucial in shaping the direction of this research. I am grateful for

the time he invested in guiding me through the complexities of the thesis and for instilling in me

a passion for continuous learning. I would also like to express my appreciation to the committee

members who provided valuable insights and constructive feedback during the thesis defense.

I want to express my heartfelt gratitude to my dear mother, whose unconditional love, belief,

and encouragement have been my guiding light. She has been my constant pillar of strength, always

pushing me to pursue my dreams and excel in everything I do. I owe my success to her unwavering

support and sacrifices. To my sister, thank you for being my confidante and cheering me on during

the most challenging times. My heartfelt gratitude extends to my father, my uncle for making me

tough, and Bua for taking care of me, your love and blessings have been an essential part of my

life’s journey. I am grateful for their continuous support.

I am indebted to my friends, who have been an integral part of this academic endeavor. Anjali,

your patience and unwavering belief in me have been a source of strength. Your presence made

this journey more enjoyable. Kartik, thank you for always being there whenever I needed a helping

hand. Arun, I appreciate your friendship. Raushan, your guidance and mentorship throughout this

thesis have been invaluable. Most importantly, Sarvesh and Anupreet for being my backbone in life.

Avnish for pushing me to achieve greater things.

To everyone who has contributed to my growth and success, thank you from the bottom of my

heart. Each of you has played a significant role in shaping me into the person I am today. I am truly

blessed to have such wonderful people in my life.

Shubham Gupta

vii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . vi

LIST OF FIGURES . viii

1 Introduction . 1

2 Background . 4

3 Modeling framework . 6
3.1 Use of multiple models for particle tracing . 9
3.2 Transfer learning . 10
3.3 Evaluation method . 10

4 Experimental studies . 13
4.1 Particle tracing over long time series . 14
4.2 Particle tracing for varying Reynolds number . 15
4.3 Particle tracing for varying geometry . 20
4.4 Particle tracing for varying time spans and Re . 22

5 Conclusions . 26

viii

LIST OF FIGURES

Figure Page

1.1 Particle trajectories computed by a neural network model [12] on a different simu-
lation scenario. Red lines are ground truth, blue lines are predictions. Filled circles
are seeding locations. On the top left (a), the model was trained on a simulation time
span different from what was used for testing (Training for time 0-100 vs testing for
time 101-200). On the top right (b), the model was trained on a simulation with a
different Re number (training at 48.5 vs testing at 147.0). On the bottom (c), the
model was trained on a simulation of a flow behind a rectangular obstacle of equal
height and width (blue box) and used to predict Lagrangian tracing trajectories for
a higher obstacle of height 1.5x the width (red box). The results clearly show that
neural network models are not directly portable to different scenarios from those
they were trained on. 3

3.1 Traditional workflow and proposed generalized workflow. Different simulations
might be varying a few parameters and producing very different flows. Traditional
approaches train different models for each different simulation cases from scratch.
Our proposed approach used transfer learning to generate new models from existing
ones dramatically reducing the training time. 7

3.2 Model architecture based on multi-layer perceptron (MLP). The model accepts a
pair of particle start locations and file cycles as input and predicts the particle end
location for the specified file cycle. 8

3.3 FTLE and MSE for a single model trained on a long time span [0-300] simulation
with Re 147.0 and three models trained on separate temporal subsets. The single
model presents lower accuracy compared to using the three models. In particular in
the highlight we can notice how some features are not being captured by the single
model. At the bottom, the FTLE from models using transfer learning (one fully
trained over 50 epochs and two trained only for 10 epochs) present very similar
accuracy to the fully trained models (trained for a total of 150 epochs). 12

4.1 Trajectories of particles predicted by a single model trained on a time span (0-300)
and by three separate models trained on subset time spans. Red is ground truth, blue
are predictions. The use of multiple models improves dramatically the accuracy for
tracing particles over long time series. The mean distance error for the single models
is 0.0159 while when using multiple models this error drops to 0.004. 14

ix

4.2 Training loss of models over different simulation time spans. The transferred mod-
els (green and orange) present overall a significant lower loss compared to modeled
trained from scratch. Both models were transferred from the first time span (0-100)
to the second (100-200) and third (200-300) time spans. With the dotted line we
report the loss of a model which used transfer learning twice, from both first and
second time span. This presents overall the fastest convergence to the lowest loss. . 16

4.3 FTLE of different models trained on simulations with different Re (3.0, 48.5, 147.0)
and corresponding models created using transfer learning from a single model trained
at Re 2352.5. In red are highlighted areas with higher errors. The three red boxes
under each column are details of the MSE, ground through and model. Overall both
models are capturing well the flow features, but the transferred models only required
10 epochs of training vs 50 used for the models trained from scratch. 17

4.4 Training loss when performing transfer learning over different turbulence conditions
(Re). The target models is for a simulation with Re 147.0. In red is the loss to train
a model from scratch, in purple is the loss when performing transfer learning from
Re 3.0, in pink is the loss when starting from Re 2352.5. Transfer learning from a
simulation with higher Re allows to quickly train a model that will be used to predict
particle trajectories for simulations using a lower Re. 18

4.5 Mean distance error for fully trained models and transferred models (from Re 2352.5)
when generalizing over turbulence conditions. The error of the transferred model is
closer to the one of the fully trained model when the Re of the model we transfer
from is closer to the target Re model. The grid size of this simulation domain is
0.0019, hence the distance error of both models is good. 19

4.6 FTLE results for fully trained and transferred model for flow behind an obstacle of
varying height. 21

4.7 Training loss of fully trained models and transferred models when generalizing over
geometry. Transferred models converge to a smaller loss much faster, especially
when transferring from a more turbulent flow (i.e., object height 1.5 to 1.0). 22

4.8 Distance error of fully trained models for flow behind an obstacle of varying height.
The fully trained models (trained on 50 epochs) incur in higher error for the sim-
ulation with step height 1.5 as the flow presents more turbulence. The transferred
models (trained on 10 epochs) show a smaller relative error when transferring from
more turbulent (higher step) to more laminar flows (in orange) than viceversa. . . . 23

4.9 Training loss of fully trained model and transferred models when both Re and time
span change. The transferred model (green) from higher Re converges to a smaller
loss faster then the fully trained model (light blue). At 10 epochs the error of the
transferred model is already small enough to predict accurate particle trajectories
on the new field. In grey we report loss performance for transferred model from a
lower Re , which as we learned from previous studies incurs in a higher loss. 24

x

4.10 Mean distance error of the transferred model when trained for different numbers of
epochs on a target simulation with different Re and time span. We can observe how
the distance error (computed in validation) follows the same trend that we observe
in the training loss. 25

CHAPTER 1

Introduction

Flow visualization is an essential tool for understanding the complex behavior of fluid dynam-

ics in a wide range of scientific and engineering applications, from improving the performance of

aircraft and automotive designs to developing new medical treatments.

Practical use of AI and particularly deep learning in scientific visualization of fluid-flow is dif-

ficult due to the lack of available data that can be used for training. This is exacerbated by the fact

that each new simulation is different, based on the computational parameter, boundary conditions or

the geometry. Fluid flow engineers and scientists design their simulations to quantify the effect of

different variables pertinent to the phenomena under investigation. These variable include change

in the simulation parameters, geometry and turbulence conditions. Often a phenomena is simulated

across different governing parameters, like the viscosity of the fluid and flow speed, which con-

tribute to the change in the non-dimensional simulation parameter Reynolds number (Re). Re quan-

tifies how turbulent the flow would be in the simulated domain, thus it is one of the most common

parameter that is varied while conducting different simulations for the same phenomena [18]. In the

same vein, often simulations are conducted by making small changes in the geometry, in order to

quantify the effect of geometrical changes [18] and to generate optimal designs [17]. These changes

in flow parameters and geometry often result in substantial difference in the flow-field across the

simulations. Thus, an AI based model for flow visualization that is trained using data from a specific

simulation case, may not work for another case. It is this question of model generalization, we will

be exploring in this paper.

One of the methods widely used for visualizing the flow is the computation of pathlines, trajec-

tories of massless particles advected by the flow, which are generated by using Lagrangian particle

tracing [7]. In this context, existing deep learning models require long training time and can be only

used effectively on a particular simulation and a particular time span that the model was trained on.

In Figure 1.1, we present three cases in which a Neural Network (NN) based Lagrangian tracing

2

model [12] trained on different time-span (Figure 1.1a), different Reynolds number (Figure 1.1b),

and different geometry (Figure 1.1c) was used to predict a new simulation. The results show that

there is not enough knowledge in the model that can be effectively used across the various flow

simulations, posing serious limitations to models generalization. In this work we tackle those chal-

lenges providing a methodology to generalize deep learning based particle tracing across different

simulation settings.

Insights from our experimental studies demonstrates that: (i) the use of multiple neural net-

work models can improve the accuracy of predicting particle trajectories over long time spans; (ii)

models trained with high turbulent flows can be effectively reused (with short incremental training)

to accurately predict particle trajectories on flows with different flow structures, induced by change

in Reynolds number (Re). Similar behaviours are also observed when tracing particles over different

time spans and when small changes in the geometry of the simulation occur. Those findings can

dramatically reduce the training time required to produce a new model for each different simulation

scenario.

In summary, the contributions of this paper are:

• A methodology to use deep learning models to predict particle trajectories over long time

series;

• A methodology to generalize deep learning models for particle tracing using transfer learning;

• An experimental study to test the proposed methodologies in three common simulation sce-

narios: long and varying time spans, varying Reynolds number, and varying geometry.

3

Fig. 1.1: Particle trajectories computed by a neural network model [12] on a different simulation
scenario. Red lines are ground truth, blue lines are predictions. Filled circles are seeding locations.
On the top left (a), the model was trained on a simulation time span different from what was used
for testing (Training for time 0-100 vs testing for time 101-200). On the top right (b), the model
was trained on a simulation with a different Re number (training at 48.5 vs testing at 147.0). On the
bottom (c), the model was trained on a simulation of a flow behind a rectangular obstacle of equal
height and width (blue box) and used to predict Lagrangian tracing trajectories for a higher obstacle
of height 1.5x the width (red box). The results clearly show that neural network models are not
directly portable to different scenarios from those they were trained on.

4

CHAPTER 2

Background

Deep learning techniques have been increasingly explored for scientific visualization [16, 25].

More specifically, in the area of flow visualization, deep learning methods have been employed to

improve data access patterns of parallel particle tracing [14], produce higher-resolution versions of

vector fields [10], identify vortices [6], and select streamlines for effective flow visualization [11].

The Lagrangian-based representation of time-varying vector fields [1, 2, 23], which has demon-

strated improved accuracy-storage propositions and reduce errors from temporal subsampling [4],

has garnered increased attention for use in deep learning approaches. Previous work by Han et

al. [12] provided a model for predicting particle trajectories in Lagrangian-based flow fields using

a multi-layer perceptron model (MLP). Sahoo et al. [22] employed an implicit neural network to

learn the integration scheme of vector fields using Lagrangian-based flow maps. Such models have

demonstrated high accuracy but still require lengthy training times and extensive training data. En-

semble simulations present even greater challenges for these models. In this context, deep surrogate

models have been employed to improve flow map interpolations [15] and enable parameter space

exploration for in situ visualization [13].

This challenge of Model Generalization is also identified by Wang et al. as the main issue in

their recent survey [25]. Wang and Han noted the limitations imposed by the current practice of ”one

training for one dataset” and the lack of research into how the Neural Network modeling framework

could be adapted for transfer learning across variables and ensembles. Transfer learning [28] has

proven to be a promising technique for generalizing knowledge across domains [21]. For example,

the use of convolutional neural networks (CNN) from a pre-trained fine-tuned model for lymph

node detection [24]. Other studies have successfully used transfer learning for speech and language

processing [26], identification of plants [9], hyper-spectral superresolution [27], remote sensing [3].

However, no existing studies investigate how to apply transfer learning to ensemble simulations for

particle tracing. In this work, we apply the transfer learning methodology to generalize particle

5

tracing using neural networks across different flow simulations, aiming to overcome current model

development limitations for scientific visualization (as those reported in Figure 1.1).

6

CHAPTER 3

Modeling framework

Our modeling framework aims to use transfer learning as a tool to facilitate the reuse of models

across ensemble simulations. In particular, we focus on the most common variants in flow ensemble

simulations: variation over time spans, turbulence conditions, and changes in geometry. In Figure

3.1, we report a diagram of a traditional workflow (on top), which trains a different model from

scratch for every simulation variant, and the workflow of our generalized approach using transfer

learning. This approach allows to dramatically reduce the training time of models across several

kind of simulation variants.

For this study the computation of particle trajectories is considered to happen in situ where we

have full spatial and temporal resolution available to compute Lagrangian flow maps. We use the

Lagrangianlong method [12] which extracts a single flow map with long particle trajectories using

uniform temporal sampling and a Sobol quasirandom sequence as seeding strategy.

In Figure 3.2 we report the model architecture from Han et. al [12] that was employed in this

work. This architecture implements an auto-encoder architecture consisting of three main compo-

nents: a positional encoder, a timestamp encoder, and a decoder (see Figure 3.2). Each of these

components utilizes linear layers with layer normalization in between, followed by ReLU activation

functions.

In the model the input positions are fed into the positional encoder, while the file cycle Ci j is

passed through the timestamp encoder. These two outputs are concatenated and then passed into the

Decoder to generate the target location at a given file cycle C j.

We are utilizing the Adam optimizer with a learning rate of 0.0001, coupled with a learning rate

scheduler while keeping the batch size constant at 1000. Our chosen loss function is the L1Norm,

which is also known as the Mean Absolute Error (MAE) loss. This loss function measures the

absolute differences between the predicted and actual target positions, providing a reliable measure

of model performance.

7

Fig. 3.1: Traditional workflow and proposed generalized workflow. Different simulations might be
varying a few parameters and producing very different flows. Traditional approaches train different
models for each different simulation cases from scratch. Our proposed approach used transfer
learning to generate new models from existing ones dramatically reducing the training time.

8

Fig. 3.2: Model architecture based on multi-layer perceptron (MLP). The model accepts a pair of
particle start locations and file cycles as input and predicts the particle end location for the specified
file cycle.

To train a model to predict the trajectories of particles, the data containing their trajectories

and corresponding end positions is stored in an array of shape [n + 1,N,2], where n represents

the number of flow maps and N represents the number of seeds. Before being used for training, the

data is arranged based on eqn:inputs. The training process includes start locations, denoted as starti,

(where i ranges from 0 to N−1), queried file cycles C j (j ranges from 0 to n−1) to predict target end

location targeti, j where (where i = 0,1, ...,N −1 and j = 0,1, ...,n−1). To ensure consistency and

accuracy during training, the bounds of the training flow maps, file cycles, start locations, and end

locations are first normalized to the [0,1] range. The normalized bounds are saved and later used

to scale the output of the model back to its original form during inference, allowing for accurate

predictions on new data outside the range of the original training set.

9

Inputs ={{start0,C0, target0,C0},

{start0,C1, target0,C1}, ...,

{start0,Cn−1, target0,Cn−1}, ...,

{startN−1,Cn−1, targetN−1,Cn−1 ,}}

(3.1)

3.1 Use of multiple models for particle tracing

Our modeling framework aims to support the prediction of particle trajectories over long and

varying time series (of length n). In order to produce accurate predictions we create multiple mod-

els (M) which will learn the flow behaviours using a number of separate time spans of a given

simulation. Let d be the number of training samples per model defined by Equation 3.2.

d =

n/M−1 if λ = M−1,

n/M otherwise.
(3.2)

Where λ is the number of the model (λ = 0,1, ..,M−1) With Inputs defined as following:

Inputs [λ] =
{

start0,Cε+0, target0,Cε+0

}
,{

start0,Cε+1, target0,Cε+1

}
, ...,{

start0,Cε+d , target0,Cε+d

}
,{

startN−1,Cε+d , targetN−1,Cε+d

}
(3.3)

Where ε = λ ∗d. Note that Equation 3.3 is a generalization of Equation 3.1.

In practice, when learning long particle trajectories, each separate model will have to predict

the starting location of the same particle trajectory in the next model. For instance, if the first

model predicts the trajectory of a particle for timesteps 0 to 100, the next model should predict the

trajectory from 100 to 200 timesteps. It is essential that the 100th timestep is predicted by the first

model, and this prediction serves as the input for the next model. In this setting we will still expect

error to propagate over time (as we are using a Lagrangianlong method), but since each model is

trained on a shorter time span, the overall accuracy is expected to improve compared to that of a

10

single model learning trajectories on a long time span. In our experimental study, in the next section,

we will validate this hypothesis.

3.2 Transfer learning

In the current scenario, we are utilizing model adaptation and incremental training processes

to address our problem. This is because the data distribution in both the source and target domains

is similar, as is the feature space, and the models being used are the same. By adapting the existing

model and incrementally training it on the target flow data, we can improve its performance on the

specific simulation case while leveraging the knowledge gained from the source flow model. For

example, we train a model on a particular simulation time span or Re. This pre-trained model is

then fine-tuned on a new time span or Re to learn the particle trajectories in the new flow field. By

doing so, the training process is accelerated because the initial layers of the model are already adept

at extracting relevant features from the data and making predictions. This allows us to quickly adapt

the model to the new task, while leveraging the knowledge learned from previous training.

For this study we have used Pytorch [19] which allows to perform transfer learning from one

model to another by: (i) loading the weights from an existing model we want to transfer knowledge

from, (ii) creating a new model instance, (iii) and using the method model.load state dict to load

the initial weights (previously retrieved).

For our experimentation, we have used the same model architecture for all experiments. We

acknowledge that changing parameters, number of hidden layers, loss function, etc. could optimize

performance of the models in some circumstances but this is not the goal of this work. By using the

same model architecture across different scenarios, we are able to better highlight the advantages

that come from transfer learning (alone) rather than from fine-tuning model optimizations. We also

believe that the proposed approach can be implemented using any other neural network based model

which can accurately predict particle trajectories for a particular simulation scenario.

3.3 Evaluation method

Evaluating the quality of those methods require use of different metrics such as: (i) model

performance in terms of loss and training time; (ii) accuracy of the flow features predicted by the

11

model. The models performance were analyzed using the ”Weight and Biases” software [5], which

provided visualization of training and validation loss of each model. Accuracy of the flow features

are evaluated computing the mean square error (MSE) of finite-time Lyapunov exponent (FTLE),

which is a popular tool to visualize stretching and folding of fluid elements in a flow. Finally,

we compute an average distance error to compare the point-wise Euclidean distance of predicted

particle trajectories to the ground truth. The distance error will give us a precise indication of how

much two particle trajectories differ. Our experimental studies in the next section will also show

that training loss, quality of FTLEs and distance error are strictly related.

12

Fig. 3.3: FTLE and MSE for a single model trained on a long time span [0-300] simulation with
Re 147.0 and three models trained on separate temporal subsets. The single model presents lower
accuracy compared to using the three models. In particular in the highlight we can notice how some
features are not being captured by the single model. At the bottom, the FTLE from models using
transfer learning (one fully trained over 50 epochs and two trained only for 10 epochs) present very
similar accuracy to the fully trained models (trained for a total of 150 epochs).

13

CHAPTER 4

Experimental studies

In this section we describe the experiments we performed to verify the use of transfer learning

as a viable method to generalize deep learning models for particle tracing in three scenarios: long

time series, varying Re, and varying geometry. For the experiments we have used two data sets

connected to two different flow setup: (i) an ensemble of 2D flows with spatially-periodic bound-

aries [15] and varying Reynolds number (using Gerris flow solver); (ii) simulations of 2D flow

behind a rectangular obstacle with varying height and the same Reynolds number (using Nek5000).

The general layout of the the flow domain for the two cases is illustrated in Figure 1.1.

2D flows in the square box with periodic boundaries at different Reynolds numbers had been

simulated using the opensource volume of fluid (VOF) based incompressible Navier-Stokes solver

Gerris [20]. The original flow dataset has simulations at multiple Re, of which four cases were

selected at increasing Re: 3.0, 48.5, 147.0, 2352.5. In this setup higher Re results in smaller flow

vortices.

The flow behind the rectangular obstacle was simulated using Nek5000 [8], which is an open-

source high-order spectral element method (SEM) based Incompressible Navier-Stokes Equations

(INSE) solver. The domain consists of a uniform Dirichlet velocity inflow boundary, and an open

Neumann outflow boundary condition. The lateral boundaries are no-slip walls. The domain has

dimensions 18 × 7. The obstacle has a constant width of 1, and the height is varied from 1 to 1.5.

The Reynolds number for both Nek5000 simulations was 200. All training experiments have used

100,000 seed points.

The modeling experiments were computed on a workstation with two NVIDIA GeForce RTX

3080 GPUs running on CUDA version 11.8, with Python version 3.9.0 and PyTorch version 1.13.1+cu117.

The seed for the random number initialization was set to 999 manually to ensure reproducibility of

the results.

14

Fig. 4.1: Trajectories of particles predicted by a single model trained on a time span (0-300) and
by three separate models trained on subset time spans. Red is ground truth, blue are predictions.
The use of multiple models improves dramatically the accuracy for tracing particles over long time
series. The mean distance error for the single models is 0.0159 while when using multiple models
this error drops to 0.004.

4.1 Particle tracing over long time series

Fluid dynamics simulations are often performed across long time intervals, often resulting in

unsteady flow-structures that vary in time and space. Even in one of the simplest flow setup of 2D

flow in a periodic box, the vortices that are generated keep on changing spatio-temporally. Thus the

first experiment conducted was about predicting particle tracing across long intervals of time, once

the model has been trained using data from the start of the simulation.

As described in Figure 1.1 a single model trained on a particular time span is not able to

accurately predict particle trajectories in a different time span of an unsteady flow simulation. Fur-

thermore, we want to demonstrate that training a single model on a long time series significantly

reduces the accuracy of its predictions. In Figure 4.1 we report on the left trajectories predicted (in

blue) using a model trained on a long time span (0-300) of a simulation with Re 147.0 vs trajectories

predicted using three different models (on the right) each of them trained on a smaller time span

(i.e., 100 time steps each). In particular, the mean distance error for the single model is 0.0159

while when using multiple models this drops by almost one order of magnitude to 0.004. This result

15

clearly calls for the need of multiple models to accurately trace particles over long time spans.

In this set of experiments we split the time series 0-300 in three sections/spans and trained three

models from scratch on each of them. Then we used the first model (trained on time span 0-100) to

generate the other two models using transfer learning. In Figure 3.3 we report FTLE computations

for the two configurations. The single model is not able to accurately capture all flow features (see

highlighted area and also Figure 4.1).

Next, we consider the use of transfer learning to quickly derive two of those three models from

the first one. Training loss performance reported in Figure 4.2 show how transferred models achieve

a significant lower loss faster compared to fully trained models over 50 epochs. In particular, the

dotted line in Figure 4.2 shows the loss of a model transferred twice, first from the first time span to

the second (10 epochs incremental training). In summary, transfer learned models achieved virtually

an identical distance error (over the time target span model) of 0.00435 (compared to 0.00403 of the

fully trained models) while using only a total of 70 epochs (50 epochs for the first time spans and a

total of 20 for transfer learning on the other two time spans, accounting for 64% less training time).

To put things in perspective, if we were to extend this approach to the entire available time series

(0-1000) the overall time saving using transfer learning would be of 72% (140 epochs of training

instead of 500).

4.2 Particle tracing for varying Reynolds number

In this set of experiments we want to generalize models over different flow regimes, i.e., vary-

ing Re. High Re corresponds to flow regime that has smaller vortices and enhanced mixing, whereas

at low Re the flow can be said to be more laminar. We have shown in Figure 1.1 how a model trained

on a simulation with a particular Reis not suitable for use in a different Re. In Figure 4.3, we report

FTLE results from training different models from scratch on the first 100 time steps of each simu-

lation data for varying Re. The models can capture well the features of each flow but still require

long training time for each single model (see Figure 4.4 for Re 147.0). Using our transfer learning

approach we performed experiments to determine if and how transferring a model from a different

Re would affect the training (and validation) performance.

16

Fig. 4.2: Training loss of models over different simulation time spans. The transferred models
(green and orange) present overall a significant lower loss compared to modeled trained from
scratch. Both models were transferred from the first time span (0-100) to the second (100-200)
and third (200-300) time spans. With the dotted line we report the loss of a model which used
transfer learning twice, from both first and second time span. This presents overall the fastest con-
vergence to the lowest loss.

17

Fig. 4.3: FTLE of different models trained on simulations with different Re (3.0, 48.5, 147.0) and
corresponding models created using transfer learning from a single model trained at Re 2352.5. In
red are highlighted areas with higher errors. The three red boxes under each column are details of
the MSE, ground through and model. Overall both models are capturing well the flow features, but
the transferred models only required 10 epochs of training vs 50 used for the models trained from
scratch.

18

Fig. 4.4: Training loss when performing transfer learning over different turbulence conditions (Re).
The target models is for a simulation with Re 147.0. In red is the loss to train a model from scratch,
in purple is the loss when performing transfer learning from Re 3.0, in pink is the loss when starting
from Re 2352.5. Transfer learning from a simulation with higher Re allows to quickly train a model
that will be used to predict particle trajectories for simulations using a lower Re.

19

3 48 147
Reynolds number

0.0005

0.0010

0.0015

0.0020

0.0025

D
is

ta
nc

e
er

ro
r

Fully trained model
Transferred model

Fig. 4.5: Mean distance error for fully trained models and transferred models (from Re 2352.5)
when generalizing over turbulence conditions. The error of the transferred model is closer to the
one of the fully trained model when the Re of the model we transfer from is closer to the target
Re model. The grid size of this simulation domain is 0.0019, hence the distance error of both models
is good.

In Figure 4.3 FTLE computed for transferred models (trained on the flow with Re 2352.5) show

similar results to the fully trained models, but using only 10 epochs instead of 50. Furthermore, we

investigated how to best choose which model to use to transfer knowledge from and how that affects

the accuracy and model performance. To do so, we selected a flow with Re 147.0 as target for our

predictions and observed results when transferring from a higher Re vs a lower Re.

In Figure 4.4 we report the training loss when performing transfer learning from a model

trained on a much higher Re (2352.5) and from a much lower Re (3.0). These results show that

transfer learning from a higher Re can significantly speed up the training on models that will be

used on a lower Re. For example, in only ten epochs our model learns to predict accurately particle

trajectories in a simulation with Re 147.0 when the model is transferred from Re 2352.5; while

it would take 30 epochs to achieve the same loss if transferring from Re 3.0 (purple line) and 40

epochs if starting from scratch (red line).

20

Furthermore, we analyzed the relative error (see Figure 4.5) of fully trained and transferred

models and noticed that when generalizing over Re the difference of distance error between a

fully trained model and a transferred one is smaller when the two Re is closer. This means that

similar Re might need fewer fine-tuning epochs when using transfer learning to produce accurate

predictions.

These observations prove that it is relatively easier to generalize from higher to lower Re ,

compared to transferring learning from lower to higher Re. Based on our understanding of the flow,

this is not unexpected. Higher Re correspond to regimes with smaller vortices, more complex flow

and pathlines having smaller radius of curvature. Thus, when a model is trained using pathline data

from a more complex flow, generalization to a less complex flow regime is relatively easier. This

trend is also observed in the experiments with varying geometry.

4.3 Particle tracing for varying geometry

For this experiment, we simulate different geometries because geometry has a direct effect on

vortex-shedding. Larger bluff-bodies create larger low-pressure zones, which in turn form larger

vortices. The geometry of these obstacles also affects the vortex-shedding frequency.

In Figure 1.1 (bottom) we see how a model trained on a simulation of a flow behind an obstacle

of height 1.0 is not anymore usable in a simulation with obstacle of size 1.5 because the flow changes

quite dramatically.

In this set of experiments we tried to apply our transfer learning approach to a simulation of a

flow behind a varying size obstacle. In Figure 4.6 we report FTLE of models trained from scratch

on two different cases with obstacle height of 1.0 and 1.5. The two flows present different features.

We see very little vortex-shedding in the case of height 1, while in the case of height 1.5, we

observe large eddies. When attempting to use transfer learning on this case we want to understand

what would be the best model to transfer from, if the one with bigger or smaller obstacle size. We

performed experiments in both directions and report the loss in Figure 4.7. The training loss shows

that transferred models converge much faster to a smaller loss, in particular when using transfer

learning from a taller obstacle to a shorter one the convergence is faster than vice versa. This shows

21

Fig. 4.6: FTLE results for fully trained and transferred model for flow behind an obstacle of varying
height.

22

Fig. 4.7: Training loss of fully trained models and transferred models when generalizing over ge-
ometry. Transferred models converge to a smaller loss much faster, especially when transferring
from a more turbulent flow (i.e., object height 1.5 to 1.0).

that if geometry changes across simulations, it might be better to train using the more complex flow

and use that for transfer learning. Distance errors reported in Figure 4.8 confirm this finding as the

relative error between transferred and fully trained models is smaller when transferring from the

flow with the taller obstacle (see figure 4.7).

4.4 Particle tracing for varying time spans and Re

In our final set of experiments we attempt to perform transfer learning over two variables: time

spans and Re using the periodic flow ensemble simulation dataset.

In particular, in this experiment we want to predict trajectories for a simulation with Re 147.0

23

1D 1.5D
Obstacle height

0.005

0.010

0.015

0.020

0.025

0.030
D

is
ta

nc
e

er
ro

r
Fully trained model
Transferred model from height = 1.5 to 1.0
Transferred model height = 1.0 to 1.5

Fig. 4.8: Distance error of fully trained models for flow behind an obstacle of varying height. The
fully trained models (trained on 50 epochs) incur in higher error for the simulation with step height
1.5 as the flow presents more turbulence. The transferred models (trained on 10 epochs) show a
smaller relative error when transferring from more turbulent (higher step) to more laminar flows (in
orange) than viceversa.

at time span (200-300) starting from a model trained with Re 2352.5 and time span (0-100). In

Figure 4.9 we report the training loss of both fully trained and transferred model. In this case 10

epochs would be enough to reduce the training error and produce accurate results (with a distance

error of 0.00126) to predict particle trajectories in the target time span and Re configuration. Also

in this case, we can notice how when transferring from a model with a lower Re (loss in grey) we

incur in a higher loss. Furthermore, we can observe in Figure 4.10 how the distance error of the

model transferred from a higher Re(and different time span) follows the same trend of the training

loss.

24

Fig. 4.9: Training loss of fully trained model and transferred models when both Re and time span
change. The transferred model (green) from higher Re converges to a smaller loss faster then the
fully trained model (light blue). At 10 epochs the error of the transferred model is already small
enough to predict accurate particle trajectories on the new field. In grey we report loss performance
for transferred model from a lower Re , which as we learned from previous studies incurs in a higher
loss.

25

10 20 30 40
Num epochs

0.0006

0.0007

0.0008

0.0009

0.0010

0.0011

0.0012

D
is

ta
nc

e
er

ro
r

Model transferred from Re 2352.5 (0-100)
Fully trained model

Fig. 4.10: Mean distance error of the transferred model when trained for different numbers of
epochs on a target simulation with different Re and time span. We can observe how the distance
error (computed in validation) follows the same trend that we observe in the training loss.

26

CHAPTER 5

Conclusions

The visualization of flows using Lagrangian particle tracing requires expensive computation

and resources. Deep learning based models have improved the performance of the Lagrangian

particle tracing predictors, while maintaining the accuracy of the calculations. However, existing

approaches have limited applicability as one trained model can only be used for a dataset that came

from a particular simulation. Furthermore, generating any of these models requires long training

time and extensive training data. In this work, we presented a simple methodology based on trans-

fer learning that allows generalization of pre-trained models that can be more efficiently applied

to different ensemble simulation scenarios. In particular, we address common simulation design

configurations which include the integration of particle trajectories over long time series, varying

flow parameter (Reynolds number) and varying geometry. Through the numerical experiments we

analyzed the benefit of transfer learning and gained insights about choosing the model for training

that would facilitate a more effective transfer of knowledge across cases/simulations. Specifically,

we have found that for predicting long time series the use of multiple models can predict more

accurate particles trajectories that a single model. Moreover, a model trained on a more complex

flows can be reused and trained much faster to predict particle trajectories on a less complex flow

than viceversa.

This study demonstrates that the use of transfer learning is a viable solution for the gener-

alization of deep learning methods for scientific visualization and can dramatically speed up the

development of new models reducing training time and data.

We acknowledge that more complex ensemble simulations might not be addressed by a sim-

ple transfer learning with incremental training but instead require a more sophisticated knowledge

transformation and adaptation.

27

REFERENCES

[1] A. Agranovsky, D. Camp, C. Garth, E. W. Bethel, K. I. Joy, and H. Childs. Improved Post Hoc

Flow Analysis Via Lagrangian Representations. In 2014 IEEE 4th Symposium on Large Data

Analysis and Visualization (LDAV), pp. 67–75, 2014.

[2] A. Agranovsky, H. Obermaier, C. Garth, and K. I. Joy. A Multi-Resolution Interpolation

Scheme for Pathline Based Lagrangian Flow Representations. In Visualization and Data Anal-

ysis 2015, vol. 9397, p. 93970K, 2015.

[3] J. E. Ball, D. T. Anderson, and C. S. Chan. A comprehensive survey of deep learning in

remote sensing: Theories, tools and challenges for the community. Journal of Applied Remote

Sensing, 2017. doi: 10.1117/1.jrs.11.042609

[4] H. Bhatia, S. N. Petruzza, R. Anirudh, A. G. Gyulassy, R. M. Kirby, V. Pascucci, and P.-T.

Bremer. Data-driven estimation of temporal-sampling errors in unsteady flows. In Advances

in Visual Computing: 16th International Symposium, ISVC 2021, Virtual Event, October 4-6,

2021, Proceedings, Part I, pp. 235–248. Springer, 2021.

[5] L. Biewald. Experiment tracking with weights and biases, 2020. Software available from

wandb.com.

[6] L. Deng, Y. Wang, Y. Liu, Y. Liu, F. Wang, S. Li, and J. Liu. A cnn-based vortex identification

method. Journal of Visualization, 2019. doi: 10.1007/s12650-018-0523-1

[7] S. Dutta, M. W. V. Moer, P. Fischer, and M. H. Garcia. Visualization of the bulle-effect at river

bifurcations. In Proceedings of the practice and experience on advanced research computing,

pp. 1–4. 2018.

[8] P. Fischer, J. Lottes, and H. Tufo. Nek5000, 2007. Argonne National Lab.(ANL), Argonne,

IL (United States).

28

[9] M. M. Ghazi, B. Yanikoglu, and E. Aptoula. Plant identification using deep neural networks

via optimization of transfer learning parameters. Neurocomputing, 2017. doi: 10.1016/j.neu-

com.2017.01.018

[10] L. Guo, S. Ye, J. Han, H. Zheng, H. Gao, H. Gao, H. Gao, D. Z. Chen, H. Xiao, J.-X. Wang,

J.-X. Wang, and C. Wang. Ssr-vfd: Spatial super-resolution for vector field data analysis and

visualization. null, 2020. doi: 10.1109/pacificvis48177.2020.8737

[11] J. Han, J. Tao, and C. Wang. Flownet: A deep learning framework for clustering and selec-

tion of streamlines and stream surfaces. IEEE Transactions on Visualization and Computer

Graphics, 2020. doi: 10.1109/tvcg.2018.2880207

[12] M. Han, S. Sane, and C. R. Johnson. Exploratory lagrangian-based particle tracing using deep

learning. Journal of Flow Visualization and Image Processing, 29(3), 2022.

[13] W. He, J. Wang, H. Guo, K.-C. Wang, H.-W. Shen, M. Raj, M. Raj, Y. S. G. Nashed, and

T. Peterka. Insitunet: Deep image synthesis for parameter space exploration of ensemble

simulations. IEEE Transactions on Visualization and Computer Graphics, 2020. doi: 10.

1109/tvcg.2019.2934312

[14] F. Hong, J. Zhang, and X. Yuan. Access pattern learning with long short-term memory for

parallel particle tracing. null, 2018. doi: 10.1109/pacificvis.2018.00018

[15] J. Jakob, M. Gross, and T. Günther. A fluid flow data set for machine learning and its appli-

cation to neural flow map interpolation. IEEE Transactions on Visualization and Computer

Graphics (Proc. IEEE Scientific Visualization 2020), 2021.

[16] C. Liu, R. Jiang, D. Wei, C. Yang, Y. Li, F. Wang, and X. Yuan. Deep Learning Approaches

in Flow Visualization. Advances in Aerodynamics, 4(1):1–14, 2022.

[17] J. R. Martins. Aerodynamic design optimization: Challenges and perspectives. Computers &

Fluids, 239:105391, 2022.

29

[18] K. Mittal, S. Dutta, and P. Fischer. Direct numerical simulation of rotating ellipsoidal par-

ticles using moving nonconforming schwarz-spectral element method. Computers & Fluids,

205:104556, 2020.

[19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning

library. Advances in neural information processing systems, 32, 2019.

[20] S. Popinet. Gerris: a tree-based adaptive solver for the incompressible euler equations in

complex geometries. Journal of computational physics, 190(2):572–600, 2003.

[21] A. Rozantsev, M. Salzmann, and P. Fua. Beyond sharing weights for deep domain adaptation.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019. doi: 10.1109/tpami.

2018.2814042

[22] S. Sahoo, Y. Lu, and M. Berger. Neural Flow Map Reconstruction. In Computer Graphics

Forum, vol. 41, pp. 391–402. Wiley Online Library, 2022.

[23] S. Sane, C. R. Johnson, and H. Childs. Investigating In Situ Reduction via Lagrangian Rep-

resentations for Cosmology and Seismology Applications. In International Conference on

Computational Science, pp. 436–450. Springer, 2021.

[24] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. J. Mollura, and R. M. Sum-

mers. Deep convolutional neural networks for computer-aided detection: Cnn architectures,

dataset characteristics and transfer learning. arXiv: Computer Vision and Pattern Recognition,

2016. doi: 10.1109/tmi.2016.2528162

[25] C. Wang and J. Han. Dl4scivis: A state-of-the-art survey on deep learning for scientific visu-

alization. IEEE Transactions on Visualization and Computer Graphics, 2022.

[26] D. Wang, D. Wang, D. Wang, and T. F. Zheng. Transfer learning for speech and language

processing. arXiv: Computation and Language, 2015. doi: 10.1109/apsipa.2015.7415532

30

[27] Y. Yuan, X. Zheng, and X. Lu. Hyperspectral image superresolution by transfer learning. IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017. doi: 10.

1109/jstars.2017.2655112

[28] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. A comprehensive

survey on transfer learning. Proceedings of the IEEE, 109(1):43–76, 2020.

	Generalizing Deep Learning Methods for Particle Tracing Using Transfer Learning
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	Introduction
	Background
	Modeling framework
	Use of multiple models for particle tracing
	Transfer learning
	Evaluation method

	Experimental studies
	Particle tracing over long time series
	Particle tracing for varying Reynolds number
	Particle tracing for varying geometry
	Particle tracing for varying time spans and Re

	Conclusions

