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ABSTRACT

Generalizing Deep Learning Methods for Particle Tracing using Transfer Learning

by

Shubham Gupta, Master of Science

Utah State University, 2023

Major Professor: Steve Petruzza, Ph.D.
Department: Computer Science

Visualization of vector fields is very important for understanding flow behaviour in different

domains of science and engineering. Particle tracing is one of the most popular methods to simulate

particle transport, reveal flow patterns, and understand the behavior of the flow-field around critical

points. However, this technique requires expensive numerical integration in space and time. The use

of AI and particularly deep learning based techniques have shown to be able to speed up this process

and provide accurate results. However, such models have limited practical use, as they perform

well only on the specific use case they are trained for. In this work we present a methodology to

generalize the use of deep learning for particle tracing using transfer learning. We demonstrate the

performance of our approach through a series of experimental studies that address the most common

simulation design scenarios: varying time span, Reynolds number, and problem geometry. Our

results show that transfer learning can be effectively used to generalize and accelerate the training

and practical adoption of deep learning models for visualization of unsteady flows.

(40 pages)
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PUBLIC ABSTRACT

Generalizing Deep Learning Methods for Particle Tracing using Transfer Learning

Shubham Gupta

Particle tracing is a very important method for scientific visualization of vector fields, but it

is computationally expensive. Deep learning can be used to speed up particle tracing, but existing

deep learning models are domain-specific. In this work, we present a methodology to generalize the

use of deep learning for particle tracing using transfer learning. We demonstrate the performance

of our approach through a series of experimental studies that address the most common simulation

design scenarios: varying time span, Reynolds number, and problem geometry. The results show

that our methodology can be effectively used to generalize and accelerate the training and practical

use of deep learning models for visualization of unsteady flows.
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sreyan sva-dharmo vigunah
para-dharmat sv-anusthitat

sva-dharme nidhanam sreyah
para-dharmo bhayavahah

- Krishna, Bhagavad Gita

”It’s better to commit mistakes on the path that one’s soul is meant to walk on, than to live a

perfect life on a path that is not meant for one’s soul.”
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Fig. 4.4: Training loss when performing transfer learning over different turbulence conditions (Re).
The target models is for a simulation with Re 147.0. In red is the loss to train a model from scratch,
in purple is the loss when performing transfer learning from Re 3.0, in pink is the loss when starting
from Re 2352.5. Transfer learning from a simulation with higher Re allows to quickly train a model
that will be used to predict particle trajectories for simulations using a lower Re.
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Fig. 4.5: Mean distance error for fully trained models and transferred models (from Re 2352.5)
when generalizing over turbulence conditions. The error of the transferred model is closer to the
one of the fully trained model when the Re of the model we transfer from is closer to the target
Re model. The grid size of this simulation domain is 0.0019, hence the distance error of both models
is good.

In Figure 4.3 FTLE computed for transferred models (trained on the flow with Re 2352.5) show

similar results to the fully trained models, but using only 10 epochs instead of 50. Furthermore, we

investigated how to best choose which model to use to transfer knowledge from and how that affects

the accuracy and model performance. To do so, we selected a flow with Re 147.0 as target for our

predictions and observed results when transferring from a higher Re vs a lower Re.

In Figure 4.4 we report the training loss when performing transfer learning from a model

trained on a much higher Re (2352.5) and from a much lower Re (3.0). These results show that

transfer learning from a higher Re can significantly speed up the training on models that will be

used on a lower Re. For example, in only ten epochs our model learns to predict accurately particle

trajectories in a simulation with Re 147.0 when the model is transferred from Re 2352.5; while

it would take 30 epochs to achieve the same loss if transferring from Re 3.0 (purple line) and 40

epochs if starting from scratch (red line).
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Furthermore, we analyzed the relative error (see Figure 4.5) of fully trained and transferred

models and noticed that when generalizing over Re the difference of distance error between a

fully trained model and a transferred one is smaller when the two Re is closer. This means that

similar Re might need fewer fine-tuning epochs when using transfer learning to produce accurate

predictions.

These observations prove that it is relatively easier to generalize from higher to lower Re ,

compared to transferring learning from lower to higher Re. Based on our understanding of the flow,

this is not unexpected. Higher Re correspond to regimes with smaller vortices, more complex flow

and pathlines having smaller radius of curvature. Thus, when a model is trained using pathline data

from a more complex flow, generalization to a less complex flow regime is relatively easier. This

trend is also observed in the experiments with varying geometry.

4.3 Particle tracing for varying geometry

For this experiment, we simulate different geometries because geometry has a direct effect on

vortex-shedding. Larger bluff-bodies create larger low-pressure zones, which in turn form larger

vortices. The geometry of these obstacles also affects the vortex-shedding frequency.

In Figure 1.1 (bottom) we see how a model trained on a simulation of a flow behind an obstacle

of height 1.0 is not anymore usable in a simulation with obstacle of size 1.5 because the flow changes

quite dramatically.

In this set of experiments we tried to apply our transfer learning approach to a simulation of a

flow behind a varying size obstacle. In Figure 4.6 we report FTLE of models trained from scratch

on two different cases with obstacle height of 1.0 and 1.5. The two flows present different features.

We see very little vortex-shedding in the case of height 1, while in the case of height 1.5, we

observe large eddies. When attempting to use transfer learning on this case we want to understand

what would be the best model to transfer from, if the one with bigger or smaller obstacle size. We

performed experiments in both directions and report the loss in Figure 4.7. The training loss shows

that transferred models converge much faster to a smaller loss, in particular when using transfer

learning from a taller obstacle to a shorter one the convergence is faster than vice versa. This shows
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Fig. 4.6: FTLE results for fully trained and transferred model for flow behind an obstacle of varying
height.
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Fig. 4.7: Training loss of fully trained models and transferred models when generalizing over ge-
ometry. Transferred models converge to a smaller loss much faster, especially when transferring
from a more turbulent flow (i.e., object height 1.5 to 1.0).

that if geometry changes across simulations, it might be better to train using the more complex flow

and use that for transfer learning. Distance errors reported in Figure 4.8 confirm this finding as the

relative error between transferred and fully trained models is smaller when transferring from the

flow with the taller obstacle (see figure 4.7).

4.4 Particle tracing for varying time spans and Re

In our final set of experiments we attempt to perform transfer learning over two variables: time

spans and Re using the periodic flow ensemble simulation dataset.

In particular, in this experiment we want to predict trajectories for a simulation with Re 147.0
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Fig. 4.8: Distance error of fully trained models for flow behind an obstacle of varying height. The
fully trained models (trained on 50 epochs) incur in higher error for the simulation with step height
1.5 as the flow presents more turbulence. The transferred models (trained on 10 epochs) show a
smaller relative error when transferring from more turbulent (higher step) to more laminar flows (in
orange) than viceversa.

at time span (200-300) starting from a model trained with Re 2352.5 and time span (0-100). In

Figure 4.9 we report the training loss of both fully trained and transferred model. In this case 10

epochs would be enough to reduce the training error and produce accurate results (with a distance

error of 0.00126) to predict particle trajectories in the target time span and Re configuration. Also

in this case, we can notice how when transferring from a model with a lower Re (loss in grey) we

incur in a higher loss. Furthermore, we can observe in Figure 4.10 how the distance error of the

model transferred from a higher Re(and different time span) follows the same trend of the training

loss.
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Fig. 4.9: Training loss of fully trained model and transferred models when both Re and time span
change. The transferred model (green) from higher Re converges to a smaller loss faster then the
fully trained model (light blue). At 10 epochs the error of the transferred model is already small
enough to predict accurate particle trajectories on the new field. In grey we report loss performance
for transferred model from a lower Re , which as we learned from previous studies incurs in a higher
loss.
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Fig. 4.10: Mean distance error of the transferred model when trained for different numbers of
epochs on a target simulation with different Re and time span. We can observe how the distance
error (computed in validation) follows the same trend that we observe in the training loss.



26

CHAPTER 5

Conclusions

The visualization of flows using Lagrangian particle tracing requires expensive computation

and resources. Deep learning based models have improved the performance of the Lagrangian

particle tracing predictors, while maintaining the accuracy of the calculations. However, existing

approaches have limited applicability as one trained model can only be used for a dataset that came

from a particular simulation. Furthermore, generating any of these models requires long training

time and extensive training data. In this work, we presented a simple methodology based on trans-

fer learning that allows generalization of pre-trained models that can be more efficiently applied

to different ensemble simulation scenarios. In particular, we address common simulation design

configurations which include the integration of particle trajectories over long time series, varying

flow parameter (Reynolds number) and varying geometry. Through the numerical experiments we

analyzed the benefit of transfer learning and gained insights about choosing the model for training

that would facilitate a more effective transfer of knowledge across cases/simulations. Specifically,

we have found that for predicting long time series the use of multiple models can predict more

accurate particles trajectories that a single model. Moreover, a model trained on a more complex

flows can be reused and trained much faster to predict particle trajectories on a less complex flow

than viceversa.

This study demonstrates that the use of transfer learning is a viable solution for the gener-

alization of deep learning methods for scientific visualization and can dramatically speed up the

development of new models reducing training time and data.

We acknowledge that more complex ensemble simulations might not be addressed by a sim-

ple transfer learning with incremental training but instead require a more sophisticated knowledge

transformation and adaptation.
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