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ABSTRACT

A Scalable, Cost-Oriented Approach for Computing Charge Plans for Electric Bus Fleets

by

Daniel T. Mortensen, Doctor of Philosophy

Utah State University, 2023

Major Professor: Jacob Gunther, Ph.D.
Department: Electrical and Computer Engineering

Recent attention for reduced carbon emissions has pushed transit authorities to adopt bat-

tery electric buses (BEBs). One challenge experienced by BEB users is extended charge

times, which create logistical challenges and may force BEBs to charge when energy is

more expensive. Furthermore, BEB charging leads to high power demands, which can sig-

nificantly increase monthly power costs and may push electrical infrastructure beyond its

present capacity, requiring expensive upgrades. This work presents a novel method for mini-

mizing the monthly cost of BEB charging while meeting bus route constraints. This method

extends previous work by incorporating a more novel cost model, effects from uncontrolled

loads, differences between daytime and overnight charging, and variable rate charging. We

propose using mixed integer linear programs, to encode the charging action space, physical

bus constraints, and battery state of charge dynamics. We also consider results for three

scenarios: uncontested charging, which uses equal numbers of buses and chargers, contested

charging, which has more buses than chargers, and variable charge rates. We desire to show

that BEBs can be added to the fleet so that both the runtime of the planning framework

and monthly cost increase linearly with the number of buses so that the charge planning

framework is scalable.
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bus constraints, and battery state of charge dynamics. We also consider results for three
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CHAPTER 1

Introduction

Recent calls for a reduced carbon footprint have led transit authorities to adopt battery

electric buses (BEBs). Replacing diesel and CNG buses with BEBs reduces environmental

impact [1] as BEBs provide zero vehicle emissions [2],and can access renewable energy

sources [3–5].

Charging BEBs draws power from electrical infrastructure. The combined effect of

BEB charging with other necessary loads can exceed the capacity of local distribution

circuits [6–8], leading to expensive infrastructure upgrades. Power providers pass the cost

of upgrades on to customers. Thus, the benefits of large-scale electrified bussing seem

appealing at first, but are only practical if infrastructural upgrades can be deferred or

avoided altogether.

Prior literature has studied various methods for charging buses. One way in which

charge times may be reduced is by charging a bus while it is in motion through dynamic

charging. There are a number of ways to do this, including overhead [9] and inductive

charging [10,11]. Overhead charging allows the bus to charge on overhead power lines while

in motion. Inductive charging relies on specialized hardware in the roads that transfers

energy to buses that pass overhead. Both methods remove the need to stop for service and

allow an electric vehicle to stay in service indefinitely. Unfortunately, both methods require

extensive infrastructure [12] that may not be available, or is cost prohibitive to install.

The authors of [13] and [14] propose a different approach to managing charge demands

which exchanges depleted batteries for fresh ones. Such a method would eliminate both the

logistical challenges of planning and the infrastructure dependence of dynamic charging.

Unfortunately batteries are generally difficult to remove and require specialized hardware,

technical expertise, or automation, all of which make exchanging batteries difficult in prac-

tice.
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The focus of this dissertation is to manage a bus fleet’s charge needs with respect to

two areas: operational impact and cost. Minimizing the operational impact means finding

ways to meet each bus’s charge demands in a way that best imitates a conventional bus’s

activity so that routes and bus assignments remain bus type-agnostic. Throughout this

dissertation, we accomplish this by requiring that route arrival and departure times follow

the schedules given for the existing bus fleets.

Throughout the remainder of this work, we consider a scenario where charging infras-

tructure is located at a central bus station and each bus is assumed to travel a single route

periodically throughout the day. Each bus will spend time in the station after servicing its

assigned route before departing once again. While in the station, each BEB may charge

if a charger is available before departing on-route. Many authors have proposed methods

for charging BEBs in the previously given scenario. The authors of [15–17] outline the first

of many constraints we will consider in our work including a BEB’s state of charge, and

battery capacity.

The second focus of this work is to best manage the cost of electricity. Because BEBs

require more time to charge, it is tempting to begin with high charge rates to speed the

refueling process. However doing so places large power demands on electrical infrastructure

which may result in problems with network reliability and require additional maintenance

and upgrades, which increase the cost of energy. Throughout this dissertation, we encode

the cost of grid impacts into a fiscal rate schedule provided by Rocky Mountain Power [18]

which assesses fees for energy based on time and speed of use.

Time of use is described in terms of on and off-peak periods. During off-peak hours,

energy is billed with a lower cost per kWh than energy used during on-peak hours. Op-

timal charge schedules which manage cost with respect to on and off-peak times has been

addressed by [19–21]. The speed of use is designed to penalize individuals who heavily tax

the electrical grid when they use energy quickly by commanding high power values. There-

fore, the measure for speed of use at any given time is computed as the average power for

the previous 15 minutes and is used to compute cost in two separate charges: demand and
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facilities where the demand charge is billed per kW of the maximum on-peak 15-minute

average power during the month and the facilities charge is also assessed per kW of the

maximum 15-minute average power for both on and off-peak hours.

Managing cost with respect to demand or fast charging has also received attention in

the literature [22] although this literature selected management strategies that relied on

batteries to reduce the demand on the grid. The authors of [23] and [24] propose simple,

heuristic approaches to reduce power demands from BEB fleets. Work done by [25] uses a

mixed integer linear program (MILP) to solve for a solution, which addresses both when

buses should charge, and where they should deploy. Finally, a paper by [26] provides a

MILP framework for minimizing the cost of demand power and both minimize the cost

from time of use tariffs. Each of the aforementioned methods focus on demand power in

relation to electric bus fleets, but do not account for external non-BEB activity on the grid.

One problem which previous work has not yet addressed is BEB charging with meter

aggregation. Historically, power providers have separated consumers’ energy needs into

meters where each meter services a subset of a consumer’s hardware such as BEBs, electric

trains, buildings, etc. The power provider must constantly prepare to deliver the maximum

contracted rate for each meter so that power will always be available, which introduces

additional cost and effort. Aggregating meters would cause BEB chargers and other non-

BEB loads to be billed in aggregate. For example, the Utah Transit Authority in Salt Lake

City, UT may desire to place both an electric train which passes through the station and

BEB chargers on a single meter, but are unable to because their joint energy demands

exceed the limits of a single meter. An intelligent BEB charge schedule may allow for

a single meter by accounting for the train load so that only one meter is needed. In our

work, we allow for meter aggregation by incorporating non-BEB loads into our optimization

method and refer to the non-BEB demands as “uncontrolled loads”.

Another element which has gone largely unsolved is the ability to plan for large bus

fleets which contain >100 BEBs. For example, planning for relatively small fleets (<50

BEBs) and less than 10 chargers with optimization problems from [17, 25, 26] yields for-



4

mulations with over 105 variables, including binary or integer variables, and over 105 con-

straints so that scaling to larger fleets and more chargers stresses computational resources

and requires lengthy solve times.

This dissertation presents methods to compute daily charge strategies for electric bus

fleets and presents the following contributions: cost function which encompasses the time

and speed of use aspects from [18], the incorporation of uncontrolled loads, and the ability

to plan for large bus fleets of over 100 buses. Because this dissertation follows a multi-paper

format, Chapters 2 – 4 each constitute a separate journal paper on the topic. Chapter 2

computes a charge schedule which accounts for the various aspects of Rocky Mountain

Power’s Schedule 8 in the presence of uncontrolled loads. One finding from 2 is that the

discrete approach taken in Chapter 2 requires many variables for precise charge schedules.

Chapter 3 adopts a bin packing approach so that the time variables are continuous instead

of discrete, yielding precise charge plans without additional overhead. Unfortunately, the

methods in both Chapters 2 and 3 cannot plan for large bus fleets without large compute

resources. Chapter 4 reduces the number of computations by forming an eight-part multi-

problem solution that can compute cost-oriented plans for bus fleets of 100+ buses.
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CHAPTER 2

A Discretized Approach to Compute Charge Plans

2.1 Introduction

Recent calls for a reduced carbon footprint have led transit authorities to adopt battery

electric buses (BEBs). Replacing diesel and CNG buses with BEBs reduces environmental

impact [1] as BEBs provide zero vehicle emissions and can access renewable energy sources

[3, 4].

Charging BEBs draws power from electrical infrastructure. The combined effect of BEB

charging with other necessary loads can exceed the capacity of local distribution circuits [6–

8], leading to expensive infrastructure upgrades. Power providers pass the cost of upgrades

on to customers. Thus, the benefits of large-scale electrified busing seem appealing at first,

but are only practical if infrastructural upgrades can be deferred or avoided altogether.

One approach to deferring or avoiding upgrades is to intentionally manage when and

at what rates buses should charge. An optimal charge plan must account for a number of

physical constraints and operational realities. For example, buses must exceed a minimum

charge level while adhering to route schedules, batteries must have sufficient time to charge,

and buses must share a limited number of chargers. The focus of this work is to find an

optimal charge schedule which meets these requirements and minimizes the cost of electricity

and grid impacts in the presence of other uncontrolled loads. This problem is referred to

hereafter as the “charge problem”.

The remainder of this paper is organized as follows: Section II describes prior related

work and Section III outlines a graph-based framework for modeling the environment in-

cluding buses, routes, chargers, and uncontrolled loads. Section IV incorporates the problem

constraints involving battery charge dynamics and Section V extends the the graph frame-

work to account for differences between day and night operations. Section VI translates
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the rate schedule used for billing into an objective function. Finally, Sections VII and VIII

present results and describe future work, respectively.

2.2 Literature Review

This section summarizes prior work related to the charge problem and includes discus-

sion on battery charging and managing runtime costs. The final subsection discusses the

contributions of this paper, and how they relate to prior methods.

2.2.1 Battery Charging

Recharging BEBs is more time consuming than refueling diesel and CNG buses [27]. A

diesel or CNG engine can refuel in several minutes but an electric bus may require several

hours to charge, making the extended charge time a primary concern for BEB conversion.

To circumvent long refuel times, [14] and [13] propose an approach which replaces bat-

teries when the state of charge is low. The exchange would replace the current battery with

one that was fully charged and recharge spent batteries afterword. Exchanging batteries

reduces down time, but is non-trivial because battery swapping requires specialized tools

and/or automation.

Another alternative is to inductively charge buses while they are in motion. Dynamic

charging simplifies logistics because it eliminates the need for stationary charging. Both [11]

and [10] propose methods that inductively charge BEBs using specialized hardware in the

road. Furthermore, dynamic charging is supported by various planning algorithms such

as [9, 12,28].

Recharging BEBs at a station requires only the development of an intelligent charge

schedule. Following a charge schedule requires minimal modifications to charging infras-

tructure and utilizes existing charging ports in the BEBs with no need for additional tools

or automation. Algorithms for planning use foreknowledge of the runtime environment and

battery dynamics to identify when and to which buses chargers should connect. Planning

algorithms discussed in this review are considered on a scale from “reactive” to “global”,
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where reactive methods respond to stimuli at the present, and global techniques assume

complete knowledge about the operating environment to form a plan.

Because reactive planning generally focuses on present circumstances, it requires min-

imal knowledge of the operational environment, making reactive planning extremely versa-

tile. Methods of this type are both computationally efficient and adapt to many use cases.

One such example is illustrated in [5], which splits the total power draw between the grid

and an external battery to regulate the instantaneous load. The authors of [24] give another

approach which uses a Markov Decision Process to instantaneously make decisions.

Reactive algorithms can be enhanced by encoding details for future events to improve

decision making. If only event details within a finite horizon are used, the algorithm be-

comes a hybrid, containing features of both reactive and global techniques. For exam-

ple, [25] describes a technique for optimizing a charging schedule out to a scheduling hori-

zon. Changing the horizon adjusts both the scope and computational complexity of the

solution. In stochastic environments, a smaller window is beneficial as charge schedules

must be frequently recomputed, whereas in more stable circumstances, longer windows can

yield improved performance.

Global algorithms include all information from the beginning to the end. Because global

algorithms assume complete foreknowledge of future events, they provide globally optimal

plans and achieve the highest performance. Global algorithms can encompass a number of

scenarios including hardware that is either distributed [29], or collocated although many

times, a distributed scenario is not feasible due to added cost or scarce charger locations.

The authors in [15, 19, 26, 30, 31] present techniques that formulate constrained opti-

mization problems which provide solutions in terms of binary charge decisions for each bus

at each time-step while constraining the power use to comply with contractual obligations.

Work from [32] even minimizes the total cost of power using a time of day pricing schedule.

The authors in [33] take a somewhat different approach by encoding the bus constraints in

a graph and solving for an optimal solution using a network-flow approach. The discrete

nature of the graph based approach allows [33] to model a non-linear charge dynamic based
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on the Constant Current, Constant Voltage model. The methods given by [19, 20, 30, 33]

address the problem of scheduling buses while meeting constraints for power use, however

this technique could be extended by considering non-BEB activity on the grid. In particu-

lar, results from [20] will be used as a comparison for this class of algorithms later in this

paper.

The authors of [34] provide a technique which accounts for grid activity by assuming

the external grid behavior is known apriori and incorporating its effects into a cost function.

2.2.2 Cost Optimization

In addition to physical constraints such as bus routes and charging dynamics, this paper

focuses on minimizing the cost associated with charging and minimizes fees assessed for on

and off-peak energy use, on and off-peak power demand, and facilities power charges [18].

Prior work has dealt with charge costs in various ways. The authors in [35] propose a

method to forecast power use. Work done by [23] propose a method which reduces the

demand charge by using power forecasts to plan charge times [35]. When forecasting is not

possible, both [22] and [5] propose methods that decreases power demand by observing the

load and drawing additional power from on-site battery packs. Additionally, [30] minimized

over on/off peak energy as part of their work.

2.2.3 Contributions

This paper develops a noval charge schedule planning framework which extends the

planner proposed by [33] to include multi-rate charging, uncontrolled loads, night/day charg-

ing, and the rate schedule given in [18]. Our method formulates the bus charge problem

as a Mixed Integer Linear Program (MILP) and is unique because the objective function

is the cost for the transit authority (bus fleet operator) and includes charges for on-peak

and off-peak energy use, on-peak and off-peak power demand, and facilities demand. The

proposed framework handles contention for charging resources in a globally optimal manner

which guarantees charger availability even when chargers are scarce.

Prior work has also made assumptions for night time charge behavior. Our work
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eliminates the need for such by including both day and night charging in the charge schedule.

The modeling of night and day charging also includes their respective operational constraints

such as charge rates, bus availability, and the number of available chargers.

Our work also seeks to understand how variable rate, as compared to single rate charg-

ing, affects the cost optimality and contributes a more accurate representation of battery

charging dynamics.

Furthermore, because the proposed method includes operational characteristics such

as the number of buses, the number of chargers, the battery capacity, and various route

metadata in the constraints, it complements prior work which determines such parameters

[36], [37].

The final contribution is recognizing that our framework is a tool that enables prediction

of monthly costs for transit authorities and infrastructure demand for power providers.

Optimized charging schedules reduce power demand and extend the lifetime of electrical

infrastructure.

2.3 Graph Based Problem Formulation

This section formulates the charge problem as an optimization problem where the

variables are defined in a graph. The first subsection describes the intuition behind this

graph-based approach and the second develops a series of equality and inequality constraints

resulting in a Mixed Integer Linear Program (MILP).

2.3.1 Graph Formulation

A solution to the bus charge problem is a schedule of actions for charging equipment.

A schedule states both when and which bus a charger should connect, suggesting a model

with two dimensions. The first dimension represents time and is given discretely in a left-

to-right fashion. The second dimension encodes the charger state and extends vertically as

shown in Fig. 2.1. The charger may be in one of several possible states. For example, it

may be connected to one of the N buses, or it may be unconnected, giving a total of N + 1

different states. This (time, state) 2-D representation is encoded as a rectangular grid of
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Bus: 2

Bus: 1

None

n1,0 n1,1 n1,2 n1,3 n1,4 n1,5 n1,6

n2,0 n2,1 n2,2 n2,3 n2,4 n2,5 n2,6

n0,0 n0,1 n0,2 n0,3 n0,4 n0,5 n0,6

t0 t1 t2 t3 t4 t5 t6

Fig. 2.1: Grid of nodes showing discrete timesteps advancing from left to right and charger
states ascending vertically.

Bus: 2

Bus: 1

None

n1,1 n1,2 n1,4 n1,5

n2,1 n2,2 n2,4 n2,5

n0,0 n0,1 n0,2 n0,3 n0,4 n0,5 n0,6

t0 t1 t2 t3 t4 t5 t6

Fig. 2.2: Grid of nodes displaying times when buses are available for charging.

nodes. Node ni,j represents the charger in ith state during the jth time index (see Fig. 2.1).

For example, n1,0 from Fig. 2.1 represents a state where a charger is connected to Bus 1 at

t0.

We want the grid of nodes to encode the times at which each bus is at the station and

available for charging. Therefore, let a nodes be present in the grid when the corresponding

bus can connect to a charger, and delete from the grid nodes when a bus is away from the

station. Consider the two bus scenario from Fig. 2.1 where buses 1 and 2 are away from

the station at t0, t3, and t6. The schedule is encoded by removing n1,0, n2,0, n1,3, n2,3, n1,6,

and n2,6 to reflect the grid shown in Fig. 2.2.

The state of a charger at any time is represented by existing in a particular node.

Changes in charger state over time are represented by the transitions from a node to multiple

possible next nodes. These transitions are called edges (see Fig. 2.3) and represent four

possible decisions: connect to a bus, charge a bus, remain idle, or disconnect from a bus.

Edges are associated with actions and that action is determined by the nodes on either

end. Consider the edge from n0,0 to n0,1 in Fig. 2.4. This edge represents a no-charge
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Node 1 Node 2
Weight: nCharger

Fig. 2.3: Node to node connection.

decision because the nodes on both ends represent the disconnected charge state at times

t0 and t1. Chargers cannot charge while disconnected, so the edge decision is no-charge.

Similarly, the edge between n1,1 and n1,2 indicates a decision to-charge as both n1,1 and

n1,2 represent states where a charger is connected at times t1 and t2. Both to-charge and

no-charge decisions are represented by horizontal transitions in the graph and only reflect

the passing of time as no changes to the physical hardware are made.

Conversely, diagonal transitions imply physical hardware changes because they repre-

sent decisions where chargers connect to or disconnect from a bus. One such example from

Fig. 2.4 includes the edge from n0,0 to n1,1. The state represented by n0,0 is disconnected

This edge represents an interval where a charger is disconnected at t0 and connected at t1,

implying a ‘to-connect’ decision. The same logic applies in reverse for the edge between n1,2

and n0,3. Hence, the bus charge problem can be described in terms of nodes and edges (i.e.

a graph) where nodes represent bus availability for charging and edges encode all possible

charge decisions.

A charge schedule can be thought of as a list of charge decisions that govern charge

behavior. Because decisions are represented by edges in the graph, a schedule is also rep-

resented by a sequence of connected edges that form a path through the graph. If an

edge is selected, or active, it is considered part of the path. Active and inactive edges are

represented edge weights equal to 1 and 0, respectively.

A graph with binary edge weights can only represent a plan for one charger. This

representation can be expanded to represent an arbitrary number of chargers by using

integer valued weights, where each weight gives the number of chargers in the transition.

Consider a three-charger scenario using the graph in Fig. 2.5. A solution where one

charger is connected to Bus 1 from t1 to t2 and to Bus 2 from t4 to t5 would be expressed
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Fig. 2.4: Illustrates different types of edges: connect, disconnect, and charge edges.
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Fig. 2.5: Graph-based model of the complete decision-space.
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Fig. 2.6: A solution to a 2-bus 3-charger scenario.

by assigning unit weights to the appropriate connect, charge, and disconnect edges. The

second charger remains idle as illustrated by the active edges along the bottom row of

charger states (see Fig. 2.6).

In summary, the graph encodes bus availability with nodes, decisions with edges, and

schedules with edge weights. Solving the bus charge problem becomes a matter of finding

the optimal set of edge weights, where optimal is meant to denote the most cost effective

charge plan.

2.3.2 Graph Constraints

Finding the optimal charge schedule can be expressed as an optimization problem,

where the graph is used to derive equality and inequality constraints for a mixed integer

linear program (MILP)

min
y

rTy subject to

Fy = f , Qy ≤ q,

(2.1)

where the equality and inequality constraints are encoded in F , f , Q and q. The variable

y is a vector containing the elements of the solution and has the form

yT =

[
xT dT gT eT pT p̂ p̂off-peak p̂on-peak

]
, (2.2)

where each element of y is defined later in this paper.

This subsection formulates two sets of constraints. The first represents the graph

structure, enforces conservation of chargers, and defines the number of chargers through



14

Node 1 Node 2

Node 3 Node 4

Edge 1

E
d

ge
4 Edge

3

E
d

ge
2

Edge 5

Fig. 2.7: A generic directed graph consisting of nodes and edges.

a set of net-flow constraints. The second prevents the charger from thrashing between

connected/disconnected states and enforces one-bus/one-charger connectivity by enforcing

what we call “group flow” constraints.

Net-Flow Constraints

Network flow constraints are expressed in matrix-vector form as

Ax = cf , (2.3)

where A is the graph incidence matrix, x is the nE×1 vector of edge weights and corresponds

to x in equation 2.2, and cf is nN × 1 and equals the difference between incoming and

outgoing edge weights, or net-flow. The parameter nE is the number of edges and nN is

the number of nodes.

An incidence matrix organizes relationships between nodes and edges by describing

which edges leave and enter which nodes. The matrix A is an nN×nE matrix and expresses

incoming connections between the ith node and jth edge by Ai,j = 1. Similarly, outgoing

connections are given by Ai,j = −1, and no connection with Ai,j = 0. For example, the

graph in Fig. 2.7 is represented as:
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Source Sink

Fig. 2.8: Network flow illustrating sources and sinks.



−1 0 −1 1 0

1 −1 0 0 0

0 0 0 −1 −1

0 1 1 0 1


(2.4)

The difference between the number of chargers entering and leaving, or the net-flow,

can be expressed in terms of A as seen in equation (2.3). Because the number of chargers

does not change, the number of chargers entering and leaving a node must be equal. This

is expressed in linear form as aTi x = 0, where ai is the ith row of A. The only exceptions

occur at source and sink nodes.

A source node represents the beginning state for all chargers. Because edges originate

here, there are no incoming edges and the net-flow will be minus the number of chargers.

This is described in linear form as aTi x = −nC , where nC is the number of chargers.

Sink nodes represent the final state, where all edges terminate (see Fig. 2.8). Because

sinks have no outgoing edges, they maintain a positive net-flow equal to the number of

chargers and is expressed by aTi = nC .

Therefore, the flow constraints require the elements of cf be equal to zero for all non-

source and non-sink nodes as seen in equation (2.5).

Ax =

[
0 . . . − nC . . . 0 nC . . . 0

]T
. (2.5)
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Group 1 Group 2

Fig. 2.9: Example of groups in a network flow graph.

Equation 2.5 can be formulated in terms of y by appropriately zero-padding A such that

cf =

[
A 0

]
y

= Ãy

(2.6)

Group-flow Constraints

Another flow type, known as group flow, can be used to regulate the number of chargers

entering a set of nodes. This is desired for two reasons. First, it prevents chargers from

connecting multiple times during an interval when a bus is available for charging, and it

limits the number of chargers connecting to a bus to be one at most.

Define a charge group as the set of all nodes for a given bus corresponding to one

station visit as shown in Fig. 2.9. The group flow is the number of chargers that enter a

group and is represented as the sum of all incoming edge weights (see Fig. 2.10).

Denote the nG × nE group incidence matrix as B, where nG is the number of groups

and Bi,j is 1 if the jth edge enters the ith group and 0 otherwise. For example, the group

incidence matrix corresponding to the graph in Fig. 2.11 contains 1 in the 7th and 10th

columns for Group 1, and the 12th and 15th columns for group 2 as given in equation 2.7.

B =

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

 (2.7)
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Group 2Group 1

Fig. 2.10: Incoming group edges.

Let x be the edge weights as before and cg be an nG × 1 vector where the ith element

gives the group flow for group i. The group flow is then computed as

Bx = cg (2.8)

But the group flow is required to be one at most to avoid connection thrashing. This is

expressed by the inequality given in equation (2.9).

Bx ≤ 1. (2.9)

Similarly to (2.6), equation (2.9) can also be expressed in terms of y with appropriate zero

padding as [
B 0

]
y = B̃y (2.10)

so that

B̃y ≤ 1. (2.11)

2.3.3 Section Summary

In summary, the bus charge problem can be formulated as a graph with nodes and

edges, where charge plans are encoded as a path with unit edge weights. The charge prob-

lem aims to find a feasible path which minimizes the cost of power. Feasibility is defined

through a set of net-flow and group-flow constraints. Net-flow constraints are encoded

through an adjacency matrix and enforce both the conservation and total number of charg-

ers. The group-flow constraints prevent connection thrashing and limit to one the number
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Fig. 2.11: Connect edge example for groups.

d1,1 d1,2 d1,3 d1,4

d2,1 d2,2 d2,3 d2,4

g2,1 g2,3

g1,1 g1,3

t0 t1 t2 t3 t4 t5 t6

Fig. 2.12: Depiction of which edges increase SOC for the single rate case

of simultaneous charger-to-bus connections.

2.4 Battery State of Charge

Battery state of charge (SOC) plays a central role in the bus charge problem. Battery

charge levels decay as a bus traverses a route. Solutions to the bus charge problem must

account for bus routes and require that SOC values remain above a minimum threshold.

A SOC thresholding constraint requires that battery charge levels be modeled. The

kth SOC for bus i is denoted di,k, where k is the node index. The node indices used here

are not directly tied to specific time steps. For example, di,k+1 represents the bus SOC at

the node in the graph following the node where di,k is the SOC as seen in Fig. 2.12. The

set of all di,k can be organized as the vector d from (2.2).

Because no charging is performed while on route, di,k will assume its lowest value when

buses enter the charge station. Let di,k+1 be the charge level for bus i as it enters the charge

station, and δi represent the power discharged while on-route. The entrance SOC can be
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d1,1 d1,2

d2,1 d2,2

−δ1

−δ2

Fig. 2.13: Relationship between exit nodes (left) and entrance nodes (right) as δ

expressed as

di,k+1 = di,k − δi, (2.12)

where di,k is the previous departure SOC for bus i. Consider the example in Fig. 2.13,

where buses 1 and 2 leave the station at t2 and enter at t4. The corresponding change in

SOC is given as d1,2 = d1,1 − δ1 and d2,2 = d2,1 − δ2 for buses 1 and 2 respectively. The

constraints from (2.12) can be expressed in linear standard form as

[
−1 1

] di,k

di,k+1

 = δi. (2.13)

Equation (2.13) can be expressed in terms of y with appropriate zero padding and expanded

to account for the decrease in SOC for all buses outside the station. The expanded constraint

is given as [
0 . . . −1di,k 0 . . . 1di,k+1

]
y = dδ

Dδy = dδ,

(2.14)

where −1di,k and 1di,k+1
represent −1 and 1 in locations corresponding to di,k and di,k+1

respectively. Similar notation will be used throughout this paper as a means to imply a

corresponding index for other variables.

Time periods between entrance and exit nodes represent time spent in the charge

station and have the potential to charge the battery. An edge over which charging occurs
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Fig. 2.14: Multi-Rate Charging

is referred to as xi,k, where k gives the index of the edge’s outgoing node, and i refers to

the bus. When a charger occupies xi,k, the resulting increase, or gain, in battery charge is

denoted gi,k, where i and k mirror the edge indices (see Fig. 2.12).

The value for gi,k is computed using a single charge rate. Multiple charge rates can

be encoded by connecting bus nodes with multiple edges, denoted xi,k,l, where each edge

has a distinct charge rate and gain denoted gi,k,l (see Fig. 2.14). Having multiple charge

rates gives the option for fast charging when necessary, and slow charging when possible to

preserve battery health and decrease the electrical load [38].

The rate is selected by setting xi,k,l = 1. All gains associated with unselected rates

are set to zero. Gains that correspond to selected rates are computed using the constant

current constant voltage (CCCV) model as derived in [33] which gives:

di,k+1 = āldi,k − b̄lM, (2.15)

where āl ∼ (0, 1], depends on the charge rate and is experimentally determined, M is the

battery capacity in kWh, and b̄l = āl − 1. Equation (2.15) is used to show that

di,k+1 = āldi,k − b̄lM

di,k+1 − di,k = āldi,k − b̄lM − di,k,
(2.16)

but the gain is equal to the difference in di,k+1 and di,k such that gi,k,l = di,k+1 − di,k. So

gi,k,l = āldi,k − b̄lM − di,k

gi,k,l = (āl − 1)di,k − b̄lM.

(2.17)
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Therefore, 
gi,k,l = di,k(āl − 1)− b̄lM xi,k,l = 1

gi,k,l = 0 xi,k,l = 0

. (2.18)

The conditions given in (2.18) can be rewritten as



gi,k,l ≤ di,k(āl − 1)− b̄lM

gi,k,l ≥ di,k(āl − 1)− b̄lM
xi,k,l = 1

gi,k,l ≤ 0

gi,k,l ≥ 0
xi,k,l = 0

⇒

gi,k,l ≤ di,k(āl − 1)− b̄M −M(1− xi,k,l)

gi,k,l ≥ di,k(āl − 1)− b̄M

gi,k,l ≤ 0 +Mxi,k,l

gi,k,l ≥ 0,

(2.19)

where M is the battery capacity. The results of (2.19) obtain a switching effect. When

xi,k,l = 1, (2.19) becomes

gi,k,l ≤ di,k(āl − 1)− b̄lM

gi,k,l ≥ di,k(āl − 1)− b̄lM

Active

gi,k,l ≤M

gi,k,l ≥ 0

 Inactive

(2.20)

The active constraints imply equality for gi,k,l = (āl−1)di,k− b̄lM . The inactive constraints

imply that gi,k,l is greater than zero and less than the battery capacity, which are trivially
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satisfied. When xi,k,l = 0, (2.19) becomes

gi,k,l ≤ di,k(āl − 1)− b̄lM −M

gi,k,l ≥ di,k(āl − 1)− b̄lM

 Inactive

gi,k,l ≤ 0

gi,k,l ≥ 0

Active

(2.21)

where the inactive constraints are again trivially satisfied, and the active constraints imply

equality for gi,k,l = 0.

Equation (2.19) can be expressed in standard form as

−gi,k,l + di,k(āl − 1) + xi,k,l ≤M(b̄l + 1)

gi,k,l − di,k(āl − 1) ≤ −b̄lM

gi,k,l −Mxi,k,l ≤ 0

−gi,k,l ≤ 0,

(2.22)

and in matrix form as



−1 āl − 1 1

1 1− ā1 0

1 0 −M

−1 0 0




gi,k,l

di,k

xi,k,l

 ≤


M(b̄l + 1

−b̄lM

0

0


. (2.23)

Equation ((2.23)) can be expanded to include constraints for all gi,k,l. Because each value

for gi,k,l, di,k, and xi,k,l is an element of y, the constraints from (2.23) can be written as

Gy ≤ bg. (2.24)
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The value of di,k can be expressed as

di,k+1 = di,k +
∑
l

gi,k,l (2.25)

or

di,k+1 − di,k −
∑
l

gi,k,l = 0, (2.26)

because a non-zero element of gi,k,l is only present for one corresponding l. This relationship

is described in terms of an equality constraint such that

[
1 −1 . . . −1

]


di,k+1

di,k

gi,k,1

. . .

gi,k,l


= 0. (2.27)

Equation (2.27) can be appropriately zero padded to give

[
1di,k+1

−1di,k . . . −1gi,k,l

]
y = 0 (2.28)

and expanded to define the values for all di,k 3 k > 0 as

Ddy = 0. (2.29)

The values for di,0 are defined with initial SOC conditions with additional equality con-

straints, denoted d0 such that



1d1,0 0 0 . . . 0

0 . . . 1d2,0 0 0

...
...

...

0 0 0 . . . 1di,0


y = d0, (2.30)
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or

D0y = d0. (2.31)

Once all values for di,k are computed, they must be constrained to remain above a

threshold τ . The SOC thresholding constraint can be expressed as an inequality constraint

such that

di,k ≥ τ

⇒− di,k ≤ −τ

⇒
[
0 . . . −1di,k . . . 0

]
y ≤ −τ.

(2.32)

Equation ((2.32)) can be expanded to a matrix Dτ , where each di,k contains a corresponding

constraint row such that

Dτy ≤ −τ1

≤ dτ .

(2.33)

In summary, the minimum SOC for all feasible charge plans must exceed a given

threshold. SOC values are computed while the bus is in the charge station. SOC values are

updated when a bus enters by subtracting the discharged energy from the previous SOC

estimate. SOC values are updated for in-station periods by adding the charge gains as given

in (2.25). Gains are computed using a switching constraint which sets them to zero when

not charging, otherwise they follow the CCCV model as set forth in (2.17). Initial SOC

values are handled with the equality constraint given in (2.31) and the SOC is constrained

to remain above the threshold τ in (2.33). All constraints for d can be concatenated such

that 
D0

Dδ

Dd

y =


d0

dδ

0

 ,
Dg

Dτ

y ≤

dg

dτ

 (2.34)

and expressed as

Deqy = deq, Dineqy ≤ dineq. (2.35)
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2.5 Multi-Graph Additions

An additional contribution this work offers is the expansion to joint optimization of

both night and day charging in a single optimization problem. Day and night operations

differ in two aspects: number of chargers and bus availability. During the day, the buses

can charge only at the charge station. The number of chargers in the station are limited,

causing contention between buses. At night, each bus docks in a holding stall with one

charger per stall, eliminating charger contention. Furthermore, nighttime charging is slow

compared to daytime charging. Our model uses different rates for day and night charging.

Bus availability also changes because buses do not leave their stalls at night. This

simplifies the charge problem because buses are always available for charging.

Equation (2.5) in section 2.3.2 describes the net-flow constraints which constrain the

number of chargers in the source and sink nodes. Because the number of chargers are

different from night to day, a separate graph is used at each transition as shown in Fig. 2.15.

Each graph is connected by equating the appropriate SOC values. Consider the multi-

graph formulation given in Fig. 2.16. The morning graph is related to the day graph because

d1,1 and d2,1 represent the same SOC values as d1,2 and d2,2 respectively. The same applies

for the day and night graphs, where d1,5 and d2,5 represent the SOC values for d1,6 and d2,6.

This equality relationship can be expressed as an equality constraint where

dgraph 1 − dgraph 2 = 0 (2.36)

or by

Dmulti-graphy = 0, (2.37)

where Dmulti-graph is an nBus× nVar matrix such that

Dmulti-graphy = dgraph 1 − dgraph 2. (2.38)

Because all SOC values d are contained in y, forming the matrix D amounts to placing 1
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Fig. 2.15: Night and day graphs.
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Fig. 2.16: Bus SOC between night and day graphs.

and −1 at the indices corresponding to dgraph 1 and dgraph 2 respectively and zero otherwise.

2.6 Objective Function

The objective function in this work models the rate schedule used in [18], where the

cost is modeled as the monthly charge a transit authority receives from the power provider.

The objective function includes charges for energy, power, and facility use and implements

both on and off-peak rates.

The objective function also includes effects and costs of uncontrolled loads. Uncon-

trolled loads might include the effects of patrons charging personal electric vehicles, electric

trains passing through, CNG stations, etc. The loads used in this work were recorded at the
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UTA Intermodal Hub station in Salt Lake City (SLC), Utah as the average power sampled

at uniform time intervals.

2.6.1 Energy

Energy cost is assessed per Kilowatt-hour of energy consumed and includes energy

consumed by uncontrolled loads and bus chargers. Let p be the average external power

used at each timestep, where pi is the average power draw between tj and tj+1. The energy

consumed by external loads from tj to tj+1 is computed as

elj = pi ·∆t, (2.39)

where ∆t is the change in time from tj to tj+1 in hours. The energy consumed by bus

chargers for the same interval is computed as

ebj =
∑
k∈t

gi,k,l, (2.40)

where k ∈ t represents all values for g that took place between ti and ti+1 for every bus.

The total energy is computed as

ej = elj + ebj . (2.41)

The expression in (2.41) can be written in standard form as

ej −
∑
k∈t

gi,k,l = pi ·∆t

[
1ej −1g1 . . .− 1gn

]


ej

g1

...

gn


= pi ·∆t

. (2.42)

Because power providers charge different rates for the total power consumed during the

respective on and off-peak hours, equation (2.42) be modified to reflect the energy consumed
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in arbitrary time periods. Let T be a set of tj , or just j, which will later be used to denote

on and off-peak periods as Ton and Toff. Equation (2.42) can be expanded to compute the

total energy consumed in T as

eT −
∑
k∈T

gj,k,l =

∑
j∈T

pj

 ·∆t

[
1eT −1g1 . . .− 1gn

]


eT

g1

...

gn


= eload

T .

(2.43)

For multiple time periods, the constraint can be expanded in matrix form, where row

i corresponds to the periods of time in Ti. Furthermore, by including the values for each

eTi in y and zero-padding appropriately, the expanded form of (2.43) can be written as

Ey = eload, (2.44)

where row i in E reflects (2.43) for the time intervals in Ti, and eload
i contains the energy

consumed by uncontrolled loads during Ti.

2.6.2 Power

Power costs are computed for the maximum average power draw, where the average

is computed over a 15 minute sliding window. The average power can be computed as the

energy in the window divided by the window length in hours. In this case, a 15 minute

window equates to a quarter hour. Let p̄j be the average power from j − 15 to j. Equation
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(2.43) can be adapted to compute the average power as

p̄j −

∑
k∈Tj

1

4
gi,k,l

 =

∑
i∈Tj

pi

 · ∆t

4

[
1p̄j −

1g1
4 . . .− 1gn

4

]


ej

g1

...

gn


=
pT ·∆t

4
.

(2.45)

Equation (2.45) can further be expanded and zero padded to compute the average power

at each time, tj by applying (2.45) to the corresponding window as

Py = p. (2.46)

The maximum average power, denoted p̂, is greater than or equal to each average power

computed in (2.46). This yields an additional set of inequality constraints


−1p̂ 1p̄0 0 . . . 0

−1p̂ 0 1p̄1 . . . 0

−1p̂ 0 0 . . . 1p̄j

y ≤ 0

Pmaxy ≤ 0.

(2.47)

Because the max average power is minimized in the objective function, the value for p̂max

will be forced down to the value of the greatest average power computed in (2.46), and

accurately reflect the maximum average power.

2.6.3 On/Off Peak Rates

Power providers divide each day into on and off-peak periods during which different

rates are applied for both energy and power costs. Let H and L be the respective sets of

all time indices in on and off peak periods respectively. The cost of energy during on-peak
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hours can be expressed as

cenergyH
=

∑
j∈H

ej

 reon

=

[
re1 0 . . . 0 re4 . . . 0

]
y

= rTeon
y,

(2.48)

where ron
e contains the value of ron

e at the index corresponding to ej in y ∀j ∈ H. A similar

formulation can be used to describe the cost of energy consumed during off-peak hours.

An on-peak rate also applies to charges for power. Equation (2.47) can be adapted to

only include rows that correspond to average power values during on-peak hours such that


−1p̂on 1p̄0 0 . . . 0

−1p̂on 0 1p̄1 . . . 0

−1p̂on 0 0 . . . 1p̄j

y ≤ 0

Pony ≤ 0.

(2.49)

Similarly, the off-peak max average power can be computed as


−1p̂off

1p̄0 0 . . . 0

−1p̂off
0 1p̄1 . . . 0

−1p̂off
0 0 . . . 1p̄j

y ≤ 0

Poffy ≤ 0,

(2.50)

where each row corresponds to p̄j ∀j ∈ L.

Many power providers include a facilities charge. The facilities charge is assessed per

kW of the maximum average power and ignores on and off-peak times. The total max

average power is calculated using (2.47).
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The total power cost can be computed as the sum of the on-peak, off-peak, and facilities

charges as

cpower =

[
rp̂on 0 . . . 0 rp̂off

0 . . . 0 rp̂facilities

]
y

= rTp̂ y.

(2.51)

2.6.4 Objective Function

The objective function combines the cost of energy and power, where the on-peak and

off-peak energy is combined as

cenergy = rTeon
y + rTeoff

y

= (reon + reoff
)T y

= rTe y.

(2.52)

The combined expression is given as

ctotal = cpower + cenergy

= rTe y + rTp̂ y

= (re + rp̂)
T y

= rTy.

(2.53)

Equation (2.53) is used as the objective function in a mixed integer linear program of

the form

min
y

rTy subject to

Ceqy = ceq, Cineqy ≤ cineq,

(2.54)
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where Ceq, ceq, Cineq, and cineq are formed by stacking the equality and inequality constraints

from (2.6), (2.11), (2.35), (2.46), (2.47), (2.49), and (2.50),

min
y

rTy subject to


Ã

Deq

P

y =


cf

deq

p

 ,



B̃

Dineq

Pmax

Pon

Poff


y ≤



1

dineq

0

0

0


. (2.55)

2.7 Results

This section contains results of the planning framework and is subdivided into three

subsections: uncontested results, contested results, and multi-rate comparisons.

2.7.1 Baseline and Setup

The experiments in this section compare the results of the framework given in (2.55)

with a baseline that models the general behavior of bus drivers at the Utah Transit Authority

(UTA) in Salt Lake City, Utah and the planning framework from [20]. All methods use a

MILP to find an optimal solution and are solved up to a 2% gap using Gurobi [39]. Model

parameters such as δ, arrival, and departure times were computed from historical data

provided by UTA.

According to UTA, bus drivers generally charge whenever possible. Our baseline sce-

nario reflects this default bus driver behavior using an objective function that maximizes the

number of charging instances, which is computed as the sum of group flow values, resulting

in the objective function

max
y

1TBy, (2.56)
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All other constraints are the same, which results in the baseline formulation

max
y

1TBy subject to


Ã

Deq

P

y =


cf

deq

p

 ,



B̃

Dineq

Pmax

Pon

Poff


y ≤



1

dineq

0

0

0


. (2.57)

Each experiment is run using a five minute timestep such that the time difference

between tk and tk+1 is five minutes. Four charge rates are used during the following experi-

ments: ā1 = 0.9851, ā2 = 0.9418, ā3 = 0.9003, and ā4 = 0.8607. Each value for ā represents

a different charge rate and is referenced by how much time it would take a bus to charge

from 0% to 99%. For the rates used in the following set of experiments, a bus would need

25.58 hours to charge from 0% to 99% with ā1, 6.4 hours with ā2, 3.65 with ā3, and 2.56

with ā4.

Night charging uses a single charge rate of ā1 for all experiments. Experiments with

single rate day charging use ā4, and multi-rate experiments incorporate four charge options:

ā1, ā2, ā3, and ā4.

Uncontrolled loads are modeled with data from the TRAX Power Substation (TPSS)

at the UTA Intermodel Hub site in Salt Lake City. It is also assumed that each bus starts

and ends each day with an SOC of 80% and has a maximum charge capacity of 100 kWh.

2.7.2 Uncontested Results

This section explores performance in a scenario where there is one charger per bus dur-

ing the day, making charge resources uncontested. The optimal charge schedule associated

with equation (2.55) is compared with the schedule developed by the baseline in (2.57). The

total monthly cost is computed using the rates given in Rocky Mountain Power Schedule 8
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and is computed in equation (2.58).

cost = facilitiesPower · 4.81 + onPeakPower · 15.73+

onPeakEnergy · 0.058282 + offPeakEnergy · 0.029624

(2.58)

There is also a customer service charge of 71.00 in the rate schedule, but because the service

charge does not depend on a customer’s behavior, it is ignored.

Because (2.58) is driven by facilities power, on-peak power, on-peak energy, and off-

peak energy, these four criteria are used to evaluate the optimal and baseline charge plans.

Furthermore, because the on and off-peak energy charges contribute little to the cost dif-

ferences, they have been grouped together for comparison.

Fig. 3.8 compares the cost of energy, on-peak power, and facilities power for the baseline,

[20], and this work’s scheduling strategies. Note how the schedule given by Hu et al. is

similar in both energy costs and on-peak power charges but is more expensive in the facilities

charge. These differences are expected as Hu et al. minimizes cost of energy by charging

during off-peak periods. Because there is minimal charging during on-peak times, the on-

peak power charges reflect the uncontrolled loads and are therefore the same. The differences

in facilities is present because He et al. does not include the overall maximum average power

in their framework.

Additionally, the facilities and on-peak power costs for the baseline schedule are sig-

nificantly larger than the optimized schedule. To better understand the cost disparity, we

observe the load profiles to identify how the optimized schedule avoids the costs incurred

by the baseline.

Fig. 2.18 shows the 15 minute average power for both the baseline and optimal sched-

ules. Note how the optimal schedule incurs a lower average power for both on and off peak

time intervals. The reduction in average power is what lead to the cost disparity between

the on-peak and facilities power costs in Fig. 3.8.

The underlying behavior can be observed in Fig. 2.19, which separates the loads into

their controlled and uncontrolled constituents. Because the uncontrolled loads are shared
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Fig. 2.19: Comparison between uncontrolled and bus loads.

between both scenarios, Fig. 2.19 shows the 15 minute average power for uncontrolled,

optimal charging, and baseline charging loads.

Observe how the optimized schedule avoids charging during on-peak hours and regulates

each charge event to spread the power draw over larger periods of time. Furthermore, bus

charging is avoided when uncontrolled loads are high, resulting in a reduced 15 minute

average power. Reducing the average power and not charging during on-peak periods results

in the dramatic cost reduction shown in Fig. 3.8.

2.7.3 Contested Results

This section observes the performance of the optimal schedule as charge resources be-

come scarce, creating a contested environment. Resource contention is most prevalent when
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Fig. 2.21: Comparison of the loads for a 5 and 11 bus scenario with one overhead charger.

chargers are scarce and pushes buses to charge in non-ideal circumstances. For example, if

charging resources are saturated during off-peak hours, other buses might be forced to charge

in the on-peak window. The impact of contention is measured as the change in monthly

cost when the number of chargers is held constant and the number of buses increases.

In this analysis, one charger is used and the number of buses is varied from five to eleven.

Fig. 2.20 shows the monthly cost as a function of the number of buses. Note the minimal

cost increase per bus, where each successive bus costs around $75.00, which approaches

the cost of energy that is required to provide transit services. Because the additional cost

per bus is roughly the cost of energy, there are no additional facilities and on-peak power

charges, showing that optimal charge plans also minimize cost in the presence of contention.

We desire to know how this is achieved. Fig. 2.21 shows the 15-minute average power

for controlled and uncontrolled loads for a five bus and eleven bus scenario. In the 5 bus

scenario, loads are easily distributed among off-peak hours, resulting in an optimized cost.

The 11 bus scenario requires significantly more power and is forced to charge during on-

peak hours. Note however that the average power is kept relatively low, and the additional

charge sessions never cause the average power to supersede the maximum average power of

the uncontrolled loads. Both scenarios also make ample use of night charging, where the

number of chargers is the same as the number of buses.
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2.7.4 Multi-Rate Comparison

This subsection compares a multi-rate and single-rate charge schedule. The multi-rate

schedule includes a1, a2, a3, and a4 as defined in section 2.7.1. The single-rate schedule

assumes the static charge rate associated with a1. Two scenarios are considered. The first

compares the cost of multi and single-rate plans for a 5 bus 1 charger scenario. The second

compares performance for a 35 bus, 6 charger scenario.

The potential savings for using a variable charge rate in a 5 bus, 1 charge r scenario

was found to be negligible. The cost of the multi-rate scenario is $3006.94 and the cost of

the single-rate scenario is $3007.77 which gives a total savings of $0.83. A 36 bus, 6 charger

comparison also yielded minimal cost savings.

While examining the most commonly used edges, we observe that edges corresponding

to a maximum charge rate are used most frequently as shown in Fig. 2.22 which explains the

similarities in cost. If the highest rate is almost always selected, the resulting plan would

resemble a single-rate schedule, resulting in a singe-rate cost.

Another explanation for the cost similarity is found in how monthly cost is computed.

Because the monthly cost is based on the average instantaneous power, both high and low

charge rates can give the same results over a fixed time period. The charge schedules shown

in both single and multi-rate plans charge buses in relatively small time periods. Fast

charging over small periods of time is equivalent to slow charging over longer periods. In

this way, the average power can be kept low even when using high charge rates (see Figs.

2.21 and 2.20).

2.8 Conclusions and Future Work

In conclusion, the charge schedules developed in equation (2.55) yield significant cost

savings over both the baseline and the work by [20]. These savings come from minimizing

the average power consumption, and charging during off-peak hours. Cost savings are

maintained in both uncontested and resource constrained scenarios. There is also little to

be gained by offering multiple charge rates because average power can be managed with high

charge rates by reducing the charge duration. Furthermore, it was shown that when given
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the choice, the optimizer primarily selected high charge rates, which reduces the problem

complexity to the single-rate formulation.

Although multi-rate charging does not significantly reduce the monthly cost, it could be

useful in prolonging battery life. The high power rates observed in this work can reduce the

lifespan of the battery whereas lower charge rates can prolong battery life. Therefore, future

work incorporating battery-health will be explored. We believe that multi-rate charging may

offer some flexibility in this scenario. Future work will extend the discrete charge levels in

this work to a continuous rate selection.

Because this work presents only a planning framework for a global solution over large

stretches of time, it is computationally infeasible to recompute when unplanned events

occur. Future work could move this framework toward real-time deployment using a hier-

archical approach to control of charging. A precomputed global plan supports the real-time

planner by providing top-level guidance. The lower-level real-time planner will adapt to

unplanned events by controlling for a return from the current state to the global plan over

a finite sliding horizon.

Finally, the computational complexity of our approach decreases as the number of

chargers increase, but suffers when planning for large bus fleets as the number of constraints
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Fig. 2.23: Scalability Analysis.

and solution variables scales linearly with the number of buses as shown in Fig. 2.23. Future

improvements might use a solution from a heuristic approach as a “warm start” for the

optimizer which would reduce the computational complexity of finding a globally optimal

solution.
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CHAPTER 3

A Bin Packing Approach to Minimize Charging Cost for Electric Bus Fleets

3.1 Introduction

Battery powered electric motors offer many benefits over the internal combustion engine

[4] such as reduced maintenance [3], zero emissions [2], and access to renewable energy [5],

which have caused many transit authorities to adopt battery powered electric buses (BEBs).

Despite their benefits, the transition to BEBS must address the challenge of extended

refuel times. When a bus fueled by diesel or compressed natural gas (CNG) runs low on fuel,

the bus may refuel in five to ten minutes, whereas an electric bus may require several hours,

presenting logistical challenges for bus fleets. Therefore, maintaining a route schedule while

staying charged is a primary concern that BEBs face, and requires careful planning that

models how batteries discharge along routes, how long BEBs must charge, and limitations

on the number of chargers.

One way in which charge times may be reduced is by charging a bus while it is in motion

through dynamic charging. There are a number of ways to do this, including overhead [9]

and inductive charging [10] [11]. An overhead charging scenario allows the bus to charge on

overhead power lines while in motion. Inductive charging relies on specialized hardware in

the roads that transfers energy to buses that pass overhead. Both methods remove the need

to stop for service and allow an electric vehicle to stay in service indefinitely. Unfortunately,

both methods require extensive infrastructure [12] that may not be available, or is cost

prohibitive to install.

In the absence of infrastructure, [13] and [14] have proposed methods that exchange de-

pleted batteries for fresh ones. Such a method would eliminate both the logistical challenges

of planning and the infrastructure dependence of dynamic charging. The only drawback,

is that BEBs are not built with battery exchanges in mind, therefore the task can require
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specialized hardware, technical expertise, or automation, all of which add complexity and

cost.

One charge option that avoids both the infrastructure demands of dynamic charging

and the technical difficulties of battery swapping is stationary charging, which plans rest

periods into a bus’s schedule during which that bus can charge. Stationary charging is the

least invasive form of bus charging because it only requires charging hardware at specific

locations and makes no exchanges to bus batteries. Prior work in this area addresses a

number of problems, including distributed charging networks [29], bus availability, environ-

mental impact [16], route scheduling [15], battery health [38], the cost of electricity [19],

and the cost of charging infrastructure [31].

One drawback to using a stationary charging solution is that it does require significant

rest periods for charging. One way to decrease the charge intervals is to use high power

chargers, which deliver more energy in a smaller period of time. However doing so places

large power demands on electrical infrastructure [6] which may result in problems with

network reliability [7] and require additional maintenance and upgrades, which increase

the cost of energy [8]. An effective charge plan must therefore balance the need to charge

quickly with the desire to maintain a low power profile [22].

The authors of [23] and [24] propose simple, heuristic approaches to reduce power

demands from BEB fleets. Work done by [25] uses a mixed integer linear program (MILP)

to solve for a solution, which addresses both when buses should charge, and where they

should deploy. Finally, a paper by [26] provides a MILP framework for minimizing the cost

of demand power and both [20] and [21] minimize the cost from time of use tariffs. Each of

the aforementioned methods focus on demand power in relation to electric bus fleets, but do

not account for external activity on the grid, such as effects from electric trains, renewable

energy devices, or other utilities which we refer to as “uncontrolled loads”.

In this paper, the uncontrolled load profile comes from historical data provided by the

Utah Transit Authority in Salt Lake City which describes the power demands for an electric

train as it passes through the station. In practice, buses would share a single meter with
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the train. If buses were to charge at high rates while the train drew power from the grid to

accelerate, the resulting 15-minute average power would become significant, increasing the

monthly cost.

This paper considers a traditional scenario where each bus begins the day in the sta-

tion and spends the day either on-route or in the station. Buses on route are considered

unavailable and cannot charge until that bus returns to the station. For such a scenario,

we develop a planning method to manage bus charging by viewing the charge problem in

a bin packing context [40] in a way that minimizes the joint power use from the bus fleet

and uncontrolled loads while yielding a precise time schedule for charging.

The rest of this paper is organized as follows: Section 3.2 discusses the basic problem

formulation, Section 3.3 discusses linear constraints that govern the behavior and limitations

of the rate of charge. Section 3.4 discusses how to incorporate uncontrolled loads into the

optimization framework. Section 4.2.4 explains how the objective function is formed, and

Section 3.6 discusses performance.

3.2 Bus Availability and Resource Contention

The charge scheduling framework described in this paper is formulated as a constrained

optimization problem that can be solved as a Mixed Integer Linear Program (MILP) of the

form

min
y

yTv subject to

Ãy = b̃, Ay ≤ b,

(3.1)

along with some integer constraints on elements of y, where y, Ã, A, and v represent the

solution vector, equality and inequality constraints, and cost vector respectively. In this
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paper, y is comprised of several variables, and is expressed as

y =



σ

c

s

h

k

r

g

p

l

qon

qall



, (3.2)

where σ describes on which charger a bus will charge, c and s describe time intervals over

which buses charge, h gives the bus state of charge, k, r and p are used to discretize

the effects from c and s, g is a slack variable for converting the effects of charging from

continuous time to discrete intervals, l is another slack variable that prevents two buses from

simultaneously being assigned to the same charger, and qon and qall represent maximum

average power values that are used to compute the monthly cost of power.

The cost function in (3.1) will be designed to model a realistic billing structure used

by [18] and will minimize the cost in the presence of uncontrolled loads. Additionally, the

constraints are designed to incorporate bus schedules, limit bus state of charges, and include

a linear charge model calibrated on data from the Utah Transit Authority.

3.2.1 Setup

A solution to the bus charge problem includes both temporal and categorical infor-

mation. The temporal aspect shows when and for how long a bus should charge, and is

represented graphically as increasing from left to right. The vertical axis represents each



46

In-Station In-Station

a1 d1 a2 d2

In-Station In-StationOn-Charger On-Charger

c1 s1 c2 s2

Fig. 3.1: Bus Charging

category as a bus and shows how each bus charges over time as shown in Fig. 3.2.

Each bus follows a schedule of arrival and departure times, where the ith bus’s jth stop

begins at arrival time aij and terminates at departure time dij (see Fig. 3.1). A bus can be

assigned to charge anytime the bus is in the station, such that the charge start time, cij , is

greater than or equal to aij , and the charge stop time, sij , is less than the departure time

dij , as shown in Fig. 3.1. In the context of a MILP, the arrival and departure times aij and

dij are known ahead of time and charge times cij and sij are optimization variables.

3.2.2 Constraints

The relationship between the arrival, departure, and charge intervals for the ith bus at

the jth stop can be expressed as a set of inequality constraints such that

aij ≤ cij

cij ≤ sij

sij ≤ dij .

(3.3)

These constraints can be rewritten such that the optimization variables are on the left, the

known parameters are on the right, and the relationship is “less than” (or standard form)
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such that

−cij ≤ −aij

cij − sij ≤ 0

sij ≤ dij .

(3.4)

Standard form is preferred because it is required by most solvers. Having the optimization

variables on the left also allows the expression to be written using matrix notation as


−1 0

1 −1

0 1


cij
sij

 ≤

−aij

0

dij

 . (3.5)

However, because all constraints must follow the form Ay = b as shown in (3.1), (3.5) is

expressed in terms of y such that


−1cij 0 . . . 0

1cij 0 . . . −1dij

0 0 . . . 1dij

y ≤


−aij

0

dij

 ∀i, j
A1y ≤ b1,

(3.6)

where 1cij is 1 at the index that corresponds to cij , 1sij is 1 at the index corresponding to

sij , and A1 and b1 stack the constraints given in (3.5) for all i, j.

The decision variables sij and cij from (3.5) show when a bus must start and finish

charging, but do not indicate on which charger. The variable σ from (3.2) is a vector of

binary variables. Each element of σ is denoted σijk and is 1 when bus i charges during the

jth stop at charger k. Because a bus can only charge at one charger at a time, the values

in σ must be constrained such that

∑
k

σijk ≤ 1 ∀i, j (3.7)
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or in standard form as [
1ij1 1ij2 . . . 1ijk 0 . . .

]
y ≤ 1 ∀i, j

A2y ≤ b2,

(3.8)

where 1ijk represents a 1 at the location corresponding to σijk. The variable σijk is used

in several scenarios. The first is to ensure that buses without charge assignments have a

charge time of zero by constraining sij and cij to be the same value. This is done by letting

sij − cij ≤M
∑
k

σijk

[
1s −1c −Mσ1 . . . −Mσk

]


sij

cij

σij1
...

σijk


≤ 0 ∀i, j,

(3.9)

where M is the maximum difference between sij and cij , or the number of seconds in a day,

also referred to as nTime, andMσ represents multiple values ofM at locations corresponding

to each σijk. The constraints in (3.9) can be appropriately zero padded and stacked for all

i, j to form the linear expression

A3y ≤ b3. (3.10)

The values in σ, c, and s form a complete charge plan representation were cij and sij

describe time periods when a bus will charge and σijk gives which charger to use. (see Fig.

3.2). The variable σijk is also necessary to prevent situations where more than one bus

is assigned to the same charger at the same time. Note that two buses, bus i and bus i
′
,

can only be assigned to the same charger at the same time when when aij for bus i is less

than di′j′ for bus i
′

as shown in Fig. 3.3. Let S be the set of all bus-stop pairs such that(
(i, j), (i

′
, j

′
)
)
∈ S if overlap is possible between bus i and bus i

′
during the j and j

′
stops

respectively. Charging overlap can be avoided by constraining ci′j′ > sij or cij > si′j′ for
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Bus 1

Bus 2

Bus 3

t0 tn

Charger 1 On Route Charger 2

Charger 3 On Route Charger 1

On Route Charger 3

Fig. 3.2: Reserving time slots on chargers

Bus i

Bus i
′

Available

Available

ai′j′ dij

Fig. 3.3: Potential Overlap

all
(
ij, i

′
j
′
)
∈ S.

We desire to encode these constraints so that they may be included in our MILP. First,

let l(ij, i‘j‘) be a binary decision variable that is 1 when ci′j′ > sij , and 0 when cij > si′j′

so that the overlap constraints can be expressed as

ci‘j‘ − sij > −Ml(ij, i‘j‘)

cij − si‘j‘ > −M(1− l(ij, i‘j‘)).

(3.11)

Note that this constraint is only necessary when buses i and i
′

are assigned to the same

charger, so that both σi′j′k and σijk are equal to 1 which can be done by modifying the

switching technique from Eqn. (3.11) so that the overlap constraints are trivially satisfied
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Bus i Available Available Available Available

hi0 hi1 hi2 hi3 hi4

Fig. 3.4: State of Charge Variables

when either σi′j′k or σijk is equal to zero. The expressions in (3.11) can be relaxed by letting

ci′j′ − sij > M
[
(σi′j′k + σijk)− 2

]
−Ml(ij, i‘j‘) ∀k

cij − si′j′ > M
[
(σi′j′k + σijk)− 2

]
−M(1− l(ij, i‘j‘)) ∀k

(3.12)

so that when (σi′j′k + σijk) < 2, (3.12) is trivially satisfied for all values of ci′j′ and sij

and when σi′j′k = σijk = 1, (3.12) simplifies to (3.11). Equation (3.12) can be expressed in

standard form using matrix notation as

−1 0 0 1 M M −M

0 1 −1 0 M M M





ci′j′

si′j′

cij

sij

σi′j′k

σijk

liji‘j‘



≤

2M

3M

∀k. (3.13)

The constraints in (3.13) can be repeated for all
(

(i, j), (i
′
, j

′
)
)
∈ S and concatenated into

a single matrix expression

A4y ≤ b4 (3.14)

3.3 Battery State of Charge

BEBs must also maintain their state of charge above a minimum threshold, denoted

hmin. Let hij be the state of charge for bus i at the beginning of stop j as shown in Fig.

3.4. The initial value for bus i, denoted hi0, is equal to some constant such that
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Bus i Available Available Available Available

hi0 hi1 hi2 hi3 hi4

δi δi δi

Fig. 3.5: Placement for δi

hi0 = ηi ∀i[
0 0 . . . 0 1i 0

]
y = ηi ∀i

Ã1y = b̃1

(3.15)

and is otherwise computed as the the sum of incoming and outgoing energy where incoming

energy comes from charging, and outgoing energy comes from the battery discharge. The

discharge from operating bus i over route j is denoted δij which is assumed to be know

ahead of time either from historical data or from modeling such as [41]. The increase in

battery state of charge follows a linear charge model such that the increase is equal to the

energy rate, denoted pi, times the time spent charging, denoted ∆ij [42]. The total change

from hij to hij+1 can be expressed as

hij+1 = hij + ∆ij · pi − δij . (3.16)

The value for ∆ij can also be expressed in terms of the difference between aij and dij such

that

hij + pi · (sij − cij)− δi = hij+1

hij+1 − hij − pisij + picij = −δi

[
1 −1 −pi pi

]


hij+1

hij

sij

cij


= −δi ∀i, j.

(3.17)
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The constraints for each i, j outlined in (3.17) can be vertically concatenated to form

Aijy = bij ∀i, j

Ã2y = b̃2.

(3.18)

Now that the state of charge is defined, the next constraint ensures that the minimum

battery state of charge remains both above the minimum threshold, hmin, and below the

battery capacity, hmax. These constraints are given as

−hij ≤ −hmin

hij ≤ hmax

∀i, j (3.19)

or 0 . . . 0 −1h 0 . . . 0

0 . . . 0 1h 0 . . . 0

y ≤

hmin

hmax

 ∀ij
A5y ≤ b5.

(3.20)

The final constraint has to do with the assumption that we desire to use the model

for one day to predict the expected cost over a month. To do this, the state of charge at

the end of the day must equal the state of charge at the beginning. Let hi,end be the final

daily state of charge for bus i. This is constrained to be the same as the beginning state of

charge as

hi0 = hi,end ∀i

hi0 − hi,end = 0 ∀i.
(3.21)

However, because equality for two continuous variables is computationally demanding, the

constraint in (3.21) can also be expressed as

hi0 − hi,end ≤ 0. (3.22)

Because the final state of charge is dependent on the amount of power used to charge, and

power/energy use is penalized (see section 4.2.4), the optimization process will drive the
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final state of charge low until it approaches the initial value.

3.4 Integrating Uncontrolled Loads

A monthly power bill is made up of several costs, two of which depend on the maximum

energy consumed over 15 minutes. This 15-minute average power includes energy that is

consumed by loads other than bus chargers, or “uncontrolled loads”. In practice, data for

uncontrolled loads is sampled and therefore discrete. The representations for how buses

use power in Section 3.3 are continuous, making their effects difficult to integrate with a

discrete uncontrolled load. This section integrates these uncontrolled loads into the planning

framework by converting the continuous start and end points, cij and sij from Section 3.2,

to a vector pij , where the nth element of the pij vector represents the average power over

the interval ti−1 to ti from bus i during route j. The route power vectors, pij , can be added

together to form a discrete profile for the buses.

Let the day be divided into time segments, each of duration ∆T . The first step is

to determine the index of each segment that a bus begins charging, denoted kstart
ij , and

the index of the segment that a bus finishes charging, denoted kend
ij . Each index can be

computed as an integer multiple of ∆T that satisfies

(
kstart
ij − 1

)
·∆T + rstart

ij = cij(
kend
ij − 1

)
·∆T + rend

ij = sij

kstart
ij , kend

ij ∈ Z

0 < rstart
ij , rend

ij <∆T.

(3.23)

Equation (3.23) yields the discrete indices kstart
ij and kend

ij along with corresponding remain-

der values rstart
ij and rend

ij , which will be used later in this section to calculate the average

power for time segments in which buses only charge part of the time. Equation (3.23) can
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be rewritten in standard form and zero padded such that

∆T 1 −1 0 0 0

0 0 0 ∆T 1 −1





kstart
ij

rstart
ij

cij

kend
ij

rend
ij

sij


=

0

0

 ∀i, j

Ã2y = b̃2

(3.24)

and



0 −1 0 0 0 0

0 1 0 0 0 0

0 0 0 0 −1 0

0 0 0 0 1 0





kstart
ij

rstart
ij

cij

kend
ij

rend
ij

sij


≤



0

∆T

0

∆T


∀i, j

A6y ≤ b6.

(3.25)

The next step is to use kstart
ij and kend

ij to compute three sets of binary vectors, denoted

gstart
ij , gon

ij , and gend
ij , which act as selectors for indices which correspond to charge times.

The values in gstart
ij and gend

ij are equal to 1 during intervals that contain energy from the

remainders rstart
ij and rend

ij . For example, the values for gstart
ij and gend

ij from the scenario in

Fig. 3.6b would be

gstart
ij =



1

0

0

0


and gend

ij =



0

0

1

0


. (3.26)
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The values in gon
ij will be equal to 1 for all time indices where buses charges the entire time.

For example, the values in gon
ij that correspond to Fig. 3.6b would be

gon
ij =



0

1

0

0


. (3.27)

Let f be a vector of one-based integer indices such that fw = w ∀w ∈ (1, nPoint), where

nPoint is the desired number of discrete samples. For example, if the day was discretized

into 4 periods, then f would be

f =

[
1 2 3 4

]T
. (3.28)

Defining the index as an element of f allows us to convert from the single indices kstart
ij and

kend
ij to the binary vectors gstart

ij and gend
ij by letting

kstart
ij = fTgstart

ij

kend
ij = fTgend

ij

1 = 1Tgstart
ij

1 = 1Tgend
ij

gstart
ij ∈ {0, 1}nPoint

gend
ij ∈ {0, 1}nPoint,

(3.29)
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sij cij

(a) Continuous Charging Segment

t1 t2 t3 t4

kstart
ij kend

ij

rstart
ij rend

ij

(b) Discrete Charging Segments

Fig. 3.6: Discretization of continuous charging intervals

which can be expressed in standard form and zero padded to form a set of linear constraints.



0 0T −1 fT

0 1T 0 0

−1 fT 0 0T

0 0 0 1T





kstart
ij

gstart
ij

kend
ij

gend
ij


=



0

1

0

1


∀i, j

Ã3y = b̃3.

(3.30)

The values of gon
ij can be computed by first noticing that indices that correspond to

complete charge intervals must remain between kstart
ij and kend

ij , implying that


gwfw ≤ kend − 1

gwfw ≥ kstart + 1

gw = 1 , (3.31)

which can be expressed as a set of linear constraints such that

gw · fw ≤ kend
ij +M(1− gw)− 1

gw · fw ≥ kstart
ij −M(1− gw) + 1,

(3.32)
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where M is 2 ·nPoint. The constraints in (3.32) do not require that all values between kstart
ij

and kend
ij be set to one, rather that them being equal to one implies that they are between

kstart
ij and kend

ij . For all values between kstart
ij and kend

ij to be 1, the sum of gon
ij must be equal

to the difference between kend
ij and kstart

ij such that

gw · fw ≤ kend
ij +M(1− gw)− 1

gw · fw ≥ kstart
ij −M(1− gw) + 1

1Tgon
ij = kend

ij − kstart
ij − 1.

(3.33)

The constraints in (3.33) work well for a general use case, however when kend
ij is equal to

kstart
ij , the last constraint in (3.33) becomes

1Tgon
ij = −1, (3.34)

which leads to an empty feasible set because the elements of gon
ij are all binary. Let keq

ij be a

binary variable which is equal to 0 when kend
ij is not equal to kstart

ij . Equation (3.33) can be

modified to incorporate keq
ij to switch between the cases where kend

ij is equal, and not equal

to kstart
ij by letting

gw · fw ≤ kend
ij +M(1− gw)− 1

gw · fw ≥ kstart
ij −M(1− gw) + 1

1Tgon
ij = kend

ij − kstart
ij − keq

ij

(3.35)

and constraining keq
ij such that

kend
ij − kstart

ij −Mkeq
ij ≤ 0

−kend
ij + kstart

ij +Mkeq
ij ≤M.

(3.36)
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The constraints from (3.35) and (3.36) can be expressed in standard form as

1Tgon
ij − kend

ij + kstart
ij + keq

ij = 0

kend
ij − kstart

ij −Mkeq
ij ≤ 0

−kend
ij + kstart

ij +Mkeq
ij ≤M

gw (fw +M)− kend
ij ≤M − 1

gw (M − fw) + kstart
ij ≤M − 1.

(3.37)

The inequality constraints from equation (3.37) imply that

fw +M −1 0

M − fw 0 1



gw

kend
ij

kstart
ij

 ≤
M − 1

M − 1

∀gw ∈ gon
ij (3.38)

and that  1 −1 −M

−1 1 M



kend
ij

kstart
ij

keq
ij

 ≤
 0

M

 ∀i, j, (3.39)

which can be concatenated for all i, j, and zero padded to form a joint matrix, satisfying

A7y ≤ b7. (3.40)

Similarly, the equality constraint from (3.37) can also be concatenated and zero padded

such that

1Tgon
ij − kend

ij + kstart
ij + keq

ij = 0 ∀i, j

[
1T −1 1 −1

]


gon
ij

kend
ij

kstart
ij

keq
ij


= 0

Ã4y = b̃4.

(3.41)
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The next step is to define the average power during intervals that only charge for part

of the time. These intervals correspond to the remainder values rstart
ij and rend

ij and, as with

previous constraints, maintain different behavior when keq
ij = 0 and keq

ij = 1. The average

power that corresponds to rstart
ij and rend

ij can be computed as



pstart
ij =

p · (∆T − rstart
ij )

∆T

pend
ij =

p · rend
ij

∆T
.

keq
ij = 1

pstart
ij =

p ·
(
rend
ij − rstart

ij

)
∆T

pend
ij = 0

keq
ij = 0,

(3.42)

where p is the charge rate. Equation (3.42) can also be expressed as a set of linear inequality

constraints such that

pstart
ij ≤ p− p

∆T
rstart
ij +M

(
1− keq

ij

)
pstart
ij ≥ p− p

∆T
rstart
ij −M

(
1− keq

ij

)
pstart
ij ≤ p

∆T
rend
ij −

p

∆T
rstart
ij +Mkeq

ij

pstart
ij ≥ p

∆T
rend
ij −

p

∆T
rstart
ij −Mkeq

ij

pend
ij ≤

p

∆T
rend
ij +M

(
1− keq

ij

)
pend
ij ≥

p

∆T
rend
ij −M

(
1− keq

ij

)
pend
ij ≤Mkeq

ij

pend
ij ≥ −Mkeq

ij ,

(3.43)
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where M is the battery capacity, and can be expressed in standard form as

pstart
ij +

p

∆T
rstart
ij +Mkeq

ij ≤M + p

−pstart
ij − p

∆T
rstart
ij +Mkeq

ij ≤M − p

pstart
ij − p

∆T
rend
ij +

p

∆T
rstart
ij −Mkeq

ij ≤ 0

−pstart
ij +

p

∆T
rend
ij −

p

∆T
rstart
ij −Mkeq

ij ≤ 0

pend
ij −

p

∆T
rend
ij +Mkeq

ij ≤M

−pend
ij +

p

∆T
rend
ij +Mkeq

ij ≤M

pend
ij −Mkeq

ij ≤ 0

−pend
ij −Mkeq

ij ≤ 0

(3.44)

and by using matrix multiplication such that



1 0 p
∆T 0 M

−1 0 − p
∆T 0 M

1 0 p
∆T − p

∆T −M

−1 0 − p
∆T

p
∆T −M

0 1 0 − p
∆T M

0 −1 0 p
∆T M

0 1 0 0 −M

0 −1 0 0 −M





pstart
ij

pend
ij

rstart
ij

rend
ij

keq
ij


≤



M + p

M − p

0

0

M

M

0

0



∀i, j

A8 ≤ b8,

(3.45)

where pstart
ij , pend

ij , and p represent the average power that corresponds to rstart
ij , rend

ij , and

full charging intervals respectively. The total average power use is calculated as

ptotal = p̄load +
∑
ij

gstart
ij · pstart

ij + gon
ij · p+ gend

ij · pend
ij , (3.46)

where p̄load is the average power of the uncontrolled loads.
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Note, however that (3.46) contains the bilinear terms gstart
ij · pstart

ij and gend
ij · pend

ij . The

expression gstart
ij · pstart

ij from (3.46) can be thought of as a vector, pstart
ij which contains

values for pstart
ij whenever gstart

ij is not equal to 0 such that

pw = pstart gw = 1

pw = 0 gw = 0

∀pw ∈ pstart
ij , (3.47)

which can be rewritten as a set of linear inequality constraints such that

pw ≥ pstart
ij −M(1− gw)∀pw ∈ pstart

ij

pw ≤ pstart
ij +M(1− gw)∀pw ∈ pstart

ij

pw ≥ −Mgw∀pw ∈ pstart
ij

pw ≤Mgw∀pw ∈ pstart
ij .

(3.48)

The same approach can be taken to replace gend
ij · pend

ij with the vector pend
ij by letting

pw ≥ pend
ij −M(1− gw) ∀pw ∈ pend

ij

pw ≤ pend
ij +M(1− gw) ∀pw ∈ pend

ij

pw ≥ −Mgw ∀pw ∈ pend
ij

pw ≤Mgw ∀pw ∈ pend
ij ,

(3.49)

which can be written in standard form, stacked to accommodate the constraints for all i, j,

and zero padded in the usual fashion as



−1 1 M

1 −1 M

−1 0 −M

1 0 −M




pw

pstart
ij

gw

 ≤


M

M

0

0


∀pw ∈ pstart

ij

A9 ≤ b9.

(3.50)
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Equation (3.49) can be expressed in standard form, stacked for all i, j, and zero padded in

a similar fashion such that



−1 1 M

1 −1 M

−1 0 −M

1 0 −M




pw

pend
ij

gw

 ≤


M

M

0

0


∀pw ∈ pend

ij

A10y ≤ b10.

(3.51)

An expression for the total power used can then be expressed as

ptotal = pload +
∑
ij

pstart
ij + pend

ij + gon
ij · p (3.52)

and in standard form as

[
1 −1start −1end −1on · p

]


ptotal
w

pstart
w

pend
w

gon
w


= pload

w

Ã4y = b̃4.

(3.53)

3.5 Objective Function

This work adopts uses an objective function which implements the rate schedule from

[18]. The rate schedule in [18] is based on of two primary components: power and energy.

Power is billed per kW for the highest 15 minute average power over a fixed period

of time. It is common practice for power providers to use a higher rate during “on-peak”

periods when power is in higher demand and use a lower rate during “off-peak” hours, which

account for all other time periods.

The rate schedule given in [18] assesses a fee for a user’s maximum average power during

on-peak hours, called the On-Peak Power charge, and a user’s overall maximum average
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On-Peak Off-Peak Both

Energy On-Peak Energy Charge Off-Peak Energy Charge None
Energy Rate ue-on ue-off None

Power Demand Charge None Facilities Charge
Power Rate up-on None up-all

Fig. 3.7: Description of the assumed billing structure

power, called a facilities charge as shown in Fig. 3.7.

Energy fees are also assessed per kWh of energy consumed with a higher rate for energy

consumed during on-peak hours and a lower rate for energy consumed during off-peak hours.

3.5.1 Power Charges

It is necessary to compute the maximum power both overall and for on-peak periods.

Section 3.4 adopted the convention that ∆T denotes the time offset between power samples

and that each power reading would reflect the average power used in the previous interval.

Now let us set ∆T to 15 minutes, making ptotal an expression of the 15 minute average

power. Next, let Son be the set of all indices belonging to on-peak time periods such

that j ∈ Son implies that the jth element of ptotal, ptotal
j , represents a 15 minute average

during an on-peak interval and let qon be the maximum on-peak average power. With these

definitions, constraints for determining the maximum on-peak average are defined as

ptotal
j ≤ qon ∀j ∈ Son[

1 −1

]ptotal
j

qon

 ≤ 0 ∀j ∈ Son

A11y ≤ 0

A11y ≤ b11.

(3.54)

Because an increased value in qon is directly related to an increase in cost, the optimizer

will minimize qon until it is equal to the maximum value in {ptotal
j ∀j ∈ Son}. A similar

procedure can be used to derive a set of constraints for the overall maximum average power,
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denoted qall, and is represented as

A12y ≤ 0

A12y ≤ b12.

(3.55)

The charges for power are then expressed as

power cost = qon · up-on + qall · up-all

=

[
up-on up-all

]qon

qall


= uTp y,

(3.56)

where up-on is the rate per kW for on-peak power use, or the demand charge and up-all is

the rate per kW for the overall maximum 15 minute average.

3.5.2 Energy Charges

Energy is defined as the integral of power over a length of time. Because the values for

power given in this work reflect an average power, the energy over a given period can be

computed by multiplying the average power by the change in time, or ∆T such that

Total Energy = 1Tptotal ·∆T. (3.57)

However, because the energy is billed for on-peak and off-peak time periods, we define two

binary vectors 1on and 1off such that 1on
j = 1 ∀j ∈ Son and zero otherwise. Similarly,

1off = 1− 1on. The on-peak and off-peak energy can then be computed as

On-Peak Energy = 1Tonptotal ·∆T

Off-Peak Energy = 1Toffptotal ·∆T.
(3.58)
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Let ue-on and ue-off represent the on-peak and off-peak energy rates respectively. The total

cost for energy is computed as

Energy Cost = (1on · ue-on ·∆T )T ptotal + (1off · ue-off ·∆T )T ptotal

= (ue-on + ue-off)T ptotal

= uTe y.

(3.59)

3.5.3 Cost Function and Final Problem

The entire cost function is given as the sum of the energy and power costs such that

Cost = uTp y + uTe y

= (up + ue)
T y

= vTy.

(3.60)

The complete problem can now be formulated as

min
y

yTv subject to

Ã1:3y = b̃1:3 A1:12y ≤ b1:12

(3.61)

or

min
y

yTg subject to

Ãy = b̃, Ay ≤ b.

(3.62)

3.6 Results

This section shows performance for the proposed bus charging algorithm and contains

three subsections. Section 3.6.1 compares the proposed method with a previously published

algorithm [20].

The comparisons in this section consider a 5 bus, 5 charger scenario with a charge

rate of 300 kW. Each solution is expressed in terms of a MILP and solved up to a 2% gap

using Gurobi [39], unless otherwise specified. The uncontrolled loads from Section 3.4 are

represented with a scaled version of historical data from the Trax Power Substation at UTA.
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The scaling served to increase the difficulty of the charging problem and better illustrates

the capabilities of the proposed algorithm.

3.6.1 Cost Comparison with Prior Work

This section compares the monthly cost of energy for the proposed method with three

other methods in equivalent 5 bus 5 charger scenarios. The first method is a baseline

algorithm that simulates how bus drivers at the Utah Transit Authority (UTA) in Salt Lake

City (SLC) charge by default. The second method comes from [26], which was selected

because it is very similar to the proposed algorithm, and the third compares with [22]

because of how [22] focuses on reducing the instantaneous load from charging. The charge

plan for each method is computed using mixed integer linear programs as described below.

Conversations with bus drivers at the UTA in SLC have shown that bus drivers gener-

ally top off their batteries whenever a charger is available. In essence, the bus drivers are

solving a maximization problem by default as they maximize the number of charge sessions

in a day. Hence, the baseline algorithm follows the constraints in (3.61) but incentivizes

buses to charge as frequently as possible. Let vijkσ be the value of the objective function

v at the index corresponding to σijk from Section 3.2.2. By letting vijkσ = −1, ∀i, j, k and

zero otherwise, the baseline method effectively maximizes the number of times a bus can

charge. All methods are evaluated according to the rate schedule in [18].

A comparison for each method is given in Fig. 3.8. Note how the cost of energy is

generally the same for each algorithm and that the primary differences in cost come from

the on-peak and facilities power charges, illustrating the need to minimize peak average

power. To understand the difference in power management between the baseline and the

proposed method, refer to Fig. 3.9. Note how the power for the proposed method (blue

line) is almost completely flat, indicating a steady power use. In comparison, the baseline

algorithm (red line) is less steady and includes periods of high power use, which leads to

the increased power charges in Fig. 3.8.

A similar phenomena is observed when comparing the proposed method to [26]. Fig.

3.10 compares the average power for the proposed algorithm and [26]. Note how the pro-



67

Energy On-Peak
Power

Facilities
Power

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

C
o
st

(D
o
ll
a
rs
)

Baseline

He et al.

Ojer et al.

Proposed

Fig. 3.8: Cost comparison with prior work

posed algorithm shifts the timing of charging events to produce a charge profile (blue line)

that is complementary to the uncontrolled load (tan line). When the uncontrolled load

increases the bus load decreases, yielding a flat overall load profile (not shown), whereas

the load profile from [26] (red line) shifts charging events to minimize charging during on-

peak periods only, but ignores uncontrolled loads. The ability of the proposed method to

produce a consistent load profile improves upon [26] because it accounts for the effects of

uncontrolled loads and the costs of average power.

3.6.2 Scalability
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Fig. 3.12: Runtime with 5 Chargers at a 7% Gap

In this section we discuss the limitations for scaling the proposed method with respect to

the number of buses. Specifically, we desire to show that the proposed method both performs

well with large numbers for buses and can be computed in a reasonable period of time. In

Fig. 3.11, we show how the cost increases with additional buses. Note how the monthly

cost of power generally increases by approximately $780 per bus, and that the relationship

between cost and bus is linear. This indicates that for each additional bus in the fleet,

the added expense comes from energy because the peak loads are intelligently managed.

Additionally, the baseline algorithm which refuels buses whenever there is an opportunity

reports significant cost increases as the number of buses increase. It is interesting to note

how the cost does taper as the bus-to-charger ratio increases, which is not unreasonable as

the baseline method does not optimize with respect to cost. The differences between the

proposed method and [26] continued to scale as well so the proposed outperformed both

the baseline and the method given in [26] in scenarios where there were more buses.

The results for Fig. 3.12 were obtained by optimizing the monthly cost of 5 to 30 buses

up to a 7% gap. Note how the runtime increases significantly as the fleet size increases

from 5 to 20 buses and then begins to decrease as the fleet size grows to 30 buses. To

understand this behavior, recall that the optimizer is essentially addressing two problems.

The first problem is how to schedule charging sessions so that each bus leaves on time and
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carries sufficient charge. The second problem is to minimize the monthly cost of charging.

When the fleet size is small, there are many different charging schedules that meet time and

charge constraints and the optimizer has flexibility to select the schedule that minimizes

cost. As fleet size increases, the complexity of the scheduling problem increases and this is

manifest in increasing runtimes. Past a certain point (above 20 buses in the given scenario)

contention for time on the chargers increases and there are fewer charging schedules that

meet time and charge constraints. The optimizer has fewer options from which to choose

(smaller feasible set) and the optimizer converges more quickly, reducing runtimes.
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Variable Description Range Variable Description Range

Indices

i Bus index N j Route index N

k Charger index N

Route Variables

aij The jth anticipated arrival
time of bus i

R cij
The start time of the com-
manded charge window if bus
i charges during stop j.

R

sij
The stop time of the com-
manded charge window if bus
i charges during stop j.

R dij The jth anticipated departure
time of bus i.

R

σijk
A binary decision variable that
is one when bus i charges dur-
ing stop j at charger k.

{0, 1} l(ij,i′j′)
A slack variable that is 1 when
bus i uses a charger before bus
i′ and 0 otherwise.

{0, 1}

S
The set of all pairs
((i, j), (i′, j′)) where bus i
and bus j may use the same
charger during the j and j′

stops respectively.

(i, j)× (i′, j′)

State of Charge

hmin
The minimum allowable state
of charge

(0, hmax) hmax The maximum state of charge R

ηi
The beginning state of charge
for bus i

(hmin, hmax)hij
The state of charge for bus i at
the beginning of the jth stop.

(hmin, hmax)

∆ij
The time bus i spent charging
during the jth stop.

(hmin, hmax)pi
The power at which bus i is
charged.

R+
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δij
The battery discharge for bus
i over route j.

R+ hi,end Bus i’s final state of charge. (hmin, hmax)

Uncontrolled Loads

kstart
ij

The time index for the start of
bus i’s jth stop

Z kend
ij

The time index for when bus
i disconnects from a charger
during it’s jth stop.

Z

∆T
The time difference between
each time index.

R rstart
ij

The remaining time after cij
has been descritized.

[0,∆T )

rend
ij

The remaining time after sij
has been descritized.

[0,∆T ) nPoint
the number of desired discrete
indices

Z

gstart
ij

A binary indicator variable
which is one at the kstart

ij index.
{0, 1}nPoint gend

ij

A binary indicator variable
which is one at the kend

ij index.
{0, 1}nPoint

gon
ij

A binary indicator variable
which is one at each index be-
tween kstart

ij and kend
ij .

{0, 1}nPoint f

A index vector so that fi = i
for all integer i between 1 and
nPoint.

ZnPoint

keq

a binary indicator variable
which is one when kstart

ij =

kend
ij .

{0, 1} pstart
ij

The average power corre-
sponding to the kstart

ij time

index for bus i’s jth stop.
R+

pend
ij

The average power corre-
sponding to the kend

ij time

index for bus i’s jth stop.
R+ pstart

ij gstart
ij · pstart

ij RnPoint
+

pend
ij gend

ij · pend
ij RnPoint

+ pload

A vector containing the 15-
minute averages for the uncon-
trolled loads

RnPoint
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ptotal

The total 15-minute average
power for both the uncon-
trolled loads and bus chargers.

RnPoint

Objective Function

µe-on On-Peak Energy Rate R µe-off Off-Peak Energy Rate R

µp-on On-Peak Demand Power Rate R µp-all Facilities Power Rate R

Son The set of on-peak time indices {1, ...,nPoint}qon
Maximum average power dur-
ing on-peak periods

R

qall
Maximum average power for
all time.

R 1on
a binary vector which is 1 at
the on-peak time indices

{0, 1}nPoint

1off
a binary vector which is 1 at
the off-peak time indices

{0, 1}nPoint ue-on

a vector of conversion factors
from average on-peak power to
consumption cost.

RnPoint

ue-off

a vector of conversion factors
from off-peak average power to
consumption cost.

RnPoint ue

a vector of conversion factors
from on and off-peak power to
consumption cost.

RnPoint

up

A vector of conversion fac-
tors from on and off-peak max
power to demand cost.

RnPoint v

a vector of conversion factors
such that vTy yields the total
montly cost of power.

RnPoint
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CHAPTER 4

A Scalable Approach for Computing Charge Plans for Large Bus Fleets

4.1 Introduction

Battery electric buses (BEBs) are replacing diesel and natural gas buses in public

transportation because BEBs offer many benefits [4] including reduced maintenance [3],

zero emissions [2], and access to renewable energy [5]. The challenge of prolonged charging

times has been addressed in prior research including distributed charging networks [29], bus

availability, environmental impact [16], route scheduling [15], battery health [38], the cost

of electricity [19], and the cost of charging infrastructure [31].

Because charge times can be lengthy, some prefer to use high power chargers, which de-

liver more energy in a smaller period of time. However doing so places large power demands

on electrical infrastructure [6] so that power networks becomes unreliable [7] and expensive

because high power requires additional maintenance and upgrades [8]. An effective charge

plan must therefore balance the need to charge quickly with the desire to maintain a low

power profile [22].

Methods for developing a charge plan range from heuristic approaches [23], to network

flow on a graph [17], to reinforcement learning [24], to mixed integer linear programs (MILP)

[25]. Generally, each method minimizes cost by either decreasing the instantaneous power

needs for the fleet, or optimizing over time of use tariffs [26].

Scaling these methods to large bus fleets (>100 BEBs) and numerous chargers is a

challenge due to the size of the problem that must be solved. For small fleets (<50 BEBs)

and less than 10 chargers, the optimization problems in [17, 25, 26] have over 105 variables

(including binary or integer variables) and over 105 constraints. Scaling to larger fleets and

more chargers leads can stress computational resources and require lengthy solve times.
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This paper continues the main theme of prior work which is to develop charging sched-

ules for electric buses that minimize the monthly electricity bill (energy consumption plus

power demand) while satisfying route constraints that demand buses be in specific locations

at specific times. One novelty is that our formulation considers the aggregated effects of

loading across multiple meters. While meter aggregation is not widespread today, distribu-

tion networks must be built to supply worst case loads to each metered circuit. Therefore,

our approach begins to explore how optimization of loads across multiple meters can reduce

the overall impact of BEB charging on the grid. In this work, meter aggregation is mod-

eled through the inclusion of uncontrolled (i.e. non-BEB charging) loads. Specifically, we

incorporate historical load data from an electric train (UTA TRAX) that visits a central

intermodal hub site in Salt Lake City, Utah which is also a charging stop for BEBs.

The main contribution of the present paper is addressing the matter of scale. Rather

than posing a single large MILP that incorporates every aspect of the charging problem, we

solve a series of small subproblems in which the solution to the charging problem becomes

successively more refined and moves closer to the optimal schedule. Our results show that

the intermediate subproblems can be solved with a dramatic reduction in runtimes allowing

our method to be applied to significantly larger bus fleets. In a sense, this work explores

what is gained in runtime by sacrificing optimality in the schedule. The subproblems fall

into three groups as shown in Fig. 4.1. Each sub-problem is solved using a linear, quadratic,

or integer program and when used together the series of programs provides a near optimal

charge plan. Each sub-problem addresses elements from one of three areas: energy allocation

and bus grouping, session length and bus-to-charger assignments, and second-by-second

optimization.

4.1.1 Energy Allocation and Group Assignment

The first set of problems answers two primary questions: At which time should energy

be delivered to each bus and which buses are most able to share chargers, and contains

three sub-problems: Unconstrained charge schedule, Smooth charge schedule, and group

separation.
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The unconstrained schedule problem from Section 4.2 is denoted p1 and computes an

optimal charge schedule which minimizes the monthly cost of power in the presence of

uncontrolled loads under the assumption that each bus maintains a dedicated charger.

The smooth schedule problem from Section 4.3 is denoted p2 and has the same form as

the unconstrained scheduling problem with two differences: The monthly cost is required to

match the optimal cost from the solution to the unconstrained scheduling problem and the

objective for the smooth schedule problem penalizes change in the scheduled charge rates.

The group assignment problem from Section 4.4 is denoted p3 and uses the resulting

charge schedules from the solution to the smooth schedule problem to separate buses into

groups where each bus’s schedule overlaps as little as possible with the other schedules for

buses in the same group so that each group can be addressed separately to manage the

number of computations in succeeding problems.

4.1.2 Session Time and Charger Assignment

The problems in the session time and charger assignment section are computed on

a per-group basis to reduce the number of computations, address when charge sessions

must start and stop, assign sessions to chargers and are comprised of three sub-problems:

defragmentation (p4), charger assignment (p5), and session refinement (p6).

The defragmentation problem from Section 4.5 is denoted p4 and attempts to consoli-

date charge sessions with small amounts of energy to reduce the number of charge sessions

and serves to both decrease the computational complexity of the charger assignment prob-

lem by reducing the number of charge sessions and simplify the charge schedule to make it

more operationally feasible.

After consolidation, each charge session is defined by a minimum/maximum start/stop

time as given by the bus’s arrival and departure times and an energy requirement in kW.

The charger assignment problem from Section 4.6 is denoted p5 and uses the availability

and energy constraints to assign chargers to charge sessions.

Once charge sessions are placed, the final step is to ensure each session makes the

most of each charger’s availability. Many times, especially when using non-optimal gaps in
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Fig. 4.1: Overall Processing Chain
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Session Time and
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Fig. 4.2: Processing chain for the energy allocation and group assignment problems

the charger assignment problem, the charge schedules may not use all available time on a

charger. The charger refinement problem is denoted p6 and expands each charge session

to fill unused time on either side and prioritizes sessions with higher energy demands for

adjacent sessions.

4.1.3 Final Optimization

Solutions to the previous problems provide us with a set of charge sessions, energy

requirements, and time schedules for specific chargers. The final question to be answered

is how should the energy for each session will be delivered. The two sub-problems in

the final optimization section, p7 and p8, mirror the first two problems from the Energy

Allocation and Group Assignment section. The first is denoted p7, uses the energy and time

constraints from previous solutions to compute an optimal charge schedule in Section 4.8 and

is analogous to the unconstrained charge problem. The second is denoted p8 and computes

a smoothed charge schedule with the same cost as the constrained schedule solution in

Section 4.9 and is analogous to the Smooth charge schedule problem in Section 4.3. The

table given in Fig. 4.5 lists each problem and which features each problem incorporates.

4.2 p1: Unconstrained Schedule

This section describes a program that solves p1 by finding an optimal charge schedule
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Fig. 4.3: Processing chain for each group
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Fig. 4.4: Processing chain for the Final Optimization set

Feature p1 p2 p3 p4 p5 p6 p7 p8

Battery State of Charge x x x x x

Minimize Cost x x x x x

Charger Capacity x x x x x x x

Energy Placement x x x x x

Smooth Charge Plan x x

Computationally Scalable x x x

Small Number of Charge Sessions x x x

Number of Chargers x x x

Efficient Charger Use x x x

Precise Charge Plan x x

Fig. 4.5: Descriptions of in which problems features are addressed
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Table 4.1: Description of the billing structure

On-Peak Off-Peak Facilities (Both)

Energy Rate $ 0.058282 /kWh $ 0.029624 /kWh None
Energy Rate Symbol µe-on µe-off None

Power Rate $ 15.73 /kW None $ 4.81 /kW
Power Rate Symbol µp-on None µp-all

Bus 1

Bus 2

Bus 3

t1 t2

p(1, 1)

p(2, 1)

p(3, 1)

t3

p(1, 2)

p(2, 2)

p(3, 2)

t4

p(1, 3)

p(2, 3)

p(3, 3)

t5

p(1, 4)

p(2, 4)

p(3, 4)

t6

p(1, 5)

p(2, 5)

p(3, 5)

t7

p(1, 6)

p(2, 6)

p(3, 6)

t8

p(1, 7)

p(2, 7)

p(3, 7)

t9

p(1, 8)

p(2, 8)

p(3, 8)

tend

p(1, 9)

p(2, 9)

p(3, 9)

. . .

Fig. 4.6: Demonstrates how bus power use is conceptualized

where buses are allowed to charge without regard to the number of available chargers. This

solution is considered “optimal” and will be used in later sections to formulate a feasible

solution that accounts for the number of chargers.

4.2.1 Formulation

The cost objective we minimize is based on the rate schedule from [18], which contains

two primary elements: the cost of energy, and power demand. Energy is billed per kWh for

on-peak and off-peak hours. The on-peak rate is more expensive because there is generally

more demand for power during this time, whereas off-peak hours tend to be less expensive.

The demand is covered in two separate chargers. The first is a facilities charge which is

billed per kW for the highest 15-minute average power use over the course of the month.

Bus 1

t1 t2

p(1, 1)

t3

p(1, 2)

t4

p(1, 3)

t5

p(1, 4)

t6

p(1, 5)

t7

p(1, 6)

t8

p(1, 7)

t9

p(1, 8)

tend

p(1, 9)

. . .

Fig. 4.7: Bus schedule with availability



80

The second is a demand charge, which is also billed per kW, but is only billed for the

highest 15-minute average power used during on-peak hours. The rates for each component

are given in Table 4.1.

Before we may compute the total monthly cost of electricity, we must define expressions

for the average power and energy over time. Let each day be divided into time intervals

of length ∆T for each bus where the average power expended for bus i during time j is

denoted p(i, j) as shown in Fig. 4.6 (Note that ∆T may not be 15 minutes, and expressions

for the 15-minute average will be computed later). The resulting solution of p1 will yield

the average power expended by each bus during each period of time.

One constraint for which the solution must account is bus availability. When a bus is

out of the station, the maximum average power for that time must be zero. For example,

if bus 1 were out on route for t5, t6, and t7, then the average power for those periods would

be equal to zero as shown in Fig. 4.7. Let bp(i,j) be the average power used by bus i at

time index j, and b be a vector which contains bp(i,j) for each bus and time index. Also let

A ⊂ i× j be the set of all indices where bus i is in the station during time tj and Ã be its

complement. Furthermore, let pmax be the maximum power that a charger can deliver.

We define a set of constraints so that buses do not use power when not in the station

by letting

bp(i,j) = 0 ∀i, j ∈ Ã

bp(i,j) ≤ pmax ∀i, j ∈ A

−bp(i,j) ≤ 0 ∀i, j ∈ A.

(4.1)

4.2.2 Battery

Each bus must also maintain its state of charge above acceptable levels throughout the

day. When buses leave the station, each bus discharges some quantity of energy throughout

the course of the route. Let δ(i, j) be the amount of charge lost by bus i at time j and let

h(i, j) be the state of charge of bus i at time j. The state of charge for each bus can be
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defined as

h(i, j) = h(i, j − 1) + bp(i, j − 1) ·∆T − δ(i, j) ∀i, j > 1

h(i, 1) = ηi ∀i,
(4.2)

where ηi is the initial state of charge for bus i and ∆T is the difference in time between

ti,j and ti,j+1. Now that each value for the state of charge is defined, each value for h must

be constrained so that it is greater than a given threshold, hmin but does not exceed the

maximum battery capacity hmax. This yields

−h(i, j) ≤ −hmin ∀i, j

h(i, j) ≤ hmax ∀i, j.
(4.3)

The final battery related constraint has to do with how we are planning for the bus.

The expenses that come from power are computed monthly, but we desire to simulate the

movements of the bus for only a day, and use this to extrapolate what the monthly cost may

be. Therefore, the state of charge for a bus at the end of the day must reflect its starting

value. This yields the following constraint:

hi,end = h(i, 1) ∀i. (4.4)

4.2.3 Cumulative Load Management

While this formulation does not directly account for the number of available chargers,

we do account for the cumulative load capacities of all chargers. Let the number of chargers

be denoted ncharger. We desire to maintain the average cumulative power for each time step

at a level that is serviceable given ncharger. We define a slack variable pc(j) which represents

the total average power consumed by all buses at time j. The variable pc(j) is computed

as the sum of average bus powers so that

pc(j) =
∑
i

bp(i,j). (4.5)
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4.2.4 Objective

Now that the relevant constraints have been addressed, we must work towards com-

puting the total objective function. We do so by first computing the total average power

for the complete system. This total power is comprised of power used by the buses, and

power used by external sources such as lights, ice melt, electric trains, etc which we refer to

as “uncontrolled loads”, where the average power for the uncontrolled loads at time step j

is denoted u(j). We compute the total power as the sum of power used by the buses, pc(j)

and the power consumed by uncontrolled loads u(j) so that the total power, denoted pt(j)

is computed as

pt(j) = pc(j) + u(j). (4.6)

The next step is to compute the fifteen minute average power use for each time step,

denoted p15. We do this by letting

p15(j) =
1

n

∑
l∈{j15}

pt(l), (4.7)

where {j15} is the set of all indices 15 minutes prior to j and n is the cardinality of {j15}.

Next, note that the rate schedule requires both the maximum overall average power, denoted

pfacilities, and the maximum average power during on-peak hours, or pdemand. Let Son be

the set of time indices belonging to on-peak hours, and recall that the max over all average

power values is greater than or equal to p15(j) for all j. We can express this constraint is

pfacilities ≥ p15(j) ∀j. (4.8)

Because pfacilities will be used in the objective function, the value for pfacilities will be mini-

mized until it is equal to the largest value in p15. Following a similar logic, we also define

a set of constraints for the maximum average on-peak power, pdemand so that

p15(i)− pdemand ≤ 0 ∀i ∈ Son. (4.9)
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The next step in computing the objective function is to compute the total energy consumed

during on and off-peak hours respectively. Let eon be the total energy consumed during

on-peak hours and eoff be the energy consumed during off-peak hours. We can compute

energy as the product of average power and time. In our case, we compute this as

eon = ∆T ·
∑
i∈Son

pt(i)

eoff = ∆T ·
∑
i/∈Son

pt(i).

(4.10)

We can now compute the total monthly cost in dollars as

Jcost =



eon

eoff

pfacilities

pdemand



T 

µe-on

µe-off

µp-all

µp-on


, (4.11)

where µe-on, µe-off, µp-all, and µp-on represent the cost for on-peak energy, the cost of off-peak

energy, the facilities rate, and demand charge respectively.

In summary, the problem p1 described in Section 4.2 computes a charge schedule with-

out constraints on the number of chargers. We have also observed that the resulting charge

commands tend to be either 0 or pmax which is difficult to implement and imparts additional

stress on charging hardware. Before additional steps can be taken, a smoothed version of

the solution for p1 must be computed.

Summary for p1

Min
y

(4.11) subject to (4.1) – (4.10).

where y represents the variables of optimization for p1.

4.3 p2: Unconstrained Smooth Schedule

This section implements a smoothing criteria so that the “on-off” patterns from the



84

first solution are softened. This is done by first solving the un-constrained charge problem

as given. Next, the same problem is solved again but with two primary differences. The

first is that the demand, facilities, on-peak energy, and off-peak energy are constrained so

that they are equal to the values obtained in p1 so that

eon = ẽon

eoff = ẽoff

pfacilities = p̃facilities

pdemand = p̃demand.

(4.12)

Next, we define an alternative objective which incentivizes “smooth” transitions between

time steps.

This objective is defined as

Jthrash =
1

n

∑
i,j,∈K

‖b(i, j)− b(i, j − 1)‖22, (4.13)

where K is the set of all i, j where bus i may charge during time j and j − 1.

The smoothed schedule computed in p2 minimizes the cost of charging in a way that

maintains smooth charge schedules but is undesirable because the charge sessions tend to

be small so that many are required. Additionally, the current schedule does not account

for the number of chargers and contention. Unfortunately, resolving these issues requires

the use of binary variables and becomes intractable for large numbers of buses. Before the

fragmentation and charger assignment problems can be addressed, we must first segment

the buses into groups so that they can be processed separately which will better manage

the computations for binary-centric problems.

Summary for p2

Min
y

(4.13) Subject to (4.1) – (4.10), (4.12)
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4.4 p3: Group Assignment

Before the bus charge problem can be solved, we need to address how the problem will

scale. In previous attempts to solve the charge problem, routing buses to chargers requires

a program which selects an optimal, contention-free schedule by evaluating all possible

combinations.

Because contention increases on the order of O(n2) with the number of charge sessions

and requires that each combination be evaluated to find an optimal solution, the placement

problem is NP-hard [43]. Before we can formulate a scalable solution to the bus problem,

we need a method to separate buses into groups to reduce the coupling between charge

sessions.

The group assignment problem separates buses into ngroup groups, where group m is

allocated nmcharger chargers and nmbus buses. Each group must have sufficient chargers to fill

it’s needs and prefer buses with dissimilar schedules to better avoid contention.

We know that the number of cross-terms in future problems will be reduced when each

group has the same number of buses. Therefore, let nmbus be described as

nmbus ≥
⌊
nbus

ngroup

⌋
nmbus ≤

⌈
nbus

ngroup

⌉
.

(4.14)

We must also ensure that the number of chargers assigned to each group is exactly

equal to the number of available chargers so that

ncharger =
∑
m

nmcharger, (4.15)

where nmcharger is the number of chargers assigned to group m.

The next set of constraints ensures that each bus is is part of a group exactly once.

Let β(i,m) be a binary variable which is one when bus i is in group m. We constrain each



86

bus to be a member of exactly one group by letting

∑
m

β(i,m) = 1 ∀i. (4.16)

We must also ensure that buses are assigned to groups where the power delivered to

each bus can be achieved with the number of chargers assigned to that group. First, we

define a slack variable which gives the total power used in group m at time step j as p(m, j).

Recall, we also know the expected power use for each bus as this is a result of p1 as bp(i,j),

which allows us to describe the total power for any one group as

p(m, j) =
∑
i

β(i,m)bp(i,j). (4.17)

Next, we know that the total load of each group must be less than or equal to the

collective capability of that group’s chargers, which can be expressed as

nmcharger · pmax ≥ p(m, j) ∀m, j (4.18)

so that the number of chargers is sufficient to charge the collective load of the group.

We also desire to group buses together who’s routes have the least overlap. If two buses

contain no overlap, they will be easiest to schedule and the inner product of their schedules

from p1 will be equal to zero. Let

φ(i, i′) = b(i, :)Tb(j, :),

where b(i, :) is the charge schedule for bus i as computed in the p1. We desire to minimize

the total cross terms φ(i, i′) for all buses in the same group. Define a slack variable v(i, i′,m)

which is equal to φ(i, i′) if buses i and i′ are both in group m and zero otherwise so that


v(i, i′,m) = φ(i, i′) β(i,m) = 1, β(i′,m) = 1

v(i, i′,m) = 0 otherwise,
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which can also be expressed by letting

v(i, i′,m) ≤ φ(i, i′)

v(i, i′,m) ≥ φ(i, i′)−M
(
2− β(i,m)− β(i′,m)

)
v(i, i′,m) ≤ 0 +Mβ(i,m)

v(i, i′,m) ≤ 0 +Mβ(i′,m)

v(i, i′,m) ≥ 0.

(4.19)

The final objective can then be expressed as

Jselect =
∑
i,i′,m

v(i, i′,m). (4.20)

Problems p1 through p3 have yielded preliminary estimates for charge schedules as well

as groups into which the buses can be subdivided but have not addressed the problem of

fragmentation, where each bus’s schedule contains many small charge events where fewer

are desired. Before we can address where buses should charge, we must first finalize each

bus’s charge schedule by decreasing the number of charge events.

Summary for p3

Min
y

(4.20) subject to (4.14) – (4.19)

4.5 p4: Defragmentation

A minimum charge session length is another operational constraint that must be con-

sidered. We also consider constraints on minimum energy delivered per session. The intent

of these constraints is to avoid charging for small durations or for small amounts of energy

so that charge sessions are consolidated for convenience.

To solve this program, assume there exists a “smoothed” solution from p2 which has

been appropriately placed in a group from p3. Next, let the preliminary solution be sub-

divided into charge sessions, each with a specific amount of energy, a minimum start time,
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and a maximum stop time. If the energy for any charge session is less than the allowed,

then this session is marked as “fragmented”. The remaining sessions are either marked

as “used” or “unused”, where a used session delivers more power than specified in the

“fragmentation-threshold”, and an unused session delivers zero power.

The purpose of p4 is to determine which sessions will be “active” in deployment while

adhering to minimum charge thresholds. The sessions in question are the “fragmented”

sessions. Let θ(i, r) be a binary variable which indicates if session r from bus i will be

active. Because the only sessions in question are fragmented, we only need to define θ(i, r)

for fragmented sessions. Limiting the binary variables in this fashion significantly reduces

the computational complexity of this step. The charge problem will be resolved using the

same constraints and objective as p1, but with two primary changes.

The first change constrains the minimum power delivery for each “active” charge session

to be at least as large as the original power delivery. Let ρ(i, r) be a vector which is ∆T , in

hours, during the times bus i charges during session r and zero otherwise so that

b(i, :)ρ(i, r) ≥ ψ(i, j), (4.21)

where ψ(i, j) is the minimum energy for session i, r and session i, r is considered “active”.

For inactive sessions, the energy is constrained so that it is equal to zero. Finally, for

fragmented sessions, the session energy must be greater than the minimum threshold, ω

when active and zero otherwise which can be expressed as

b(i, :)ρ(i, r) ≥ ω − ω(1− θ(i, r))

b(i, :)ρ(i, r) ≤ 0 + θ(i, r)emax,

(4.22)

where emax is the maximum energy delivered in a session.

The solution to the defragmentation problem, p4 provides a charge plan that optimizes

the cost of power while requiring that each charge session meets a minimum energy criteria.

Up to this point however, we still have not addressed constraints related to the number of

chargers which is the focus of p5 in the next section.
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Bus 1

Bus 2

Bus 3

t1 t2 t3 t4 t5 t6 t7 t8 t9 tend. . .

0 35 105 105 140 0 0 0 0

175 175 175 175 70 0 0 0 0

0 0 0 350 350 350 350 0 0

Fig. 4.8: An example solution to a 3-bus, 2-charger scenario from p4

Bus 1 Session 1

Bus 2 Session 2

Bus 3 Session 3

t1 t2 t3 t4 t5 t6 t7 t8 t9 tend. . .

Fig. 4.9: Demonstrates how results from p4 can be reexpressed in terms of continuous
variables

Summary for p4

Min
y

(4.11) subject to (4.1) – (4.10), (4.21), (4.22).

4.6 p5: Charger Assignment

The results from p4 give a general estimate of how much and when buses should charge,

Charger 1

Charger 2 Session 2

Session 1

Session 3

t1 t2 t3 t4 t5 t6 t7 t8 t9 tend. . .

Fig. 4.10: Demonstrates the solution to p5
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Bus 1 Session 1

a1,1 d1,1b1,1 f1,1

Fig. 4.11: Gives variables of optimization for p5

however we must still address two primary issues. The first is defining concrete start and

stop times for each charge session. The second is limiting the charge sessions to a finite

number of chargers.

Consider a solution to a three bus, two charger scenario given in Fig. 4.8. Note that

there appears to be three buses charging at the same time from t5 to t6 even though there

are only two chargers. We can reformulate this solution in terms of continuous start and

stop variables and a variable charge rate so that the duration of each charge session may

be relaxed. The objective is to store the given energy in the corresponding bus within the

given charge interval.

Note how few of the charge sessions utilize the chargers to full capacity. This implies

that there exists a smaller charge window in which equivalent power can be delivered. This

allow us to use the charge durations from the solution from Fig. 4.8 as bounds on allowable

charge windows instead of absolute truth.

An example of how Fig. 4.8 may be reformulated is given in Fig. 4.9. Note how

the actual charge sessions don’t necessarily need to take up all the time they were initially

allocated in the first solution and that these times can fluctuate if the average charge rate

is less than the maximum charger capacity. In this example, we assume a maximum charge

capacity of 350kW.

Note how the third charge session does have to be exactly where it was scheduled

because the average is equal to the maximum charge rate. If we examine just the schedule

for Bus 1, we note that there are four essential variables for the corresponding charge session:

a(i, r), b(i, r), f(i, r) and d(i, r) which represent the minimum start time, actual start time,

actual end time, and maximum end time respectively.

The problem we must now solve is one of arranging these “rectangles” such that each
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one is larger than it’s minimum width (or charge time). We must also account for the

number of chargers. It can be helpful to view the problem as a bin packing problem, where

each session must fit within the “swim lane” of a charger. For example, taking the charge

sessions given in Fig. 4.9 and arranging them so that there is no overlap between sessions

will yield a valid solution as shown in Fig. 4.10.

From Fig. 4.11, we know that a(i, r), b(i, r), f(i, r) and d(i, r) must be such that

a(i, r) ≤ b(i, r)

b(i, r) ≤ f(i, r)

f(i, r) ≤ d(i, r),

(4.23)

where a(i, r) and d(i, r) are known from the previous optimization problem, and b(i, r) and

f(i, r) are optimization variables.

We must differentiate between chargers and so, define σ(i, r, k) as a binary selector

variable which is one if charger k services bus i for session r and zero otherwise. We know

that only one charger can charge each bus at a time. We also know that each charge session

must be serviced, which implies that

∑
k

σ(i, r, k) = 1 ∀i, r. (4.24)

Next, we also know that during each session a certain amount of energy must be

transferred from the charger to the battery. The amount of energy that must be transferred

to bus i during session r are given in the solution to p4 and are denoted e(i, r). We can

compute a minimum time window from these values by letting

w(i, r)min =
e(i, r)

pmax
. (4.25)
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If we include constraints for a minimum time per session, then the previous expression

becomes

w(i, r)min = max

(
wmin,

e(i, r)

pmax

)
.

Because this is the minimum time window, we must ensure that the difference between

the start and stop times is at least this large so that

f(i, r)− b(i, r) ≥ w(i, r) ∀i, r. (4.26)

The final set of constraints deals with contention so that no charger can be scheduled

for two sessions that overlap. let L = {(i, r) × (i′, r′)} where charge sessions i, r and i′, r′

have the potential to overlap. Before we can prevent overlap, we must define a binary

variable l(i, r, i′, r′) which is equal to one when session i, r is scheduled before session i′, r′

and zero otherwise so that
f(i, r) ≤ b(i′, r′) l(i, r, i′, r′) = 1

f(i′, r′) ≤ b(i′, r′) l(i, r, i′, r′) = 0.

(4.27)

Here we can expand this thought through use of the “big-M” technique. Let M be large.

In this case, we can set it equal to the number of seconds in a day. We know what the top

constraint must be trivially satisfied when l(i, r, i′, r′) = 0 and the bottom must also when

l(i, r, i′, r′) = 1. This leads to a reformulation so that

f(i, r)− b(i′, r′) ≤M(1− l(i, r, i′, r′)

f(i′, r′)− b(i, r) ≤ l(i, r, i′, r′)M.

However, this constraint only needs to hold when sessions i, r and i′, r′ are scheduled to

charge on the same charger or that σ(i, r, k) = σ(i′, r′, k) = 1. We can reformulate the
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above constraint to satisfy this condition by letting

f(i, r)− b(i′, r′) ≤M(3− σ(i, r, k)− σ(i′, r′, k)− l(i, r, i′, r′))

f(i′, r′)− b(i, r) ≤M(2− σ(i, r, k)− σ(i′, r′, k) + l(i, r, i′, r′)).

(4.28)

Finally, we desire the schedule to closely match the charge plan from p4, which occurs

when each charge session matches the durations given in p4 and so we formulated an objec-

tive function which minimizes the differences in the given plan and the results from p4 by

letting the objective be

min
f,b

∑
i,r

‖b(i, r)− a(i, r)‖22 + ‖f(i, r)− d(i, r)‖22, (4.29)

which has the effect of driving each variable to the desired value and more heavily penalizing

values that are further from their optimal.

Ideally, when p5 is solved to optimality, the chargers are fully utilized. However, opti-

mality for p5 is computationally demanding and scalable solutions may require relaxations

in the optimality gap so that time on the chargers is not fully utilized. The next section uses

the ordering from p5, but recomputes session start/stop times to better utilize the charger

availability even when sub-optimal gaps are given for p5.

Summary for p5

Min
y

(4.29) subject to (4.23) – (4.28).

4.7 p6: Optimizing Charge Schedules

Many times it is not feasible to compute the optimal set of charge schedules given in the

previous sections. As the number of buses and charge sessions becomes large, computing a

small-MIPGap solution becomes intractable. Using a large MIPGap resolves issues related

to computational complexity, but results in sub-optimal charge-time windows.

We compute a more optimal set of charge windows by using the results from p5 to infer

charger assignment, and ordering for each charge session. We also know that the optimal
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solution will expand the charge windows to use any available time where a charger is unused,

implying that the “stop” time for each session will either be equal to it’s buse’s departure

time, or the start time of the next window which can be expressed as


c(s, i, r + 1) = c(f, i, r) c(d, i, r) > c(a, i, r + 1)

c(s, i, r + 1) = c(a, i, r + 1)

c(f, i, r) = c(d, i, r)

c(d, i, r) <= c(a, i, r + 1),

(4.30)

where c(s, i, r) is the start time for charger i’s rth charge session, c(f, i, r) is the stop time for

charger i’s rth charge session, c(d, i, r) is the departure time for the bus scheduled for charger

i’s rth charge session, and c(a, i, r) is the arrival time for the bus scheduled for charger i’s

rth charge session. The minimum charge length must also be used so that energy can be

properly delivered, so that

c(f, i, r)− c(s, i, r) ≥ w(i, r), (4.31)

where w(i, r) is the corresponding minimum charge time corresponding the session.

The final step to optimizing the charge windows is to give preference to windows with

larger power deliveries. Let the objective for the optimization program be

Jwindow =
1

n

∑
i,r

∥∥∥∥c(f, i, r)− c(s, i, r)e(i, r)

∥∥∥∥2

2

. (4.32)

When the function J contains windows with equal amounts of energy, the minimum will

be found where each charge interval is the same width. As the amount of energy increases,

the objective penalizes less for larger window sizes and thus gives preference to high energy

sessions.

Now each charge session is assigned to a charger so that contention for limited chargers

has been managed for each group. Furthermore, each session also specifies target energy

requirements which manage the risks of depleting batteries but does not give instructions
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on how the energy is to be delivered. The energy delivery problem is addressed in p7 and

combined results for all groups so that the charge schedule begins to approach a more global

solution.

Summary for p5

Min
y

(4.32) subject to (4.30), (4.31)

4.8 p7 : Constrained Schedule

Up to this point, we have computed the “optimal” schedule which assumes any bus can

charge without regard to the number of chargers. We then separate buses into groups to

reduce the scope of the problem and treat each sub-problem separately while we defragment

and assign each charge session to specific chargers before determining the final start and

stop times for each bus’s charge session.

The final step in this process is to determine how the energy will be delivered so that

cost is minimised. Begin with constraints for bus power, energy, and cost from Section 4.2

that are given in (4.1), (4.4), (4.6), (4.7), (4.8), (4.9) and (4.10). Next, include constraints

for energy so that the energy for each charge session is properly delivered using a modified

version of Eqn. (4.21) so that

b(i, :)ρ(i, r) = ψ(i, r), (4.33)

where ψ(i, r) is the required energy for bus i during rest period r as computed from the

solution of the defragmentation problem.

Summary for p7

Min
y

(4.11) subject to (4.1), (4.4), (4.6) – (4.10), (4.33)

4.9 p8 : Constrained Smooth Schedule

The charge schedule from p7 will contain the same on-off defects as the solution to

p1 which can be managed as before by executing p7 once again with two changes: The

first constrains the objective so that it achieves the optimal cost. The second reduces the
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difference of adjacent charge rates with the smoothing objective from (4.13).

Summary for p8

Min
y

(4.13) subject to (4.1), (4.4), (4.6) – (4.10), (4.12), (4.33)

4.10 Results

The results given in this section aim to demonstrate how the proposed method can be

used to find a scalable solution to the bus charge problem. Because the proposed solution

contains various sub-problems, optimization parameters for each sub-problem may be tuned

to best meet the demands of a given scenario, allowing for a wide degree of flexibility that is

not present in prior works which formulate solutions to the bus charge problem as a single

program.

4.10.1 Overall Performance

In this section, we compare the proposed method with a baseline algorithm and a

method developed by [44] The baseline method models how bus drivers charge their electric

vehicles at the Utah Transit Authority in Salt Lake City, Utah. At UTA, when bus drivers

arrive at the station, they refuel their electric buses whenever a charger is available so

that the number of charge sessions is maximized. The method from [44] works somewhat

differently by minimizing the cost of energy with respect to the time of use tariffs µe−on

and µe−off .

The comparison we observe is given for a 10-bus, 10-charger scenario and a single

group. Each method was used to compute a charge schedule and the costs from demand,

facilities, and energy charges are given in Fig. 4.12. Note how the baseline algorithm

suffers significantly from the demand charges associated with On-Peak Power, and [44]

incurs additional cost from the facilities charges, indicating that an emphasis on energy

charges and habitual charging patterns can be improved.

We observe where the differences in cost originate in Fig. 4.14. Observe how the

baseline charge profile achieved the largest 15-minute average power between 19:12 and 21:36
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Fig. 4.12: Cost comparison with prior work

which is during on-peak hours and consequently yielded the large On-Peak Power charges

given in Fig. 4.12. Additionally, note how the proposed method maintains a relatively flat

power profile so that the load is balanced throughout the day which we investigate in Fig.

4.13.

In Fig. 4.13, note how the proposed method produces a bus load that mirrors the

uncontrolled load, yielding the flat load profile from Fig. 4.14 which is especially prevalent

from 7:12 to 14:24. The results show that the proposed method works well, outperforming

both historical patterns at UTA as well and improves upon prior academic techniques.
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Fig. 4.13: Comparison between uncontrolled and bus loads
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Fig. 4.14: 15-Minute average power for one day
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Fig. 4.15: Comparison of charge session duration vs average charge rate

4.10.2 Optimality Gaps and Contention

In the previous section, we discussed performance of the proposed method when each

program is solved to an optimal solution. In general, the most computationally demanding

solution addressed bus-to-charger placement and generally requires a gap of 1 × 10−5 for

optimality. This work also seeks to address how to compute a solution in a scalable manner

and so this section reviews computational time as the number of buses increases.

This section considers a 7-charger scenario and compares runtime results for 8, 9, and

10 buses to illustrate how runtimes for set optimality gaps change as contention increases.

Fig. 4.16 shows how the computational time increases as the optimality gap decreases. Note

how the computational time suddenly increases as the gap decreases, a phenomena which is

exacerbated as contention increases. Additionally, note that the optimality gaps are small

even before the sudden increase in runtime indicating that it may not be necessary to solve

past the turning point where the runtime suddenly increases.

4.10.3 Contention: Sub-Optimal Schedules

In the previous section we observed that the proposed method cannot scale with con-

tention if the optimality gap dips below the turning point where runtime suddenly increases.

In this section, we show that a relaxed optimality gap in the charger placement problem
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Fig. 4.16: Comparison of Runtime for a 7-Charger Scenario

may result in an undesirable solution and consequently that there exist scenarios that re-

quire small optimality gaps which normally lie beyond the turning point shown in Fig. 4.16,

indicating the need to reduce the charger assignment problem’s computational complexity.

Fig. 4.15 displays the charge session durations as a function of average charge rate

for two 18 bus 6 charger scenarios where the first was computed using a small optimality

gap and the second resulted when the gap was relaxed. Note how the charge sessions from

the optimal solution tend to have larger session durations and lower charge rates than the

relaxed solution which is desired because sessions with low charge rates and long durations

are simpler to carry out in practice.

Figures 4.17 and 4.18 show the corresponding optimal and relaxed charge plans by

letting the color at the i, j location represent the charge rate for bus i at time j and show

why an optimal solution to the charger assignment problem yields better charge sessions.

Observe how the first sessions for buses 1 – 4 and 6 – 13 are assigned to a single charger in the

relaxed solution, which compresses the charge sessions to accommodate the large number of

buses while the remaining chargers appear to have one session at most. In comparison, the

optimal solution in Fig. 4.18 has a more evenly distributed session load for each charger so

that each session is lengthened, leading to lower charge rates.

It is also interesting to note that the monthly costs of each solution may or may not
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Fig. 4.18: Routes with a small gap in the route placement problem

be equivalent even though an optimal solution is clearly superior. Therefore, a small gap

is required to consistently achieve optimal session placement. We also know from Fig. 4.16

that small optimality gaps may increase the number of computations so that the charger

assignment problem becomes intractable for large numbers of buses.

4.10.4 The Importance of Groups

One contribution this work provides is a scalable way to compute cost-oriented charge

schedules. We know from the previous section that the charger assignment problem will not

scale for small optimality gaps. This section describes how the computational complexity

of the charger assignment problem can be managed by separating the buses into groups so

that the charger assignment problem can be solved for each group independently.

In this section, we consider a 18 bus, 12 charger scenario with a 0.13% gap in the

charger assignment problem. Fig. 4.19, shows the respective runtimes for a one and two

group scenario as computed in Section 4.4. Note how the runtime for the two group sce-

nario is several orders of magnitude less then the runtime for the single group case which
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Fig. 4.19: Runtimes for a 18 bus 12 charger scenario at a 0.13% gap

demonstrates how a small number of groups can manage the runtime for optimal charger

assignment solutions.

4.10.5 Effects of defragmentation

This paper also addresses the operational preference to consolidate charge sessions

when possible. This section demonstrates the effectiveness of the defragmentation method

given in Section 4.5 and how consolidation affects the monthly cost. In Section 4.5, the

threshold for defragmentation is given by the minimum allowable energy per charge session.

In this section we compare two 40 bus 7 charger scenarios where the first contains results

without defragmentation and the second consolidates charge sessions so that each session

delivers at least 30 kWh. The results for each session are presented in Figs. 4.21 and 4.20

where the color of i, j element of a figure represents the charge rate for bus i during time

j. Note how Fig. 4.21 contains many small an inconsequential charge sessions and requires

each bus to charge each time it enters the station. In comparison, Fig. 4.20 contains only

a handful of charge sessions so that each bus only need charge 4 – 5 times throughout the

day.

Furthermore, Fig. 4.22 demonstrates that despite the additional constraints associated
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Fig. 4.20: Routes with De-Fragmentation
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Fig. 4.21: Routes without De-Fragmentation

with consolidation, the monthly cost remains consistent over a large window of thresholds.

As the minimum allowable energy per session increases, the number of binary variables in

the defragmentation problem increases, resulting in significant runtimes for the defragmen-

tation problem as shown in Fig. 4.23. However, because buses are divided into groups prior

to defragmentation, the smaller groups decrease the computational complexity for defrag-

mentation so that larger consolidation thresholds can be applied in a scalable manner.

4.10.6 Scalability

In this section, we consolidate what we have learned in the previous sections to demon-

strate how the proposed framework can be used to compute a scalable and cost effective

solution for large numbers of buses. This section focuses on a scenario with a minimum

energy per session of 20 kWh, a relaxed gap for the charger assignment solution, and a

single group.
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The results given in Fig. 4.24 show a runtime that generally increases by one second

per bus from 10 to 110 buses. One would expect the runtime to increase at least on the

order of O(n2) for a globally optimal solution because of the coupling between bus variables.

The fact that the proposed method appears linear on the given range indicates a scalable

solution.

Generally, one would also expect such savings to come with significant increases to the

monthly cost. The results in Fig. 4.25 however demonstrate how the proposed solution

yields a quasi-linear increase of approximately $404.10 dollars per bus per month.

4.11 Conclusions

In summary, this paper proposes a method to compute cost-oriented charge schedules

for large numbers of battery electric buses by dividing the charge problem into several sub-

problems which focus on energy placement and group separation, charge session length and

assignment, and cost optimization. The proposed method has been shown to scale as both

the runtime and monthly cost increase linearly with the number of buses.

Furthermore, because the proposed method contains a number of sub-problems, setting

the optimization criteria for each sub-problem gives the user flexibility so that the proposed

method can be adapted to solve a variety of scenarios and optimization preferences.
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Variable Description Range Variable Description Range

Indices

i Bus index N j Time Index N

k Charger index N r Route Index

m group index N

Optimal Solution — Formulation

nbus
The number of buses in the op-
timization framework.

Z ntime
The number of time indices in
a day.

Z+

bp(i,j)
The average power consumed
by bus i during time period j.

R tj
The time at time index j. This
paper also refers to the period
of time from tj to tj+1 as “pe-
riod tj”.

R

b A vector containing each value
for bp(i,j).

Rnbus·ntime Ã The complement of A. i× j

A
The set of all i × j elements
where bus i can charge at time
index j

i× j pmax

The maximum power a bus
charger can deliver to a bus
in kW. This paper assumes a
value of 350 for most examples
and results.

R+

Optimal Solution — Battery

hmin
The minimum allowable state
of charge

(0, hmax) hmax The maximum state of charge R+

ηi
The beginning state of charge
for bus i

(hmin, hmax)h(ij)
The state of charge for bus i at
time tj .

(hmin, hmax)
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∆T
The change in time from tj to
tj+1

R+ h
A vector containing all state of
charge values.

Rnbus·ntime
+

δ(ij)
The battery discharge for bus
i during time period j.

R+ h(i, end) Bus i’s final state of charge. (hmin, hmax)

Optimal Solution — Cumulative Load Management

ncharger
The time index for the start of
bus i’s jth stop

Z+ pc(j)

The average power consumed
by all buses during time period
j.

R

pc
A vector containing all values
of pc(j).

Rntime
+ Jthrash

A secondary objective function
which penalizes multiple plug-
in instances per charge session.

R+

g(i, j)

A slack variable used to com-
pute the absolute value of
|bp(i,j) − bp(i,j−1)|

R+

Optimal Solution — Objective

µe-on On-Peak Energy Rate R+ µe-off Off-Peak Energy Rate R+

µp-on On-Peak Demand Power Rate R+ µp-all Facilities Power Rate R+

Son The set of on-peak time indices {1, ..., ntime} pdemand
Maximum average power dur-
ing on-peak periods

R

pfacilities
Maximum average power over
all time instances.

R+ pt(j)

The total average power co
consumed by both the bus
chargers and the uncontrolled
loads.

Rntime
+
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u(j)

The average power over time j
consumed by the uncontrolled
loads

Rntime
+ pt

a vector containing pt(i) for all
i.

Rntime
+

eon

The total amount of energy
consumed by the bus chargers
and uncontrolled loads during
off-peak hours.

R+ eoff

The total energy consumed by
the bus chargers and uncon-
trolled loads during on-peak
hours.

R+

Jcost

The section of the objective
function pertaining to the fis-
cal expense of charging buses.

R Jall
The expression for the com-
plete objective function.

R

Scalability

ngroup

The number of groups in which
to divide the buses and avail-
able chargers in preparation
for the p4, p5, and p6.

Z+ nmcharger

The number of chargers as-
signed to group m.

Z+

nmbus

The number of buses in group
m.

Z+ p(j,m)

The total power used during
time index j by all buses in
group m.

R+

β(i,m)

A binary selector variable
which is one when bus i is in
group m and zero otherwise.

{0, 1} nmcharger

The number of chargers as-
signed to group m

Z+

φ(i, i′)

The inner product of the opti-
mal charge schedules for buses
i and i′ respectively.

R+ v(i, i′, g)

A variable that is w(i, i′) when
buses i and i′ are in group g
and zero otherwise.

Z+

Ms
The maximum value for
φ(i, i′).

R+ Jselect
The objective function for the
group-selection problem

R+

Defragmentation
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θ(i, r)

A binary variable which is one
when charge session r from bus
i will be used in a defrag-
mented solution.

{0, 1} ρ(i, r)

A vector whose elements are
equal to ∆T during time in-
dices when bus i is charging
during charge session r and
zero otherwise.

Rntime

ψ(i, j)

The minimum allowable en-
ergy delivered to bus i during
charge session r where the ses-
sion in question is considered
“active”.

R ω
The minimum allowable en-
ergy for any charge session.

R

emax
The maximum allowable en-
ergy delivered in any session.

R

Charge Schedules

a(i, r)

The beginning of the allowable
charge interval for bus i’s rth

charge session.
R+ b(i, r)

The commanded start time for
bus i’s rth charge session

N

f(i, r)
The commanded end time for
bus i’s rth charge session.

R+ d(i, r)

The end time of the allowable
charge interval for bus i’s rth

charge session.
R+

σ(i, r, k)

A selector variable which is one
when bus i charges at charger
k for session r.

{0, 1} M
The number of seconds in a
day

Z+

l(i, r, i′, r′)

A selector variable which is one
when bus i charges before bus
i′ during the r and r′ sessions
respectively.

{0, 1}

Optimizing Charge Schedules

c(s, i, r)
The start time for bus i’s rth

charge session.
R c(f, i, r)

The stop time for bus i’s rth

charge session.
R
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c(a, i, r)
The arrival time of bus i for
charge session r.

R c(d, i, r)

The departure time for bus i
after having completed the rth

charge session
R

Jwindow

The loss function which drives
charge windows to the desired
length.

R

Multi-Rate Charging

x(i, j)

The final charge schedule for
bus i at time j, yielding the
power at which bus i will
charge.

R+ z(j)
The total power used by all
buses at time j. R+

γ(i, d)

A binary vector which is one
at all time steps where bus i
charges during charge session
d.

{0, 1}ntime e(i, r)

The amount of energy to be de-
livered to bus i during charge
session r.

R+

Jmulti-rate

The objective function over
which we minimize to solve the
multi-rate section of the bus
charge problem.

R+
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CHAPTER 5

Conclusions

The research objective for this dissertation was to find a cost effective way to charge

large BEB fleets with a solution which addressed the following considerations: battery

capacity, BEB state of charge and energy demands, bus availability, contention for chargers,

charger power capacity, smooth charge schedules, meaningful charge sessions, precise charge

plans, and manageable compute times.

Because this dissertation follows a multi-paper format, we begin exploring solutions

to the charge problem in Chapter 2 which formulates the charge problem discretely as a

graph search problem. We found that solutions to this problem addressed a number of

the aforementioned constraints including battery capacity, route energy demands, meter

aggregation and arrival and departure times so that the plan did not impact bus schedules

but fell short in two ways. First, the schedule was only as precise as the granularity of

the temporal discretization. More precision required many additional variables, making the

problem intractable for precise solutions. Second, more buses introduced more variables

making this method computationally expensive for fleets of size 20 and computationally

infeasible after 40 on a desktop computer.

Chapter 3 focuses on a method which computes precise charge schedules by starting

with a bin packing approach to charge scheduling so that the charge plan variables are

continuous instead of discrete which demonstrated significant improvements in compute

time as a function of accuracy. However, Chapter 3 does not allow for multi-rate charging

and continues to fail with fleet sizes surpassing 40 BEBs because the compute time quickly

increases with the number of buses.

Finally, Chapter 4 organizes the desired solution features in the charge problem into

sub-problems which make up an eight-part solution where each succeeding problem uses

information in the solutions from previous problems to simplify their formulation. Addi-
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tionally, the multi-problem framework allows the user to specify different optimality criteria

for each sub-problem which makes the approach in Chapter 4 flexible and able to scale both

computationally and cost-wise with different environments and scenarios. Results for Chap-

ter 4 show how the method from Chapter 4 can compute cost-oriented charge plans for 110

buses in under two minutes which is significant.
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CHAPTER 6

Future Work

Findings from this dissertation have demonstrated that not only can we find charge

plans that minimize cost for BEB fleets, but we can also find these plans with manageable

compute time. Future work might extend the results from this dissertation in a number of

ways.

A likely extension of this work might discuss how to optimally charge BEB fleets when

the charging infrastructure is decentralized so that there are more than one charge station.

Up to this point, we have only considered availability in terms of binary parameters, 0 if

a bus is not available, and 1 if the bus is in the station. Adding more than one charge

station changes that underlying assumption so that availability depends on which station a

bus enters.

Electric vehicles may also be desired for a police force because they accelerate quickly

and would do well to support law enforcement. Planning for patrol routes would be difficult

as each patrol vehicle would need to account for state of charge, availability, power, etc. but

must also be ready for the unexpected car chase. The methods in this dissertation could

also be used to plan for Electric postal or UPS vehicles for similar reasons.

Much of this work may also transfer to USU’s recent “connected communities” program

which looks at methods for allocating power for buildings and apartment complexes. In fact,

p1 from Chapter 4 may be sufficient because buildings are always connected to the grid,

making them perpetually available to “charge” or draw power.
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