
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations, Spring
1920 to Summer 2023 Graduate Studies

8-2023

Physics-Guided Deep Learning for Solar Wind Modeling at L1 Physics-Guided Deep Learning for Solar Wind Modeling at L1

Point Point

Robert M. Johnson
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons, and the Data Science Commons

Recommended Citation Recommended Citation
Johnson, Robert M., "Physics-Guided Deep Learning for Solar Wind Modeling at L1 Point" (2023). All
Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 8871.
https://digitalcommons.usu.edu/etd/8871

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations, Spring 1920 to Summer 2023 by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F8871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.usu.edu%2Fetd%2F8871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8871?utm_source=digitalcommons.usu.edu%2Fetd%2F8871&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

PHYSICS-GUIDED DEEP LEARNING FOR SOLAR WIND MODELING AT L1

POINT

by

Robert M. Johnson

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Data Science

Approved:

Soukaina Filali Bourbrahimi, Ph.D. Mario Harper, Ph.D.
Major Professor Committee Member

Mike Taylor, Ph.D. D. Richard Cutler, Ph.D.
Committee Member Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2023

ii

Copyright © Robert M. Johnson 2023

All Rights Reserved

iii

ABSTRACT

Physics-guided Deep Learning for Solar Wind Modeling at L1 point

by

Robert M. Johnson, Master of Science

Utah State University, 2023

Major Professor: Soukaina Filali Bourbrahimi, Ph.D.
Department: Computer Science

Solar wind modeling is categorized into empirical and physics-based models, both of

which predict the properties of solar wind in different parts of the heliosphere. Empirical

models are relatively inexpensive to run and have shown great success at predicting the solar

wind at the L1 Lagrange point. Physics-based models provide more sophisticated models

based on magnetohydrodynamics (MHD) that are computationally expensive to run. In this

paper, we propose to combine empirical and physics-based models by developing a physics-

guided neural network for solar wind prediction. We show the variability of physics-guided

loss across multiple deep-learning models. We then discuss the strengths of physics-guided

neural networks under various constraints to inform us more about the characteristics of

the input and output data. My main contributions in this thesis are:

1. The putting forth of a novel physics-guided loss function for solar wind prediction;

2. A discussion on the data, and how it can best be used;

3. And finally and most importantly, showing that while physics-guided loss functions

can provide certain networks with aid in physics related problems, they are not a silver

bullet, and are not always guaranteed to improve performance.

(62 pages)

iv

PUBLIC ABSTRACT

Physics-guided Deep Learning for Solar Wind Modeling at L1 point

Robert M. Johnson

Neural networks are adept at finding patterns that are too long and too small for

humans to find in data. Usually, this power is used to generate predictions with greater

accuracy than most alternative models. However, we can also use this power to understand

more about the data we train these networks on. We do this by changing the data that

the networks train on and the data they are tested on. This allows us to both control the

maximum length of a pattern and to compare data between different groups, in our case,

different solar cycles. This thesis is our attempt to understand solar wind data better.

We do this by proposing a physics based framework and comparing the results of different

inputs and outputs through different networks. These results show three major things:

1, that training networks using the physical law of Ohm’s law for an ideal plasma can

improve network performance predictions; 2, that the specific characteristics of different

solar cycles make them more suitable for training or testing; and 3, that while physics guided

loss functions can be helpful in certain situations, they are no silver bullet to improved

predictions.

v

ACRONYMS

ACE Advanced Composition Explorer

Bx,y,z the three components of the magnetic field

CME coronal mass ejections

CNN convolutional neural network

FAIR findability, accessibility, interoperability, and reusability

GPS global positioning system

GRU gated recurrent unit network

IMP Interplanetary Monitoring Platform

JAXA Japanese Aerospace Exploration Agency

LSTM long short-term memory network

MHD magnetohydrodynamic

NASA national air and space administration

NN neural network

OMNI OMNI is a project name by NASA, not an acronym.

PGNN physics-guided neural network

ResNet residual neural network

SEP solar energetic particles

Vx,y,z the three components of the velocity field

WSA-Enlil Wang-Sheely-Arge Enlil

vi

ACKNOWLEDGMENTS

I would like to thank my advisor, Soukaina Filali Bourbrahimi, for helping me to find

a project on which I could make a difference.

I would like to thank my father, Randy Johnson, for helping to foster my curiosity and

desire to learn about the world, and for pushing me to take a computer science course a

semester earlier than I expected.

I would like to thank my brother, Topher Johnson, for going on his mission between

those semesters, causing my father to give me the aforementioned advice.

I would like to thank my mother, Shauna Johnson, for being both patient and consistent

with me, helping me to get the grades I needed to attend this prestigious university.

I would like to thank the university for providing an environment in which I could

thrive and excel.

Finally, I would like to thank my Fiance, Emily Williams, for helping me to stay

consistent in my thesis writing.

Robert M. Johnson

vii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACRONYMS . v

ACKNOWLEDGMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

1 Introduction . 1
1.1 What is solar wind . 1
1.2 Why is it important to understand solar wind 1
1.3 What are neural networks . 2
1.4 Chapter organization . 2

2 Related Works . 4

3 Data . 6
3.1 Origin . 6
3.2 Form . 6
3.3 Data Sources . 7
3.4 Data Pre-processing . 8
3.5 Exploratory Data Analysis . 8
3.6 Data normalization . 10

3.6.1 No normalization . 11
3.6.2 Z-normalization . 11
3.6.3 Min-max normalization . 12
3.6.4 Max-normalization . 12

4 Ohm’s Law Constraint . 13
4.1 Derivation . 13
4.2 Testing the validity of the equation . 14

5 Methodology . 15
5.1 Ohm’s law-guided Neural Network for Solar Wind Prediction 15
5.2 Baselines . 16

5.2.1 Time-based CNN . 16
5.2.2 ResNet . 17
5.2.3 RotateNet . 17
5.2.4 LSTM . 17

viii

5.2.5 GRU . 18
5.3 Experimental Setup & Results . 18
5.4 A check on the validity of our routine . 20

6 Feature and Target Selection . 21

7 Case Study: Solar Cycles . 26
7.1 Baseline neural networks Vs. those in this experiment 26
7.2 Networks trained on solar cycles 22 and 24, then tested on solar cycle 23. . 32
7.3 Networks trained on solar cycles 23 and 24, then tested on solar cycle 22. . 35
7.4 Networks trained on solar cycles 22 and 23, then tested on solar cycle 24. . 36

8 Sequence Analysis . 37
8.1 Procedure . 37

8.1.1 GRU . 37
8.1.2 LSTM . 38
8.1.3 ResNet . 39
8.1.4 RotateNet and time-based CNN . 39
8.1.5 Best Overall . 41

9 Conclusion . 42
9.1 Future work . 42

REFERENCES . 43

APPENDIX . 46

ix

LIST OF TABLES

Table Page

3.1 OMNI features and metadata . 7

3.2 Standard deviations and means of several solar wind parameters throughout
different solar cycles . 10

7.1 Counts of hours with available data. Also shown are counts of non-overlapping
input planes of given numbers of hours. 36

x

LIST OF FIGURES

Figure Page

1.1 Solar wind traveling to Earth at the speed of 300 kilometers per second
(Image Courteousy from [1]) . 2

3.1 OMNI time series data snapshot for the year 1992 7

3.2 The process by which NASA collects Solar Wind data and makes it available
for public use. 8

3.3 Scatterplots of E as a function of ||V̂ × B̂||2 under different data normaliza-
tions. The green lines show the relationship |E| − α||V̂ × B̂||2 = 0 which
follows the adapted Ohm’s Law. 11

5.1 A graph of modified R-squared shown in red versus the input R-squared
metric in blue. The difference between the two is plotted in green, with the
maximum difference shown as a point. Graph provided by Desmos.com. . . 19

5.2 Training and Validation loss over 700 epochs for a time-based convolutional
neural network. 20

6.1 Event plots showing the transformed R-squared values of our sequence anal-
ysis, grouped by target. 22

6.2 Event plots showing the transformed R-squared values of our sequence anal-
ysis, grouped by inputs. 22

6.3 Event plots showing the transformed R-squared values of our sequence anal-
ysis, grouped by network. 23

6.4 The p-values measuring the effectiveness of Ohm’s law physics-based loss
(n=50). 25

7.1 Results of an experiment in which an LSTM with hyperparameters derived
from earlier experiments was tested on the captioned solar cycle, having
been trained on the remaining two. This was repeated ten times to establish
a mean. Subfigure 7.1(d) contains a box plot of the final testing accuracies
of the runs, graphed on the same axis to allow for comparison. All figures
are log scaled. 27

xi

7.2 Results of an experiment in which a time-based CNN with hyperparameters
derived from earlier experiments was tested on the captioned solar cycle,
having been trained on the remaining two. This was repeated ten times to
establish a mean. Subfigure 7.2(d) contains a box plot of the final testing
accuracies of the runs, graphed on the same axis to allow for comparison. All
figures are log scaled. 28

7.3 Results of an experiment in which a ResNet with hyperparameters derived
from earlier experiments was tested on the captioned solar cycle, having
been trained on the remaining two. This was repeated ten times to establish
a mean. Subfigure 7.3(d) contains a box plot of the final testing accuracies
of the runs, graphed on the same axis to allow for comparison. All figures
are log scaled. 29

7.4 Results of an experiment in which a GRU network with hyperparameters
derived from earlier experiments was tested on the captioned solar cycle,
having been trained on the remaining two. This was repeated ten times to
establish a mean. Subfigure 7.4(d) contains a box plot of the final testing
accuracies of the runs, graphed on the same axis to allow for comparison. All
figures are log scaled. 30

7.5 Results of an experiment in which a RotateNet with hyperparameters derived
from earlier experiments was tested on the captioned solar cycle, having been
trained on the remaining two. This was repeated ten times to establish a
mean. Subfigure 7.5(d) contains a box plot of the final testing accuracies of
the runs, graphed on the same axis to allow for comparison. All figures are
log scaled. 31

7.6 A kernel density estimate of the distribution of the X component of the
velocity field. 33

7.7 A kernel density estimate of the distribution of the Y component of the
velocity field. 33

7.8 A kernel density estimate of the distribution of the Z component of the
velocity field. 33

7.9 A kernel density estimate of the distribution of the X component of the
magnetic field. 33

7.10 A kernel density estimate of the distribution of the Y component of the
magnetic field. 34

7.11 A kernel density estimate of the distribution of the Z component of the
magnetic field. 34

7.12 A kernel density estimate of the distribution of the Electric Field strength. 34

xii

7.13 A plot of the mean number of sunspots in a given month, from the beginning
of solar cycle 22 in 1986 to the end of solar cycle 24 in 2020. A 13-month
average is shown in red. Image courtesy of spaceweatherlive.com 35

8.1 Analysis of the effect of different priors and different spans on our best-
performing GRU network, in both mean squared error, and R-squared met-
rics. Note that while a low MSE is preferred, a higher R-squared means
better performance. 38

8.2 Analysis of the effect of different priors and different spans on our best-
performing LSTM network, in both mean squared error, and R-squared met-
rics. Note that while a low MSE is preferred, a higher R-squared means
better performance. 38

8.3 Analysis of the effect of different priors and different spans on our best-
performing ResNet, in both mean squared error, and R-squared metrics.
Note that while a low MSE is preferred, a higher R-squared means better
performance. 39

8.4 Analysis of the effect of different priors and different spans on our best-
performing rotational resNet, in both mean squared error, and R-squared
metrics. Note that while a low MSE is preferred, a higher R-squared means
better performance. 40

8.5 Analysis of the effect of different priors and different spans on our best-
performing convolutional neural network, in both mean squared error, and
R-squared metrics. Note that while a low MSE is preferred, a higher R-
squared means better performance. 40

8.6 Analysis of the effect of different priors and different spans on our best-
performing networks overall. 41

1 Appendix: Probabilities of achieving a given R-squared threshold with GRU
network. (The maximum R-squared achieved by this network was 0.158) . . 47

2 Appendix: Probabilities of achieving a given R-squared threshold with a
time-constrained ResNet. (The maximum R-squared achieved by this network
was 0.175) . 48

3 Appendix: Probabilities of achieving a given R-squared threshold with a
time-based CNN. (The maximum R-squared achieved by this network was
0.178) . 49

4 Appendix: Probabilities of achieving a given R-squared threshold with a
rotating ResNet implementation. (The maximum R-squared achieved by this
network was 0.087) . 50

5 Appendix: Probabilities of achieving a given R-squared threshold with an
LSTM network. (The maximum R-squared achieved by this network was
0.173) . 50

CHAPTER 1

Introduction

1.1 What is solar wind

The sun is a ball of hot plasma, powered by nuclear fusion reactions in its core. The

energy from these reactions propagates outwards until the photosphere, where the energy

radiates outward as light. Some of this energy is instead transferred into kinetic energy,

which is released when particles obtain enough kinetic energy to reach escape velocity and

leave the sun. This charged stream of plasma is then known as solar wind. The solar wind

plasma can be considered an ideal plasma, or in other words, the electrostatic force controls

the movements of the plasma more than the processes of ordinary gas kinetics [2].

1.2 Why is it important to understand solar wind

The high-velocity particles of solar wind can have a variety of effects when they ap-

proach the Earth. Some are relatively harmless and beautiful, such as the northern lights

visible when the solar wind interacts with Earth’s atmosphere. Others are more dangerous,

like causing cancer for orbiting astronauts. Others have a larger, though less life-threatening

effect of causing shorts and other damage to satellites [3]. Knowing how to best prepare for

these events requires being able to predict when they will happen and how intense they will

be. This is why one of the latest United States executive orders related to space weather

studies urges scientists to direct attention to develop a response plan to severe space weather

conditions [4].

In addition to these obvious benefits, understanding the phenomena that lead to solar

wind events can also help us understand the sun itself. Finding the difference between the

slow and fast solar wind has helped us to find the causes of them, such as coronal holes [5].

As we understand more about the wind the sun sends our way, we have the opportunity

2

Fig. 1.1: Solar wind traveling to Earth at the speed of 300 kilometers per second (Image
Courteousy from [1])

to understand more about why those things are sent and more about what processes send

them.

1.3 What are neural networks

One technology that has improved our ability to predict future events is the neural

network. Comprised of many parameters and the linear algebra holding them together,

neural networks have revolutionized the field of data science. As our world generates more

data that is accurately captured and kept, we have been able to learn more about how to

build better neural networks that can see patterns invisible to the human eye.

Neural networks work by taking an input, then performing linear algebraic processes

on that input and on the results of those processes. At the end of that loop, a prediction is

generated. That prediction can then be compared to the truth, and the difference between

the two can be pushed backwards into the neural network to improve the next prediction

that goes through it. This process can be continued until a desired accuracy threshold is

reached. Using this technology, computers have been able to identify objects in a picture,

translate languages, and compile information for human consumption.

1.4 Chapter organization

The rest of the paper is organized as follows: Chapter 3 describes the data used in this

3

study, Chapter 4 defines the proposed Ohm’s law constraint, followed by a description of the

methods and experimental results in Chapter 5 and Chapter 5.3 respectively. An analysis of

the data available, partitioned by solar cycle, is put forth in Chapter 7. Chapter 8 continues

this usage of using the training of neural networks with optimized hyperparameters to

understand solar wind data by comparing the effects of varying the span and prior of the

input space. Chapter 6 considers the interconnectedness of our inputs and outputs by

performing a small amount of feature selection on both our input values and our target

values. Finally, Chapter 9 concludes the paper and shows potential directions for future

works.

4

CHAPTER 2

Related Works

Since the discovery of solar wind over half a century ago, many studies have been

conducted to predict solar wind. One of the highly adopted physics-based solar wind fore-

casting models is that of the Wang-Sheely-Arge Enlil (WSA-Enlil) hybrid model - a three-

dimensional magneto-hydrodynamic (MHD) model. WSA-Enlil starts by taking the input

state of the sun at a given time and runs it through relevant MHD equations. The model

then propagates the result outward from the sun and forward in time to forecast solar wind

speeds three to four days in advance [6].

Several incremental works that build on the WSA-Enlil have been proposed. The

increment is done either by slightly improving the accuracy of the model or by making the

MHD equation computations run faster. Yu et al. propose an improved WSA-Enlil by

approximating the MHD computation through key assumptions. The improved WSA-Enlil

was reduced from a three-dimensional problem into a one-dimensional problem without

compromising significant accuracy [7]. Yu et al. focused their modeling only on predicting

the slow solar wind since fast solar wind is much more easily predicted by looking at the

sizes of the sources of the fast solar wind - namely, coronal holes [5]. Finally, Liu et al.

developed a new forecasting model that relies on dark areas of the sun to produce solar

wind forecasts [8].

The advent of large neural networks has also allowed other researchers to improve over

WSA-Enlil by using more data-driven methods, as opposed to purely physics-based systems

used previously. Yang et al. achieved better results at 2.5 solar radii by using a three-layer

fully connected network to establish the relationship between the polarized magnetic field

and the electron density and solar wind velocity [9]. The same group also improved upon

their work by enforcing self-consistent boundary conditions. Hemapriya et al. developed a

convolutional neural network online model trained on solar images to gain a comprehensive

5

knowledge of the solar activity prior to predicting solar wind velocities [10]. Leitner et

al. found the distribution of solar wind to be quasi-invariant. Due to this quasi-invariant

nature, we propose to adopt a physics-guided neural network (PGNN) as a novel approach

for solar wind prediction. Specifically, our paper contributions are summarized below:

1. We model the solar wind prediction problem as a multivariate time series prediction

task and propose a novel loss function based on Ohm’s law for an ideal plasma.

2. We train multiple state-of-the-art deep learning forecasting models and show the su-

periority of our physics loss.

3. We explore multiple data normalizations and assess their effect on our model.

4. We made our source code open-source in a project website1 that meets the principles

of Findability, Accessibility, Interoperability, and Reusability (FAIR) [11].

1https://sites.google.com/view/solarwindprediction/

https://sites.google.com/view/solarwindprediction/

6

CHAPTER 3

Data

Without collected data, we cannot check if our predictions are correct. In this chapter,

we show the origin of our data, the form of our data, and the sources of our data. We also

cover how we pre-process the data, some summary statistics about the data, and talk about

the normalization methods used to prepare the data for consumption by neural networks.

3.1 Origin

Our data originates from the NASA OMNI multi-spacecraft data set of near-Earth solar

wind parameters [12]. Table 3.1 summarizes the seven OMNI parameters that we used for

prediction. Bx, By, and Bz are the three components of the magnetic field measured by a

three-axis teslameter (Gauss meter). The velocity sensors measure the three-dimensional

velocity distribution functions of electrons and ions (Vx, Vy, and Vz) [13]. Finally, the

electric field parameter E refers to the force exercised by the physical field that surrounds

electrically charged particles.

3.2 Form

The data set consists of 5-minute time resolution multivariate time series data, which

we preprocess by averaging into a 1-hour time resolution. We used 12 hours (prior) as

the number of hours prior to the solar wind event. The prior is the interval of time in

the future when our model should be able to predict the parameters of the ambient solar

wind. In other terms, we investigated the possibility of predicting the ambient solar wind

characteristics from the electrical field, velocity, and magnetic field characteristics 12 hours

before its occurrence. We considered a span of 24 hours, which corresponds to the number

of hours we observe the solar wind characteristics. figure 3.1 illustrates the time series of

the seven solar wind physical parameters we chose to forecast for the year 1992.

7

00:00
22 Dec
1991

00:00
01 Mar
1992

00:00
10 May
1992

00:00
19 Jul
1992

00:00
27 Sep
1992

00:00
06 Dec
1992

30

20

10

0

10

20

30

BxGSE (nT)
ByGSE (nT)
BzGSE (nT)

00:00
22 Dec
1991

00:00
01 Mar
1992

00:00
10 May
1992

00:00
19 Jul
1992

00:00
27 Sep
1992

00:00
06 Dec
1992

800

600

400

200

0

200

Vx (km s 1)
Vy (km s 1)
Vz (km s 1)

00:00
22 Dec
1991

00:00
01 Mar
1992

00:00
10 May
1992

00:00
19 Jul
1992

00:00
27 Sep
1992

00:00
06 Dec
1992

15

10

5

0

5

10

15

20

Electric Field (mV m 1)

Fig. 3.1: OMNI time series data snapshot for the year 1992

3.3 Data Sources

Our data comes from three satellites: Geotail, a joint mission of NASA and the

Japanese Aerospace Exploration Agency (JAXA); ACE, NASA’s Advanced Composition

Explorer; and Explorer 50, also known as IMP-8, which was the final in a series of the

Interplanetary Monitoring Platform. Geotail is stationed in high elliptical Earth orbit,

launched there in July of 1992. ACE was launched in August 1997 and began operations

in January 1998. ACE maintains its position in the Earth’s L1 Lagrange point, which is

Table 3.1: OMNI features and metadata

Feature Unit Description

E mV/m Electric field

Vx km/s X component of the velocity

Vy km/s Y component of the velocity

Vz km/s Z component of the velocity

Bx nT X component of the magnetic field

By nT Y component of the magnetic field

Bz nT Z component of the magnetic field

8

Fig. 3.2: The process by which NASA collects Solar Wind data and makes it available for
public use.

where the forces due to the gravity of the sun and the Earth are balanced to allow for the

satellite to orbit the Sun with the same period as the Earth. Explorer 50, also known as

IMP-8, was launched in October 1973 and was able to detect solar wind for 7 to 8 days

of every 12 days in orbit. In October 2001 Explorer 50 was terminated as an independent

mission, and the last useful data from it was acquired in October 2006 [14].

3.4 Data Pre-processing

While these satellites have provided our data at a resolution of every minute and every

five minutes, this resolution can have holes without data that are not good for neural network

use. At the same time, a resolution this detailed can make the size of neural networks grow

out of control. Due to this, we performed data preprocessing to obtain a resolution of one

hour, detailed in algorithm 1.

3.5 Exploratory Data Analysis

Table 3.2 contains various statistics about the data used in this study. The magnetic

field parameters are given in nanoTeslas (nT), the electric field parameter in millivolts

9

Algorithm 1 Data Preprocessing

Input: OMNIdata O, with a time resolution of 1-minute intervals, and offset l between the
starts of input planes
Output: Preprocessed data P , with input planes of multivariate time series of length t

1: define data iteration variable id = 0
2: hours = time of last observation - time of first observation
3: Define history H such that it contains an entry Hi,j for each hour i and each parameter

j
4: for each hour ih from 0 to hours do
5: observationCount = 0
6: hourData = 0 for each data entry
7: while ih = O[id]h do
8: hourData += O[id]
9: id+ = 1

10: observationCount += 1
11: end while
12: if observationCount > 0 then
13: Hih = hourData ÷ observationCount
14: else
15: Hih = NaN
16: end if
17: end for
18: Define list S, a list of length hours - t where True means we can start an input plane

from that index
19: for is, iterator through S do
20: if none of S from is − l to is and H has no NaN values in is to is + t then
21: S[is] =True
22: end if
23: end for
24: Define P as a stack of n input planes of length l where n is the sum of S
25: for each true value in S, with is as the index, and ip as the number of iterations of this

loop do
26: P [ip] = H[is : is + t]
27: end for
28: return P

10

Variable Total Mean Total Standard Deviation SC 22 Mean SC 22 Deviation

E 0.006893 1.431 -0.02834 1.526

Bx 0.01461 3.520 0.1071 3.983

By 0.03156 3.987 -0.02035 4.319

Bz 0.01316 2.914 0.09527 3.033

Vx -429.5 101.4 -441.3 105.5

Vy -1.405 22.44 -2.838 21.45

Vz -1.916 20.10 -0.7085 22.83

Variable SC 23 mean SC 23 deviation SC 24 mean SC 24 deviation

E 0.03096 1.604 0.006136 1.146

Bx -0.06340 3.743 0.06063 3.016

By 0.1301 4.283 -0.05330 3.427

Bz -0.01369 3.134 0.002621 2.553

Vx -438.5 103.7 -414.6 93.59

Vy -2.707 23.45 0.3380 21.26

Vz -0.9008 19.89 -3.353 18.47

Table 3.2: Standard deviations and means of several solar wind parameters throughout
different solar cycles

per meter (mV/m), and the velocity is in kilometers per second (km/s). All non-velocity

parameters tend to stay close to zero, which is to be expected since the solar wind does not

carry a very unbalanced charge.

3.6 Data normalization

Neural networks are highly sensitive to variations in the input data [15]; therefore, data

normalization is an important step before model training. In this paper, we considered three

data normalization techniques in addition to the raw non-normalized data. figure 3.3(a)

shows the raw electric field (E) data as a function of ||v × B||2. Figures 3.3(b), 3.3(c),

and 3.3(d) show the same data when normalized using z-norm, 100 to 1000 norm, and the

11

(a) Non-normalized data (b) Z-normalized data

(c) 100-1000 normalized data (d) Max-100 normalized data

Fig. 3.3: Scatterplots of E as a function of ||V̂ × B̂||2 under different data normalizations.
The green lines show the relationship |E|−α||V̂ ×B̂||2 = 0 which follows the adapted Ohm’s
Law.

max-100 data normalization respectively.

3.6.1 No normalization

To establish a coherent baseline, we considered raw non-normalized multivariate time

series as the first data product for training our models. The main limitation of using raw

data stems from the different orders of magnitude of the input physical parameters. This

difference in orders of magnitudes means that the loss is more affected by targets with

larger values than by targets with smaller values for the same percent error. The raw

non-normalized data follows physics Ohm’s law (|E| = ||V̂ × B̂||2) which constrains the

range of possible values (see equation 4.3). To give a general sense of Ohm’s law, the linear

constraints are plotted in green as shown in Figure 3.3.

3.6.2 Z-normalization

A common form of normalization consists of fitting the data to a Gaussian distribution.

12

The normalized values correspond to the number of standard deviations away from the

mean. Standardization is achieved by subtracting the mean of all the data and dividing

it by the standard deviation. In an ideal context, about 68% of the data reside in the

range [-1,1]. The limitation of standardization is that it does not retain the inter-series

relationships.

x′ =
x− µ

σ
(3.1)

3.6.3 Min-max normalization

One of the common data normalizations in the deep learning community is the min-

max normalization from 0 to 1, which is achieved using Equation 3.2. We used a min-max

normalization with xmin = 100 and xmax = 1000. Our motivation for choosing this range

stems from our proposed physics loss that has a zero as a reference point. The [100-1000]

range assures time series data values that are not null. Since the min-max normalization

includes an additional step, the linear physics constraint is not well maintained after nor-

malization. Figure 3.3(c) shows that while the strict less-than relationship is not as clearly

visible as it is in Figure 3.3(a), the data does still cluster together.

x′ =
x− xmin

xmax − xmin
(3.2)

3.6.4 Max-normalization

Max-normalization is achieved by expressing data points as a factor of the maximum

value in the time series as shown in Equation 3.3. The normalization maintains the relation-

ship between pairs of data points and the reference point (zero). This common reference

point allows the proposed physics-based loss to keep the data relationship invariant. Fig-

ure 3.3(d) shows the data distribution under max-normalization. The figure shows that

conservative linear data constraints similar to Figure 3.3(a) could easily be applied.

x′ =
x

xmax
∗ 100 (3.3)

13

CHAPTER 4

Ohm’s Law Constraint

In this work, we propose a guided neural network that relies on a fundamental un-

derlying relationship in the data, known as Ohm’s law for an ideal plasma as defined in

Equation 4.1 [2]. This chapter goes through the derivation of an equation that is usable as

a loss function from Ohm’s law for an ideal plasma and then defends the validity of that

equation in the dataset chosen for this project.

4.1 Derivation

J = σ(E + V ×B), (4.1)

where J is the current vector field, σ is the electrical conductivity scalar, E is the

electric vector field, V is the velocity vector field, and B is the magnetic vector field. Since

the solar wind is made up of about equal parts electrons and protons, J ≈ 0. Equation 4.2

shows the modified Ohm’s law for solar wind.

−E ≈ V ×B. (4.2)

One of our data-level limitations is that while the velocity and magnetic field parameters

are expressed as the three vector quantities that they are, OMNI data only provides one

scalar for the electric field. In order to combine all the parameters into Equation 4.2 we

relaxed the equality into an inequality property. We used the knowledge that the magnitude

norm of the product of three orthogonal component vectors is greater than or equal to the

magnitude of the individual component vectors [16]. Since Equation 4.2 is a vector equality,

the norm of the product of the velocity field and the magnetic field must be greater than

the magnitude of any single component vector of the electric field as defined in Equation

14

4.3.

|E| − α||V̂ × B̂||2 ≤ 0, (4.3)

where α is a constant to allow for unit conversion.

4.2 Testing the validity of the equation

The validity of this equation is visible in Figure 3.3(a), where α||V̂ × B̂||2 is plotted

on the x-axis and E is plotted on the y-axis. Each red point is a specific hour from our

dataset before trimming into our desired size of input plane. Plotted in green is the equality

relation.

While there are visible red dots outside of the green lines in Figure 3.3(a), this figure

doesn’t communicate the number of points in the red region well. Our dataset contains

nearly two hundred and fifty thousand hours of useable data; the number of points that lie

outside of the green bounds is quite small in comparison.

15

CHAPTER 5

Methodology

In this chapter, we take the modified Ohm’s law equation 4.3 and prepare it to be used

for generating loss for neural networks. The neural network architectures to be used are

then proposed and justified. Finally, we propose a modified R-squared metric to allow for

easier graphing.

5.1 Ohm’s law-guided Neural Network for Solar Wind Prediction

To develop a physics-constrained neural network, we rely on a loss function that pe-

nalizes the network based on violations of physics laws, and a physics model input [17]. As

discussed in Chapter 4, our data follows Ohm’s law for an ideal plasma that we modified to

Equation 4.3. Since there is a negativity constraint, we use a rectified linear unit (ReLU)

as shown in Equations 5.1-5.2.

LPHY (Ŷ) = ReLU(H(Ŷ , Y)) (5.1)

H(E, V,B) = −(|E| − α||V̂ × B̂||2) (5.2)

In addition to the physics loss, we used the Root Mean Square Error (RMSE) as the

traditional loss used for continuous values as defined in Equation 5.3. To find a balance

between the two losses, we use a hyper-parameter λ. Our proposed combined physics-

constrained loss function is shown in Equation 5.4.

LRMSE(Ŷ , Y) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (5.3)

L = (1− λ)LRMSE(Ŷ , Y) + λ ∗ LPHY (5.4)

16

The value of this total loss function L is then backpropagated to the network using

the publicly available ADAM optimizer in the PyTorch library, as proposed by [18]. This

leaves our cross-fold validation sequence as dictated in Algorithm 2

Algorithm 2 Grid search with 3 fold cross validation

Input: OMNIdata O, collated into two-dimensional planes composed of d time series of
length l.
Output: The training loss over all 700 epochs, as well as the result of the single tuple of
predictions on the test data

1: Divide O into O1, O2, O3 with 30% of the data each, and Ot with the remaining 10%
for testing

2: for each set of hyperparameters and network in grid do
3: for i in [1,2,3] do
4: initiate model using current set of hyperparameters
5: with Oj such that Oj = O1,2,3 −Oi

6: for 700 epochs do
7: calculate the predictions of the model on Oj

8: calculate the loss using RMSE
9: if Hyperparameters include physics loss then

10: calculate physics loss and add to RMSE Loss
11: end if
12: backpropagate the loss through the network using Adam
13: print the loss to file
14: end for
15: calculate validation loss on Oi

16: print validation loss to file
17: end for
18: generate predictions using the trained model on Ot

19: calculate test R-squared metric
20: print R-squared metric value to file
21: end for

5.2 Baselines

We consider five deep learning baselines in our study that we trained with our proposed

L loss and without physics loss Lphy. In this section, we outline the details of our baselines.

5.2.1 Time-based CNN

Convolutional Neural Networks (CNNs) work on data of sequential nature (e.g., images

17

and maps) that have an underlying dependence between contiguous data points. Since our

multivariate time series data are sequences, we used a modified CNN for the prediction.

The CNN modifications involve using two types of kernels: 1 × n kernels that modify the

univariate time series across the time dimension, and m×n kernels with dimension m being

equal to the number of univariate time series contained in the multivariate time series.

These changes allow our CNN to be aware of how the variables change with time, as well

as how each variable relates to all other variables.

5.2.2 ResNet

Residual Neural Network model (ResNet) is a deeper model that learns how to modify

the existing data to match their correct probability distribution. ResNet models utilize

skip connections to jump over some layers to avoid the vanishing gradients problem. To

augment the ResNet model for time series data, we used the same kernel shapes as used

in the time-based CNN. The other benefit of these skip connections is that it allows our

data to move toward the final step more easily; since each input parameter is reflected in

an output parameter, this means that our output parameters are more likely to be more

correct initially.

5.2.3 RotateNet

RotateNet network takes the multivariate time series input and makes a neural model

that learns how to distinguish between the different geometric transformations (rotations)

performed on the normal multivariate time series matrix. RotateNet is the first method to

discover multivariate time series anomalies by constructing a self-supervised classification

model [19]. The auxiliary expertise learned by the model generates feature detectors that

effectively forecast the next time steps.

5.2.4 LSTM

Long Short-Term Memory (LSTM) is a memory-based model that can handle the com-

plexity of sequence dependence among the input variables by maintaining a state (memory)

18

across very long sequences. One of the ways the model addresses the exploding and van-

ishing gradient problem is by having a forget mechanism that ignores data points based on

a probabilistic model.

5.2.5 GRU

Gated Recurrent Unit (GRU) model has been developed to improve the LSTM model

by adding extra gates to allow the network to extract important bits from sequences [20].

GRU is simpler and faster to train than the LSTM model as they do not require a memory

unit. The GRU model generally performs better on short time sequences compared to the

LSTM model.

5.3 Experimental Setup & Results

To evaluate our proposed baselines with our proposed L loss and without physics loss

Lphy, we split the data into training, validation, and testing sets and used the R-squared

measure as defined in Equation 5.5. Before training our models, we performed a grid search

over the architectures and hyper-parameters of the baseline models. The grid searches were

run on data with a 60/30/10 split, where the first partition is used as training data, the

second as validation data, and the final withheld partition as testing data. After seven

hundred epochs of training, each network was evaluated on the testing data. We repeated

the process three times and averaged the scores to find the optimal hyperparameters with

which we could start our experiments detailed in Chapters 6, 7, and 8.

R2 = 1−
∑

i (yi − ŷi)
2∑

i (yi − ȳ)2
(5.5)

One obstacle presented by using R-squared is the potentially unbounded lower values.

The second term in equation 5.5 cannot be less than zero, as both the top and bottom

are squared real values. This puts a hard upper limit at 1 but means that a bad enough

prediction engine can have arbitrarily bad values. These values can be so large as to

completely destroy any graph they are shown on, so we propose equation 5.6

19

Fig. 5.1: A graph of modified R-squared shown in red versus the input R-squared metric
in blue. The difference between the two is plotted in green, with the maximum difference
shown as a point. Graph provided by Desmos.com.

R2
m = 2

1−
∑

i(yi−ŷi)
2∑

i(yi−ȳ)2 − 1 (5.6)

By using the standard R-squared metric as the exponent of 2, shifted down by one, we

retain a decent approximation of the standard R-squared metric on the range [0,1], maintain

the sign of all values, and change the prior infinite lower bound to a lower bound of -1 as the

standard R-squared metric approaches negative infinity. While this may cost the natural

intuition on the negative values, it allows us to see the complete range of R-squared values

possible, and those given to us by the networks. In Figure 5.1, our modified R-squared is

plotted, alongside the original R-squared and the difference between the two. The largest

difference between the positive input values and their respective outputs is roughly 8%, at

about 5.29. As the inputs go off to negative infinity, our modified values approach negative

one.

20

Fig. 5.2: Training and Validation loss over 700 epochs for a time-based convolutional neural
network.

5.4 A check on the validity of our routine

Figure 5.2 shows the training and validation loss of a single convolutional neural net-

work over the seven hundred epochs that we train it on. This graph contains no major

surprises; at the beginning of the training cycle, loss is higher, and it decreases as more

training is done. As training continues, the validation accuracy of the model starts to

plateau, showing that the model has learned to its capacity. More training is likely to in-

troduce overfitting, where the model learns the particulars of the training data set instead

of the general trends that are present in both the training and the validation sets.

21

CHAPTER 6

Feature and Target Selection

Feature selection is a powerful tool that helps explain which inputs best explain dif-

ferences in output; usually, it is used for problems with a single output. In our case, we

also had multiple targets used for regression, so we applied a similar process to the targets

our networks were trained on. We selected three categories of inputs: all seven available

components of Ohm’s law, designated a; the 3-vector of velocity v; and the 3-vector of the

magnetic field B. We also selected four categories of outputs: the prior three inputs, as well

as just the earthbound component of velocity, shown in these figures as x. We also show

here the difference in using physics based loss for all of these options. We then trained each

of our five networks on each possible pairing of inputs, outputs, and physics loss ten times,

for a total of 1200 individual training and testing cycles. This chapter analyzes the results

of this experiment.

Figures 6.1 to 6.3 each contain all results generated in this process. Due to the four

input parameters (input set, target set, network, if physics loss is enabled) and one output

parameter (modified R-squared, covered in section 5.3), we are faced with the difficult

prospect of showing a five-dimensional space on a two-dimensional page. To overcome this

challenge, we segregate the values based on if physics loss was enabled, with the enabled

loss on the left and with no physics loss on the right; then plot the transformed R-squared

values on the y-axis and place each input parameter on the x-axis on separate graphs. To

give the graphs a measure of homogeneity, we plot each R-squared value as a line composed

of two parts, each part being a color corresponding to one of the non-axis values. These

colors are consistent throughout all three figures; Vx, shown as x, is always plotted in black;

all parameters discussed in the introduction, or a, is always plotted in red; etc. After we

analyzed the data, we performed a one-sided T-test on the data when grouped by network,

for a sample of 50 runs. The p-values from these tests are plotted in Figure 6.4.

22

(a) With physics loss (b) Without physics loss

Fig. 6.1: Event plots showing the transformed R-squared values of our sequence analysis,
grouped by target.

(a) With physics loss (b) Without physics loss

Fig. 6.2: Event plots showing the transformed R-squared values of our sequence analysis,
grouped by inputs.

23

(a) With physics loss (b) Without physics loss

Fig. 6.3: Event plots showing the transformed R-squared values of our sequence analysis,
grouped by network.

As is easily visible in Figure 6.1 and quite apparent in the others, our networks did best

when asked to predict the only output set with only a single value: x. When attempting

to predict a smaller set of output variables, the final linear layers in every neural network

can carry more information related to the desired output. Networks that have to predict

the three vector quantities of B or v have to fit the information for three variables into the

latent space, while networks predicting a need to divide the latent space between all seven

regression targets. However, this division of latent spaces is only strictly harmful when the

networks predicting x have access to the physics based loss. When that extra penalization

is not applied, the networks predicting B or a continued to do well due to the correlation

between the output fields taking on a similar role. This is also visible when predicting v

from B; it appears that the self-correlation from the B field also performs the function of

the physics based loss when considered as an input. The opposite is visible in networks

that learn to predict v and x; without the physics loss to help provide the relationship

between the output parameters, these networks perform considerably worse without any

other changes.

24

Figure 6.2 continues the pattern of either extremely stark effects or hardly any effects

at all. Notable is the lack of high values predicting x from a; this continues the counter-

intuitive pattern from Chapter 8 when more data often meant less accuracy. It is visible

here that physics based loss can help networks pick out which bits of an input space are

more important.

As a more comprehensive analysis of Figure 6.2, the drop in accuracy of predicting x

from v and a with physics loss as opposed to predicting x from B is expected, since both

a and v contain x, while B does not. Another expected variation is the switch of networks

predicting B and those predicting v over the columns corresponding to predicting from B

to predicting from v; naturally, networks with input of the same type as their output will

usually outperform networks trained on data only related to the data they are trying to

predict. Also visible is the rather large difference between networks predicting v from inputs

of v discussed in the analysis of Figure 6.1.

Figure 6.3 is perhaps most interesting due to its lack of variability over columns and

physics based loss. While the effects discussed in the prior paragraphs, namely, the wider

distribution of lower points when not using physics loss, and the improvements in networks

predicting x from a, are still visible, not very much else changes between columns and

between networks informed by the physics loss and those without. Four of the five network

architectures have an upper band from roughly 0.95 to 0.9; all have a high band from 0.85

to 0.8, a middle band from 0.6 to 0.4, and a low band from 0.1 to -.25. The only exceptions

are the lack of an upper band for GRU networks, and the extremely low values attributable

to the fragility of residual-based neural networks.

When we consider the differences and variability discussed in the prior paragraphs,

the results shown in Figure 6.4 are exactly as we expect. Predicting v from v and a as

well as predicting x from a benefit from the additional structure provided by the physics

based loss, where the other target and input combinations do not benefit from it. This

is a very interesting phenomenon that shows that a given physics based loss equation can

perform well in one situation while performing quite poorly in another. All seven of the

25

Fig. 6.4: The p-values measuring the effectiveness of Ohm’s law physics-based loss (n=50).

predicted and input values are subject to Ohm’s law for an ideal plasma, but Ohm’s law is

only useful in niche circumstances. It is the opinion of the authors that when considering

physics-guided neural networks, the set of input and output parameters should be iterated

over in the same initial grid search used to optimize networks for the rest of the experiments

planned.

26

CHAPTER 7

Case Study: Solar Cycles

To start our analysis of the data used in our solar wind prediction, we modified our

cross validation routine to perform on separate solar cycles instead of randomly shuffled

data. This was done with all seven parameters as input and as output. We then picked

the network hyper-parameters that produced the best results most consistently, trained the

networks that used them, and compared the results. These parameters were: an LSTM with

no physics-weighted loss on Z-normalized inputs; a time-based CNN with a loss function

with physics weight 0.3 on input data normalized from 100 to 1000; a ResNet trained with

a physics loss factor of 0.3 on input data normalized from 100 to 1000; a GRU network

trained on data normalized to have a maximum magnitude of 100 with a physics loss factor

of 0.0001; and a rotateNet implementation that was trained on data normalized from 100-

1000 with a physics loss factor of 0.003. The results of these experiments are shown in

Figures 7.1, 7.2, 7.3, 7.4, and 7.5 respectively. The rest of this chapter will analyze these

figures.

7.1 Baseline neural networks Vs. those in this experiment

Before we can start to analyze these runs, it is helpful to understand the more typical

nature of how neural network training and testing works, so that we can contrast this

experiment to what should be expected. A good example of this is shown in Figure 5.2.

As the routine performs the work of each epoch, the network is slowly improved using the

information available from the loss obtained from the training set. Using this loss, the

network learns the patterns inherent in the training set. For the beginning epochs, the

patterns learned tend to be general patterns that apply to the testing set; but as time goes

on, the network starts to learn more of the specific patterns of the training set that do not

appear in the testing set. Given sufficient epochs, the training routine will cause the model

27

(a) Testing on solar cycle 22 (b) Testing on solar cycle 23

(c) Testing on solar cycle 24 (d) Box plot of the various final testing losses over ten
runs.

Fig. 7.1: Results of an experiment in which an LSTM with hyperparameters derived from
earlier experiments was tested on the captioned solar cycle, having been trained on the
remaining two. This was repeated ten times to establish a mean. Subfigure 7.1(d) contains
a box plot of the final testing accuracies of the runs, graphed on the same axis to allow for
comparison. All figures are log scaled.

28

(a) Testing on solar cycle 22 (b) Testing on solar cycle 23

(c) Testing on solar cycle 24 (d) Box plot of the various final testing losses over ten
runs.

Fig. 7.2: Results of an experiment in which a time-based CNN with hyperparameters derived
from earlier experiments was tested on the captioned solar cycle, having been trained on the
remaining two. This was repeated ten times to establish a mean. Subfigure 7.2(d) contains
a box plot of the final testing accuracies of the runs, graphed on the same axis to allow for
comparison. All figures are log scaled.

29

(a) Testing on solar cycle 22 (b) Testing on solar cycle 23

(c) Testing on solar cycle 24 (d) Box plot of the various final testing losses over ten
runs

Fig. 7.3: Results of an experiment in which a ResNet with hyperparameters derived from
earlier experiments was tested on the captioned solar cycle, having been trained on the
remaining two. This was repeated ten times to establish a mean. Subfigure 7.3(d) contains
a box plot of the final testing accuracies of the runs, graphed on the same axis to allow for
comparison. All figures are log scaled.

30

(a) Testing on solar cycle 22 (b) Testing on solar cycle 23

(c) Testing on solar cycle 24 (d) Box plot of the various final testing losses over ten
runs

Fig. 7.4: Results of an experiment in which a GRU network with hyperparameters derived
from earlier experiments was tested on the captioned solar cycle, having been trained on the
remaining two. This was repeated ten times to establish a mean. Subfigure 7.4(d) contains
a box plot of the final testing accuracies of the runs, graphed on the same axis to allow for
comparison. All figures are log scaled.

31

(a) Testing on solar cycle 22 (b) Testing on solar cycle 23

(c) Testing on solar cycle 24 (d) Box plot of the various final testing losses over ten
runs

Fig. 7.5: Results of an experiment in which a RotateNet with hyperparameters derived
from earlier experiments was tested on the captioned solar cycle, having been trained on
the remaining two. This was repeated ten times to establish a mean. Subfigure 7.5(d)
contains a box plot of the final testing accuracies of the runs, graphed on the same axis to
allow for comparison. All figures are log scaled.

32

to overfit the data, where the network eschews the general patterns of the input space in

favor of the more specific patterns only found in the training set. This phenomenon leads

to the generally true assumption that testing accuracy is lower than training accuracy.

This key relationship is broken when performing this test; while networks trained on

solar cycles 22 and 24 and tested on solar cycle 23 keep this behavior, networks trained

on 23 and 24 and tested on 22 as well as networks trained on 22 and 23 and tested on 24

have better testing accuracies than training. This is visible across all five experiments. Also

visible across all five experiments is the erratic nature of the testing accuracy on solar cycle

22, and the strong relationship between training and testing losses of networks trained on

solar cycles 22 and 23 that are tested on solar cycle 24. We will now analyze the reasons

for each of these in detail.

7.2 Networks trained on solar cycles 22 and 24, then tested on solar cycle 23.

Neural networks take data from a high dimensional input space and propagate forward

into a different output space. To have an accurate neural network, it must be trained

on a representative portion of the input space. When the training set does not form a

representative sampling of the input space, the network must extrapolate to attempt to

predict the output of an input not sampled previously. The results of the experiments

discussed in this section lead us to consider the spaces of each variable in our input; kernel

density estimates for all seven active variables over all three solar cycles are plotted in

Figures 7.6, 7.7, 7.8, 7.9, 7.10, 7.11, and 7.12. Densities from solar cycle 24 are plotted in

red, densities from solar cycle 23 are plotted in green, and densities from solar cycle 25 are

plotted in blue. Plotted normally, these estimates look identical, but when plotted on a log

scale, we can start to see the outliers that make such a difference. In fact, out of the seven

variables shown, solar cycle 23 has both the maximum and the minimum value for five of

them. This means that networks trained like those in this section have to make predictions

on data that they have not been trained on. This leads to massive errors, which are easily

visible in the subfigure b of Figures 7.1 through 7.5.

33

Fig. 7.6: A kernel density estimate of the dis-
tribution of the X component of the velocity
field.

Fig. 7.7: A kernel density estimate of the dis-
tribution of the Y component of the velocity
field.

Fig. 7.8: A kernel density estimate of the dis-
tribution of the Z component of the velocity
field.

Fig. 7.9: A kernel density estimate of the
distribution of the X component of the mag-
netic field.

34

Fig. 7.10: A kernel density estimate of the
distribution of the Y component of the mag-
netic field.

Fig. 7.11: A kernel density estimate of the
distribution of the Z component of the mag-
netic field.

Fig. 7.12: A kernel density estimate of the
distribution of the Electric Field strength.

A logical explanation for the distributions shown in Figures 7.6 through 7.12 comes from

the number of sunspots observed throughout each cycle, shown in Figure 7.13. Sunspots are

holes in the sun’s photosphere, which allow the highly pressurized matter contained within

it to escape. This phenomenonis one of the main sources of the fast solar wind. Due to

these particles moving faster, a larger magnetic field is created, and since a higher flow rate

means the number of particles passing through a given space is larger, the electric field is

stronger as well. The reason that solar cycle 22 does not exhibit the same issues is mostly

35

Fig. 7.13: A plot of the mean number of sunspots in a given month, from the beginning of
solar cycle 22 in 1986 to the end of solar cycle 24 in 2020. A 13-month average is shown in
red. Image courtesy of spaceweatherlive.com

due to the amount of data available from said cycle, discussed more in section 7.3.

7.3 Networks trained on solar cycles 23 and 24, then tested on solar cycle 22.

While section 7.2 showed the dangers of a training set that is not representative of the

input space, networks trained like those in this section show the pitfalls of a testing set that

is not representative of the output space. The danger with networks trained like those in

this section is easily apparent when viewing how many complete tuples are available in each

solar cycle, where each tuple includes at least one measurement of each variable over the

space of an hour. While solar cycles 23 and 24 have roughly one hundred thousand tuples

each, solar cycle 22 only manages about 440 thousand. This difference is exacerbated when

we consider that for our purposes we require a streak of twenty-four complete tuples, along

with one more complete tuple twelve hours away to use as a target. With these constraints,

cycles 23 and 24 have roughly 4.8 thousand data, while cycle 22 comes in with just over

a thousand. This is visualized in Table 7.1 This disparity means that data collected from

36

solar cycle 22 has trouble capturing all the patterns in the output space. This means the

loss, which uses an arithmetic mean to standardize results across the validation experiment,

is more sensitive to the patterns that are found in the available data for solar cycle 22.

7.4 Networks trained on solar cycles 22 and 23, then tested on solar cycle 24.

The results of the networks discussed in this section show us the incredible relationship

between the data in solar cycle 24 and the data in solar cycle 23, and to a lesser extent, 22.

Where validation accuracy for the networks from section 7.3 was noisy and highly variable,

networks trained on cycles 22 and 23 and validated on solar cycle 24 kept a very firm

relationship, with an increase in training accuracy reflected in real-time by the validation

accuracy. Despite all training runs and validation runs sharing the colors red and green

respectively, it is not difficult to see which validation line should go with which training

line. This points to a key relationship between the underlying distributions of each cycle:

the data from solar cycle 24 follows the same patterns as solar cycle 23, and to a lesser

extent 22, but with values that are much closer to the mean. Due to the factors discussed

in this section, as well as those discussed in sections 7.2 and 7.3, we recommend training

in this way for future networks. Solar cycle 23, augmented with cycle 22, provides a more

complete sampling of the input space than any other mixture, and solar cycle 24 provides

a good test to see if the network is correctly learning the general patterns present in the

physical phenomena, or is merely overfitting to patterns available only in the sampled data.

Table 7.1: Counts of hours with available data. Also shown are counts of non-overlapping
input planes of given numbers of hours.

Solar Cycle Total valid hours 6 hours 12 hours 24 hours 36 hours 48 hours

24 101710 14175 7345 4876 3553 2785

23 101096 14110 7328 4853 3582 2819

22 43439 5130 2054 1094 582 407

Total 246245 33415 16722 10823 7717 6011

37

CHAPTER 8

Sequence Analysis

In addition to understanding the progression of the data from one solar cycle to the

next, we seek to understand the width of our input space and the relationship between the

input space and different lengths of output space. This process is called sequence analysis.

This chapter will explain the procedure we used to do this, and then go through the results

of each network, as well as the best results achieved overall.

8.1 Procedure

In this experiment, we varied the prior (the length of time between the input plane

and the output vector) and the span (the length of the input plane). The prior was given

possible values of 6, 12, 18, 24, and 30. The span was chosen from the numbers 6, 12, 24,

36, and 48. Each combination of span and prior had each network trained on it ten times,

using three-fold cross-validation each time. The three instances of each network were then

tested on ten percent of the data that had been withheld prior to training, and the average

of these three was calculated for each of the ten runs of a given network architecture. The

minimum test RMSE for each architecture class is shown in part (a) of Figures 8.1 through

8.4. The maximum R-squared value from each architecture class is shown in part (b) of the

same figures. Figure 8.6 shows the maximum over all five networks and the mean of the

maximums from each individual network.

8.1.1 GRU

Figure 8.1 shows the results of the sequence analysis when performed on a GRU net-

work. This network was designed at its inception to learn the patterns between different

points in a time series, and this shows in the RMSE results. As the length of the input plane

grows, there are more opportunities for the network to find the patterns; this decreases the

38

(a) RMSE (b) R-squared

Fig. 8.1: Analysis of the effect of different priors and different spans on our best-performing
GRU network, in both mean squared error, and R-squared metrics. Note that while a low
MSE is preferred, a higher R-squared means better performance.

(a) RMSE (b) R-squared

Fig. 8.2: Analysis of the effect of different priors and different spans on our best-performing
LSTM network, in both mean squared error, and R-squared metrics. Note that while a low
MSE is preferred, a higher R-squared means better performance.

error. The relative stability of the error would seem to indicate that the size of the prior is

not as important to this network, but when we look at the values of the R-squared metric,

we can see that this network is mostly guessing close to the mean.

8.1.2 LSTM

Figure 8.2 shows a stark contrast to Figure 8.1; instead of being roughly invariant over

different priors, our LSTM architecture much preferred shorter priors and was reasonably

resilient against a change in span. This is likely due to the design of an LSTM; since

39

(a) RMSE (b) R-squared

Fig. 8.3: Analysis of the effect of different priors and different spans on our best-performing
ResNet, in both mean squared error, and R-squared metrics. Note that while a low MSE
is preferred, a higher R-squared means better performance.

an emphasis is made on having the ability to remember information for an indeterminate

amount of steps, the LSTM is much better equipped to deal with long or short spans,

whereas the GRU preferred longer spans. This is born out in 8.2(b), which shows that our

network does have some real predicting power. As the input plane is separated from the

output vector, our accuracy predictably lowers. An experimental artifact remains in 8.2(a);

Since we performed our grid search optimization on a span of 24 hours, the hyperparameters

we chose to use in this experiment favored the span of 24 hours.

8.1.3 ResNet

Figure 8.3 shows a much more typical sequence analysis. As the network receives less

data, it is less able to fit well enough to predict correct outcomes; and as the input plane

moves away from the predicted vector, the relationship between the two becomes fainter.

The higher R-squared value in the upper right corner is likely due to a data artifact; since

we only use input and output planes with full data, many possible data points that a span

of 6 can fit inside comfortably must be rejected for higher spans. This idea is validated by

Table 7.1.

8.1.4 RotateNet and time-based CNN

40

(a) RMSE (b) R-squared

Fig. 8.4: Analysis of the effect of different priors and different spans on our best-performing
rotational resNet, in both mean squared error, and R-squared metrics. Note that while a
low MSE is preferred, a higher R-squared means better performance.

(a) RMSE (b) R-squared

Fig. 8.5: Analysis of the effect of different priors and different spans on our best-performing
convolutional neural network, in both mean squared error, and R-squared metrics. Note
that while a low MSE is preferred, a higher R-squared means better performance.

The information contained in Figures 8.4 and 8.5 is best viewed in relation to 8.3. As

in Figure 8.3(b), Figure 8.4(b) has a maximum in the upper left corner, corresponding to

the lowest prior as well as the lowest span. This is likely due to the rotational ResNet not

converging as fast as the more standard ResNet architecture discussed previously. Due to

this slower convergence rate, the extra data added in by minimizing the span was a much

bigger bonus to the network, outweighing the larger input space provided by a larger span.

This is also shown in Figure 8.5 to a lesser degree.

41

(a) Best Overall (b) Mean of Network Best

Fig. 8.6: Analysis of the effect of different priors and different spans on our best-performing
networks overall.

8.1.5 Best Overall

Figure 8.6 contains the best R-squared values over all 50 runs for a given span and prior

in 8.6(a), and the mean of the best scores for the given span and prior across all network

architectures. This shows our best runs overall, as well as gives us a network-agnostic look

at the attributes of the data. Easily visible is the much larger importance of the length of

the prior vs the length of the span; this implies that our data are highly non-stationary,

and small changes can make a big difference. Also visible is a slight trend towards smaller

spans; but while on a per-network basis this may have been more due to extra training data

being available, when considered alongside the extreme power of a shorter prior, it seems

to imply that data further away from the predicted vector is simply worth less.

42

CHAPTER 9

Conclusion

In this work, we propose an adjusted Ohm’s law inequality that we used for building a

new physics loss to guide deep learning models for the task of solar wind forecasting. To our

best knowledge, this is the first effort to build a hybrid physics and deep learning model for

solar wind prediction. Our findings support our hypothesis that physics loss helps fine-tune

model prediction in certain cases, though it is important to note that as is tradition in

data science, it is no silver bullet offering improvement in every situation. In this work, we

considered five baseline models that all showed improvement when informed with Ohm’s

law physics loss. As a future direction to this work, we would like to explore the inclusion of

the WSA-ENLIL physics model forecasts as an input to our hybrid physics-guided model.

We also recommend to researchers also looking to use this data to use solar cycle 24 as

their validation and test set, with solar cycles 22 and 23 as training data due to the small

amount of data in solar cycle 22 and the wide domain of data available in solar cycle 23.

This approach will allow more data to be used in training since there is no more concern

about learning about the test set due to overlapping data contained within the training set.

The data that become available due to testing in this matter should also aid in attaining

the higher accuracies of the shorter spans due to having more data to learn from.

9.1 Future work

In this study, we used relatively simple and low-parameter networks to allow us to

consider a variety of inputs, outputs, and hyperparameters. Future work is possible by

constructing better networks more aptly suited to this data. It may also be prudent to

decrease the size of each time step, to allow for a larger input space while keeping the

networks focused on a closer time window, as was shown to be effective in Chapter 8. If

random sampling for testing and training data is not desired, this study argues that data

43

from solar cycle 23 should be in the training set, with testing sets coming from more recent

data. Finally, this study argues that when considering physics based loss, feature and target

selection should be considered early in the process due to the volatility shown in Chapter

6.

Another avenue for future work is the inclusion of solar data attached to the OMNI

data. One weakness of our experiment was that our networks had to look at the past data

to attempt to understand the state of the sun, then move that state forward, then propagate

that state earthward to predict the current solar wind characteristics. However, as more

missions are completed and better instrumentation is put in space, we can obtain better

data of the actual state of the sun to feed into our networks to allow them to skip needing

to glean the state of the sun from past data. It would also be helpful to attempt to predict

more than a single snapshot window; since fast solar wind travels quicker than slow solar

wind, understanding that fast wind is coming would prefer a smaller prior for prediction,

as opposed to a longer prior which would better fit a period of mostly slow solar wind.

A more theoretical avenue of further research would be why physics-guided loss func-

tions only provide benefit at certain times, such as how Ohm’s law-based loss was proven

near useless when any information about the magnetic field was included in the inputs or

outputs. Understanding this relationship could aid future researchers to know when to

spend resources developing physics informed loss functions, as opposed to spending those

same resources to improve the data-based methods of prediction.

44

REFERENCES

[1] S. Martin, “Solar winds travelling at 300km per second to
hit earth today,” https://www.express.co.uk/news/science/1449974/
solar-winds-space-weather-forecast-sunspot-solar-storm-aurora-evg, 2021, accessed:
2022-05-01.

[2] A. H. Boozer, “Ohm’s law for mean magnetic fields,” Journal of plasma physics, vol. 35,
no. 1, pp. 133–139, 1986.

[3] S. S. Board, N. R. Council et al., Severe space weather events: Understanding societal
and economic impacts: A workshop report. National Academies Press, 2009.

[4] J. Eastwood, E. Biffis, M. Hapgood, L. Green, M. Bisi, R. Bentley, R. Wicks, L.-A.
McKinnell, M. Gibbs, and C. Burnett, “The economic impact of space weather: Where
do we stand?” Risk Analysis, vol. 37, no. 2, pp. 206–218, 2017.

[5] Y. S. Shugai, “Analysis of quasistationary solar wind stream forecasts for
2010–2019.” Russian Meteorology & Hydrology, vol. 46, no. 3, pp. 172 – 178, 2021.
[Online]. Available: https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/
login.aspx?direct=true&db=asn&AN=151541530&site=ehost-live

[6] D. Emmons, A. Acebal, A. Pulkkinen, A. Taktakishvili, P. MacNeice, and D. Odstrcil,
“Ensemble forecasting of coronal mass ejections using the wsa-enlil with coned model,”
Space Weather, vol. 11, no. 3, pp. 95–106, 2013.

[7] M. Owens, M. Lang, L. Barnard, P. Riley, M. Ben-Nun, C. J. Scott, M. Lockwood,
M. A. Reiss, C. N. Arge, and S. Gonzi, “A computationally efficient, time-dependent
model of the solar wind for use as a surrogate to three-dimensional numerical
magnetohydrodynamic simulations.” Solar Physics, vol. 295, no. 3, pp. 1 – 17, 2020.
[Online]. Available: https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/
login.aspx?direct=true&db=asn&AN=142764714&site=ehost-live

[8] B. Luo, Q. Zhong, S. Liu, and J. Gong, “A new forecasting index for solar wind
velocity based on eit 284 Å observations.” Solar Physics, vol. 250, no. 1, pp. 159
– 170, 2008. [Online]. Available: https://dist.lib.usu.edu/login?url=https://search.
ebscohost.com/login.aspx?direct=true&db=asn&AN=33235306&site=ehost-live

[9] Y. Yang and F. Shen, “Modeling the global distribution of solar wind
parameters on the source surface using multiple observations and the artificial
neural network technique.” Solar Physics, vol. 294, no. 8, p. N.PAG, 2019.
[Online]. Available: https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/
login.aspx?direct=true&db=asn&AN=138578239&site=ehost-live

[10] H. Raju and S. Das, “Cnn-based deep learning model for solar wind
forecasting.” Solar Physics, vol. 296, no. 9, pp. 1 – 25, 2021. [On-
line]. Available: https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/
login.aspx?direct=true&db=asn&AN=153080952&site=ehost-live

https://www.express.co.uk/news/science/1449974/solar-winds-space-weather-forecast-sunspot-solar-storm-aurora-evg
https://www.express.co.uk/news/science/1449974/solar-winds-space-weather-forecast-sunspot-solar-storm-aurora-evg
https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=151541530&site=ehost-live
https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=151541530&site=ehost-live
https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=142764714&site=ehost-live
https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=142764714&site=ehost-live
https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=33235306&site=ehost-live
https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=33235306&site=ehost-live
https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=138578239&site=ehost-live
https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=138578239&site=ehost-live
https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=153080952&site=ehost-live
https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=153080952&site=ehost-live

45

[11] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak,
N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne et al., “The fair
guiding principles for scientific data management and stewardship,” Scientific data,
vol. 3, no. 1, pp. 1–9, 2016.

[12] N. Papitashvili, D. Bilitza, and J. King, “Omni: a description of near-earth solar wind
environment,” 40th COSPAR scientific assembly, vol. 40, pp. C0–1, 2014.

[13] T. Mukai, S. Machida, Y. Saito, M. Hirahara, T. Terasawa, N. Kaya, T. Obara, M. Ejiri,
and A. Nishida, “The low energy particle (lep) experiment onboard the geotail satel-
lite,” Journal of geomagnetism and geoelectricity, vol. 46, no. 8, pp. 669–692, 1994.

[14] “Nasa - nssdca - spacecraft - details.” [Online]. Available: https://nssdc.gsfc.nasa.
gov/nmc/spacecraft/display.action?id=1973-078A

[15] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky, “Spectrally-normalized margin bounds
for neural networks,” Advances in neural information processing systems, vol. 30, 2017.

[16] A. Bresler, G. Joshi, and N. Marcuvitz, “Orthogonality properties for modes in passive
and active uniform wave guides,” Journal of Applied Physics, vol. 29, no. 5, pp. 794–
799, 1958.

[17] A. Karpatne, W. Watkins, J. S. Read, and V. Kumar, “Physics-guided neural networks
(PGNN): an application in lake temperature modeling,” CoRR, vol. abs/1710.11431,
2017. [Online]. Available: http://arxiv.org/abs/1710.11431

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[19] I. Golan and R. El-Yaniv, “Deep anomaly detection using geometric transformations,”
Advances in neural information processing systems, vol. 31, 2018.

[20] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the properties of
neural machine translation: Encoder-decoder approaches,” 2014. [Online]. Available:
https://arxiv.org/abs/1409.1259

https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1973-078A
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1973-078A
http://arxiv.org/abs/1710.11431
https://arxiv.org/abs/1409.1259

46

APPENDIX

47

Fig. 1: Appendix: Probabilities of achieving a given R-squared threshold with GRU net-
work. (The maximum R-squared achieved by this network was 0.158)

Included here are the results and analysis published when I presented in the Pattern

Recognition and Remote Sensing workshop (PRRS2022) held in Montreal, Canada. These

results helped to inform the final experiments shown in this thesis, so they may feel incom-

plete when compared to the work we were able to do later. This later work includes both the

modified R-squared metric and the tests of statistical significance. As detailed in Chapter

6, these neural network training circumstances fail to achieve statistical significance under

the modified R-squared metric.

These experiments were performed in the following way: we defined a grid of hyperpa-

rameters, including normalization and physics loss constant. Each of these runs was tested

on data withheld from the training cycle, and the R-squared metric was noted. After all

runs were completed, runs with R-squared greater than 0.1 were plotted in green, and the

remaining runs that had an R-squared greater than 0 were plotted in orange. These counts

were then divided by the total number of runs to obtain a probability of a run above the

given threshold.

Figure 1 provides the best argument in this section for the usage of our physics-based

loss. However, in the context of this entire section it is more likely that we merely had a

48

Fig. 2: Appendix: Probabilities of achieving a given R-squared threshold with a time-
constrained ResNet. (The maximum R-squared achieved by this network was 0.175)

lucky couple of runs. It is also worth noting that while we started with five values of lambda

in this particular experiment, fewer values were used in successive experiments due to time

constraints.

Figure 2 shows that while our physics-based loss did not help the ResNet architecture

beat the average using the R-squared metric, our loss did help it to achieve a score higher

than 0.1. A lambda value of 0.3 shows the most improvement, but this is likely due to an

influence on learning rate, more easily visible on the other half of the figure. The magnitude

of neural network loss roughly corresponds to the magnitude of the data. This loss is then

multiplied by the learning rate before being backpropagated through the network to update

the weights and biases in it. What we found, and later improved in our work, was to take

this in to account.

Figure 3 shows the R-squared results of the time-based CNN which is relatively a

simple network with few parameters. We note that among the four normalization methods,

the 100-1000 min-max normalization achieved the best results for a positive R-squared and

R-squared ¿ 0.1. We also note that although the positive R-squared probability is similar

for the non-physics constrained CNN (i.e., λ ̸= 0) and the physics constrained CNN for

49

Fig. 3: Appendix: Probabilities of achieving a given R-squared threshold with a time-based
CNN. (The maximum R-squared achieved by this network was 0.178)

λ = 0.3, the constrained model provides better r squared probabilities greater than 0.1.

Figure 4 shows the results of the RotateNet which requires significantly fewer param-

eters than the ResNet model (roughly one-third of the number of parameters). ResNet

performed the best using Z-normalization (zero mean). Similar to CNN and ResNets, Ro-

tateNet did not perform well with low values of λ. The network performed well either under

a high λ or an unconstrained loss (i.e., λ = 0).

Figure 5 shows the results of our experiments when trained using the LSTM baseline.

The LSTM baseline performed the best when trained with Z-normalized data and outper-

formed the other data normalizations by a large margin. While the LSTM did not need

physics loss to produce a decent result, the physics loss provided to be useful in producing

a better quality result that has a higher probability of R-squared being greater than 0.1.

50

Fig. 4: Appendix: Probabilities of achieving a given R-squared threshold with a rotating
ResNet implementation. (The maximum R-squared achieved by this network was 0.087)

Fig. 5: Appendix: Probabilities of achieving a given R-squared threshold with an LSTM
network. (The maximum R-squared achieved by this network was 0.173)

	Physics-Guided Deep Learning for Solar Wind Modeling at L1 Point
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACRONYMS
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	What is solar wind
	Why is it important to understand solar wind
	What are neural networks
	Chapter organization

	Related Works
	Data
	Origin
	Form
	Data Sources
	Data Pre-processing
	Exploratory Data Analysis
	Data normalization
	No normalization
	Z-normalization
	Min-max normalization
	Max-normalization

	Ohm's Law Constraint
	Derivation
	Testing the validity of the equation

	Methodology
	Ohm's law-guided Neural Network for Solar Wind Prediction
	Baselines
	Time-based CNN
	ResNet
	RotateNet
	LSTM
	GRU

	Experimental Setup & Results
	A check on the validity of our routine

	Feature and Target Selection
	Case Study: Solar Cycles
	Baseline neural networks Vs. those in this experiment
	Networks trained on solar cycles 22 and 24, then tested on solar cycle 23.
	Networks trained on solar cycles 23 and 24, then tested on solar cycle 22.
	Networks trained on solar cycles 22 and 23, then tested on solar cycle 24.

	Sequence Analysis
	Procedure
	GRU
	LSTM
	ResNet
	RotateNet and time-based CNN
	Best Overall

	Conclusion
	Future work

	REFERENCES
	APPENDIX

