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ABSTRACT

Reclaiming Fault Resilience and Energy Efficiency with Enhanced Performance in Low

Power Architectures

by

Noel Daniel Gundi, Doctor of Philosophy

Utah State University, 2023

Major Professor: Sanghamitra Roy, Ph.D.
Department: Electrical and Computer Engineering

Shrinking technology node and the massive increase in data workloads has witnessed

a swift migration of the system towards the Low-Power Computing (LPC) paradigm. Ad-

ditionally, to accelerate the redundant yet mammoth AI instructions, novel ASIC design

architectures have been explored. Google’s Tensor Processing Unit (TPU) is one such ar-

chitectural innovation deployed in the commercial space to speedup the processing of AI

workloads.

In an effort to achieve a superior energy efficiency, Near-Threshold Computing (NTC)

has been marginalized to be an efficient LPC paradigm. Due to an underscaling of volt-

age, NTC offers quadratic savings is power consumption in comparison to operating the

system at its nominal counterpart i.e., Super-Threshold Computing (STC). However, NTC

exhibits an extreme sensitivity to Process Variation (PV). Moreover, the reduced speed of

transistors at NTC exacerbates the overall performance of the system. Hence, the integra-

tion of NTC into the conventional semiconductor workspace has been restricted. In this

work, distinct methodologies are explored to provide improved performance at NTC. Fur-

thermore, effects of PV, which are unnoticed at STC but posing a severe threat to the relia-

bility of the low-power AI computing is addressed. This dissertation exploits the disparate
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computational delays of arithmetic units to provide up to 2.5× improved performance and

1.35× better energy efficiency at NTC. Additionally, the distinct dataflow patterns of the

TPU are statistically analyzed to employ selective voltage levels and further enhance the

performance of the TPU. Also, the homogeneous architecture of the TPU systolic array is

thoroughly investigated to design a low-overhead faulty Processing Element (PE) detec-

tion scheme. The locality of the faulty PE is later utilized to tackle the impending faults.

(105 pages)
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PUBLIC ABSTRACT

Reclaiming Fault Resilience and Energy Efficiency with Enhanced Performance in Low

Power Architectures

Noel Daniel Gundi

Rapid developments of the AI domain has revolutionized the computing industry by

the introduction of state-of-art AI architectures. This growth is also accompanied by a mas-

sive increase in the power consumption. Near-Theshold Computing (NTC) has emerged

as a viable solution by offering significant savings in power consumption paving the way

for an energy efficient design paradigm. However, these benefits are accompanied by

a deterioration in performance due to the severe process variation and slower transis-

tor switching at Near-Threshold operation. These problems severely restrict the usage

of Near-Threshold operation in commercial applications. In this work, a novel AI archi-

tecture, Tensor Processing Unit, operating at NTC is thoroughly investigated to tackle the

issues hindering system performance. Research problems are demonstrated in a scientific

manner and unique opportunities are explored to propose novel design methodologies.
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CHAPTER 1

INTRODUCTION

Deployment of Artificial Intelligence (AI) into various spheres of the daily life and

the massive developments in the domain-specific architectures has witnessed a remark-

able growth in the usage of Deep Neural Networks (DNNs) in the computing ecosystem.

Additionally, the utilization of AI models has seen a significant rise in multiple domains

ranging from infotainment, academia and biomedical applications. However, the prolif-

eration of AI workloads has also been accompanied by a larger carbon footprint [1]. Fur-

thermore, the advent of Edge Computing has further pushed the energy efficiency limits

by narrowing the thermal budget. Hence, the adoption of Low-Power Computing (LPC)

into the computing paradigm has been inevitable.

For semiconductor devices, dynamic power in the is linearly dependent on the sig-

nal switching and frequency, and quadratically dependent on the operating supply volt-

age. Additionally, static power is dependent on the leakage current. Therefore, lowering

of voltage closer the device’s threshold region can aid in lowering power consumption.

Hence, to facilitate LPC, Near-Threshold Computing (NTC) can be a singled out as vi-

able solution to cater the system power restrictions. In NTC, the device is operated at a

voltage slightly above the device threshold voltage. While NTC offers quadratic benefits

in energy efficiency, it is accompanied by noticeable degradation in performance. Com-

putational delays of electronic circuits are inversely proportional to the operating voltage.

Hence, a lower operating voltage significantly increases the switching delays due to which

the clock frequency is appropriately scaled to meet the timing requirements of computa-

tion. Furthermore, NTC is extremely sensitive to Process Variation (PV) due to which

faults which completely concealed during nominal operation become massive bottlenecks

at NTC. To overcome these performance and reliability concerns, enhancements in the

circuit-architectural level are of utmost importance. Moreover, these innovations will aid
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in the migration of LPC into the computing paradigm.

In this dissertation, two bodies of work propose enhancements in timing error re-

silience and energy efficiency by uncovering distinct component delay profiles and work-

flow. Chapter 3 provides an in-depth investigation on the unequal delay characteristics

of the arithmetic units, the unique systolic dataflow pattern and provides orders of im-

provements in performance. Chapter 4 further exploits the unique dataflow and uses a

mathematical approach to tackle the errors at higher frequency points. The third body of

work presented in Chapter 5, addresses the hidden threat due to PV which manifests itself

at NTC and demonstrates a innovative solution to marginalize the fault locally and tackle

it using minor additions in the processing unit.

Additionally, Chapter 2 provides the literature survey of the various research efforts

relevant to this dissertation. Chapter 6 summarizes all the works demonstrated through

Chapter 3 to Chapter 5 and concludes this dissertation. Section 1.1 presents all the confer-

ence and journal publications stemming from this dissertation and serve as formal contri-

butions to the academic field.

1.1 Contributions of This Dissertation

The works presented in this dissertation have been published in several conference

proceedings and journal articles, including 2020 IEEE Asia and South Pacific Design Au-

tomation Conference (ASPDAC), 2023 IEEE Design Automation Conference (DAC), 2020

and 2022 Journal of Low Power Electronics and Applications (JLPEA) and 2021 IEEE Trans-

actions on Very Large Scale Integration (TVLSI).

1.1.1 Conference Papers

• STRIVE: Enabling Choke Point Detection and Timing Error Resilience in a Low-

Power Tensor Processing Unit, Noel Daniel Gundi, Zinnia Muntaha Mowri, Andrew

Chamberlin, Sanghamitra Roy and Koushik Chakraborty, Accepted for publication

in IEEE/ACM Design Automation Conference (DAC), 2023.
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• EFFORT: Enhancing energy efficiency and error resilience of a near-threshold tensor

processing unit, Noel Daniel Gundi, Tahmoures Shabanian, Prabal Basu, Pramesh

Pandey, Sanghamitra Roy, Koushik Chakraborty and Zhen Zhang, IEEE Asia and

South Pacific Design Automation Conference (ASPDAC), 2020.

1.1.2 Journal Articles

• Implementing a Timing Error-Resilient and Energy-Efficient Near-Threshold Hard-

ware Accelerator for Deep Neural Network Inference, Noel Daniel Gundi, Pramesh

Pandey, Sanghamitra Roy and Koushik Chakraborty, Journal of Low Power Electronics

and Applications (JLPEA), vol. 12, no. 2, p. 32, 2022.

• EFFORT: A comprehensive technique to tackle timing violations and improve en-

ergy efficiency of near-threshold tensor processing units, Noel Daniel Gundi, Tah-

moures Shabanian, Prabal Basu, Pramesh Pandey, Sanghamitra Roy and Koushik

Chakraborty, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29,

no. 10, pp. 1790–1799, 2021.

• Challenges and Opportunities in Near-Threshold DNN Accelerators around Timing

Errors, Pramesh Pandey, Noel Daniel Gundi, Prabal Basu, Tahmoures Shabanian,

Mitchell Patrick, Koushik Chakraborty and Sanghamitra Roy, Journal of Low Power

Electronics and Applications, 10(4), 33, 2020.



CHAPTER 2

LITERATURE REVIEW

This chapter presents the comprehensive literature survey on the research related to

the works in this dissertation. The include the contemporary research on NTC, low-power

computing, schemes to increase energy efficiency and error resilience in DNN accelera-

tors, and works to reduce the impact of faulty elements in low-power computing. Conse-

quently, the works listed in the chapter demonstrates the research efforts in embracing the

low-power realm and the corresponding methodologies facilitating the adoption of this

migration. Section 2.1 present works adopting the benefits and challenges in NTC. Section

2.2 addresses the research pertaining to enhancement techniques centered on improving

the performance and energy efficiency of for AI architectures. Section 2.3 discusses the

works on the impact of faults on various PEs and the improvement schemes to reduce the

effect of such faults.

2.1 Exploring the works at NTC :

Although the benefits of utilizing NTC as a prominent LPC paradigm are massive, the

vulnerabilities accompanying NTC are quite noticeable. Section 2.1.1 present the works

highlighting the evident benefits provided by the NTC paradigm. Section 2.1.2 addresses

the research efforts in facilitating the mitigation of the problems plaguing the NTC realm.

2.1.1 Opportunities at NTC

• Dreslinski et al. [2]: This work introduces and proposes low-voltage operation as so-

lution to the problem of power consumption and the deployment of NTC across all

computing domains. They demonstrate 10× or higher energy efficiency due to the

employment of NTC. The authors also highlight a 5× increase in performance vari-

ation and an increase in memory failure rates. However, adoption of enhancements
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at the circuit architecture levels and other areas can aid in overcoming the barrier of

utilization of NTC for all the computing platforms. This work provides a in-depth

analysis of the impact of NTC on the various device parameters.

• Markovic et al. [3]: This work develops a energy-delay modeling framework to

study the various inversion regions and analyze the effect of operating voltage and

transistor sizing on the overall performance of the system, while operating in a

subthreshold region. The authors propose the utilization of a pass-transistor based

logic for operating in subthreshold region. The authors indicate the usage of time-

multiplexing in leakage dominated designs to facilitate lower energy consumption.

• Friedberg et al. [4]: This work tackles the negative effect on circuit performance

due the variations introduced during manufacturing process. The authors propose

to lower the variations in device attributes by applying a newer approach on the

process control. They also propose to adopt simulation based approaches to reduce

the PV sensitivity for circuits.

• Stine et al. [5]: This work presents modeling techniques to analyze the contributions

at distinct levels of manufacturing towards spatial variation. They propose filtering,

spine and regression schemes for wafer-level estimations, Fourier transformations

for die-level estimations and spline and frequency oriented methods for wafer-die

estimations.

• Karpuzcu et al. [6]: This work elaborate the impacts of PV at NTC using an archi-

tecture model. The authors present the drawbacks of employing the enhancement

techniques for STC in tackling the PV at NTC. They also present a roadmap to be

followed to design efficient techniques to overcome the impacts of PV at NTC.

2.1.2 Challenges at NTC

• Borkar et al. [7]: This work proposes to tackle the problem PV using design and CAD

based approach. The authors emphasize on the usage of design flows incorporating
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probabilistic and statistical based tools. They also elaborate a change from continu-

ous to discreet due to the adoption of stricter regulation for device parameters such

as interconnect pitches, spacings, lengths etc.

• Karpuzcu et al. [8]: This work introduces a microarchitectural model of PV at NTC.

The model elaborates the impact of variations on the operating frequency, power

usage by the processing cores, memory types in NTC and various faults in the mem-

ories while operating at NTC. They present a gate-delay model, specific memory for

NTC, memory failure modes and effect on the various models by the leakage current.

• Pinckney et al. [9]: This work analysis the energy minimum point for parallelized

NTC systems. The authors investigate the energy benefits, operating voltage and

process of tasks being parallelized. They study the Leakage overhead, Amdahl over-

head and Architectural overhead, and conclude that these overheads are interrelated

and restrict the possible energy efficiency gains due to voltage underscaling.

• Kaul et al. [10]: The authors in this paper strongly uplift the usage of NTC for energy

efficiency purposes. The design challenges associated with NTC (i.e., circuit perfor-

mance variations, subthreshold leakage etc.,) are thoroughly investigated. Addition-

ally, improvements in memories, gates and level converters are proposed. The paper

also places a unique emphasis on Design Automation tools to aid in the efficient

design of devices operating at Near-Threshold Voltage (NTV).

• Kaul et al. [11]: This work presents the challenges associated with the NTV opera-

tion of complex System-on-Chip (SOC) designs. The authors design an IA processor

capable of working at NTC and investigate the power performance, operation of the

processor at different process skews,improvements in register files and logic, and the

power and performance of NTV Single-Instruction-Multiple-Data (SIMD) engine.

2.2 Improving the performance and energy efficiency with enhancements in architec-

ture and memory
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• Reagen et al. [12]: This work presents a co-design technique across the algorithm,

architecture and circuit level to improve the energy efficiency of DNN by applying

selective pruning through lowering SRAM voltages without compromising the ac-

curacy. The authors use cross layer optimization to the baseline design and obtain

up to 8 × reduction in power.

• Chen et al. [13]: This work proposes a run-time pruning technique, called row sta-

tionary, that enhances the efficiency of a convolutional neural network by re-configuring

the spatial architecture, in order to map its computations. They optimize the energy

efficiency by ensuring a maximum reusage of local data to lower the data movement.

• Wang et al. [14]: This work presents an elastic DNN accelerator architecture to detect

the adversary sample attacks by organizing the execution of DNN and the detect

algorithm concurrently.

• Zhang et al. [15]: This work introduces an aggressive voltage underscaling method

to improve the energy efficiency of DNN accelerators while keeping accuracy drop

less than 1%. Their architecture drops the subsequent MAC operation utilizing the

erroneous data and uses the extra cycle to correct the error-prone operation.

• Chandramoorthy et al. [16]: This paper proposes a technique to enable neural net-

work acceleration at low voltages. The technique provides low voltage operation for

almost the entire application run, thereby increasing the energy efficiency and also

ensures the mitigation of failures at low voltages. The authors propose to dynami-

cally boost supply voltage during the SRAM read/write accesses.

• Yu et al. [17]: This work presents a hardware pruning technique which applies SIMD-

aware weight and node pruning synergistically at the design time to improve the

energy efficiency of the DNN by reducing the size of the underlying hardware. The

authors propose to remove the redundant nodes in each layer, in order to compress

the DNN model and thereby avoid the overhead of sparsity.
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• Ozen et al. [18]: This work presents a highly resilient DNN using modified algo-

rithms by comparing the reductions in the vulnerability surface through appropriate

quantization techniques using efficient training methods.

• Salami et al. [19]: This work investigates the vulnerability due to permanent and

transient faults on the neural network accelerator components and proposes a tech-

nique to reduce the faults by retrieving the corrupted bits. They analyze the resilience

of the Neural Network model at Register-Transfer level (RTL) and segregate the vul-

nerability of RTL components. The methodology corrects the bit flips by 47 %, in

comparison to the other state-of-art techniques.

• Kim et al. [20]: This work demonstrates a memory adaptive training with in-situ

canaries, which improves the energy efficiency by enabling an aggressive voltage

scaling of DNN accelerator weight memories.

• Libano et al. [21]: This work analyzes the impact of radiation-induced errors for

a neural network in FPGAs and employ a selective triple modular redundancy on

more vulnerable neural network layers to mask the faults efficiently. The authors

classify the errors due to radiation as critical errors and triplicate only the most vul-

nerable layers of the neural network using the proposed technique.

• Ghodrati et al. [22]: This work addresses the problems in mixed-signal circuitry

caused by the limited range of information encoding, noise susceptibility and Analog-

to-Digital conversion overhead by bit-partitioning the vector dot-product into groups

of lower bandwidth operations operating in parallel and distributed across various

vector elements.

• Mackin et al. [23]: This work demonstrates the execution of MAC operations in the

data location using the NVM crossbar arrays. The weights are simultaneously pro-

grammed at optimal hardware conditions and its efficacy is inspected under notable

NVM variability.
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• Shafiee et al. [24]: This work proposes a pipelined architecture, with each layer of the

neural network being assigned specific crossbars and eDRAM buffers used to accu-

mulate the data between pipe stages. The Analog-to-Digital conversion overhead is

reduced using a novel data encoding technique and the balance between memristor

storage/compute, buffers and ADCs on the chip is handled by performing a design

space inspection.

• Eshraghian et al. [25]: This work reduces the power/area using a frequency oriented

approach to generate analog weights, by utilizing the switching factor of digitized

conductance. The authors allocate the kernel information to the device conductance

and time-varying input frequency by exploiting the dependency of v-i plane hystere-

sis on frequency.

• Whatmough et al. [26]: This work proposes a bypass operation to prevent an er-

roneous value from entering an adder chain by implementing a logic consisting of

Razor flip-flop, multiplexer and delay register in between a pipeline stage of two

multiply-accumulate operations.

• Yang et al. [27]: This work exploits the error resilience of Convolutional Neural Net-

works to achieve energy efficiency gains by operating the system at reduced power.

• Mauro et al. [28]: This work proposes a hybrid memory scheme to improve the en-

ergy efficiency of the Binay Neural Networks by replacing the error prone SRAMs

with reliable standard-cell memories. They characterize the SRAM memories at

ultra-low voltages using a self-test strategy to measure the Bit Error Rate on larger

SRAMs.

• Whatmough et al. [29, 30]: This work achieves improved throughput by reusing the

data and exploiting the sparsity in DNN data structures. Additionally, the timing

error tolerance is realized by utilizing DNN algorithmic resilience in DNNs and
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demonstrating circuit-level time borrowing in the datapath. They have also pro-

posed a time borrow tracking technique using Razor and approximate error correc-

tion methodology to tackle timing errors.

The work (i.e., EFFORT) in this dissertation is the first one to explore the disparate

combinational delays of arithmetic units, exploit the systolic dataflow pattern and employ

a minimal circuit-architectural manipulation to detect and correct the impeding timing

errors, along with lowering the dynamic power usage. Additionally, the work (i.e., PRED-

ITOR) in the first work to reduce the impact of undetectable timing errors using the statistical

based approach.

2.3 Improving the reliability at LPC for extreme PV

• D.Xu et al. [31]: This work proposes a hybrid computing architecture to recompute

the operations mapped to the faulty PEs in arbitrary locations using dot-production

processing units (DPPUs). They show the toleration of faulty PEs at random loca-

tions by the DPPU and at various fault distributions. The authors demonstrate the

utilization of parallel processing in each operation the sequential processing of the

network operations.

• Zhang et al. [32]: This work prunes the weights mapped to the faulty MAC units to

mitigate the impact of permanent faults on a TPU. They also retrain the weight based

on the positional knowledge of the MAC units to restore the classification accuracy

to the baseline, but with requires an extra time for each TPU chip.

• Spyrou et al. [33]: This work demonstrates a fault-tolerant Spiking Neural Network

architecture with simplified error detection and recovery scheme. The authors pro-

pose to nullify the effect of specific faults using passive fault tolerance modeled on

dropout.
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• Salami et al. [34]: This work evaluates an undervolting technique for Neural Net-

work acceleration in Field Programmable Gate Arrays (FPGAs) to improve the power-

efficiency. They investigate the multiple components of real FPGAs at reduced volt-

age operation and identify reliability behavior of the CNN accelerators. The authors

propose to integrate optimization techniques with undervolting to lower the short-

comings of reduced-voltage operation.

• Givaki et al. [35]: This work experimentally evaluates the effect of aggressive voltage

underscaling of block RAMs in an FPGA by emulating the real fault maps of SRAM

memories. The authors proposed to increase the training iteration by 10 % to fit the

gap in accuracy, arising due to the undervolting the memories.

• Tang et al. [36]: This work investigates the impact of GPU dynamic voltage and

frequency scaling on the energy consumption and performance of DNNs. They ob-

served that in comparison to the core frequency operation, operating at optimal fre-

quency can conserve 8.7% ∼ 23.1% energy for DNN training and 19.6% ∼ 26.4%

energy for inference.

• Lee et al. [37]: This work explores the optimization methods for hardware architec-

tures for energy-efficient DNN processing on edge devices. The authors also explore

hardware architecture optimization and data-path structure, in addition to hardware

co-designed ASICs and DNN algorithm.

• Nguyen et al. [38]: This work presents a stretchable DRAM refresh control technique

to replace non-critical bits with parity bits of error correction schemes resulting in

improved energy efficiency without performance degradation of DNNs. The DRAM

chip consists of an error-free zone and an error zone, with the error-free zone having

the same refresh time as the normal ones and the error zone having its refresh time

stretched adaptively based on the bit-error-rate of the users.
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• Koppula et al. [39]: This work proposes a general framework that reduces DNN

energy consumption by using approximate DRAM devices while meeting the user-

specified DNN accuracy requirements. They propose increasing the DNN’s error

tolerance by retraining the DNN for the approximate DRAMs and mapping the error

tolerance of DNN data types with the appropriate DRAM partitions.

• Jiang et al. [40]: This work develops a Dynamic Voltage and Frequency Scaling

(DVFS) framework on FPGAs to analyze the impact of DVFS on CNNs in terms of

performance, power, energy efficiency and accuracy.

• Elbtity et al. [41]: This work introduces approximate PEs to replace the direct quan-

tization of inputs and weights, utilized per-approximate units and shared them with

approximate PEs to reduce the overhead arising from the element-wise operation.

The authors demonstrate a reduction in the critical path delay in a PE required for

the different types of multiplication and lower the processing time in a large scale

multi-element arrays for a forward pass of data.

• Ruospo et al. [42]: This work reduces the fault simulation times for DNN inference

execution using a fault injector framework, which replicates the pipeline flow. They

elaborate the Neural Network (NN) layers as a pipeline in a processor core and uti-

lize a process to ensure the synchronization of individual computations involved in

an inference phase.

• Hosseini et al. [43]: This work proposes algorithms to approximate the value of

fault-free bits in the defective DNN weight memories and reduce the drop in DNN

accuracy due to faulty Non-volatile memories. The authors utilized the algorithms to

lower the deviations in the DNN weights and perform the deviation minimization

process at weight deployment stage to reduce the overheads due to hardware and

runtime.
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• Hoang et al. [44]: This work demonstrates a technique to develop a unified fault map

from smaller fault maps lower the retraining rounds and reduce the retraining over-

head. The authors investigate the different quantization methodologies and provide

a detailed analysis on the DNNs error resilience for permanent faults present in the

on-chip weight memory.

To the best of knowledge, the work (i.e., STRIVE) in this dissertation is the first one to

emphasize the impact of the PV in transforming a zero computation to a non-zero value

and design a low-overhead fault detection and mitigation scheme to mitigate the effect of

PV in a TPU systolic array containing faulty gates.



CHAPTER 3

RECLAIMING THE ENERGY EFFICIENCY OF A NEAR-THRESHOLD TENSOR

PROCESSING UNIT WITH TIMING ERROR RESILIENCE AND CLOCK GATING

3.1 Background and Contributions of This Work

Advancements in artificial intelligence have entered a new realm owing to the devel-

opment of domain specific architectures dedicated to neural networks (NN) processing.

Tensor processing unit (TPU), a custom application specific integrated circuit (ASIC) built

by Google, is one such accelerator, which is exclusively built to handle most of the deep

neural networks (DNN) inference workloads in their servers.

The rapidly increasing workloads calls for an increase in the processing speed and de-

ployment volume [45]. It, however, comes at a cost of a heavy power usage, thus affecting

the energy efficiency of the system. In order to preserve the energy efficiency, the TPU

is operated at the near-threshold computing (NTC) region, where the transistor supply

voltage is scaled down to just above its threshold voltage [2].

Accelerators like TPUs are designed to offer a very high throughput for DNN infer-

ence workloads. Although NTC operating conditions can ensure a low energy consump-

tion, the throughput is heavily declined due to the slower transistors and longer compu-

tational delays. As the technology nodes shrink in size, inefficiency in strictly controlling

the fabrication process introduces Process Variation (PV) into the system. PVs are caused

due to a combination of systematic and random effects, which induces undesired delays

in the computation paths [4, 5, 7, 46]. Shabanian et al and Bal et al, demonstrated that both

NTC-GPU and NTC-CPU are highly susceptible to PV, which cause timing violation in-

duced performance bottleneck [47, 48]. NTC-TPU is not an exception, this sensitivity can

impact the DNN inference accuracy significantly [2, 6]. This work underlines the signifi-

cance of the computational delays and order of execution of the arithmetic units, to handle



15

timing violations in NTC TPUs. Additionally, the energy efficiency of the TPU is enhanced

by exploring the predictable data flow pattern in its systolic array, thereby promoting an

error-resilient and energy-efficient TPU design paradigm.

Several timing error resilient schemes have been explored for CPUs and custom ASICs

[15,49–65]. However, these schemes are inefficient for combating timing violation in TPUs.

Razor is one such popular timing violation detection method which uses a double sam-

pling flip-flop to detect the errors [49]. Using instruction replay, the erroneous data is

recomputed and the correct value is propagated to the next stage of the pipeline. TPU has

a massive systolic array of 256× 256 multiplier-and-accumulate (MAC) units. So, using an

instruction replay in one MAC unit, results in stalling the operation of the entire systolic

array, leading to a massive drop of throughput and increase in the energy consumption.

TE-Drop is a recently proposed technique to handle timing violations in TPU-like systolic

arrays. In this technique, the MAC unit encountering a timing error, steals an execution

cycle from its downstream MAC, and recomputes the correct value [15]. In the process,

the downstream MAC’s computation is bypassed. However, there will be multiple levels

of bypassing, in case of timing errors in consecutive rows of the same column of MACs, in

the same clock cycle. Bypassing multiple computations can cause a severe drop in the in-

ference accuracy. Additionally, the timing errors encountered in the last row of MACs will

not be tackled by TE-Drop, also resulting in an accuracy drop. A naive approach to tackle

timing violations is to allow the erroneous data to flow through the successive stages of

operations [50, 66]. This technique undermines the effects of the erroneous data in DNN

computations, as a large number of timing errors causes a significant drop in the inference

accuracy [67].

In order to overcome the drawbacks of these error handling schemes, this work pro-

poses a unique timing error correction technique which handles timing errors in the same

cycle of the execution while enhancing the energy efficiency of the TPU. It is observed

that in a MAC, multiplier takes relatively higher execution time than accumulator (Section

3.2.3). Additionally, it is observed that a predictable data flow pattern in the TPU systolic
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array (Section 3.3.3). Analyzing these computational delays, data flow patterns, and utiliz-

ing the computational order of the arithmetic units, this work proposes EFFORT—an error

resilient, low-power, novel TPU design paradigm. Following are the specific contributions

of this work:

• It is experimentally demonstrated that a 8-bit multiplier takes higher computation

time than a 24-bit accumulator (Section 3.2.3). The computational delays and opera-

tional order of these arithmetic units are exploited to tackle the timing errors.

• A predictable data flow pattern is observed in the TPU and this data flow pattern is

utilized to reduce the energy consumption in the systolic array (Section 3.3.3).

• EFFORT—an energy efficient dynamic timing error detection/correction technique

is proposed, that detects the timing errors, obtains the corrected data and propagates

it to preserve the output accuracy(Section 3.3.2), while simultaneously employing a

low-overhead clock gating technique to improve the energy efficiency (Section 3.3.3)

of the TPU.

• In comparison to TE-Drop [15] and the Baseline-TPU, EFFORT delivers 2.5× better

performance for 6 out of 8 DNN benchmarks, while incurring only 4% loss in infer-

ence accuracy (Section 3.5.2).

• It is demonstrated that EFFORT consumes up to 6% and 27% less power and gives

up to 1.06× and 1.35× better performance per unit power, than Baseline-TPU and

TE-Drop (Section 3.5.3).

3.2 Motivation

In this section, the unseen opportunities that can be availed to tackle timing errors in

a TPU systolic array are illustrated. Section 3.2.1 sheds light on the background of the TPU

systolic array and inherent opportunities which can be exploited for an improved perfor-

mance. Using the cross-layer methodology in Section 3.2.2, the MAC units’ delay profiles
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are investigated. Section 3.2.3 elaborates the significance of the results and establishes the

ground work for the timing error correction and dynamic power management scheme.

3.2.1 Background

DNN Accelerators

DNN obtains inference using multiple layers of computation. Outputs of neurons

from each layers are referred to as activation streams. An activation matrix is multiplied

with the weight matrix in each layer. To accelerate the matrix multiplication, a systolic

array of MAC units are employed in DNN accelerators [68]. TPU–a DNN accelerator–uses

a 256×256 systolic array of MACs. The weight matrices are pre-loaded into the MACs.

The activation streams flow from left to right in consecutive clock cycles. The activation

and weight matrices maintain an 8-bit integer precision, while the accumulator maintains

a 24-bit integer precision.

Opportunities in a Systolic Array

The asymmetric delay distributions of the multiplier and accumulate blocks in a MAC

unit, open up a unique opportunity to tackle timing errors in a systolic array. The accumu-

late operation in a MAC, adds the output of the upstream MAC to the output of its own

multiplier block. Due to a relatively large computation time of the multiplication opera-

tion, the output from the upstream MAC has ample time to reach the current accumulate

unit, presuming the synchronization takes place at the primary output of the MAC. Ex-

ploiting this available timing window, correcting an erroneous operation at the upstream MAC can

be overlapped with the multiplication operation of the current MAC, without paying any additional

performance penalty.

The wavefront propagation of data in a systolic array leads to a static pattern of busy

and idle phases. Such predictable pattern creates an avenue to conserve power of the idle

MAC units. The experimental methodology used to demonstrate these opportunities in

the systolic array of an NTC TPU is briefly discussed in the next section.
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(a) CDF of multiplier delay
distribution.

(b) CDF of accumulator delay
distribution.

(c) Histogram of time availability in
MAC computations.

Fig. 3.1: CDFs of the delay distributions for multiplier (Figure 3.1(a)) and accumulator (Figure
3.1(b)) show that the multiplier has higher computational delay compared to the accumulator.
Accumulator takes less than a half clock cycle for its part of computation. Figure 3.1(c) shows
the time available for recomputation in downstream MACs when timing errors occur in the
respective upstream MACs.

3.2.2 Methodology

A multiplier and an accumulator unit at NTC are synthesized, using 15-nm FinFET

library from NanGate [69]. To model the PV at NTC for FinFET, VARIUS-NTV models

[70] are used. PV-induced delays in randomly chosen 2% of the gates in the circuit is

considered for a conservative estimate [71,72]. The in-house statistical timing analysis tool

is used to investigate the delay distribution of the sensitized path for different inputs to the

multiplier and accumulator unit. The computational time availability in the MAC units in

real time is analyzed by simulating the in-house TPU systolic array simulator in a real time

environment. Section 3.4 provides further elaboration on the cross-layer methodology.

3.2.3 Results and Significance

Figures 3.1(a) and 3.1(b) show the delay distributions of the multiplier unit and ac-

cumulate unit, respectively. The multiplier unit is tested for a set of all possible 8-bit ac-

tivation streams created against all possible 8-bit weight streams, which results in a total

of 65536, 16-bit output combinations. Each one of these 65536 outputs serve as one of the

inputs for the accumulator while the other input of the accumulator is fed with its own

output from the previous cycle.

The cumulative distribution functions (CDFs) for the multiplier and accumulator in
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Figures 3.1(a) and 3.1(b) indicate that the multiplier utilizes between 20-60% of the clock

cycle and the accumulator uses less than 40% of the clock cycle. From Figure 3.1(a) and

3.1(b), it can be inferred that, even if the output of multiplier unit is sensitized only to the

activation stream due to the preloaded weight, the multiplier unit still induces a higher

combinational delay to the MAC operation in comparison to the accumulator, during a

clock period of operation. Figure 3.1(b) shows that the accumulation requires less than half

cycle of the clock period. This disparate timing characteristics of the multiplier and accumulate

operations create an opportunistic timing window to correct any timing violation in an upstream

MAC, thereby preventing any erroneous value to be propagated down the column of the systolic

array.

Figure 3.1(c) demonstrates the computational time available in the downstream MACs,

when the respective upstream MACs encounter a timing error. The TPU simulator is tested

using the appropriate activation inputs and trained weights extracted from the MNIST [73]

dataset. The computational time availability pattern of a MAC unit in a timing error sce-

nario is depicted as a histogram in Figure 3.1(c). The X-axis is split into ten bars, with

each bar indicating the percentage of MAC computations having time availability in the

particular range of the clock cycles. From Figure 3.1(c), it is evident that more than 60%

of the clock cycle period is available for re-computation process in a downstream MAC

in the event of a timing error. The time availability is majorly attributed to the minuscule

accumulator operation and also to the large number of zero-skip operations [12, 13, 74].

Figure 3.2 depicts the decrease in dynamic power and domination of static power in

a MAC unit as the region of operation is changed from super-threshold computing (STC)

to NTC. The X-axis is normalized to 1GHz. Operating voltage is set at 0.85V and scaled

linearly to depict the shift in operating conditions. Static energy consumption can be re-

duced by operating the systolic array at frequencies, above the nominal NTC frequency.

However, increasing the operating frequency linearly increases the dynamic energy con-

sumption of the MAC units. In order to curb the increase in dynamic energy, an in-situ

clock gating technique can be employed in the systolic array. With this opportunistic win-
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Fig. 3.2: Figure 3.2 portrays the increase in static power and decrease in dynamic power for
decreasing frequencies. Voltages are scaled accordingly to depict the shift from STC to NTC.

dow in-sight, the performance enhancing TPU systolic array design–EFFORT, is analyzed

next.

3.3 EFFORT Design

Energy eFFicient and errOr Resilient TPU (EFFORT), is a novel design paradigm to im-

prove the performance of an NTC TPU by enhancing the timing error resilience of its MAC

units and managing the dynamic energy consumption of the systolic array. The overview

of EFFORT is described in Section 3.3.1. The detailed components of EFFORT are explained

from Section 3.3.2 to Section 3.3.5.

3.3.1 Design Overview

Figure 3.3 demonstrates the high-level design of EFFORT. Two key modifications are

added to the baseline NTC TPU. First, each MAC unit is augmented with a novel penalty-

free error detection and correction logic, thus preserving a high performance. Second, a

low-overhead clock gating technique is implemented to conserve the dynamic power of

the systolic array. These two components are discussed next.
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Fig. 3.3: CostCo implemented inside the MAC unit to detect and correct timing violations.

3.3.2 Costless Correction (CostCo)

In this section, costless correction (CostCo) is introduced. The conventional Razor [49]

is augmented with a multiplexer (MUX) and an Exclusive-OR (XOR) gate, as demonstrated

in Figure 3.3. Since CostCo controls its output with the comparison of the shadow latch

and the main latch, it is capable of propagating the correct value to the downstream logic

within the same clock cycle that timing error detection happens. Figure 3.4 demonstrates

the RTL simulation waveforms for two consecutive MAC units within a column, in a sys-

tolic array, both in absence and presence of a timing violation. Note that, only the primary

output of the MAC units is synchronized with the system clock, to enable the proposed

CostCo design.

Figure 3.4(a) demonstrates the normal output waveforms of two consecutive column

MACs in absence of any timing violation. Figure 3.4(b) shows how a small additional de-

lay in the input of the first MAC, engenders timing violation in its immediate downstream

MAC, leading to an erroneous result. Figure 3.4(c) exhibits how CostCo can detect the tim-

ing violation and propagate the correct value to its succeeding downstream MAC, within

the same clock cycle. CostCo can be employed as a competent method to tackle timing vi-

olation if the downstream combinational logic has sufficient time-window before the next

rising edge of the clock, to replay its logical operations on the corrected data.

In case of a timing error, 24 CostCo flip-flops are considered at the output of each

MAC to provide the correct values to the downstream MACs. The output of each MAC
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(a) No timing violation.

(b) Timing violation with no correction.

(c) Timing violation with correction.

Fig. 3.4: CostCo can diagnose timing violation and propagate the corrected value within one
clock cycle.

is utilized in the accumulation operation in its succeeding MAC. As accumulation in each

MAC requires less than 50% of the clock cycle (Section 3.2.2), a 50% shift in the system

clock is considered to provision the CostCo flip-flop clock. This shift of clock provides an

opportunity to detect timing errors up to 50% beyond the system clock, while it guarantees

the succeeding MACs to have adequate time to accomplish their accumulation operations

in the remaining time window. The hardware overhead and performance gain of this

design is discussed in Section 3.5.

3.3.3 Systolic Clock Gating
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(a) Cycle 1 to 4. (b) Cycle 5. (c) Cycle 6.

(d) Cycle 7. (e) Cycle 8 to 11.

Fig. 3.5: Data flow pattern in a 4× 4 systolic array for 11 consecutive cycles. Gray MACs are
yet to receive their inputs, black MACs have completed their operations, while the rest of the
MACs are presently computing their respective outputs.

In EFFORT, the operating frequency is increased, while keeping the supply voltage

at the nominal NTC value, in order to provide a better performance compared to a base-

line NTC TPU. To reduce the power consumption due to a high-frequency operation, the

application independent data-flow pattern within the TPU systolic array is exploited, and

employ a low-overhead clock gating technique.

Application Independent Data Flow

Figure 3.5 demonstrates the pattern of data flow inside a 4× 4 systolic array for 11

consecutive clock cycles. In this figure, the gray nodes represent the MACs that have not

received their data yet, the nodes in black denote the MACs that completed their opera-
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tions, and other colored nodes demonstrate the MACs which are doing their operations.

Numbers on black nodes show the cycle when they completed their operations, numbers

on other colored nodes represent the cycle in which they received their first data, and num-

bers on each edge display the cycle in which the preceding node attempts to activate or

deactivate its subsequent nodes either on the right-hand side or down a row. As Figure

3.5(a) exhibits, considering the upper left node as the start point from cycle 1 to 4, all the

MACs from start point down to the main diagonal, receive their data respectively in a se-

quential fashion, while the rest of them are yet to receive their data. After cycle 4 (Figure

3.5(b) through Figure 3.5(d)), as a new set of MACs receive their data in each cycle, another

set of MACs accomplish their tasks. Figure 3.5(e) displays the systolic array after 11 clock

cycles, when the entire systolic array operation is completed. It is observed that all the

MACs on the same diagonal of the systolic array, are active or idle in the same cycles.

Clock Gating Components

Based on the activity pattern of a systolic array, a low overhead clock gating tech-

nique is proposed, to shutdown the clock of idle MACs, improving the dynamic energy

consumption of the TPU. Since all of the MACs on the same diagonal of the systolic array

are active or idle in the same clock cycle, instead of endowing a separate clock gating unit

for each MAC, only one clock gating unit for each set of MACs on each diagonal. Since

an n× n matrix has (2n− 1) diagonals, the total number of required clock gating units is

reduced from n2 to (2n− 1). Figure 3.3 shows that each clock gating unit consists of one

flip-flop to register the enable signal for the downstream clock gating unit, and an AND

gate to control the clock for its corresponding group of MACs.

MAC Activity Analysis

Generalizing from Figure 3.5, an n× n systolic array needs (3n− 2) cycles to complete

its operation. However, not all MACs are active during each clock cycle. For an n × n

systolic array, at each clock cycle in the range [Cycle 1, Cycle n] and [Cycle (2n - 1), Cycle

(3n - 2)], the total number of active MACs is n×(n+1)
2 . Furthermore, in the interval [Cycle
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(n + 1), Cycle (2n)], at each cycle i, the number of active MACs change by (n− (2× i)),

where a positive (negative) value indicates an increase (decrease) in the number of MACs.

Applying the proposed clock gating technique by summing the number of active MACs

during the (3n− 2) clock cycles, the order of active sequential logic is reduced from (3n3)

to (n3).

Fig. 3.6: Serially connected flip-flops in the Clock Gate units effectively exhibit the characteristics
of Right Shift Register, thereby suitably enabling/disabling the MAC units along the diagonal
of the systolic array.

Clock Gate Unit

The inherent dataflow along the diagonal of systolic array facilitates the generation of

Enable (En) bit for consecutive clock gate units. Based on the MAC activity analysis (Sec-

tion 3.3.3), a simple heuristic as illustrated in Algorithm 1 is developed, to enable/disable

MACs during the systolic array operation. The consecutive clock gate units, connected to

each other effectively work as a Serial Input Parallel Output (SIPO) Right Shift Register as

depicted in Figure 3.6. For each clock cycle in the range [Cycle 1, Cycle n], En bit is set
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Algorithm 1 Gating Enable Algorithm

1: Systolic Array Dimension (n) = 256
2: Tot. Sim. Cycles (totcycles) = 766← ((3 ∗ n)− 2)
3: activ← 1, inactive← 0
4: while Simcycle ≤ totcycles do

5: if Simcycle ≤ n then

6: En← high
7: else

8: En← low
9: end if

10: end while

to active high state (lines 5-6 in Algorithm 1), thereby appropriately enabling the horizon-

tally aligned clock gate units in a bitwise order. Further, from clock interval [Cycle (n + 1),

Cycle (3n − 2)], En bit is set to active low state (lines 7-8 in Algorithm 1), disabling the

horizontally aligned clock gate units and appropriately enabling/disabling the vertically

aligned clock gate units in the consecutive cycles. The experimental results and hardware

overhead of this technique is discussed in Section 3.5.

3.3.4 EFFORT Variants

Two different variants of the EFFORT scheme are explored with regard to the timing

error resilience provided by CostCo by underlining the significance of Most Significant

Bits (MSBs) of the MAC unit’s accumulator.

EFFORT-24

EFFORT-24 is a variant encompassing the comprehensive architecture, elaborated so

far. It includes the 24 CostCo flip-flops (Section 3.3.2) at the output of each MAC unit to

ensure a safe passage of corrected values to the downstream MACs in the event of a timing

error.

EFFORT-14

EFFORT-14 is variant with only 14 CostCo flip-flops [15] augmented to the output

of each MAC unit. The 14 CostCo flip-flops are assigned to the 14 Most Significant Bits



27

(MSBs) of the accumulator output. EFFORT-14 will detect any modifications in the 14

MSBs due to timing errors and the updated value will be provided to downstream MAC

unit. However, any modifications to the remaining 10 bits (i.e., 10 Least Significant Bits

(LSBs)) due to timing errors will be ignored. Since almost half of the accumulator bits are

protected, the differential impact of the timing errors can be observed by comparing the

outputs of EFFORT-24 and EFFORT-14.

EFFORT-8

EFFORT-8 is a trimmed version of EFFORT-24 with only 8 CostCo flip-flops supple-

mented to the MAC output. EFFORT-8 will have only 8 MSBs of the MAC unit output

protected by CostCo flip-flops. EFFORT-8 aids in further analyzing the impact, the vary-

ing degree of timing errors has on the system output. EFFORT-8 also helps in understand-

ing the performance/energy trade-off, due to the lower degree of protection it offers in

comparison to EFFORT-24.

3.3.5 Design Summary

In this section a brief summary of the EFFORT design for deeper clarity is provided.

• CostCo consists of the a modified Razor flip-flop (2 flip-flops, XOR gate and Multi-

plexer). CostCo exploits the time borrowing window (Section 3.2.3) to detect the late

transitioning output to improve the overall inference accuracy (Section 3.5.2).

• Systolic Clock Gating utilizes the diagonal wavefront dataflow pattern in the sys-

tolic array to reduce the dynamic energy consumption, and enhances the energy-

efficiency gains (Section 3.5.3).

• Hence, EFFORT (EFFORT-24) constitutes of CostCo and Systolic Clock Gating to

provide a significant increase in the overall performance of an NTC TPU (Section

3.5.3).
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Fig. 3.7: Cross Layer Methodology

• EFFORT-14 and EFFORT-8 are lightweight variants of EFFORT (EFFORT-24), which

provides bit protection to only 14 and 8 MSBs respectively.

3.4 Methodology

In this section, the comprehensive cross-layer methodology, used to implement the

proposed design and evaluate its capabilities across DNN applications is expounded. Fig-

ure 3.7 depicts the cross-layer methodology, which will be outlined in the following sec-

tions.

3.4.1 Device Layer

The delay distributions of the basic logic gates are measured (e.g., NOR, NAND and

Inverter) by performing HSPICE simulations with 16-nm Predictive Technology Model

[75]. The impact of with-in die process variation at NTC is considered by using VARIUS-

NTV model [8]. In addition, VARIUS-TC model is employed to integrate the FinFET at-

tributes [76]. The delay values are used in the circuit layer (Section 3.4.2) to analyze the

delays in a MAC unit.
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3.4.2 Circuit Layer

A TPU systolic array is implemented, as well as, the components of the proposed

design in Verilog RTL. The developed RTLs are synthesized using Synopsys Design Com-

piler. The synthesized netlists are used in the in-house statistical timing analysis (STA) tool.

The STA tool employs libraries of delay distributions for basic logic gates from HSPICE

simulations (Section 3.4.1), to provide the delays of the sensitized paths in the MAC cir-

cuit. The sensitized delays are utilized for further evaluations of the proposed technique.

Benchmarks Error free
Accuracy

Name Basic Layers Architecture

SVHN [77]
CONV: (32, 32, 3)x(32, 32, 32)x(32, 32, 32)x(14, 14, 64)x(14, 14, 64)x(5, 5, 128)x

0.94
(5, 5, 128), FC: 512x512x10

GTSRB [78]
CONV: (3, 48, 48)x(32, 48, 48)x(32, 46, 46)x(64, 23, 23)x(64, 21, 21)x(128, 10, 10)x

0.97
(128, 8, 8),FC: 2048x512x43

Reuters [79] FC: 2048x256x256x46 0.80

IMDB [80] CONV: 400x(400x50)x(398, 256), FC: 256x1 0.89

MNIST [73] FC: 784x256x256x10 0.98

CIFAR-10 [81]
CONV: (32, 32, 3)x(32, 32, 32)x(32, 32, 32)x(16, 16, 64)x(16, 16, 64)x(8, 8, 128)x

0.77
(8, 8, 128),FC: 2048x512x10

FMNIST [82] FC: 784x256x512x10 0.89

AMNIST [83] CONV: (20, 25, 1)x(20,25,128)x(20,25,64), FC: 32000x256x128x40 0.92

Table 3.1: List of DNN benchmarks used and the error free accuracy.

3.4.3 Architecture Layer

The in-house TPU systolic array simulator developed using C++ is used. The TPU

systolic array is based on the detailed architecture of a TPU [68]. The delays from the STA

tool (Section 3.4.2) are incorporated into the TPU Simulator to simulate timing errors in the

MAC units. Keras [84] is interfaced with the TPU simulator to replicate a real-life inference

engine. The DNN applications listed in Table 3.1 are trained using Keras. Activation inputs
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and trained weights from each layers are extracted and separated into 256×256 matrices.

Inference accuracy is obtained by combining the output matrices from the simulator.

3.5 Experimental Results

In this section, the efficacy of different schemes for NTC TPU operation is compared.

The baseline frequency of operation for the schemes is (0.45V, 67.5MHz), which offers an

error-free execution of the systolic array. Section 3.5.1 introduces the comparative schemes.

Section 3.5.2 presents the inference accuracies. Section 3.5.3 discusses the power savings

and Section 3.5.4 presents the overheads of EFFORT.

3.5.1 Comparative Schemes

• Baseline-TPU : This scheme operates an NTC TPU without any error detection and

correction. It allows the erroneous data to propagate through all the computation

stages in the systolic array [50].

• TE-Drop : This technique handles the timing errors by dropping the subsequent

downstream MAC operation [15]. The erroneous MAC recomputes the output by

stealing the clock cycle from its downstream MAC.

• EFFORT-24 : This is the proposed technique which uses the opportunistic timing

window in the MAC operation to detect and correct timing errors (Section 3.3). How-

ever, if a computational delay falls beyond that opportunistic timing window, an

erroneous value will be propagated.

• EFFORT-14 : This is a variant of EFFORT, with only 14 MSBs of the MAC unit output

protected by CostCo flip-flops (Section 3.3.4).

• EFFORT-8 : This is a lighter variant of EFFORT providing security to only 8 MSBs

of the MAC unit output (Section 3.3.4). Timing errors causing modifications to the

remaining 16 LSBs will not be corrected.
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Fig. 3.8: Normalized inference accuracies of the 8 DNN benchmarks for different comparative
schemes.

3.5.2 Inference Accuracy

Figure 3.8 shows the normalized accuracies for different comparative schemes at var-

ious operating frequencies. The operating voltage is set to 0.45V for all frequencies. Y-axis

is normalized to the error free accuracy for the baseline operation and X-axis is normalized

to the baseline frequency. Error free accuracy for the DNN benchmarks are SVHN: 0.94,

GTSRB: 0.97, REUTERS: 0.80, IMDB: 0.89, MNIST: 0.98, CIFAR-10: 0.77, FMNIST: 0.89 and

AMNIST: 0.92 respectively. The normalized accuracies for the 8 DNN benchmarks drip

at different rates from the maximum for the various resilient schemes, emphasizing the

impact of timing errors as the performance points are increased.

A modest timing error resilience can be observed in all the schemes up to 1.25×

the baseline frequency of operation. Accuracy begins to decline as the number of er-

rors drastically increases at higher frequencies. EFFORT-24 and EFFORT-14 outperforms

other schemes by detecting and correcting most of the timing errors. However, for CIFAR-

10, FMNIST and AMNIST, the computational delay at the highest frequency is relatively

higher than other benchmarks, which increases the number of undetected errors and con-

sequently, causes more reduction in the inference accuracy. The complete protection pro-

vided to all the accumulator bits aids EFFORT-24 in providing a better error resilience

compared to EFFORT-14. At higher frequencies, significant rise in timing errors leads to

a huge number of timing errors getting unnoticed by EFFORT-14, thereby restricting its
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error handling capability. Since EFFORT-8 offers protection to only a third of the accumu-

lator bits, it significantly falls short of EFFORT-24 and EFFORT-14. However, the varying

degree of protection offered to the MSBs of the accumulator bits (8-bit→ 14-bit→ 24-bit),

enables us to assess the orders of improvement in performance achieved from EFFORT-8

(8-bit) to EFFORT-24 (24-bit). Baseline-TPU has a relatively sudden fall in inference ac-

curacy as propagating errors in successive stages massively deteriorates the quality of the

output matrices [67]. Inference accuracy for TE-Drop, however, falls at a slower pace, com-

pared to the Baseline-TPU. At higher frequencies, due to a large number of timing errors,

TE-Drop bypasses a higher number of MAC computations, resulting in inferior accuracies

compared to EFFORT-24. Hence, an NTC TPU, enhanced with EFFORT, results in only

4% average accuracy loss, when operated up to 2.5× the baseline frequency, for 6 out of 8

DNN benchmarks.

Fig. 3.9: Power Consumption (Lower is better).

3.5.3 Energy Efficiency

Figure 3.9 shows the average power consumption for the 8 DNN benchmarks for dif-

ferent comparative schemes. Power consumption for the comparative schemes are nor-

malized to the power consumption of the Baseline-TPU at the baseline frequency (Power



33

consumed by Baseline-TPU at 1.0x frequency is 1.3 W). With the increasing operational fre-

quency, power consumption steadily increases for all the schemes. However, EFFORT-24

has lower power consumption compared to TE-Drop and Baseline-TPU. Despite the addi-

tion of CostCo into MAC units, the clock gating mechanism (Section 3.3.3) implemented in

EFFORT-24 yields lower dynamic power in MAC units which are idle. Hence, the overall

power consumption for the systolic operation is reduced. Thus, EFFORT-24 consumes up

to 6% and 27% less power when compared to Baseline-TPU and TE-Drop. TE-Drop, due

to its Razor flip-flops, has the highest power consumption. Limited protection provided

to the accumulator bits in the EFFORT variants yields a lower area footprint compared to

EFFORT-24, thereby incurring lower power consumption.

Fig. 3.10: TOPS/Watt (Higher is better).

Figure 3.10 depicts the average of the energy-efficiency, measured in Tera Operations

Per Second (TOPS)/Watt, for 8 DNN benchmarks with the normalized frequencies. TOP-

S/Watt for all the scheme are normalized to that of the Baseline-TPU at the baseline fre-

quency (Baseline-TPU at 1.0x frequency delivers an energy efficiency of 53 TOPS/Watt).

All the schemes have the same TOPS measure. However, TE-Drop has the lowest energy-

efficiency due to its relatively high power footprint compared to other schemes. Owing

to the clocking gating, EFFORT-24 boasts the highest energy-efficiency. EFFORT-24 de-
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livers up to 1.06× and 1.35× better performance per unit power consumption, relative

to Baseline-TPU and TE-Drop. Owing to lesser power consumption in EFFORT-8 and

EFFORT-14 compared to EFFORT-24, a better TOPS/Watt performance is observed in these

EFFORT variants. EFFORT-24 delivers up to 85% of the energy efficiency of an STC TPU.

Hence, EFFORT is a superior NTC TPU design paradigm, offering a high energy-efficiency while

providing a high timing error resilience.

3.5.4 Implementation Overhead

EFFORT incurs hardware overheads due to the clock gating circuit, and the CostCo

logic added to each MAC. As the systolic array takes almost 24% of the TPU die area [68],

EFFORT incurs an area overhead of only 5%.

In terms of gate count, a MAC unit without any enhancements uses 212 gates, while a

MAC enhanced with CostCo uses 240 gates. The Clock Gate Unit is composed of 4 gates.



CHAPTER 4

RECLAIMING THE PERFORMANCE OF A NEAR-THRESHOLD TENSOR

PROCESSING UNIT WITH SELECTIVE VOLTAGE BOOSTING

4.1 Background and Contributions of This Work

Rapid progress in the Artificial Intelligence (AI) realm has evidenced an emergence

in the domain-specific AI architectures to sustain the colossal boom in the development

of Deep Neural Network (DNN) applications. The rising efficiency of DNN accelerators

further bears witness to the ongoing empirical advancements within the sphere of Deep

Learning [12,85]. Google’s Tensor Processing Unit (TPU), a systolic array of multiplier-and-

accumulate (MAC) units, has been spearheading this race, by demonstrating a massive

performance boost over the contemporary CPUs and GPUs [45].

However, the growth in AI processing is accompanied by a monumental increase in

the power consumption as affirmed by carbon footprint for a single AI training [86]. To

sustain the performance and trim the energy consumption, operating the TPU in the Near-

Threshold Computing (NTC) realm is conceived for this research. Operating a TPU at

NTC, benefits in a massive energy savings as the operating voltage is scaled close to the

threshold voltage. However, extreme Process Variation (PV) sensitivity [87] introduced

at NTC induces a high rate of timing errors which degrades the overall system perfor-

mance [67], thereby reducing the energy-efficiency gains at low-voltage operation [6]. In

this chapter, the significance of undetectable timing errors (Section 4.2.1) on the performance

of an NTC TPU, is emphasized and the architectural homogeneity is exploited to detect

and tackle timing errors, thereby presenting a reliable and energy efficient TPU design

paradigm.

Razor is a very popular timing speculation methodology using a double sampling flip-

flop to detect and correct timing errors [49]. Razor employs an instruction replay to correct
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the erroneous computation. The tightly pipelined architecture of the TPU will result in

inflating the execution time, thereby restricting the use of an instruction replay in a TPU.

TE-Drop, a recently proposed technique prompts the MAC unit encountering timing error

to steal a clock cycle from the downstream MAC to correct the timing error [15]. The erring

MAC overrides the downstream MAC’s output with its corrected value. However, TE-

Drop does not address the timing errors which cannot be detected by Razor Flip Flop [49]

which leads to the erroneous value to propagate down the output. Additionally, various

timing error resilient schemes have been proposed for the processing architectures [88–

104].

To overcome the limitations in existing schemes, a novel timing error prediction strat-

egy based on the foreseeable timing error occurrence pattern in the TPU systolic array

is proposed. The impacts of undetectable timing errors on the inference accuracy (Section

4.2.1) is observed. The mathematical analysis on the initially recorded timing error data is

integrated with an efficient voltage boosting mechanism to propose PREDITOR—a novel

low-power error-resilient TPU design paradigm to predict and mitigate timing errors.

This is the first work emphasizing the impacts of undetectable timing errors on the inference

accuracy and presents a channel to limit its effects.

Following are the precise contributions of this work:

• A monumental increase of undetected timing errors at higher frequencies and ultra

low NTC voltages is observed (Section 4.2).

• PREDITOR—a low-power TPU design paradigm that predicts and mitigates the tim-

ing errors over a range of operational cycles using an effective voltage boost mecha-

nism (Section 4.3) is proposed.

• It is demonstrated that PREDITOR tackles up to ∼68% of the undetectable timing er-

rors, thereby preserving the inference accuracy of the DNN datasets. PREDITOR

offers 3x-5x better performance in comparison to TE-DROP and Modified Razor Flip

Flop, with under 3% average loss in accuracy for 5 out of 8 DNN datasets and incurs

an area and power overhead of ∼7.7% and ∼2.5% respectively (Section 4.5).
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• Finally, it is illustrated that PREDITOR offers up to 87% energy efficiency gain in

relative to a TPU operating in the Super-Threshold Computing (STC) realm, while

utilizing only 14% of its power (Section 4.5).

4.2 Motivation

In this section, the correlation between the data flow and timing error emergence is

investigated, and the concealed opportunity that can be utilized to tackle timing errors in

a TPU systolic array is revealed. Section 4.2.1 provides the background of a TPU and elab-

orates the drawbacks for an NTC TPU operation. Section 4.2.2 introduces the architectural

homogeneity of the TPU. The cross-layer methodology explained in Section 4.2.3 is used,

to explore the timing error profiles illustrated in Section 4.2.4 and establish the need for a

timing error prediction scheme in an NTC TPU.

4.2.1 Background and Limitations

Systolic Array based DNN Accelerator

DNNs use multiple layers of computation to obtain the output inference. In each

layer, activation matrix is multiplied with the weight matrix. TPU employs a systolic array

of 256× 256 MAC units to accelerate matrix multiplication [45]. The activation matrix and

weight matrix both maintain an 8-bit precision. The weight matrices are pre-loaded into

the MACs while the activation flows from left to right in successive clock cycles. The 24-bit

precision accumulator output from each MAC moves downstream in each cycle.

Limitations to NTC Performance

Dynamic Scaling of Voltage (DVS) is a common practice used in the modern process-

ing elements to yield significant power savings. The critical voltage is fixed at an optimum

point to ensure correct operation of the processing element. However, aggressive scaling

leads to an increase in the critical path due to the decrease in clock period of the operation.
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(a) Normal Scenario. (b) Timing Error.

(c) Instant Replay with Razor. (d) Undetectable Timing Error.

Fig. 4.1: Figure depicts multiple data latching scenarios as the frequency of operation increases
and the timing error detection window diminishes. In Figure 4.1(a) baseline frequency is in
operation. Frequency of operation is same for Figures 4.1(b) and 4.1(c) but higher than Figure
4.1(a). Highest frequency of operation is employed in Figure 4.1(d).

Figure 4.1(a) shows the typical scenario of an operation. The critical path is shorter

than the clock period of an operation. In Figure 4.1(b), the frequency of the operation

has increased to obtain better performance. During this scenario, the clock period of an

operation decreases, leading to the delayed transitioning of the data (i.e., data1 to data2).

This phenomenon where the wrong data (i.e., data1.) is being latched onto the output

instead of the correct data (i.e., data2.) is called a timing error [8, 87]. Timing speculation

methods like Razor uses a double sampling flop to capture this delayed transitioning in

data and employs an instant replay to latch the correct data onto the output [49]. Figure

4.1(c) depicts the operation of a Razor flop, where a delayed clock is employed by the

shadow flop to detect the delayed transition. However, when the frequency of operation

increases even further, the speculative window becomes too small even for the Razor flop

to capture the delayed transition. Figure 4.1(d) elaborates the scenario when the delayed

transitions cannot be captured any further. These extremely delayed transitions are the

undetectable timing errors.

Figure 4.2(a) depicts the increase of the undetectable timing errors with an increase of

frequency for 8 different DNN datasets. These undetectable errors propagate down the
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(a) Undetectable Timing Errors. (b) Normalized accuracies.

Fig. 4.2: Figure 4.2(a) shows the rise in undetected timing errors with an increase in the
operational frequency. The effects of the increasing timing errors is depicted in Figure 4.2(b),
where the classification accuracy drops drastically. This experimentation is performed on the
Baseline TPU (Section 4.5.1).

systolic array resulting in an erroneous output, adversely affecting the system performance

[6,67]. Figure 4.2(b) appropriately shows the drop in inferential accuracy as the operational

frequency level is bolstered [15]. Especially, in case of DNN computations, where inference

accuracy dictates the performance of system, the deterioration of classification accuracy

renders the system inept to address the increasing performance needs.

4.2.2 Predictive Systolic Array Dataflow

There exists a strong interdependence between the data flow pattern inside the sys-

tolic array and number of timing errors occurring during the systolic array operation. Al-

though the occurrence of timing errors are majorly dependent on the computational de-

lays, the magnitude of timing errors per cycle of operation is dependent on the number

of operations during the same period of clock cycles. Due to the disparate number of op-

erations during every active execution cycle, the scope of timing errors varies but closely

follows a foreseeable pattern. To further investigate this property, an exhaustive cross-

layer methodology is employed, discussed next.

4.2.3 Methodology
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A MAC unit is synthesized at NTC, using 15-nm FinFET library from NanGate [69].

VARIUS-NTV models are used to model the PV at NTC for FinFET [70]. For a conser-

vative estimate, PV-induced delays in randomly chosen 2% of the gates in the circuit is

considered. The in-house Statistical Timing Analysis (STA) tool to investigate the delay

distribution of the sensitized paths for different inputs to the MAC unit. Additionally, the

in-house TPU systolic array simulator is used to simulate the working of a TPU. Different

levels of high degree timing error inducing input vectors are used with the TPU simulator

to investigate the operational flow and timing error intricacies.

Fig. 4.3: Figure 4.3 depicts the various timing error profiles during the high frequency operations
of the TPU.

4.2.4 Results and Significance

Figure 4.3 demonstrates the extensively observed timing error count variances in a

systolic array operation. The Y-axes are normalized to the highest timing error in the re-

spective plots. X-axes are normalized to the total number of operational cycles. Plots(1-3)

in Figure 4.3 shows an exponential increase/decrease in the timing errors and Plot 4 de-

picts a relatively linear rise/fall. The operational cycle in which the highest timing errors

occur varies across the plots in Figure 4.3. For example, in Plot 2 of Figure 4.3, highest

timing error occurs at 42th cycle, whereas for Plot 3, highest timing error occurs at 58th

cycle.

The results indicate a disparity in the timing error profiles, but all the plots have a

symmetrical nature. Plots 1-3 of Figure 4.3, nearly exhibit a normal distribution curve charac-
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teristic, while Plot 4 resembles a triangular curve. The symmetrical nature of the profiles is

mainly attributed to the uneven number of MAC units being active, during each clock cy-

cle of a systolic array operation. Utilizing this predictable timing error occurrence model,

a prediction strategy is devised to significantly lower the timing errors in a TPU. With this

insight, the scheme—PREDITOR is proposed, to mitigate up to 68% of the timing errors

by boosting the operating voltage during the high timing error occurrence cycles.

Fig. 4.4: Each MAC in the systolic array is enhanced with an MRFF. EMU comprises of ECU
and VCU. ECU collects and stores timing error count from each cycle. VCU queries the timing
error information from ECU to predict the operational clock cycles and boost the operating
voltage during the predicted cycle interval.

4.3 Design

In this chapter, an Analytical PREDIcTion based ErrOR Resilient TPU (PREDITOR), a

novel low-power design paradigm is proposed to enhance the error resilience of an NTC

TPU using mathematical analysis of the detectable timing errors. Section 4.3.1 outlines the

design overview. Section 4.3.2 through Section 4.3.4 elaborates the components of PREDI-

TOR.

4.3.1 Design Overview
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Figure 4.4 depicts the top level overview of PREDITOR. The prime enhancement of

PREDITOR is the Error Management Unit (EMU). The main components of an EMU are Er-

ror Collection Unit (ECU) and Voltage Control Unit (VCU). Each MAC unit is augmented

with a Modified Razor Flip Flop (MRFF) to detect and mitigate timing errors during the

non-boosted cycles of operation. MRFF captures a timing error using a shadow latch and

delivers an error signal to the ECU. Additionally, MRFF also provides the corrected value to

the downstream MAC unit. ECU records the number of timing errors occurring during ev-

ery operational clock cycle. VCU profiles and analyzes the timing error information from

ECU once in every two clock cycles, to predict the operational clock cycle intervals which

yields maximum timing errors. VCU will then boost the operating voltage of the MACs

during the predicted intervals, to ensure an error free operation. Since the data flows in

the systolic array as a diagonal wavefront, MACs along the diagonal (i.e., left bottom to

right top.) will be active/inactive at the same time [45]. Hence, VCU will only boost the

voltage of the MACs which are computationally active, thereby introducing a minuscule

energy overhead.

4.3.2 Modified Razor Flip Flop (MRFF)

MRFF detects and corrects timing errors without using any additional operational

clock cycles. In a MAC unit, multiplier is sensitized only to the periodically changing acti-

vation input, as the pre-loaded weights remain unchanged throughout the entire systolic

array operation. Additionally, the multiplier operation being computationally prolonged

compared to the accumulation operation. It thus opens up a timing aperture, which can

be exploited to override the previously transmitted erroneous value with the updated up-

stream MAC output. Figure 4.5(a) depicts the changes in the schematic between a regular

Razor flip flop (RFF) and MRFF.

Figure 4.5(b) demonstrates the error handling capabilities of an RFF and MRFF for

a column-wise systolic array operation. As depicted in Figure 4.5(b), whenever an RFF

detects a timing error due to the delayed manipulation of the output data, an instant re-
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(a) Razor Flip Flop to Modified Flip Flop.

(b) MRFF detects and corrects Timing Errors within a clock pe-
riod.

Fig. 4.5: Figure 4.5(a) depicts the conversion of Razor Flip Flop to Modified Razor Flip Flop
by altering the multiplexer input/output connections. The timing error correction capability of
MRFF is shown in Figure 4.5(b).

play is initiated, which requires an additional clock cycle to correct the erroneous value.

However, an MRFF will detect and correct the timing error within the same clock cycle, by

opportunistically using the timing aperture.

However, MRFF cannot correct timing errors when the computational delays are be-

yond detection (Section 4.2.1). Hence, VCU will utilize the timing error information stored

in ECU to predict the range of operational cycles to mitigate timing errors which is ex-

plained in Section 4.3.4.

4.3.3 Error Collection Unit (ECU)

ECU contains a 16-bit Error Counter and a content-addressable memory. During each

operational clock cycle, ECU captures the timing errors from individual MAC units and

these error signals are accumulated using the 16-bit Error Counter. Timing Error Count

(TEC) (i.e., the total number of timing errors.) obtained during every clock cycle is stored

in the consecutive locations of a content-addressable memory and successively updated at
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the end of every operational clock cycle.

4.3.4 Voltage Control Unit (VCU)

VCU houses the Control Unit (CU) and the Boost Unit (BU). CU computes the range of

operational clock cycles for voltage boosting, by analyzing the cycle-wise TEC from ECU.

BU boosts the supply voltage of MACs for the clock cycle interval predicted by the CU.

Voltage boosting aids in mitigating both detectable and undetectable timing errors.

Control Unit (CU)

CU is responsible for predicting the operational clock cycle intervals yielding maxi-

mum timing errors. Based on the findings in Section 4.2.4, an algorithm modeled on the

Normal Distribution Curve characteristic is developed. Since ∼68% area of a Normal Dis-

tribution curve is covered between the first standard deviations from the mean, by mathe-

matical analysis, ∼68% of the timing errors are identified to be occurring within the ∼33%

operational clock cycles centered around the mean clock cycle. Hence, PREDITOR targets

to mitigate ∼68% of undetectable timing errors.

(a) Normal Distribution. (b) Triangular Distribution.

Fig. 4.6: Representative Timing Error Profiles.
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Algorithm 2 Boost Cycles Prediction Algorithm

1: dim← systolic array dimension
2: cycleops ← current operational clock cycle
3: total num cycles← ((3 ∗ dim)− 2)
4: cyclemean ← (total num cycles÷ 2)
5: cyclehigh ← (4/3) cyclemean

6: cyclelow ← (2/3) cyclemean

7: cycleTh ← (1/3) cyclemean

8: cycleThHal f ← (1/2) cycleTh

9: procedure AREA CALCULATION(init cycle, f inal cycle)
10: Area← 0
11: for iterator ← (init cycle) to ( f inal cycle) do

12: Area← Area + TEC[iterator]
13: end for

14: return Area
15: end procedure

16: procedure CURVE PREDICTION(cycleops)
17: if (cycleops = cycleTh) then

18: CF ← AreaTh/AreaThHal f

19: if CF > NDthresh then

20: Curve Distcoe f f ← NDcoe f f

21: boost initiate← 1
22: else if CF < NDthresh & CF > TDthresh then

23: Curve Distcoe f f ← TDcoe f f

24: cyclelow ← cycleTh

25: cycleTh ← cycleThHal f

26: boost initiate← 1
27: else

28: boost initiate← 0
29: end if

30: end if

31: end procedure

32: procedure BOOST INTERVAL COMPUTE(cycleops)
33: if cycleops = cyclelow + 1 then

34: if Arealow < (Curve Distcoe f f ∗ AreaTh) then

35: cycleTh ← cycleTh + 1
36: cyclelow ← cyclelow + 1
37: else

38: deviation← (cyclelow − cycleTh)
39: cyclehigh ← (cyclelow + (2 ∗ deviation))
40: end if

41: end if

42: end procedure
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Figure 4.6(a) and 4.6(b) show the representative area-wise Normal and Triangular Dis-

tribution of a timing error profile. The boost cycles prediction procedures are elaborated

in Algorithm 2. Based on the experimental analysis, it is determined that a rapid rise in

the rate of timing errors results in the timing error profile exhibiting a Normal Distribution

curve characteristic and a slower rise results in Triangular Distribution curve characteris-

tic. Hence, to determine the nature of the timing error profile, a Curve Factor (CF) metric is

proposed. CF is defined as the ratio of Areas between Threshold clock cycle (cycleTh) and

Half Threshold clock cycle (cycleThHal f ) (line 18 of Algorithm 2) (Figure 4.6(a)). The values

of cycleTh and cycleThHal f are empirically ascertained based on earlier analysis.

To predict the boost intervals, the accumulated areas AreaTh and Arealow are com-

pared. Areas (i.e., summation of TECs) between specific cycles is computed using an area

calculation heuristic (lines 9 - 15 of Algorithm 2.). For example, Arealow is summation of

TECs from cycleTh to cyclelow. As new TECs are updated after every clock cycle, a balanc-

ing metric, Curve Distcoe f f is used to dynamically balance the areas at specific clock cycle

boundaries (i.e., cycleTh and cyclelow.). The empirically determined balancing metric for a

Normal Distribution curve (NDcoe f f ) is expressed in equation 4.1. The cycles are adjusted

dynamically (lines 35 - 36 of Algorithm 2) in case, the areas are unbalanced.

NDcoe f f =
α2

α1
(4.1)

For a Triangular Distribution curve, appropriate changes for cycles under considera-

tion are made (lines 23 - 25 of Algorithm 2), as timing error counts at lower cycles needs

to be analyzed. The empirically determined balancing metric for a Triangular Distribution

curve (TDcoe f f ) is defined as:

TDcoe f f =
β2

β1
(4.2)

A very low CF evades the need for voltage boosting (line 28 of Algorithm 2). When-

ever there is alteration in the central cycle (Plot 3 of Figure 4.3), an increase in the timing

error rate (not shown in Algorithm 2) is employed to dynamically calibrate the change.
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Fig. 4.7: Interaction of BU with MACs along the diagonal.

Algorithm 3 Voltage Boost Algorithm

1: procedure VOLTAGE BOOST(cycleops, boost initiate)
2: if boost initiate = 1 then

3: if (cycleops ≥ cyclelow) ∥ (cycleops ≤ cyclehigh) then

4: supply voltage← VBoost

5: else

6: supply voltage← VNTC

7: end if

8: end if

9: end procedure

Boost Unit (BU)

BU boosts the operating voltage of the MAC units to mitigate detectable and unde-

tectable timing errors. As depicted in Figure 4.7, BU houses the Boost Register (BR), where

each bit of this 511-bit register corresponds to a series of active MAC units along the di-

agonally active wavefront. A boosting technique proposed in [105] is employed by BU,

where supply voltage to MAC units has two rails, VNTC and VBoost. VNTC represents near-

threshold voltage, set at 0.45V and VBoost is the boost voltage, set at 0.6V. BU utilizes the

procedure in Algorithm 3 to boost the supply voltage. Incorporating the booster infras-

tructure in [105], it is observed that switching between VNTC and VBoost can be procured
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within a single cycle of operation. BU boosts the supply voltage to VBoost and switches

to VNTC at the end of each boost cycle. To maintain a trade-off between boosting cycle

intervals and the voltage boosting energy overhead, bits in BR are set empirically. This

action is performed to lower the energy footprint in case, the magnitude of timing errors

is significantly high in number. In such a scenario, MRFF will continue to handle the de-

tectable timing errors. The experimental results and area/power overheads are discussed

in Section 4.5.

Fig. 4.8: Cross Layer Methodology.

4.4 Methodology

In this section, the comprehensive cross-layer methodology (as shown in Figure 4.8)

used to implement the proposed design is described. The cross-layer methodology will

aid in evaluating the proposed design’s capabilities across DNN applications.

4.4.1 Device Layer

In order to estimate gate delay distributions, HSPICE models of basic logic gates (viz.,

NOR, NAND and Inverter) based on 16nm Predictive Technology Model are simulated.

VARIUS-NTV model is considered to incorporate the impact of PV at NTC [8]. The impact

of FinFETs is modeled using VARIUS-TC model [76]. To affirm sensitized path delay in a

MAC unit, the delays of basic gates is employed in the circuit layer (Section 4.4.2).
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4.4.2 Circuit Layer

A systolic array is implemented in Verilog RTL description and enhanced with PRED-

ITOR components. RTLs are synthesized using Synopsys Design Compiler, to estimate

area and power overheads. The sensitized delays are obtained for the MAC array using

the in-house STA tool by employing real dataset driven inputs. By utilizing libraries of

delay distributions for basic logic gates from HSPICE simulations (Section 4.4.1), STA tool

provides the delays of sensitized paths in the MAC circuit.

Datasets

Name Layer Architecture

SVHN [77]
CONV: (32, 32, 3)x(32, 32, 32)x(32, 32, 32)x(14, 14, 64)x(14, 14, 64)x(5, 5, 128)x(5, 5, 128),

FC: 512x512x10

GTSRB [78]
CONV: (3, 48, 48)x(32, 48, 48)x(32, 46, 46)x(64, 23, 23)x(64, 21, 21)x(128, 10, 10)x(128, 8, 8),

FC: 2048x512x43

Reuters [79] FC: 2048x256x256x46

IMDB [80] CONV: 400x(400x50)x(398, 256), FC: 256x1

MNIST [73] FC: 784x256x256x10

CIFAR-10 [81]
CONV: (32, 32, 3)x(32, 32, 32)x(32, 32, 32)x(16, 16, 64)x(16, 16, 64)x(8, 8, 128)x(8, 8, 128),

FC: 2048x512x10

FMNIST [82] FC: 784x256x512x10

AMNIST [83] CONV: (20, 25, 1)x(20,25,128)x(20,25,64), FC: 32000x256x128x40

Table 4.1: List of DNN datasets.

4.4.3 Architecture Layer

The in-house cycle-accurate TPU systolic array simulator developed using C++, based

on the TPU architectural details provided in [45] is employed for matrix multiplication. To

accurately model timing errors resembling real-time sensitized path delays in MAC units,

the STA tool (Section 4.4.2) is incorporated into the TPU Simulator. A real-life inference

engine is replicated by interfacing Keras [84] with the TPU simulator. Using Keras and

employing TensorFlow in the backend multiple DNN applications as mentioned in Sec-
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tion 4.5.3 are trained. Table 4.1 provides the size and layer information for the 8 DNN

datasets. A filter size of (3,3) and default stride of 1 is used for all datasets. Additionally,

padding is also added to the input feature map. The DNN datasets include representa-

tions from different Neural Network domains (Image Recognition, Speech, Audio etc.).

The diverse range of datasets aids in exploring the efficacy of PREDITOR in handling the

timing violations, arising due to the wider set of variations in the activation patterns. The

trained models have varying input sizes and utilize the state-of-art layers like dropout and

batch normalization. The trained model weights and the activations from each layer are

extracted into 256 × 256 8-bit integer matrices. The TPU simulator performs the matrix

multiplication operation for each pair of activation and weight matrices. The resulting

output matrices are combined together to determine the inference accuracy.

4.5 Experimental Results

In this section, the effectiveness of different timing error resilient schemes are evalu-

ated by employing a TPU in NTC operating conditions. The baseline operation condition

of the NTC TPU is (0.45V, 67.5MHz) to ensure error-free systolic array operations. Section

4.5.1 describes the different comparative schemes. Section 4.5.2 presents the error resilience

of PREDITOR. Section 4.5.3 elaborates the inference accuracies. Section 4.5.4 presents the

energy efficiency of PREDITOR. Section 4.5.5 discusses the area and power overheads.

4.5.1 Comparative Schemes

• Baseline TPU (B-TPU) : This technique does not employ any timing speculation

methodologies and propagates the erroneous values down the systolic array com-

putation stages [50].

• TE-DROP (TED) : In this scheme, MAC encountering timing error recomputes the

correct value by borrowing a clock cycle from the downstream MAC. Downstream

MAC effectively annuls its operation and procures the recomputed upstream MAC

output onto the next stage [15].
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• MRFF : This scheme exploits the timing aperture to drive the delayed output onto the

downstream MAC. Delayed output beyond detection, results in an erroneous value

being propagated down the systolic array.

• PREDITOR (PRED) : This is the proposed scheme which uses the timing error infor-

mation, obtained using timing speculation mechanism to predict and mitigate em-

inent timing errors by boosting operating voltage of the MAC units for a definite

period of operation (Section 4.3).

Fig. 4.9: Percentage of undetected timing errors mitigated by PREDITOR for 8 different
datasets.

4.5.2 Error Resilience

Figure 4.9 demonstrates the number of undetected timing errors mitigated by PRED-

ITOR when the TPU is operated at higher frequencies compared to the baseline frequency

of operation. The Y-axis represents the percentage of undetected timing errors effectively

handled by PREDITOR. The operating voltage is kept constant at 0.45V for all frequencies

denoted by the X-axis. The X-axis is normalized to the baseline frequency of operation. Up

to 1.44x the baseline frequency, detectable timing errors are effectively handled by MRFF.

Hence, the effect of timing errors on the inference accuracy is negligible, as explained in
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Section 4.5.3. PREDITOR’s voltage boosting mechanism becomes eminent after 1.44x the

baseline frequency, thereby correcting the undetectable timing errors. Meanwhile, ∼68%

of undetectable timing errors are mitigated for six out of eight DNN datasets, as evidenced

in Figure 4.9, validating the expectation elaborated in Section 4.3.4.

Fig. 4.10: Normalized Inference Accuracy (IA) of different comparative schemes and Voltage
Boost Energy (BE) of Preditor for 8 DNN datasets at various normalized frequencies.
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4.5.3 Inference Accuracy and Voltage Boost

Figure 4.10 depicts the variations in normalized inference accuracies for 8 different

datasets with various error resilient schemes. Y-axes are normalized to error free infer-

ence accuracy at the baseline frequency for all datasets (Error free accuracy for datasets

are SVHN: 0.94 [77], CIFAR-10: 0.77 [81], IMDB: 0.89 [80], GTSRB: 0.97 [78], REUTERS:

0.80 [79], MNIST: 0.98 [73], FMNIST: 0.89 [82], AMNIST: 0.92 [83])). Figure 4.10 also de-

picts the Voltage Boost Energy (BE) of PREDITOR across all frequencies of operation. BE

is computed as percentage of energy consumed by an NTC TPU operating at baseline con-

ditions, without any voltage boosting mechanism.

Consistent error resiliency is provided by all schemes up to 1.36x the baseline fre-

quency. As the performance is increased, PREDITOR surpasses B-TPU, TED and MRFF

by providing an appreciably better accuracy. PREDITOR mitigates more timing errors at

higher frequencies due to a superior prediction engine. The number of undetected timing

errors during non-boosted cycles for AMNIST and FMNIST are relatively high, resulting

in a drop of accuracy for PREDITOR. A large number of MAC operations being bypassed

due to higher timing errors contributes to a deterioration of accuracy for TED. MRFF en-

counters a sudden fall in accuracy at higher frequencies due to an increase in undetected

timing errors. Hence, PREDITOR enhanced NTC TPU contributes to an accuracy loss of

only 3% in five datatsets, when operated up to 5× the baseline frequency.

Voltage boosting from PREDITOR is not utilized until 1.67x the baseline frequency

due to a lower number of timing errors which are corrected by MRFF. As frequency is

scaled beyond 1.67x, nearly all datasets witness an identical rise in BE, as voltage boosting

across a period of operational cycles becomes imminent. BE for four out of eight DNN

datasets (SVHN, CIFAR-10, GTSRB and AMNIST) is relatively higher at∼7%, compared to

other datasets, as significant number of timing errors occurring during initial operational

cycles compels PREDITOR’s prediction mechanism to boost a relatively higher number of

operational cycles. However, number of boosted cycles are relatively small compared to

the entire systolic array operation cycles.
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4.5.4 Is NTC TPU worth it ?

(a) Power Consumption at different frequency points.(b) Tops/Watt comparison at different frequency points.

Fig. 4.11: Power and performance comparison of PREDITOR with GoogleTPU.

Figures 4.11(a) and 4.11(b) presents the average power consumption and energy effi-

ciency, measured in Tera Operations Per Second (TOPS)/Watt of a GoogleTPU for 8 DNN

datasets, as it scaled from STC to NTC region. The Figures also demonstrate the power

consumption and energy efficiency of PREDITOR operating at NTC. Power consumption

and TOPS/Watt metrics at different frequencies is normalized to that of the GoogleTPU

operating at STC (i.e., 700 MHz.). A steady decline in power is noted for GoogleTPU as the

operating voltage is reduced along with the operating frequency. Power consumption of

PREDITOR is significantly lower than GoogleTPU as it is operated in the NTC region. As

the GoogleTPU is scaled below the STC region, timing errors appear in the system, leading

to a deterioration in the performance [15]. However, an NTC TPU equipped with PREDI-

TOR can effectively handle timing errors for more than 3× its baseline frequency (Sections

4.5.2 and 4.5.3), thereby providing an efficient performance per unit consumption. PREDI-

TOR working at NTC delivers up to 87% energy efficiency gain of a GoogleTPU operating at STC

(Figure 4.11(b)), while consuming only 14% of its power (Figure 4.11(a)). Hence, PREDITOR

validates to be a low-power and error-resilient design paradigm, offering a high performance in an

NTC TPU.
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4.5.5 Hardware Overheads

The area and power overhead incurred by PREDITOR are ∼7.7% and ∼2.5% respec-

tively. Area overhead in PREDITOR is due to inclusion of the MRFF into each MAC unit

and EMU into the TPU systolic array. Power overheads obtained are in comparison to the

error-free operation of a baseline NTC TPU.



CHAPTER 5

RECLAIMING THE RELIABILITY OF A NEAR-THRESHOLD TENSOR PROCESSING

UNIT BY DELAY FAULT DETECTION AND MITIGATION

5.1 Background and Contributions of This Work

The emergence of Deep Neural Networks (DNNs) and their growing usage in diverse

applications has led to a rapid advancement in the development of Application Specific

Integrated Circuit (ASIC) architectures for the Artificial Intelligence (AI) computing realm.

A Tensor Processing Unit (TPU) is one such ASIC, developed by Google and has been

deployed in their datacenters for the inference phase of the DNN computation [68]. With

the rapid deployment of AI hardware at the edge, there is a tremendous need to investigate

these circuit-architectures in the Low-Power Computing (LPC) region [106].

Fig. 5.1: Delay sensitivity for power supply at STC vs LPC. HSPICE simulations shown for a 31
fan-out-of-four (FO4) inverter chain at the 14nm multi-gate technology node [107].

Figure 5.1 demonstrates a key challenge in realizing AI hardware at the edge: a mas-

sive delay variance with voltage at LPC in comparison to Super Threshold Computing
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(STC). The figure shows a FO4 inverter delay characteristics at these two regions, when

the supply voltage is varied by the same percentage variation of the respective voltage do-

mains. For example, a 40% voltage variation can cause a 45% delay variation at STC, and

a huge 250% delay variation at LPC. Due to these extreme sensitivities, the omnipresent

manufacturing Process Variation (PV) in the devices can realize gate delays up to 20× of

the nominal values in the LPC region [87]. Collectively, a small set of PV-affected gates, in

combination with a minute variation in operating condition (e.g., voltage), can completely

alter the critical path of the circuit and protract the combinational delay, which subse-

quently leads to frequent timing violations. These delay faults are termed as Low-Power

Faults (LP-faults) in this paper.

LP-faults may remain benign and exhibit the correct operation at nominal voltages.

However, they are exposed and cause frequent timing faults at LPC. The process of fre-

quency guard-banding which works efficiently at STC, becomes highly ineffective at LPC

due to the extreme variation in delays. In a tightly pipelined architecture such as TPU

with a large number of interconnected Multiplier-and-Accumulate (MAC) units, detection

of an LP-fault in an individual MAC unit can be a formidable challenge. Furthermore, as

these faults manifest only after fabrication and at certain operating conditions, detecting

and correcting these faults become even more challenging. In this chapter, the damage an

LP-fault can induce on a DNN inference operation is analyzed.

Interestingly, many modern datasets used in DNN computations exhibit a plethora of

zero weights [12,13], as well as, zero activation elements. In conjunction with the perceived

resilience of DNN software from errors, it is intuitive to expect that DNN inference may

be inherently tolerant to LP-faults [67]. However, the rigorous cross-layer analysis utilized

in this chapter reveals otherwise. For example, an otherwise innocuous zero result from

a MAC can lead to non-zero outcome under an LP-fault, causing a havoc in the inference

accuracy. Not only is it found that inference accuracy can drop dramatically from LP-

faults, the results show extreme unpredictability in these inference drops, demonstrating

a critical need to rigorously analyze and mitigate LP-faults for successful deployment of
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these AI hardware accelerators at the edge.

Razor is a popular technique which uses a double sampling flip-flop to detect a timing

error in a pipelined circuit and employs an instruction replay to recompute the erroneous

data [49]. However, replaying an instruction in a TPU pipeline requires stalling of the

entire systolic array operation, incurring a massive loss in throughput for such a data-

parallel architecture. This is the first work to introduce a post-fabrication fault detection technique

to identify the faulty MAC units in a TPU.

The specific contributions of this chapter are as follows:

• The impact of delay faults in a systolic array of MAC units is explored. The problem

an LP-fault can pose in transforming a zero output from a multiplier to an incorrect

non-zero value is investigated (Sections 5.2.2 and 5.2.3). Additionally, this research

also shows how a subset of zero computations in a DNN matrix multiplication mag-

nifies this threat (Section 5.2.3).

• STRIVE—a low-overhead faulty MAC detection technique for a TPU systolic array

(Section 5.3.5), to identify the PV-affected MAC units and timing error resilience tech-

niques to mitigate the effect of LP-faults, is introduced (Sections 5.3.4 and 5.3.6).

• Finally, it is demonstrated that STRIVE incurs less than 1% loss in inference accuracy

for 6 DNN benchmarks in a TPU affected by a gate level fault rate of 1% (Section

5.5.2). Additionally, STRIVE gives 1.8× and 1.3× better performance per unit power

than Fault-Aware Pruning [108].

5.2 Motivation

In this section, a post fabrication phenomenon which poses a severe threat to the er-

ror resilience of DNNs is uncovered. Moreover, a demonstration is performed to uncover

the threat posed by a multiplier unit, when an expected zero computational output re-

sults in an unpredictable non-zero value. Sections 5.2.1 and 5.2.2 provide a background of

the TPU and LP-faults, respectively. Sections 5.2.3 and 5.2.4 elaborate the results and the

significance of the demonstration.
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5.2.1 TPU Systolic Array

DNNs utilize multiple layers of computations during the inference stage. The multi-

ple layers of DNNs are translated into a matrix multiplication of the activation input, with

the weight matrix. A TPU employs a systolic array of n×n MAC units to expedite the

matrix multiplication operations. Figure 5.5 shows a TPU–the yellow array, where each

yellow box is a MAC unit comprising a multiplier and an accumulator. Activation inputs

are stored in a unified buffer and subsequently streamed across the MAC array, while the

weight matrices are pre-loaded into the MAC units. The activation inputs and stationary

weights maintain an 8-bit precision.

5.2.2 Impact of PV at Low-Power: LP-faults

PV sensitivities experienced at STC are severely exacerbated at LPC. Therefore, a small

effect of PV in a post fabrication circuit can produce a substantially large delay variation,

when the operating region is switched from STC to LPC. Although the actual variation in

physical dimensions (i.e., gate length or tox length) remains identical, the observed vari-

ation will be in the transformed or elongated delays. Hence, any sensitized circuit path

that exceeds the guard-banded clock period leads to a timing violation. These faults are

termed as LP-faults or Delay Faults. LP-faults can be completely hidden at STC, as the

timing guard-band essentially covers up the relatively smaller delay variations (Figure

5.1). As the operating region is moved to LPC, the voltage and frequency are lowered ap-

propriately, and a suitable timing guard-band is applied. However, as the delay variations

are significantly higher at LPC, the prolonged combinational delay due to PV will exceed

the timing guard-band and trigger an LP-fault. Furthermore, as factors leading to LP-

faults emanate during fabrication, their effects can be perceived only during the real-time

working environment.

Threats due to LP-faults

Effect on Inference Accuracy: In a TPU systolic array (at every clock cycle), the output of
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(a) Zero Weight—Masks LP-fault. (b) Non-zero Weight—Exposes LP-fault.

Fig. 5.2: Sensitized paths in a MAC unit for zero and non-zero weights, respectively.

each MAC unit, is added to the resulting activation and weight product of the consecutive

downstream MAC unit. Hence, the accumulated product from the lowermost row forms a

single element of the output matrix. However, as the systolic array is operated at LPC, the

effects of PV in a MAC unit can instigate a delay fault and produce an erroneous output.

As the PV-affected gates are distributed across the systolic array, more and more MAC

units will be rendered faulty. Consequently, a large magnitude of LP-faults will increase

the propagation of erroneous outputs and eventually incorrect values will be stored in the

output matrix (later shown in Figure 5.8). Therefore, inference accuracy processed using

the erroneous values will be significantly lowered.

Significance of Zero Activation: Figures 5.2(a) and 5.2(b) compare the sensitized paths in

a MAC unit between a zero weight and a non-zero weight. A zero weight in the MAC unit

drives the output of the multiplier to zero for the entirety of the matrix multiplication op-

eration, thus sensitizing the second accumulator input path (i.e., output from the upstream

MAC) to the output. Eventually, the upstream MAC output is forwarded to the MAC unit

in the immediate lower row. Hence, a zero weight masks the LP-faults. However, for a

non-zero weight, the circuit path from the activation input will be sensitized. Consequently,

even for a zero activation input, a prolonged delay needed to stabilize the faulty multiplier output

can eventually expose an LP-fault, thereby resulting in a non-zero output. Such computations

are termed as Fault Prone zero computations.
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The motivational data to demonstrate the serious effects of LP-faults is presented by

employing a rigorous cross-layer methodology as described in Section 5.4.

Fig. 5.3: Increasing number of faulty gates increases the magnitude of LP-faults, thereby dete-
riorating the inference accuracy.

5.2.3 Results

Figure 5.3 depicts a drop in the inference accuracy when the percentage of faulty gates

increases in a TPU systolic array, for 5 out of 6 DNN benchmarks. The increase in the LP-

fault level challenges the inherent timing error tolerance of DNNs [67], thereby dwindling

the DNN inference accuracy. An outlier benchmark is IMDB, where the significant num-

ber of zero weights sensitizes the accumulator paths to the output (case of Figure 5.2(a)),

consequently reducing the damaging effects of LP-faults.

Figure 5.4 shows the percentage of zero computations and Fault Prone zero computa-

tions for 6 different benchmarks. From Figure 5.4, it is evident that even though more than

80% of the computations involve zero computations, more than 20% of the zero computa-

tions are Fault Prone in 5 out of the 6 DNN benchmarks. Therefore, even a zero computation

in a PV-affected multiplier can pose a considerable threat and contribute in lowering the

inference accuracy.
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Fig. 5.4: Zero computations and Fault Prone zero computations elaborated as a percentage of
total computations for 6 different DNN benchmarks.

5.2.4 Significance

The findings demonstrate that the effects of PV at LPC can lead to significant deterioration

of the DNN inference accuracy. Additionally, the study is this work shows that even a pre-

dictable zero computation is not safe from the threat of an LP-fault. Since the phenomenon

leading to a delay fault is born during fabrication, identical chips can exhibit different vari-

ations in the sensitized paths. As AI Edge computing is migrating more towards LPC, the

emergence of delay faults can severely hamper the DNN predictions. Hence, a runtime

mechanism is needed to identify the faulty MAC units when a systolic array is operated at LPC and

an efficient design paradigm to reduce the effect of LP-faults. Since a zero activation input can be

identified due to the redundant bit pattern and the output of a MAC unit for a zero activa-

tion is predictable, such characteristics can be doctored for the benefit. With this premise,

in the next section, the proposed scheme—STRIVE, to detect and handle LP-faults affected

MAC units is explored.

5.3 Strive Design

In this section, STRIVE—the novel design paradigm to detect and mitigate the effect

of delay faults in an LPC TPU is discussed. STRIVE uses a low-overhead post-fabrication
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Fig. 5.5: Design block and dataflow of STRIVE.

faulty MAC detection technique to identify the error-prone MACs. Furthermore, by inferring

the location of faulty MACs, a position-aware timing error mitigation scheme to tackle an

LP-fault is devised and employed. The challenges and overview of STRIVE are described

in Sections 5.3.1 and 5.3.2. The threat posed by an LP-fault is explained in Section 5.3.3.

Sections 5.3.4 through 5.3.6 elaborate the design components in detail.

5.3.1 Challenges

In this section, the problems which need to be addressed by STRIVE to effectively

counter the threat posed by LP-faults are highlighted.

1. A faulty MAC unit is susceptible to Fault Prone zero computation. Hence, a MAC

unit needs to be equipped to handle this scenario (addressed in Section 5.3.4) .

2. Diagnosing faulty MAC units spread across the TPU systolic array (addressed in

Section 5.3.5).
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3. Reclaiming the DNN inference accuracy from an LPC TPU housing PV-affected MAC

units (addressed in Sections 5.3.5 and 5.3.6).

5.3.2 Design Overview

Figure 5.5 depicts the top-level overview of STRIVE. The LPC TPU is enhanced with

a Fault Control Unit (FCU) and each MAC unit is augmented with Fault Hop (FHop).

Initially, the FCU generates the activation and weight matrices, and the output map. Later,

the FCU compares the TPU-generated output matrix and the output map to deduce the

location of PV-affected MACs (Section 5.3.5). The faulty MAC locality is later exploited by

the FCU, to tackle the LP-faults, using FHop (Section 5.3.5).

Additionally, an alternate technique Fault Hop Time-Borrow (FHop-TB), to mitigate

the effects of an LP-fault, by enhancing the design of FHop, is discussed (Section 5.3.6).

(a) Fault free MAC. (b) PV-affected MAC.

Fig. 5.6: Working of a PV-free and PV-affected MAC.

5.3.3 Illustrative example for an LP-fault

Figures 5.6(a) and 5.6(b) describe the operations of a fault-free and faulty MAC, re-

spectively. For a fault-free MAC (Figure 5.6(a)), the multiplier concludes its computa-

tion within the clock period and delivers an error-free output, thereby leading to a correct

output from the MAC unit (i.e., 30). However, the significant delay stemming from the
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PV-affected multiplier in a faulty MAC (Figure 5.6(b)), instigates an LP-fault. Hence, an

incorrect value will be processed at the multiplier output (i.e., 15 in Figure 5.6(b)) and an

erroneous value (i.e., 45) will be delivered to the next logic stage. So, a faulty MAC unit

needs to be protected from a zero activation input, which is discussed next.

5.3.4 Fault Hop (FHop)

In this section, FHop is introduced. As a zero activation input produces a zero com-

putation, the MAC operation for a MAC unit can be entirely skipped. The MAC unit is

augmented with a NOR gate, an OR gate and a multiplexer (MUX), as demonstrated in

Figure 5.5. The MUX output is controlled either by the NOR gate (viz., the zero activa-

tion input) or the Fault EN signal from FCU (discussed in Section 5.3.5). Thus, for a zero

activation input or when a Faulty EN signal is set, the erroneous MAC operation is bypassed

and the accumulator input is directly presented to the MAC output through the MUX.

Hence, FHop prevents a possible Fault Prone zero computation and aids in the identification of

faulty MACs (discussed in Section 5.3.5).

5.3.5 Fault Control Unit (FCU)

FCU houses the Fault Detection Registers (FDRs) along with the fault detection vec-

tors. One FDR is dedicated to each column of the systolic array (Figure 5.5). Each bit of the

FDR is labeled as a Fault EN signal and maps to a corresponding MAC unit in that column.

The FCU operates in two modes: (a) Fault Detection Mode, to determine the faulty MACs,

and (b) Fault Resilient Mode, which is the nominal operating mode of the TPU.

In Fault Detection Mode, all the bits of the FDR are reset to zero, to skip a MAC op-

eration only for a zero activation input. The FCU later sets the FDR bits for all the faulty

MACs. Hence, during the Fault Resilient Mode, the errant MAC operations are also skipped.

Next, the two operating modes of the FCU are discussed.

Fault Detection Mode
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For illustration purposes, the detection technique is demonstrated for a 3× 3 systolic

array, as the same technique will be scaled up to any dimension of the systolic array.

Fig. 5.7: Development of input matrices and output map—correct outputs—by FCU.

Matrix and map—correct outputs—generation

Figure 5.7 depicts the low-overhead matrix/map generation methodology. The FCU

generates the activation matrix by allocating the individual activation vectors along the

diagonal and zero value for the non-diagonal entries, thereby creating a diagonal matrix.

For the weight and output matrix, all the elements in a row are assigned the same weight

and output vector. However, each row is allocated a different vector.

Fig. 5.8: Green MACs are yet to receive the activation, yellow MACs are in operation and faulty
MACs are highlighted with a dark red outline. Red MACs denote the occurrence of a timing
error. Grey MACs have completed their execution. Only the final operation from each MAC
is shown on the yellow MACs for space constraints. ”0[an.wn]” operation on a yellow MAC
indicates that the activation input is ”0” and accumulator input ”an.wn” will be forwarded to
the next stage.

Faulty MAC detection
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Systolic Array Operation with Faulty MACs : Figure 5.8 demonstrates the cycle-wise ac-

curate matrix multiplication between the activation and weight matrices for the fault de-

tection. The systolic array is pre-loaded with the weight matrix, while the activation matrix

is transposed and streamed to the individual rows (i.e., from left to right). Activation ta-

ble and the Output Matrix table shown below the systolic array in Figure 5.8, coherently

maps the activation input being streamed to the corresponding MAC units and the output

accumulated from the last row of the systolic array in the respective clock cycles.

• In Cycle 1, activation a1 is multiplied with weight w1 in the only active MAC unit.

• In Cycle 2, zero activation values are streamed to the first and second row. The acti-

vation a1, from Cycle 1, is forwarded to the successive column (i.e., second column)

of the first row. As the MAC units are enhanced with FHop, the active MAC unit in

the second row encountering the zero activation will skip the MAC operation and

forward the upstream MAC output (i.e., a1.w1) to the downstream MAC unit.

• Nominal operation continues in Cycles 3 and 4, as non-zero activation has not reached

the faulty MACs.

• However, in Cycle 5, activation inputs a2 and a3 reach the faulty MAC units in rows

two and three, respectively. As the non-zero activation inputs are multiplied by the

respective weights, the extended combinational delay will trigger a timing error and

erroneous values (i.e., (a2.w2)∗ and (a3.w3)∗) are generated. The erroneous value

from the faulty MAC unit in the third row (i.e., (a3.w3)∗) is stored in the output

matrix.

• In Cycles 6 and 7, the erroneous value (a2.w2)∗ along with other output entries are

accordingly forwarded and stored in the output matrix.

Detection of Faulty MACs : Figure 5.9 presents the process of detecting the Faulty MACs,

using the output matrix. FCU compares the respective entries of the output matrix with

the output map (Figure 5.7) and determines the location of faulty MACs. FCU thus sets the
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Fig. 5.9: Comparing the entries of the Output Matrix and the Output Map yields the locality
of the Faulty MACs.

bits of the FDR targeting the faulty MACs in each column (Figure 5.5). An entire systolic

array operation is utilized by STRIVE for the errant MACs detection process.

Fault Resilient Mode

In the Fault Resilient Mode, as the faulty MACs are identified, the set Fault EN sig-

nal effectively skips the faulty MAC computation. Even though the skipping operation

generates a loss in precision for the output matrix entries, the overall inference accuracy is

not relatively affected due to the algorithmic level error tolerance of DNNs [67]. However,

increase in the number of faulty MACs will eventually lead to a drop in DNN inference

accuracy. To address this caveat, the design of FHop is enhanced with a time-borrow feature

to achieve a superior performance, discussed next.

5.3.6 Fault Hop Time-Borrow (FHop-TB)

Figure 5.10 presents FHop-TB—an enhanced variant of FHop that utilizes the combi-

national delay disparity between the multiplier unit and the accumulate unit to prevent

the propagation of corrupted values. FHop-TB uses a Time-Borrow (TB) flop to capture

the delayed output of the faulty MAC and direct it to the next logic stage within the same

clock cycle.

The accumulation process utilizes less than 50% of the clock cycle. For a faulty MAC,

50% of the clock cycle is borrowed from its downstream MAC (i.e., the downstream MAC
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Fig. 5.10: Detection and correction of timing errors by FHop-TB, using the Time-Borrow tech-
nique.

will be performing its own multiplier operation during this period) to procure the correct

MAC output and ensure that the correct output is provided to the downstream MAC for its

accumulation process. Thus, the TB latch is driven by a delayed clock (i.e., 50% shift from

the system clock) to perform the Time Borrowing operation. In a faulty MAC, the output of

the shadow latch is sensitized to the MUX 1 output; else, the output of the original latch

is delivered to the MUX 1 output. For a zero activation, MUX 2 bypasses the upstream

MAC output to the downstream MAC unit, irrespective of a faulty/non-faulty MAC unit.

Therefore, the output of MUX 2 can switch between MUX 1 output and upstream MAC

output.

5.4 Methodology

The extensive cross-layer methodology employed in this research allows the combina-

tion of a functional simulation of a DNN inference task (thus, allowing precise estimation

of inference accuracy) with a holistic power-timing characteristics spanning three layers:

device, circuit and architecture.

HSPICE simulations are performed on basic logic gates (e.g., NOR, NAND and In-

verter) using the 16-nm predictive technology model to measure their delay distributions

[107]. VARIUS-NTV is employed to implement the impacts of with-in die PV at LPC [8].
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Benchmarks Error-free
Accuracy

Name Architecture

IMDB [80] CONV: 400x(400x50)x(398, 256), FC: 256x1 0.89

SVHN [77]
CONV: (32, 32, 3)x(32, 32, 32)x(32, 32, 32)x(14, 14, 64)x(14, 14, 64)x(5, 5, 128)x

(5, 5, 128), FC: 512x512x10
0.94

GTSRB [78]
CONV: (3, 48, 48)x(32, 48, 48)x(32, 46, 46)x(64, 23, 23)x(64, 21, 21)x(128, 10, 10)x

(128, 8, 8), FC: 2048x512x43
0.97

MNIST [73] FC: 784x256x256x10 0.98

REUTERS [79] FC: 2048x256x256x46 0.80

FMNIST [82] FC: 784x256x512x10 0.89

Table 5.1: List of DNN benchmarks and their error-free accuracy.

The FinFET attributes are incorporated using the VARIUS-TC model [76]. The Verilog RTL

of the TPU systolic array augmented with the design components are synthesized using

Synopsys Design Compiler. The synthesized netlists are utilized by the in-house Static

Timing Analysis (STA) tool along with the libraries of delay distributions to generate the

sensitized path delays of the MAC unit for all the benchmark driven inputs. Cadence

SoC Encounter is used to place and route the design and measure the area, power, and

wirelength overheads.

The in-house cycle-accurate TPU systolic array simulator, modeled on the detailed

TPU architecture [68], is utilized. To accurately simulate a timing violation, the combina-

tional delays for a PV-affected MAC unit and a nominal MAC unit, developed from the

STA tool are integrated into the TPU simulator. Initially, the DNN benchmarks are trained

by interfacing the TPU simulator with Keras (running tensorflow in the background) [84].

Table 5.1 lists the DNN benchmarks along with their error-free accuracies. Activation in-

puts from each layers are streamed across the weight matrices from the trained model

for matrix multiplication. The output matrices are appropriately combined to obtain the

inference accuracy.

5.5 Experimental Results
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This section examines the efficacy of STRIVE at LPC operating conditions–a typical

use case for an edge system deployed for an inference task. The baseline operation is set to

(0.45V, 67.5MHz) and guarantees an error-free execution for an LPC TPU (i.e., TPU without

any faulty MACs). Section 5.5.1 introduces the comparative schemes. Sections 5.5.2 and

5.5.3 elaborate the inference accuracies and energy efficiency of the schemes. Section 5.5.4

discusses the overheads of STRIVE.

5.5.1 Comparative Schemes

• Fault-Aware Pruning (FAP) : This scheme prunes all the weights of faulty MAC

units [108]. The weights are implemented for multiple precision values to bypass

the faulty multiplier in the MAC unit. FAP does not have an error detection scheme

as proposed in this chapter, and therefore presumes to have an oracular knowledge of

the faulty MACs. As expected for an edge system deployed for inference in the field,

retraining of weights is not expected, and thus consistently model no retraining for

both FAP and the schemes, STRIVE and STRIVE-TB.

• STRIVE : This is the proposed technique, which utilizes the locality of the PV-affected

MAC or a zero activation input to skip the erroneous MAC operation. FCU enables

the Fault EN signal for the respective error-prone MAC to restrict the erroneous data

from latching on to the accumulator output. FHop is used to perform the bypassing

operation (Figure 5.5).

• STRIVE-TB : This scheme is an upgraded variant of STRIVE, which uses FHop-TB

(Figure 5.10). The error-free output from a faulty MAC unit is captured by the Time-

Borrow Flop using the delayed clock, and the Fault EN signal enables the forwarding

of this correct data to the next stage.

5.5.2 Inference Accuracy



72

Fig. 5.11: Normalized Inference accuracies of FAP, STRIVE and STRIVE-TB across 6 DNN
benchmarks for different percentages of faulty gates (under low-power) affected in a TPU
systolic array. The Y-axis values are normalized to the corresponding error-free accuracy at the
baseline LPC TPU operation.

Figure 5.11 depicts the normalized inference accuracy for the three comparative schemes,

as the percentage of faulty gates are increased in the TPU. All the schemes are operated at

the baseline voltage and frequency. The X-axis represents the percentage of faulty gates

in the TPU. STRIVE and FAP are able to offer modest error resilience for 4 out of 6 DNN

benchmarks up to 0.6% fault rate. For REUTERS and FMNIST, the extreme data-delay

variance between the activation sequences causes significant timing errors, thereby drop-

ping the inference accuracy for STRIVE and FAP. The significant number of zero activation

computations aids STRIVE in retaining the inference accuracy as the percentage of faulty
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Fig. 5.12: Energy Efficiency comparison of FAP, STRIVE and STRIVE-TB (higher is better).

gates are increased. However, STRIVE-TB incurs less than 1% loss in inference accuracy

for up to 1% gate fault rate in a TPU, as it is able to capture the delayed data using the

Time-Borrow approach. Overall, STRIVE-TB vastly outperforms FAP, demonstrating remarkable

resilience in retaining inference accuracy under LP-faults.

5.5.3 Energy Efficiency

Figure 5.12 presents the energy efficiencies of the comparative schemes measured us-

ing the Tera Operations Per Second (TOPS)/Watt metric. TOPS measure will be the same

for all the schemes at the corresponding frequency of operation. The TOPS/Watt is nor-

malized to that of the LPC TPU, operated at the baseline operating conditions. FAP has a

lower energy efficiency due to its larger power consumption in comparison to STRIVE and

STRIVE-TB. STRIVE boasts a higher energy efficiency due to its low overhead operation

compared to STRIVE-TB. STRIVE and STRIVE-TB offers an average 1.8× and 1.3× better

performance per unit power, compared to FAP. Hence, STRIVE is an energy efficient design

paradigm, able to extract superior performance even from an error-prone TPU.
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5.5.4 Implementation Overheads

STRIVE incurs overheads due to the inclusion of FCU and the combinational logic for

FHop or FHop-TB. Area overhead added by STRIVE and STRIVE-TB is ∼ 1.8% and ∼ 6%.

STRIVE and STRIVE-TB incurs a power overhead of ∼ 2% and ∼ 5%, and a wire-length

overhead of ∼ 1.1% and ∼ 3.5%, respectively.



CHAPTER 6

Conclusion

This dissertation presents architectural enhancements to improve the performance

and reliability of the TPU operating at a lower voltage. Minor maneuvering of the cir-

cuit connection in a processing unit unveils significant improvements in fault resilience.

Exploiting the predictable dataflow brings about noticeable reduction in power consump-

tion. Additionally, foreseeable datatflow pattern aids in predicting the impending timing

errors and mitigate them using a statistical based approach. The homogeneous architec-

ture of the systolic array with a minor architectural implement facilitates the localization

of faulty elements using tailored inputs.

Increase in the processing workloads in real-time DNN applications calls for a DNN

accelerator capable of delivering high classification accuracy while efficiently meeting the

energy requirements of the system. This dissertation demonstrates EFFORT— a high-

performance energy-efficient novel design paradigm for a TPU, operating at NTC. EF-

FORT utilizes the disparate delay profiles of a multiplier and accumulator to detect a tim-

ing error emanating due to increased frequency and corrects it using a minor architectural

manipulation. Later, EFFORT exploits the predictable dataflow pattern in the systolic array

to simultaneously clock gate the MAC units along the diagonal to lower the consumption

of dynamic power. The efficient design of the clock gating scheme significantly optimizes

the number of clock gating components. Hence, EFFORT efficiently detects and tackles

timing errors while reducing the power consumption of the TPU. EFFORT delivers up to

2.5× increase in performance with a minimum drop in accuracy and consumes 6% - 27%

less power in comparison to recently proposed schemes. Additionally, EFFORT gives be-

tween 1.06× and 1.35× superior performance per unit power against representative timing

error resilient schemes. EFFORT facilitates the migration of computing platform towards

NTC, thereby paving the way for an energy efficient AI computing realm.
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The meteoric rise in the DNN computations demands a low-power error resilient

DNN accelerator design paradigm capable of delivering quintessential classification accu-

racy. This dissertation proposes PREDITOR—an energy efficient high performance novel

design for an NTC TPU. The timing error profiles are statistically analyzed and the range

of operational cycles producing significant timing errors are computed. The voltage levels

of the MACs are slightly boosted over these clock cycles to mitigate the impending timing

errors. MRFF is utilized by PREDITOR to tackle the detectable timing errors throughout

the entire operation. PREDITOR tackles up to ×68% of the undetectable timing errors,

thereby preserving the inference accuracy of the DNN datasets. PREDITOR offers 3×–5×

better performance in comparison to other error resilience schemes, with under 3% aver-

age loss in accuracy. Additionally, PREDITOR offers up to 87% energy-efficiency gain in

relative to a TPU operating at STC.

This dissertation also highlights the impact of PV in a TPU systolic array under low-

power operation. This dissertation also demonstrates STRIVE—an energy efficient paradigm

to identify and nullify the effect of LP-faults, and reclaim the performance from a TPU sys-

tolic array affected by faulty MAC units. STRIVE incurs minimum loss in inference accu-

racy for a TPU infested by a gate level fault rate of 1%. Additionally, STRIVE delivers 1.8×

and 1.3× better TOPS/watt compared other fault mitigation scheme. The lower overhead

and the efficient fault detection aids in STRIVE being deployed efficiently in the EDGE AI

platform.

In conclusion, this dissertation presents methodologies to enhance performance and

reclaim reliable computing a NTC, thereby promoting the adoption of LPC into the nomi-

nal computing realm. The works in this dissertation aim to induce more research efforts in

investigating and highlighting the circuit-architectural innovations with minor overhead

and significant improvements in performance. Overall, this dissertation aims to provide a

worthwhile contribution to academia and the semiconductor industry.
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