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ABSTRACT 

We present LOST: Open-source Star Tracker (LOST), a suite of star tracking software particularly suitable for small 

satellite missions with limited computing resources and low-cost cameras. LOST contains implementations of a 

number of previously-proposed star tracking algorithms and a flexible framework for running and evaluating these 

algorithms. Our evaluation finds that LOST’s algorithms are simultaneously able to maintain a strong combination of 

accuracy, runtime, and memory usage. In scenarios representative of a low-cost star tracker, LOST correctly identifies 

over 95% of images, and importantly, performs the entire star tracking pipeline in less than 35 milliseconds on a 

Raspberry Pi while using less than 1 MiB of memory, backed by a < 350 KiB database. These results indicate that 

LOST could be ported to an embedded or radiation-hardened CPU and still perform well enough to meet the accuracy 

requirements of many missions.

INTRODUCTION 

Attitude determination is a crucial requirement for many 

satellite missions. There are two mainstream methods of 

attitude determination: the first method is to use a 

combination of a sun sensor and magnetic sensor, and 

the second is to use a star tracker, which is a combination 

of hardware and software that determines the satellite’s 

attitude by identifying stars in a given photograph. Of the 

two methods, star tracking is generally the most 

accurate.5  

However, even when desirable, star trackers are not 

necessarily practical for every mission. Notably, small 

satellite missions often have limited computing 

resources, as well as a limited budget. The limitation on 

computing resources may be in order to conserve 

electrical power, or because the satellite uses radiation-

hardened components, which typically have only a few 

megabytes of RAM. We use the term “low-compute” to 

describe star tracking computers that are built on 

embedded microprocessors, do not use a traditional 

operating system, and have around 1 MiB of memory 

with 100 MHz CPU speed. (For example, the popular 

Vorago Cortex M4 CPUs have a clock rate of 

approximately 100 MHz.9) 

While commercial star trackers can handle these 

limitations, they can be prohibitively expensive,5 as the 

most basic of commercial star trackers can cost tens of 

thousands of dollars. For example, Arcsec’s Sagitta star 

tracker is listed as over $40,000.1 As small satellites are 

deployed in increasingly large constellations and 

deployment becomes cheaper, the cost of star trackers 

becomes proportionally larger, rendering them 

unaffordable to many engineering teams looking to 

launch small satellites. Open-source star trackers, which 

make their software publicly available, are affordable 

alternatives to commercially-available ones. However, 

we find that previous open-source star tracking softwares 

exhibit good performance only in specific scenarios, or 

require relatively powerful computing hardware, making 

them unsuitable for low-compute missions.  

To address the need for affordable star tracking software 

suitable for low-compute scenarios, we present LOST: 

Open-source Star Tracker. LOST is a free and open-

source codebase for star tracking software. This paper 

first describes LOST, including (1) a high-level 

overview of the star tracking algorithms implemented for 

LOST, and (2) an overview of LOST’s infrastructure, 

which includes a testing framework for evaluating 

algorithms on realistic generated star images and allows 

for the swapping out of different algorithms for different 

stages of the star tracking pipeline. Next, this paper 

evaluates all algorithms on various performance metrics 

such as speed, accuracy, and memory usage, under a 

number of conditions. Speed and memory tests are 

performed on both a desktop computer and a Raspberry 
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Pi, yielding results that suggest LOST could be run 

without significant modification on low-compute 

embedded systems with an accuracy comparable or 

better than that of other open-source star tracking 

softwares. 

PREVIOUS WORK 

Previous star tracking softwares can be classified into 

two groups: (1) “Plate solving” softwares originally 

designed for use in astronomy, and (2) star tracking 

software designed for use on actual satellites. Leading 

plate solvers such as Astrometry, ASTAP, and Match are 

excellent for their designed use case, which is identifying 

images taken through telescopes with high-quality 

cameras and long exposure times. However, these 

softwares require long compute times and large amounts 

of memory, making them unsuitable for star tracking 

done with cheap, lower-quality cameras. Plate solvers 

may also fail to identify images when only a small 

number of stars are visible, as they are primarily 

designed to identify photos taken with long exposure 

times, when many stars are visible. Therefore, we only 

discuss star trackers in this paper. 

During our review of previous literature we found only 

three existing open-source star tracking softwares: 

OpenStarTracker, Tetra3, and SOST. A number of other 

publications claim development of open-source star 

trackers, but in fact do not make their source code 

available.  

OpenStarTracker is the most well established of the 

three, and is the only one that is scheduled to be flown 

on a real-world mission (Oresat). However, 

OpenStarTracker relies on the heavyweight OpenCV 

computer vision library to perform centroiding, which 

makes it unsuitable for many embedded platforms. More 

importantly, its only implemented star identification 

algorithm is Star-ND. While it is fast and simple to 

understand, Star-ND is relatively sensitive to errors in 

observed star brightness as well as missing or false stars. 

Tetra3 uses the Tetra algorithm for star identification. 

Like OpenStarTracker, Tetra3 also uses heavyweight 

third-party libraries such as numpy and scipy to perform 

all stages of star tracking. There is also a C 

implementation of the Tetra star identification algorithm, 

which we refer to as C-Tetra. While both Tetra3 and C-

Tetra require relatively large databases, C-Tetra uses a 

database an order of magnitude larger at about 5 GiB. 

Additionally, C-Tetra only implements the star 

identification step and requires an external program for 

other stages of star tracking. While the C implementation 

could likely be adapted for use on a mission, doing so 

would require substantial effort. 

SOST internally uses the Match plate-solving tool for 

star identification. Like other plate-solvers, Match is 

much slower and requires more memory than star 

tracking algorithms designed for use on space missions. 

The SOST authors report that the star identification step 

takes about 20 seconds on a Raspberry Pi 3.6 If slow 

identification is acceptable, SOST may be suitable as a 

star tracking software. 

We quantitatively compare LOST to C-Tetra in the 

Results section. We were unable to get OpenStarTracker 

to identify the set of images we used in our 

comprehensive test (see Methodology section), although 

with the right tuning of parameters it might have been 

possible. 

SYSTEM DESIGN 

Any star tracking software takes an image with visible 

stars as input and outputs the attitude of the star tracker’s 

camera as a 3x3 matrix or quaternion. LOST makes a 

strong distinction between the actual star tracking 

algorithms and the “infrastructure” used for evaluating 

and running the stages of the star tracking pipeline, as 

illustrated in Figure 1. 

 

Figure 1: LOST System Diagram 

Like most star trackers, LOST’s star tracking pipeline is 

composed of three main stages. First, in the centroid 

detection stage, the pixel coordinates of each star center 

(centroid) are computed to within a fraction of a pixel. 

Next, in the star identification stage, an algorithm 

determines the identity of each centroid with the help of 

a star catalog (e.g. the Yale Bright Star Catalog) and a 

pre-computed database specific to the star-id algorithm. 

Finally, in the attitude estimation stage, an algorithm 

computes the attitude that best agrees with the star 

centroids and identifications, which in a real mission is 

then sent to a flight computer. 

LOST provides implementations of previously-proposed 

algorithms for each stage of the star tracking pipeline, 

each of which are described in the next section (see 
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Algorithms section). The user can easily swap out which 

algorithm is used for each stage of the pipeline. 

LOST’s evaluation infrastructure consists primarily of 

an image generator, which creates realistic star images 

based on true catalog star positions and a variety of 

configurable noise sources. The outputs from the image 

generator (see Infrastructure section) can be used to run 

and automatically evaluate the implemented algorithms 

on various performance metrics. 

The source code for LOST is released under the MIT 

license, which permits free use and modification of the 

software. The source code is available on GitHub 

(https://github.com/UWCubeSat/lost/). LOST is 

implemented as a fully-documented C++ program that 

can compile and run without modification on the Linux 

operating system using a command-line interface. No 

third-party software libraries are required, although the 

Eigen linear algebra library is needed for certain optional 

algorithms. 

ALGORITHMS 

Centroiding 

The centroiding stage determines which pixels in a given 

image belong to stars and locates the pixel coordinates 
(𝑥𝑐 , 𝑦𝑐) of each star center, called a centroid. Based on a 

review of literature, 5 centroiding algorithms were 

chosen and implemented for LOST. 

Implementations for all centroiding algorithms resemble 

the following steps, given an image with mean pixel 

brightness 𝜇 and standard deviation 𝜎: 

1. Identify every cluster of pixels with brightness 

above the threshold 𝜇 +  𝛼𝜎, where 𝛼 is tuned 

empirically (𝛼 = 5 has been shown to work well4). 

Each cluster represents a possible star. 

Optimizations to this step ensure that multiple 

centroids will never be found for a single star. 

2. Mitigate the effect of background noise by 

subtracting 𝜇 from each pixel in the image. 

3. For each cluster of pixels, compute the pixel 

coordinates (𝑥𝑐 , 𝑦𝑐)  of the centroid according to the 

specifics of the centroiding algorithm. This step is 

the most involved and is described below for each 

of the 5 centroiding methods. 

Center of Gravity 

The Center of Gravity algorithm (COG) computes the 

centroid by taking the weighted average of all pixels in a 

star, as shown in Equation 1. 

Let B denote the set of pixels in a star cluster. Each pixel 
(𝑥, 𝑦, 𝑤) has coordinates (𝑥, 𝑦) with brightness 𝑤.  

(𝑥𝑐 , 𝑦𝑐) =
1

∑ 𝑤(𝑥,𝑦,𝑤)∈𝐵

⋅ ∑ [𝑤 ⋅ (𝑥, 𝑦)]

(𝑥,𝑦,𝑤)∈𝐵

         (1) 

Iterative Weighted Center of Gravity 

An improvement over the Center of Gravity algorithm is 

the “iterative weighted COG” algorithm, which takes an 

estimate (𝑥, 𝑦) and then computes the weighted average 

of the image pixel brightness multiplied by a 2D 

Gaussian function centered at (𝑥, 𝑦). The standard 

deviation of the Gaussian function is computed as 

described in Delabie4. The iterative weighted algorithm 

performs the weighted center of gravity algorithm 

iteratively, improving its estimate at each step, until 

convergence. 

1-dimensional and 2-dimensional Gaussian Least-

Squares Fit: 

The Gaussian least-squares fit algorithms operate under 

the assumption that the distribution of defocused light on 

a sensor can be modeled by a Gaussian function. 

Therefore, for each star cluster, both algorithms attempt 

to find the parameters of a Gaussian curve that accurately 

models the star. Parameters are determined by 

performing a nonlinear least-squares fit on pixel data 

within a window of specified size. 

The 1-dimensional Gaussian least-squares fit considers 

the X and Y directions separately, reducing the number 

of parameters in the target Gaussian function. On the 

other hand, the 2-dimensional Gaussian fit considers all 

pixels in the window in one go. Since the 2-d Gaussian 

function (Equation 2) has more parameters (Equation 3) 

than that of the 1-d function,4 the 2-d algorithm is slower, 

with its runtime scaling exponentially with increasing 

window size. Both methods are among the slowest of 

centroiding algorithms but are also the most accurate and 

resistant to image noise. 

The equations for the 2-dimensional Gaussian fit are 

shown below. The 1-d Gaussian fit uses a similar 

approach. 

𝑎𝑟𝑔𝑚𝑖𝑛𝛽 ∑ ∑ (𝐴𝑖𝑗 − 𝑓(𝑥𝑖 , 𝑦𝑗 , 𝛽))
2

 

𝑟

𝑗=−𝑟

𝑟

𝑖=−𝑟

                    (2) 

𝑓(𝑥𝑖 , 𝑦𝑗 , 𝛽) = 𝑎𝑒
−(𝑥𝑖−𝑥𝑏)2

2𝜎𝑥
2

⋅ 𝑒

−(𝑦𝑗−𝑦𝑏)
2

2𝜎𝑦
2

                         (3) 

 

where 𝑟 = radius (in pixels) of window, (𝑥0, 𝑦0) = pixel 

coordinates of the window’s center pixel, 𝛽 =

(𝑥𝑏 , 𝑦𝑏 , 𝑎, 𝜎𝑥 , 𝜎𝑦)  = parameters of the Gaussian curve to 

solve for. For our purposes, only the estimate of the 

centroid (𝑥𝑏 , 𝑦𝑏) is of interest. 

 

https://github.com/UWCubeSat/lost/
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Gaussian Grid 

The Gaussian Grid algorithm, proposed in 2014 by 

Delabie et al., again aims to fit a Gaussian function to 

pixel data. Instead of using a nonlinear least-squares fit, 

Gaussian Grid shortens its runtime by using a set of 

closed-form expressions to approximate function 

parameters. LOST contains the first known open-source 

implementation and evaluation of this algorithm. Note 

that this method is only defined for a 5x5 window. 

 

Star Identification 

Given a list of centroids and a star catalog, the star 

identification stage attempts to identify each centroided 

star by matching it to a unique catalog star. Star 

identification is the most sophisticated part of the star 

tracking pipeline. We implement two pattern-matching 

algorithms suitable for lost-in-space mode, as well as a 

tracking mode algorithm that takes advantage of prior 

attitude information. 

Tetra 

Tetra is a fast O(1) star identification algorithm that 

achieves its low runtime by constructing and looking up 

4-star patterns in a special hash table called the pattern 

catalog. However, this makes Tetra’s database 

significantly larger than that of any other star-id 

algorithm, owing to the large number of possible star 

patterns and need for a reasonable hash table load factor.  

LOST contains an implementation of Tetra based on 

Brown and Stubis’s original paper.2 Our implementation 

is optimized to improve practical performance; for 

instance, hyperparameter tuning gives a hash function 

that more uniformly distributes star patterns, which in 

turn greatly reduces the hash collision rate when 

performing lookup into the pattern catalog. 

Pseudocode: 

1. Choose the 4 brightest star centroids in the image 

2. Each star pattern is constructed by calculating the 

𝐶(4,2) = 6 pairwise inter-star distances, then 

dividing each value by the length of the longest 

distance  

3. Sort and drop the last element since the longest 

distance divided by itself is always 1. We now have 

a sorted list of edge ratios [𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5] 
4. A hash code (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) is generated from 

[𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5]. To account for centroiding error, 

we consider all hash values such that |𝑎𝑖 − 𝑒𝑖| <  𝜀, 

where 𝜀 is a tuned constant. 

5. Index and look up the hashed pattern in the pattern 

catalog. If there exists a matching pattern in the 

pattern catalog, then identify the stars in our 4-star 

pattern by pairing them to catalog stars. Otherwise, 

if there is no match, repeat steps 1-4 for some other 

combination of 4 centroid stars, in order of 

decreasing star brightness. 

 

Pyramid 

The Pyramid star identification algorithm is one of the 

most popular star-ID algorithms and has been used on 

many real-world missions. The Pyramid algorithm 

begins by choosing a pattern of 4 centroids in the image, 

then uses a range-query database to find all possible 4-

tuples of catalog stars which match the observed inter-

star distances. Mortari et. al. have determined 

analytically that, under reasonable assumptions of 

centroiding accuracy, matching 4-star patterns very 

rarely results in a false match, ensuring Pyramid has a 

low false positive rate.8 

 

To our understanding, LOST contains the first open-

source Pyramid implementation. While the algorithm is 

fairly simple, the original paper is light on 

implementation details, so LOST’s codebase can help 

clear up the details for future researchers. Our 

implementation is optimized to improve speed, most 

importantly by building hash tables to quickly find the 

last two catalog starts that might match a pattern. Our 

implementation follows the pseudocode below. 

 

Pseudocode: 

1. Choose the four stars/centroids in the image 

with the shortest sum of inter-star distances, 

call 𝑖, 𝑗, 𝑘, 𝑟 

2. Perform a database range query to find all 

pairs of catalog stars whose inter-star distance 

agrees with the 𝑖 − 𝑘 distance.  

a. Build a hash table 𝑀𝑖𝑘 from the 

returned pairs which maps each 

catalog star to another catalog star the 

same distance away as 𝑖 is from 𝑘, if 

it exists. 

b. I.e., 𝑀𝑖𝑘[𝑚] = 𝑛 if and only if the 

distance between stars 𝑚 and 𝑛 is 

almost the same as the distance from 

𝑖 to 𝑗 

3. Query and build a similar hash table for the 

𝑖 − 𝑟 distance, named 𝑀𝑖𝑟  

4. Query catalog pairs matching the 𝑖 − 𝑗 

distance, and for each matching pair (𝑐𝑖 , 𝑐𝑗) 

a. Let 𝑐𝑘 ≔ 𝑀𝑖𝑘(𝑐𝑖) and 𝑐𝑟 ≔ 𝑀𝑖𝑟(𝑐𝑖) 

b. Check that 𝑐𝑘 and 𝑐𝑟 exist 

c. Check that all six inter-star distances 

between 𝑖, 𝑗, 𝑘, 𝑟 agree with the six 

inter-star distances between 

𝑐𝑖 , 𝑐𝑗 , 𝑐𝑘 , 𝑐𝑟. Also perform the 

spectrality check described by 

Mortari8 
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d. If both checks pass, then 

(𝑐𝑖 , 𝑐𝑗 , 𝑐𝑘, 𝑐𝑟) is a match for (𝑖, 𝑗, 𝑘, 𝑟) 

5. If there exists a potential match and it is 

unique, return it. Else select new (𝑖, 𝑗, 𝑘, 𝑟) 

Some details are omitted here. For example, Mik and 

Mir may have entries with duplicate keys. LOST 

implements the K-Vector database, described by 

Mortari,8 to perform range queries in O(1) time. 

Tracking Mode 

The star-id algorithms listed above are “lost-in-space 

mode” algorithms, which assume no prior information 

about the star tracker’s attitude. “Tracking mode” 

algorithms, on the other hand, take advantage of a 

previous attitude estimate to identify images with high 

confidence even when few stars are visible. The attitude 

estimate comes from a previous image, which is 

reasonable assuming there is only a small change in the 

satellite’s attitude from the previous image to the current 

image. 

LOST implements a simple tracking mode algorithm that 

begins by computing a list of candidate stars for each 

detected centroid. In the case of small rotations, there 

may be only one candidate star, so no further 

computation is necessary. Otherwise, tracking mode 

finds a unique combination of the candidate stars that 

agrees with the observed inter-star distances. 

 

Attitude 

 

LOST implements three attitude estimation algorithms: 

QUEST, the Davenport Q method, and TRIAD. Each of 

these algorithms tries to find a rotation that brings the 

star vectors in the reference frame as close as possible to 

the observed star vectors by minimizing Wahba’s loss 

function3. The TRIAD algorithm solves this analytically, 

using two pairs of measured and reference vectors 

alongside an intermediate reference frame, to determine 

attitude. TRIAD is usually not the best choice for star 

trackers because it only uses information from two stars 

instead of every identified star, so a large amount of 

useful information is discarded. Meanwhile, the QUEST 

and Davenport Q methods find an optimal solution to 

Wahba’s problem quickly.5 Because these attitude 

estimation algorithms are well-documented and well-

tested, we do not evaluate them in this paper. 

INFRASTRUCTURE 

LOST’s flexible infrastructure can be valuable for both 

engineers and researchers. As shown in the system 

diagram (see System Design section, Figure 1), LOST 

treats each stage of the star tracking pipeline 

individually, with each stage having a well-defined 

interface. Consequently, it is easy for a researcher to test 

the performance of a new star tracking algorithm quickly 

by swapping their algorithm into the pipeline, while 

letting the infrastructure handle the other stages of the 

pipeline and perform any desired evaluations. An 

engineer using LOST can quickly determine which 

algorithms are appropriate for their application and 

evaluate the performance of those algorithms on a 

battery of generated images representative of their 

specific imaging hardware. Additionally, because 

algorithms in each stage of the pipeline can be swapped 

in and out at will, an optimal combination of algorithms 

can be selected during runtime in response to various 

sources of image noise. We supply some insights on how 

to do this by comparing algorithms of each stage in the 

Results section. 

In “real world” mode, LOST takes an image file as input. 

The image is sent to the centroiding stage, and the 

following two stages take input from the preceding 

stages to ultimately produce an attitude reading. 

 

Figure 2: Sample Generated Image 

In generated image mode, LOST generates a realistic star 

image. Stars are placed in the image according to their 

real positions in the Yale Bright Star Catalog. 

Additionally, the image generator is capable of 

simulating a variety of real-world noise sources, 

including read noise (Gaussian noise on every pixel), 

shot noise (Poisson noise due to the discreteness of 

photons received from low-brightness stars), motion 

blur, rolling shutter, and randomly occurring false stars. 

These noise sources are explained in more detail by 

Delabie.4 For star-id testing specifically, the image 

generator keeps track of the “true” or “expected” 
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centroid locations as it generates the image, which can 

be subsequently fed to a star-id algorithm to test it in 

isolation without an active centroiding algorithm. The 

centroids can also be randomly shifted to evaluate the 

performance of a star-id algorithm versus centroid error. 

 

A number of comparators can be used to automatically 

evaluate the performance of each algorithm when 

running in generated image mode. The comparators 

compare the output of an algorithm with the “expected” 

output, which is known from the image generator, as 

generated images store information about the true 

centroid positions and star IDs. The comparators can 

then report how many centroids were detected, the mean 

centroid error, the number of stars correctly identified, 

etc. (see Evaluation section). The output of the 

algorithms can also be plotted to an annotated image file 

to visualize the results and help debug issues in new 

algorithms. 

EVALUATION METHODOLOGY 

The evaluation determines a number of key metrics, 

defined here: 

• Availability: The fraction of all images that are 

reported as identified and the identification is 

correct (true positive rate). This corresponds to the 

probability that a run of LOST will yield correct 

attitude information, which may be a direct mission 

requirement. 

• Error Rate: The fraction of all images that are 

reported as identified and the identification is 

incorrect (false positive rate) 

o Note that Availability and Error Rate need 

not sum to 1. A star-identification 

algorithm may be unable to identify an 

image at all, in which case the image is not 

counted towards either metric. 

• Centroid Error: The mean distance between true star 

centers and detected star centers, in pixels. Only 

centroid errors from the 5 brightest stars in the 

image are included in the average, to avoid the 

confounding effect of noise on the number of total 

stars visible. This metric has no direct real-world 

consequences, but instead is useful to compare 

centroiding algorithms against each other and to 

determine which algorithm performs best under 

different expected noise conditions. 

• Attitude Error: The minimum rotation angle to bring 

the detected attitude to the true attitude. In cases 

when attitude error is averaged over a number of 

measurements, only the cases when the attitude is 

“correct” (i.e., within half a degree of the expected 

attitude) contribute to the average. Consequently, 

star-id failures, which usually cause a blatantly 

incorrect attitude, only contribute to the error rate, 

leaving centroid error as the main contributor to 

attitude error. 

• Desktop speed: The number of microseconds some 

algorithm takes to run on a desktop computer, with 

an AMD Ryzen 7900X CPU. 

• Raspberry Pi speed: The number of microseconds 

some algorithm takes to run on a Raspberry Pi 4. 

Satellite missions increasingly use off-the-shelf 

hardware similar to Raspberry Pis, so we can expect 

LOST to have speed similar to these results. 

• x86 CPU instructions: The number of CPU 

instructions executed on an x86 CPU architecture 

with instruction set extensions disabled. Note that 

this metric can only very roughly be used to predict 

speed, because instructions can take varying 

amounts of time to execute, and vary according to 

the instruction set used. 

• Maximum memory usage: The maximum number of 

kilobytes of memory used (excluding infrastructure 

and permanently stored data), measured on a 

desktop. 

The code to run our evaluations can be found at 

https://github.com/UWCubeSat/lost-evals. 

Three types of tests are performed: 

• Centroid tests, where centroid error (defined above) 

is plotted against read noise, number of 

photoelectrons received per star, and motion blur. 

As described above, centroid error is mainly useful 

for comparing between centroiding algorithms. 

 

Note that noise can also change the total number of 

centroids detected, but we do not plot the total 

centroids detected because it is independent of the 

choice of algorithm. Additionally, only the centroid 

errors for the 5 brightest stars in each image are 

included in the average. 

 

The centroiding tests vary the level of noise starting 

from a common set of parameters: 25 degree 

horizontal field-of-view (corresponding to a typical 

medium-FOV star tracker7), a 1024x1024 sensor 

resolution, 4,000 total photoelectrons received from 

a magnitude zero star (corresponding to a 200ms 

exposure with a 3cm lens aperture and typical 

quantum efficiency, see Liebe7), and Gaussian read 

noise applied to every pixel with a standard 

deviation of 2 photoelectrons per pixel. 

• Star Identification tests, where availability and error 

rate are plotted against centroid error, number of 

false centroids, and the dimmest magnitude the 

camera can pick up. 

 

The Star-ID tests are run without a centroiding 

algorithm; centroids are fed in directly from the 

https://github.com/UWCubeSat/lost-evals
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image generator, as described in the infrastructure 

section of the paper. The base settings for the star-id 

test are a 25-degree horizontal FOV, 0.3 pixels 

average centroid error, stars brighter than 5 

magnitude being visible (corresponding to an 

average of 25 many stars per image), and an average 

of 1 false star per image. 

• Comprehensive tests, where the entire software is 

run on a small number of scenarios. Availability, 

error rate, attitude error, and the speed metrics 

defined above are averaged over 100 trials. The 

comprehensive tests evaluate both LOST and other 

open-source star trackers. The goal of these 

evaluations is to measure the best performance each 

star tracker can achieve, so we pick algorithms that 

provide strong performance in each scenario. The 

four tested scenarios are: 

• 20-degree FOV, low noise: The same settings 

as in the isolated tests. For the LOST tests, we 

use the Tetra star-id algorithm and the COG 

centroid algorithm. 

• 20-degree FOV, high noise: The total 

photoelectrons received from a magnitude zero 

star is reduced from 4,000 to 2,000 

(corresponding for example to a smaller lens), 

and motion blur corresponding to about 0.5 

degrees of boresight motion and 4 degrees of 

roll per second of rotation at a 200ms exposure 

time. For the LOST tests, we use the Pyramid 

star-id algorithm and the COG centroid 

algorithm. 

• 45-degree FOV, low noise: The same settings 

as for 20-degrees, but with a wider 45 degree 

FOV. Like in the 20-degree FOV low-noise 

test, the LOST tests use the Tetra star-id 

algorithm and the COG centroid algorithm. 

• 45-degree FOV, high noise: Same as 20-degree 

high noise, but with a 45 degree FOV. Like in 

the 20-degree FOV high-noise test, the LOST 

tests use the Pyramid star-id algorithm and the 

COG centroid algorithm. 

In addition to LOST, we evaluate C-Tetra, the 

original Tetra’s author’s implementation of the 

algorithm. C-Tetra only implements the star-

identification stage, so we use LOST’s centroiding 

stage as input, and report C-Tetra’s availability and 

error rate based on whether the output of its star-id 

stage is correct (the attitude error would be the same 

as for LOST, since star-id accuracy is determined 

mainly by centroid error). We were unable to get 

OpenStarTracker to identify the images in our 

comprehensive test cases, although it is possible 

there were configuration options we did not set 

correctly. 

RESULTS 

Centroiding 

 

Figure 3: Centroid Error vs. Number of 

Photoelectrons 

 

In Figure 3 we show how centroid error varies with the 

number of photoelectrons that the sensor receives from a 

magnitude zero star while keeping the effective 

brightness of each star constant by increasing the 

sensitivity. As photoelectrons per star increases, the 

effect of shot noise (Poisson noise due to the small 

number of photons received from each star4) decreases. 

The main factors controlling the number of 

photoelectrons received per star are lens aperture width, 

exposure time, and sensor quantum efficiency. The 

ordering between the centroid algorithms does not 

change as the number of photoelectrons per star 

increases, with 2D Gaussian Fit maintaining the best 

performance over the whole range. Thus, lens aperture 

and quantum efficiency alone should not play a major 

role in the selection of a centroiding algorithm. 

 

Figure 4: Centroid Error vs. Read Noise 
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In Figure 4 we compare centroid error with the level of 

Gaussian read noise (simple Gaussian noise applied to 

every pixel in the image). Read noise is mainly 

determined by the sensor being used, and may vary based 

on the type of sensor technology, the pixel clock rate, and 

many other factors. The results indicate that at high read 

noise the Gaussian fit methods are a better choice than 

the faster Center of Gravity methods, while if read noise 

is known to be small, the Gaussian fit methods have no 

benefit over the simpler and faster Center of Gravity 

algorithms. The Gaussian Grid method, which is much 

faster than the Gaussian fit methods but more accurate 

than the Center of Gravity methods at high levels of read 

noise, may also be appropriate to use in some cases 

where speed is of priority.  

Star Identification 

We evaluate star-id algorithms on availability and error 

rate, as defined in the Methodology section. 

 

Figure 5: Star-ID Availability and Error Rate vs. 

Centroid Error 

In Figure 5 we show how sky coverage and error rate 

vary with centroid perturbation (random positional error 

added to each centroid). Pyramid takes an estimate of the 

centroid error as a runtime parameter, which we update 

appropriately for each data point. The availability of both 

algorithms stays above 90% as long as centroid error is 

less than 0.5 pixels. (Recall the images used in this 

evaluation are 1024 x 1024 at a 25-degree FOV width, 

so 0.5 pixel is about 0.01 degrees). Centroid error can be 

estimated based on the graphs in the previous section, 

and is mainly reliant on the camera hardware. As shown 

in that section, centroid error is below 0.5 in many 

practical cases. If higher centroid error is expected, then 

the Pyramid algorithm shows a clear advantage, which is 

why we use Pyramid for the high noise cases in the 

comprehensive test (presented later). 

 

 

Figure 6: Star-ID Availability and Error Rate vs. 

Number of False Stars 

In Figure 6, we plot availability and error rate against the 

number of false stars. The false stars are uniformly 

distributed, with uniformly random magnitudes between 

3.0 and 7.0 (Tetra uses the star magnitudes to determine 

which 4-tuples of stars to attempt to match first). False 

stars can be caused by clusters of dead pixels, dust, 

planets, stars not included in the database, or a number 

of other sources. Tetra maintains higher availability as 

false stars are added while maintaining the same low 

error rate as Pyramid, so is preferable when there are 

many false stars. 

 

Figure 7: Star-ID Availability and Error Rate vs. 

Dimmest Visible Star Magnitude 

In Figure 7 we plot availability and error rate against the 

magnitude of the dimmest star the camera system can 

detect. Note that we plot linearly against magnitude, but 

the number of stars increases nonlinearly as magnitude 

increases. At this field of view (25 degrees), the camera 

system must be able to image stars as dim as magnitude 

5.0 in order to achieve close to 100% availability. Both 

Pyramid and Tetra have a similar dependence on the 

number of visible stars. 
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Attitude Estimation 

Our QUEST implementation requires less than 1 KB of 

memory and finishes in less than 1 microsecond on our 

desktop hardware. It is well-established that QUEST 

typically solves Wahba’s problem to within floating 

point error, so we do not evaluate attitude estimation 

further.3 

Comprehensive 

To evaluate the speed and memory requirements of 

LOST, and to compare it against other open-source star 

trackers, a number of “comprehensive” tests are 

performed. As explained in the methodology section, we 

chose to use different algorithms for the LOST-related 

rows in each scenario depending on what performed 

best. The details of the image generation settings used in 

each scenario are also explained in the methodology 

section. 

 

Table 1: Comprehensive Testing Results 

Scenario 

20-deg 

FOV Low 

Noise 

20-deg 

FOV High 

Noise 

45-deg 

FOV Low 

Noise 

45-deg 

FOV High 

Noise 

LOST 

Desktop 
Speed (μs) 2512 4011 2482 3862 

LOST 

Centroid 
Speed (μs) 2465 2396 2452 2383 

LOST Star-

ID Speed 
(μs) 39 1611 24 1475 

LOST 

Raspi 
Speed (μs) 31,447 104,730 38,231 89,857 

LOST CPU 
Instructions 25,153,935 76,315,835 25,323,548 51,877,918 

LOST 

Centroid 
CPU 
Instructions 24,839,326 24,793,313 25,191,130 24,981,901 

LOST Star-

ID CPU 
Instructions 314,609 51,522,522 132,418 26,896,017 

LOST 

Centroid 

Memory 
(KiB) 30 27 53 40 

LOST Star-

ID Memory 
(KiB) 20 676 7 337 

LOST 

Availability 
(%) 100 65 100 91 

LOST 

Error Rate 
(%) 0 0 0 8 

LOST 

Attitude 
Error 
(degrees) 0.00944 0.06839 0.00696 0.02692 

LOST 

Database 
Size (KiB) 41,088 336 10,162 303 

C-Tetra 

Star-ID 

Desktop 
Speed (μs) 10 10 100 150 

C-Tetra 

Availability 

(%) 74 8 96 88 

C-Tetra 

Error Rate 
(%) 0 1 3 10 

C-Tetra 

Database 
Size (KiB) 5,185,467 5,185,467 

 

4,222,711 4,222,711 

 

In both low-noise cases, LOST produced an availability 

of 100%. In the high-noise cases, LOST produced an 

availability of 65% and 91% for a 20-degree FOV and a 

45-degree FOV, respectively. For both low-noise cases, 

LOST produces an error rate of 0%, and for high-noise 

cases LOST produces an error rate of 0% and 8%. These 

results indicate that LOST is consistently able to identify 

images correctly, while preserving a low error rate, so 

false positives rarely occur.  

 
In both low-noise cases, LOST produces an attitude with 

error between 0.00944 and 0.00696 degrees. In both 

high-noise cases, LOST produces an attitude with error 

between 0.06839 and 0.02692 degrees. It is surprising to 

us that the attitude error in the 45-degree FOV scenarios 

is lower than the error in the 20-degree FOV scenarios. 

While a narrower FOV results in lower angular centroid 

error (the pixel error is the same), the greater number of 

stars visible in a wider FOV allows the attitude 

estimation algorithm to find a best-squares solution over 

a greater number of identified stars, helping to cancel out 

error. However, for other sets of parameters, especially 

in low noise conditions, the attitude error may be lower 

at narrow FOVs. 

 
The speed and memory in all 4 scenarios indicate that 

LOST could be ported to run on low-compute hardware 

such as embedded systems. Many low-power embedded 

systems and relatively low-cost radiation embedded 

hardware, such as the Vorago Cortex M4 CPUs, have a 

clock rate of approximately 100 MHz. This is about 

1/10th the clock rate of a Raspberry Pi, so it is reasonable 

to estimate that LOST will take one order of magnitude 
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longer on such low-compute hardware. Specifically, 

LOST would likely be able to centroid and identify an 

image in less than 0.5 seconds and could be made faster 

by decreasing the image resolution. In the high-noise 

case, LOST might take 1 second or more, which is still 

acceptable for many missions. Further, the total number 

of (x86) CPU instructions LOST uses to identify an 

image is less than the number of CPU cycles most 

microcontrollers can perform each second, further 

supporting the idea that LOST could complete an 

identification in less than a second (although different 

architectures may require different numbers of CPU 

cycles). Additionally, LOST’s memory usage stays 

below 1 MiB in all cases, and radiation-hardened 

memory of this size is widely available. 

 
LOST maintains a higher availability and lower error 

rate than C-Tetra. Notably in the high-noise 20o FOV 

scenario, C-Tetra fails to identify the vast majority of the 

images with an availability of 8%, while LOST is able to 

keep availability above 65%. 

 

CONCLUSION 

We find that the star tracking algorithms implemented in 

LOST achieve availability of 100% in low-noise cases 

and at least 65% in cases with higher noise. Further, both 

centroiding and star identification take a total of less than 

3 milliseconds on desktop and < 35 milliseconds on 

Raspberry Pi while consuming no more than 1 MiB of 

memory. These results suggest that LOST could be 

ported to low-compute hardware and run with 

performance acceptable for many satellite missions. 

Our evaluation also includes an analysis of how various 

metrics vary with different noise sources, to aid in 

decision-making about which algorithms to use for 

different missions. In addition to performing the tests 

listed here, LOST leaves the reader with a framework 

that allows easily evaluating various algorithms under a 

custom set of noise sources. 

Satellite development is no longer limited to multi-

million dollar missions by well-funded organizations. As 

startups, undergraduate engineering teams, and even 

individuals increasingly develop their own satellites, the 

need is strong for affordable and open star tracking 

software. Our results demonstrate that LOST is a step in 

this direction 

LIMITATIONS & FUTURE WORK 

The algorithms currently implemented in LOST are not 

suitable for all missions. Pyramid requires accurate a 

priori knowledge of the camera system’s parameters, 

such as focal length, in order to reliably identify images. 

Tetra requires a fairly large database (~70 MB). The 

centroiding algorithms do not work when there are large 

disruptions in the field of view (for example, if the Sun 

or Earth are in the FOV), even if some stars are visible 

in other parts of the FOV. 

At the time of writing, LOST uses heap memory 

allocation, which is undesirable on embedded systems 

with limited memory. We plan to add variants of the 

algorithm implementations that use stack memory only, 

and have a maximum guaranteed memory footprint. For 

example, a statically-allocated Star-ID implementation 

would only be able to function up to some fixed 

maximum number of centroids, but would be able to 

identify images using only constant-size arrays and hash 

tables based on that maximum number of centroids. 

In the future, we plan to implement extra auxiliary 

features in LOST. For example, it is possible to re-

estimate the camera’s focal length and lens distortion 

based on a successful star identification, which can 

improve attitude accuracy in case the lens was slightly 

deformed during launch. 

LOST will be at the core of HuskySat-2’s attitude 

determination and control system. HuskySat-2 (HS-2) is 

a CubeSat being developed by the University of 

Washington’s Husky Satellite Lab. HS-2, expecting to 

launch in 2025, is intended as a technology demonstrator 

for cislunar and deep space attitude control featuring 

multiple open-source systems, including LOST for 

attitude determination and reaction wheels for attitude 

control. 
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