
Polyakov 1 37th Annual Small Satellite Conference

LOST: An Open-Source Suite of Star Tracking Software

Mark Polyakov, Edward Zhang, Karen Haining

University of Washington

Guggenheim 211 University of Washington, Seattle WA 98195

xe@uw.edu

Faculty Advisor: Alvar Saenz-Otero

University of Washington

alvarso@uw.edu

ABSTRACT

We present LOST: Open-source Star Tracker (LOST), a suite of star tracking software particularly suitable for small

satellite missions with limited computing resources and low-cost cameras. LOST contains implementations of a

number of previously-proposed star tracking algorithms and a flexible framework for running and evaluating these

algorithms. Our evaluation finds that LOST’s algorithms are simultaneously able to maintain a strong combination of

accuracy, runtime, and memory usage. In scenarios representative of a low-cost star tracker, LOST correctly identifies

over 95% of images, and importantly, performs the entire star tracking pipeline in less than 35 milliseconds on a

Raspberry Pi while using less than 1 MiB of memory, backed by a < 350 KiB database. These results indicate that

LOST could be ported to an embedded or radiation-hardened CPU and still perform well enough to meet the accuracy

requirements of many missions.

INTRODUCTION

Attitude determination is a crucial requirement for many

satellite missions. There are two mainstream methods of

attitude determination: the first method is to use a

combination of a sun sensor and magnetic sensor, and

the second is to use a star tracker, which is a combination

of hardware and software that determines the satellite’s

attitude by identifying stars in a given photograph. Of the

two methods, star tracking is generally the most

accurate.5

However, even when desirable, star trackers are not

necessarily practical for every mission. Notably, small

satellite missions often have limited computing

resources, as well as a limited budget. The limitation on

computing resources may be in order to conserve

electrical power, or because the satellite uses radiation-

hardened components, which typically have only a few

megabytes of RAM. We use the term “low-compute” to

describe star tracking computers that are built on

embedded microprocessors, do not use a traditional

operating system, and have around 1 MiB of memory

with 100 MHz CPU speed. (For example, the popular

Vorago Cortex M4 CPUs have a clock rate of

approximately 100 MHz.9)

While commercial star trackers can handle these

limitations, they can be prohibitively expensive,5 as the

most basic of commercial star trackers can cost tens of

thousands of dollars. For example, Arcsec’s Sagitta star

tracker is listed as over $40,000.1 As small satellites are

deployed in increasingly large constellations and

deployment becomes cheaper, the cost of star trackers

becomes proportionally larger, rendering them

unaffordable to many engineering teams looking to

launch small satellites. Open-source star trackers, which

make their software publicly available, are affordable

alternatives to commercially-available ones. However,

we find that previous open-source star tracking softwares

exhibit good performance only in specific scenarios, or

require relatively powerful computing hardware, making

them unsuitable for low-compute missions.

To address the need for affordable star tracking software

suitable for low-compute scenarios, we present LOST:

Open-source Star Tracker. LOST is a free and open-

source codebase for star tracking software. This paper

first describes LOST, including (1) a high-level

overview of the star tracking algorithms implemented for

LOST, and (2) an overview of LOST’s infrastructure,

which includes a testing framework for evaluating

algorithms on realistic generated star images and allows

for the swapping out of different algorithms for different

stages of the star tracking pipeline. Next, this paper

evaluates all algorithms on various performance metrics

such as speed, accuracy, and memory usage, under a

number of conditions. Speed and memory tests are

performed on both a desktop computer and a Raspberry

SSC23-XII-03

Polyakov 2 37th Annual Small Satellite Conference

Pi, yielding results that suggest LOST could be run

without significant modification on low-compute

embedded systems with an accuracy comparable or

better than that of other open-source star tracking

softwares.

PREVIOUS WORK

Previous star tracking softwares can be classified into

two groups: (1) “Plate solving” softwares originally

designed for use in astronomy, and (2) star tracking

software designed for use on actual satellites. Leading

plate solvers such as Astrometry, ASTAP, and Match are

excellent for their designed use case, which is identifying

images taken through telescopes with high-quality

cameras and long exposure times. However, these

softwares require long compute times and large amounts

of memory, making them unsuitable for star tracking

done with cheap, lower-quality cameras. Plate solvers

may also fail to identify images when only a small

number of stars are visible, as they are primarily

designed to identify photos taken with long exposure

times, when many stars are visible. Therefore, we only

discuss star trackers in this paper.

During our review of previous literature we found only

three existing open-source star tracking softwares:

OpenStarTracker, Tetra3, and SOST. A number of other

publications claim development of open-source star

trackers, but in fact do not make their source code

available.

OpenStarTracker is the most well established of the

three, and is the only one that is scheduled to be flown

on a real-world mission (Oresat). However,

OpenStarTracker relies on the heavyweight OpenCV

computer vision library to perform centroiding, which

makes it unsuitable for many embedded platforms. More

importantly, its only implemented star identification

algorithm is Star-ND. While it is fast and simple to

understand, Star-ND is relatively sensitive to errors in

observed star brightness as well as missing or false stars.

Tetra3 uses the Tetra algorithm for star identification.

Like OpenStarTracker, Tetra3 also uses heavyweight

third-party libraries such as numpy and scipy to perform

all stages of star tracking. There is also a C

implementation of the Tetra star identification algorithm,

which we refer to as C-Tetra. While both Tetra3 and C-

Tetra require relatively large databases, C-Tetra uses a

database an order of magnitude larger at about 5 GiB.

Additionally, C-Tetra only implements the star

identification step and requires an external program for

other stages of star tracking. While the C implementation

could likely be adapted for use on a mission, doing so

would require substantial effort.

SOST internally uses the Match plate-solving tool for

star identification. Like other plate-solvers, Match is

much slower and requires more memory than star

tracking algorithms designed for use on space missions.

The SOST authors report that the star identification step

takes about 20 seconds on a Raspberry Pi 3.6 If slow

identification is acceptable, SOST may be suitable as a

star tracking software.

We quantitatively compare LOST to C-Tetra in the

Results section. We were unable to get OpenStarTracker

to identify the set of images we used in our

comprehensive test (see Methodology section), although

with the right tuning of parameters it might have been

possible.

SYSTEM DESIGN

Any star tracking software takes an image with visible

stars as input and outputs the attitude of the star tracker’s

camera as a 3x3 matrix or quaternion. LOST makes a

strong distinction between the actual star tracking

algorithms and the “infrastructure” used for evaluating

and running the stages of the star tracking pipeline, as

illustrated in Figure 1.

Figure 1: LOST System Diagram

Like most star trackers, LOST’s star tracking pipeline is

composed of three main stages. First, in the centroid

detection stage, the pixel coordinates of each star center

(centroid) are computed to within a fraction of a pixel.

Next, in the star identification stage, an algorithm

determines the identity of each centroid with the help of

a star catalog (e.g. the Yale Bright Star Catalog) and a

pre-computed database specific to the star-id algorithm.

Finally, in the attitude estimation stage, an algorithm

computes the attitude that best agrees with the star

centroids and identifications, which in a real mission is

then sent to a flight computer.

LOST provides implementations of previously-proposed

algorithms for each stage of the star tracking pipeline,

each of which are described in the next section (see

Polyakov 3 37th Annual Small Satellite Conference

Algorithms section). The user can easily swap out which

algorithm is used for each stage of the pipeline.

LOST’s evaluation infrastructure consists primarily of

an image generator, which creates realistic star images

based on true catalog star positions and a variety of

configurable noise sources. The outputs from the image

generator (see Infrastructure section) can be used to run

and automatically evaluate the implemented algorithms

on various performance metrics.

The source code for LOST is released under the MIT

license, which permits free use and modification of the

software. The source code is available on GitHub

(https://github.com/UWCubeSat/lost/). LOST is

implemented as a fully-documented C++ program that

can compile and run without modification on the Linux

operating system using a command-line interface. No

third-party software libraries are required, although the

Eigen linear algebra library is needed for certain optional

algorithms.

ALGORITHMS

Centroiding

The centroiding stage determines which pixels in a given

image belong to stars and locates the pixel coordinates
(𝑥𝑐 , 𝑦𝑐) of each star center, called a centroid. Based on a

review of literature, 5 centroiding algorithms were

chosen and implemented for LOST.

Implementations for all centroiding algorithms resemble

the following steps, given an image with mean pixel

brightness 𝜇 and standard deviation 𝜎:

1. Identify every cluster of pixels with brightness

above the threshold 𝜇 + 𝛼𝜎, where 𝛼 is tuned

empirically (𝛼 = 5 has been shown to work well4).

Each cluster represents a possible star.

Optimizations to this step ensure that multiple

centroids will never be found for a single star.

2. Mitigate the effect of background noise by

subtracting 𝜇 from each pixel in the image.

3. For each cluster of pixels, compute the pixel

coordinates (𝑥𝑐 , 𝑦𝑐) of the centroid according to the

specifics of the centroiding algorithm. This step is

the most involved and is described below for each

of the 5 centroiding methods.

Center of Gravity

The Center of Gravity algorithm (COG) computes the

centroid by taking the weighted average of all pixels in a

star, as shown in Equation 1.

Let B denote the set of pixels in a star cluster. Each pixel
(𝑥, 𝑦, 𝑤) has coordinates (𝑥, 𝑦) with brightness 𝑤.

(𝑥𝑐 , 𝑦𝑐) =
1

∑ 𝑤(𝑥,𝑦,𝑤)∈𝐵

⋅ ∑ [𝑤 ⋅ (𝑥, 𝑦)]

(𝑥,𝑦,𝑤)∈𝐵

 (1)

Iterative Weighted Center of Gravity

An improvement over the Center of Gravity algorithm is

the “iterative weighted COG” algorithm, which takes an

estimate (𝑥, 𝑦) and then computes the weighted average

of the image pixel brightness multiplied by a 2D

Gaussian function centered at (𝑥, 𝑦). The standard

deviation of the Gaussian function is computed as

described in Delabie4. The iterative weighted algorithm

performs the weighted center of gravity algorithm

iteratively, improving its estimate at each step, until

convergence.

1-dimensional and 2-dimensional Gaussian Least-

Squares Fit:

The Gaussian least-squares fit algorithms operate under

the assumption that the distribution of defocused light on

a sensor can be modeled by a Gaussian function.

Therefore, for each star cluster, both algorithms attempt

to find the parameters of a Gaussian curve that accurately

models the star. Parameters are determined by

performing a nonlinear least-squares fit on pixel data

within a window of specified size.

The 1-dimensional Gaussian least-squares fit considers

the X and Y directions separately, reducing the number

of parameters in the target Gaussian function. On the

other hand, the 2-dimensional Gaussian fit considers all

pixels in the window in one go. Since the 2-d Gaussian

function (Equation 2) has more parameters (Equation 3)

than that of the 1-d function,4 the 2-d algorithm is slower,

with its runtime scaling exponentially with increasing

window size. Both methods are among the slowest of

centroiding algorithms but are also the most accurate and

resistant to image noise.

The equations for the 2-dimensional Gaussian fit are

shown below. The 1-d Gaussian fit uses a similar

approach.

𝑎𝑟𝑔𝑚𝑖𝑛𝛽 ∑ ∑ (𝐴𝑖𝑗 − 𝑓(𝑥𝑖 , 𝑦𝑗 , 𝛽))
2

𝑟

𝑗=−𝑟

𝑟

𝑖=−𝑟

 (2)

𝑓(𝑥𝑖 , 𝑦𝑗 , 𝛽) = 𝑎𝑒
−(𝑥𝑖−𝑥𝑏)2

2𝜎𝑥
2

⋅ 𝑒

−(𝑦𝑗−𝑦𝑏)
2

2𝜎𝑦
2

 (3)

where 𝑟 = radius (in pixels) of window, (𝑥0, 𝑦0) = pixel

coordinates of the window’s center pixel, 𝛽 =

(𝑥𝑏 , 𝑦𝑏 , 𝑎, 𝜎𝑥 , 𝜎𝑦) = parameters of the Gaussian curve to

solve for. For our purposes, only the estimate of the

centroid (𝑥𝑏 , 𝑦𝑏) is of interest.

https://github.com/UWCubeSat/lost/

Polyakov 4 37th Annual Small Satellite Conference

Gaussian Grid

The Gaussian Grid algorithm, proposed in 2014 by

Delabie et al., again aims to fit a Gaussian function to

pixel data. Instead of using a nonlinear least-squares fit,

Gaussian Grid shortens its runtime by using a set of

closed-form expressions to approximate function

parameters. LOST contains the first known open-source

implementation and evaluation of this algorithm. Note

that this method is only defined for a 5x5 window.

Star Identification

Given a list of centroids and a star catalog, the star

identification stage attempts to identify each centroided

star by matching it to a unique catalog star. Star

identification is the most sophisticated part of the star

tracking pipeline. We implement two pattern-matching

algorithms suitable for lost-in-space mode, as well as a

tracking mode algorithm that takes advantage of prior

attitude information.

Tetra

Tetra is a fast O(1) star identification algorithm that

achieves its low runtime by constructing and looking up

4-star patterns in a special hash table called the pattern

catalog. However, this makes Tetra’s database

significantly larger than that of any other star-id

algorithm, owing to the large number of possible star

patterns and need for a reasonable hash table load factor.

LOST contains an implementation of Tetra based on

Brown and Stubis’s original paper.2 Our implementation

is optimized to improve practical performance; for

instance, hyperparameter tuning gives a hash function

that more uniformly distributes star patterns, which in

turn greatly reduces the hash collision rate when

performing lookup into the pattern catalog.

Pseudocode:

1. Choose the 4 brightest star centroids in the image

2. Each star pattern is constructed by calculating the

𝐶(4,2) = 6 pairwise inter-star distances, then

dividing each value by the length of the longest

distance

3. Sort and drop the last element since the longest

distance divided by itself is always 1. We now have

a sorted list of edge ratios [𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5]
4. A hash code (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) is generated from

[𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5]. To account for centroiding error,

we consider all hash values such that |𝑎𝑖 − 𝑒𝑖| < 𝜀,

where 𝜀 is a tuned constant.

5. Index and look up the hashed pattern in the pattern

catalog. If there exists a matching pattern in the

pattern catalog, then identify the stars in our 4-star

pattern by pairing them to catalog stars. Otherwise,

if there is no match, repeat steps 1-4 for some other

combination of 4 centroid stars, in order of

decreasing star brightness.

Pyramid

The Pyramid star identification algorithm is one of the

most popular star-ID algorithms and has been used on

many real-world missions. The Pyramid algorithm

begins by choosing a pattern of 4 centroids in the image,

then uses a range-query database to find all possible 4-

tuples of catalog stars which match the observed inter-

star distances. Mortari et. al. have determined

analytically that, under reasonable assumptions of

centroiding accuracy, matching 4-star patterns very

rarely results in a false match, ensuring Pyramid has a

low false positive rate.8

To our understanding, LOST contains the first open-

source Pyramid implementation. While the algorithm is

fairly simple, the original paper is light on

implementation details, so LOST’s codebase can help

clear up the details for future researchers. Our

implementation is optimized to improve speed, most

importantly by building hash tables to quickly find the

last two catalog starts that might match a pattern. Our

implementation follows the pseudocode below.

Pseudocode:

1. Choose the four stars/centroids in the image

with the shortest sum of inter-star distances,

call 𝑖, 𝑗, 𝑘, 𝑟

2. Perform a database range query to find all

pairs of catalog stars whose inter-star distance

agrees with the 𝑖 − 𝑘 distance.

a. Build a hash table 𝑀𝑖𝑘 from the

returned pairs which maps each

catalog star to another catalog star the

same distance away as 𝑖 is from 𝑘, if

it exists.

b. I.e., 𝑀𝑖𝑘[𝑚] = 𝑛 if and only if the

distance between stars 𝑚 and 𝑛 is

almost the same as the distance from

𝑖 to 𝑗

3. Query and build a similar hash table for the

𝑖 − 𝑟 distance, named 𝑀𝑖𝑟

4. Query catalog pairs matching the 𝑖 − 𝑗

distance, and for each matching pair (𝑐𝑖 , 𝑐𝑗)

a. Let 𝑐𝑘 ≔ 𝑀𝑖𝑘(𝑐𝑖) and 𝑐𝑟 ≔ 𝑀𝑖𝑟(𝑐𝑖)

b. Check that 𝑐𝑘 and 𝑐𝑟 exist

c. Check that all six inter-star distances

between 𝑖, 𝑗, 𝑘, 𝑟 agree with the six

inter-star distances between

𝑐𝑖 , 𝑐𝑗 , 𝑐𝑘 , 𝑐𝑟. Also perform the

spectrality check described by

Mortari8

Polyakov 5 37th Annual Small Satellite Conference

d. If both checks pass, then

(𝑐𝑖 , 𝑐𝑗 , 𝑐𝑘, 𝑐𝑟) is a match for (𝑖, 𝑗, 𝑘, 𝑟)

5. If there exists a potential match and it is

unique, return it. Else select new (𝑖, 𝑗, 𝑘, 𝑟)

Some details are omitted here. For example, Mik and

Mir may have entries with duplicate keys. LOST

implements the K-Vector database, described by

Mortari,8 to perform range queries in O(1) time.

Tracking Mode

The star-id algorithms listed above are “lost-in-space

mode” algorithms, which assume no prior information

about the star tracker’s attitude. “Tracking mode”

algorithms, on the other hand, take advantage of a

previous attitude estimate to identify images with high

confidence even when few stars are visible. The attitude

estimate comes from a previous image, which is

reasonable assuming there is only a small change in the

satellite’s attitude from the previous image to the current

image.

LOST implements a simple tracking mode algorithm that

begins by computing a list of candidate stars for each

detected centroid. In the case of small rotations, there

may be only one candidate star, so no further

computation is necessary. Otherwise, tracking mode

finds a unique combination of the candidate stars that

agrees with the observed inter-star distances.

Attitude

LOST implements three attitude estimation algorithms:

QUEST, the Davenport Q method, and TRIAD. Each of

these algorithms tries to find a rotation that brings the

star vectors in the reference frame as close as possible to

the observed star vectors by minimizing Wahba’s loss

function3. The TRIAD algorithm solves this analytically,

using two pairs of measured and reference vectors

alongside an intermediate reference frame, to determine

attitude. TRIAD is usually not the best choice for star

trackers because it only uses information from two stars

instead of every identified star, so a large amount of

useful information is discarded. Meanwhile, the QUEST

and Davenport Q methods find an optimal solution to

Wahba’s problem quickly.5 Because these attitude

estimation algorithms are well-documented and well-

tested, we do not evaluate them in this paper.

INFRASTRUCTURE

LOST’s flexible infrastructure can be valuable for both

engineers and researchers. As shown in the system

diagram (see System Design section, Figure 1), LOST

treats each stage of the star tracking pipeline

individually, with each stage having a well-defined

interface. Consequently, it is easy for a researcher to test

the performance of a new star tracking algorithm quickly

by swapping their algorithm into the pipeline, while

letting the infrastructure handle the other stages of the

pipeline and perform any desired evaluations. An

engineer using LOST can quickly determine which

algorithms are appropriate for their application and

evaluate the performance of those algorithms on a

battery of generated images representative of their

specific imaging hardware. Additionally, because

algorithms in each stage of the pipeline can be swapped

in and out at will, an optimal combination of algorithms

can be selected during runtime in response to various

sources of image noise. We supply some insights on how

to do this by comparing algorithms of each stage in the

Results section.

In “real world” mode, LOST takes an image file as input.

The image is sent to the centroiding stage, and the

following two stages take input from the preceding

stages to ultimately produce an attitude reading.

Figure 2: Sample Generated Image

In generated image mode, LOST generates a realistic star

image. Stars are placed in the image according to their

real positions in the Yale Bright Star Catalog.

Additionally, the image generator is capable of

simulating a variety of real-world noise sources,

including read noise (Gaussian noise on every pixel),

shot noise (Poisson noise due to the discreteness of

photons received from low-brightness stars), motion

blur, rolling shutter, and randomly occurring false stars.

These noise sources are explained in more detail by

Delabie.4 For star-id testing specifically, the image

generator keeps track of the “true” or “expected”

Polyakov 6 37th Annual Small Satellite Conference

centroid locations as it generates the image, which can

be subsequently fed to a star-id algorithm to test it in

isolation without an active centroiding algorithm. The

centroids can also be randomly shifted to evaluate the

performance of a star-id algorithm versus centroid error.

A number of comparators can be used to automatically

evaluate the performance of each algorithm when

running in generated image mode. The comparators

compare the output of an algorithm with the “expected”

output, which is known from the image generator, as

generated images store information about the true

centroid positions and star IDs. The comparators can

then report how many centroids were detected, the mean

centroid error, the number of stars correctly identified,

etc. (see Evaluation section). The output of the

algorithms can also be plotted to an annotated image file

to visualize the results and help debug issues in new

algorithms.

EVALUATION METHODOLOGY

The evaluation determines a number of key metrics,

defined here:

• Availability: The fraction of all images that are

reported as identified and the identification is

correct (true positive rate). This corresponds to the

probability that a run of LOST will yield correct

attitude information, which may be a direct mission

requirement.

• Error Rate: The fraction of all images that are

reported as identified and the identification is

incorrect (false positive rate)

o Note that Availability and Error Rate need

not sum to 1. A star-identification

algorithm may be unable to identify an

image at all, in which case the image is not

counted towards either metric.

• Centroid Error: The mean distance between true star

centers and detected star centers, in pixels. Only

centroid errors from the 5 brightest stars in the

image are included in the average, to avoid the

confounding effect of noise on the number of total

stars visible. This metric has no direct real-world

consequences, but instead is useful to compare

centroiding algorithms against each other and to

determine which algorithm performs best under

different expected noise conditions.

• Attitude Error: The minimum rotation angle to bring

the detected attitude to the true attitude. In cases

when attitude error is averaged over a number of

measurements, only the cases when the attitude is

“correct” (i.e., within half a degree of the expected

attitude) contribute to the average. Consequently,

star-id failures, which usually cause a blatantly

incorrect attitude, only contribute to the error rate,

leaving centroid error as the main contributor to

attitude error.

• Desktop speed: The number of microseconds some

algorithm takes to run on a desktop computer, with

an AMD Ryzen 7900X CPU.

• Raspberry Pi speed: The number of microseconds

some algorithm takes to run on a Raspberry Pi 4.

Satellite missions increasingly use off-the-shelf

hardware similar to Raspberry Pis, so we can expect

LOST to have speed similar to these results.

• x86 CPU instructions: The number of CPU

instructions executed on an x86 CPU architecture

with instruction set extensions disabled. Note that

this metric can only very roughly be used to predict

speed, because instructions can take varying

amounts of time to execute, and vary according to

the instruction set used.

• Maximum memory usage: The maximum number of

kilobytes of memory used (excluding infrastructure

and permanently stored data), measured on a

desktop.

The code to run our evaluations can be found at

https://github.com/UWCubeSat/lost-evals.

Three types of tests are performed:

• Centroid tests, where centroid error (defined above)

is plotted against read noise, number of

photoelectrons received per star, and motion blur.

As described above, centroid error is mainly useful

for comparing between centroiding algorithms.

Note that noise can also change the total number of

centroids detected, but we do not plot the total

centroids detected because it is independent of the

choice of algorithm. Additionally, only the centroid

errors for the 5 brightest stars in each image are

included in the average.

The centroiding tests vary the level of noise starting

from a common set of parameters: 25 degree

horizontal field-of-view (corresponding to a typical

medium-FOV star tracker7), a 1024x1024 sensor

resolution, 4,000 total photoelectrons received from

a magnitude zero star (corresponding to a 200ms

exposure with a 3cm lens aperture and typical

quantum efficiency, see Liebe7), and Gaussian read

noise applied to every pixel with a standard

deviation of 2 photoelectrons per pixel.

• Star Identification tests, where availability and error

rate are plotted against centroid error, number of

false centroids, and the dimmest magnitude the

camera can pick up.

The Star-ID tests are run without a centroiding

algorithm; centroids are fed in directly from the

https://github.com/UWCubeSat/lost-evals

Polyakov 7 37th Annual Small Satellite Conference

image generator, as described in the infrastructure

section of the paper. The base settings for the star-id

test are a 25-degree horizontal FOV, 0.3 pixels

average centroid error, stars brighter than 5

magnitude being visible (corresponding to an

average of 25 many stars per image), and an average

of 1 false star per image.

• Comprehensive tests, where the entire software is

run on a small number of scenarios. Availability,

error rate, attitude error, and the speed metrics

defined above are averaged over 100 trials. The

comprehensive tests evaluate both LOST and other

open-source star trackers. The goal of these

evaluations is to measure the best performance each

star tracker can achieve, so we pick algorithms that

provide strong performance in each scenario. The

four tested scenarios are:

• 20-degree FOV, low noise: The same settings

as in the isolated tests. For the LOST tests, we

use the Tetra star-id algorithm and the COG

centroid algorithm.

• 20-degree FOV, high noise: The total

photoelectrons received from a magnitude zero

star is reduced from 4,000 to 2,000

(corresponding for example to a smaller lens),

and motion blur corresponding to about 0.5

degrees of boresight motion and 4 degrees of

roll per second of rotation at a 200ms exposure

time. For the LOST tests, we use the Pyramid

star-id algorithm and the COG centroid

algorithm.

• 45-degree FOV, low noise: The same settings

as for 20-degrees, but with a wider 45 degree

FOV. Like in the 20-degree FOV low-noise

test, the LOST tests use the Tetra star-id

algorithm and the COG centroid algorithm.

• 45-degree FOV, high noise: Same as 20-degree

high noise, but with a 45 degree FOV. Like in

the 20-degree FOV high-noise test, the LOST

tests use the Pyramid star-id algorithm and the

COG centroid algorithm.

In addition to LOST, we evaluate C-Tetra, the

original Tetra’s author’s implementation of the

algorithm. C-Tetra only implements the star-

identification stage, so we use LOST’s centroiding

stage as input, and report C-Tetra’s availability and

error rate based on whether the output of its star-id

stage is correct (the attitude error would be the same

as for LOST, since star-id accuracy is determined

mainly by centroid error). We were unable to get

OpenStarTracker to identify the images in our

comprehensive test cases, although it is possible

there were configuration options we did not set

correctly.

RESULTS

Centroiding

Figure 3: Centroid Error vs. Number of

Photoelectrons

In Figure 3 we show how centroid error varies with the

number of photoelectrons that the sensor receives from a

magnitude zero star while keeping the effective

brightness of each star constant by increasing the

sensitivity. As photoelectrons per star increases, the

effect of shot noise (Poisson noise due to the small

number of photons received from each star4) decreases.

The main factors controlling the number of

photoelectrons received per star are lens aperture width,

exposure time, and sensor quantum efficiency. The

ordering between the centroid algorithms does not

change as the number of photoelectrons per star

increases, with 2D Gaussian Fit maintaining the best

performance over the whole range. Thus, lens aperture

and quantum efficiency alone should not play a major

role in the selection of a centroiding algorithm.

Figure 4: Centroid Error vs. Read Noise

Polyakov 8 37th Annual Small Satellite Conference

In Figure 4 we compare centroid error with the level of

Gaussian read noise (simple Gaussian noise applied to

every pixel in the image). Read noise is mainly

determined by the sensor being used, and may vary based

on the type of sensor technology, the pixel clock rate, and

many other factors. The results indicate that at high read

noise the Gaussian fit methods are a better choice than

the faster Center of Gravity methods, while if read noise

is known to be small, the Gaussian fit methods have no

benefit over the simpler and faster Center of Gravity

algorithms. The Gaussian Grid method, which is much

faster than the Gaussian fit methods but more accurate

than the Center of Gravity methods at high levels of read

noise, may also be appropriate to use in some cases

where speed is of priority.

Star Identification

We evaluate star-id algorithms on availability and error

rate, as defined in the Methodology section.

Figure 5: Star-ID Availability and Error Rate vs.

Centroid Error

In Figure 5 we show how sky coverage and error rate

vary with centroid perturbation (random positional error

added to each centroid). Pyramid takes an estimate of the

centroid error as a runtime parameter, which we update

appropriately for each data point. The availability of both

algorithms stays above 90% as long as centroid error is

less than 0.5 pixels. (Recall the images used in this

evaluation are 1024 x 1024 at a 25-degree FOV width,

so 0.5 pixel is about 0.01 degrees). Centroid error can be

estimated based on the graphs in the previous section,

and is mainly reliant on the camera hardware. As shown

in that section, centroid error is below 0.5 in many

practical cases. If higher centroid error is expected, then

the Pyramid algorithm shows a clear advantage, which is

why we use Pyramid for the high noise cases in the

comprehensive test (presented later).

Figure 6: Star-ID Availability and Error Rate vs.

Number of False Stars

In Figure 6, we plot availability and error rate against the

number of false stars. The false stars are uniformly

distributed, with uniformly random magnitudes between

3.0 and 7.0 (Tetra uses the star magnitudes to determine

which 4-tuples of stars to attempt to match first). False

stars can be caused by clusters of dead pixels, dust,

planets, stars not included in the database, or a number

of other sources. Tetra maintains higher availability as

false stars are added while maintaining the same low

error rate as Pyramid, so is preferable when there are

many false stars.

Figure 7: Star-ID Availability and Error Rate vs.

Dimmest Visible Star Magnitude

In Figure 7 we plot availability and error rate against the

magnitude of the dimmest star the camera system can

detect. Note that we plot linearly against magnitude, but

the number of stars increases nonlinearly as magnitude

increases. At this field of view (25 degrees), the camera

system must be able to image stars as dim as magnitude

5.0 in order to achieve close to 100% availability. Both

Pyramid and Tetra have a similar dependence on the

number of visible stars.

Polyakov 9 37th Annual Small Satellite Conference

Attitude Estimation

Our QUEST implementation requires less than 1 KB of

memory and finishes in less than 1 microsecond on our

desktop hardware. It is well-established that QUEST

typically solves Wahba’s problem to within floating

point error, so we do not evaluate attitude estimation

further.3

Comprehensive

To evaluate the speed and memory requirements of

LOST, and to compare it against other open-source star

trackers, a number of “comprehensive” tests are

performed. As explained in the methodology section, we

chose to use different algorithms for the LOST-related

rows in each scenario depending on what performed

best. The details of the image generation settings used in

each scenario are also explained in the methodology

section.

Table 1: Comprehensive Testing Results

Scenario

20-deg

FOV Low

Noise

20-deg

FOV High

Noise

45-deg

FOV Low

Noise

45-deg

FOV High

Noise

LOST

Desktop
Speed (μs) 2512 4011 2482 3862

LOST

Centroid
Speed (μs) 2465 2396 2452 2383

LOST Star-

ID Speed
(μs) 39 1611 24 1475

LOST

Raspi
Speed (μs) 31,447 104,730 38,231 89,857

LOST CPU
Instructions 25,153,935 76,315,835 25,323,548 51,877,918

LOST

Centroid
CPU
Instructions 24,839,326 24,793,313 25,191,130 24,981,901

LOST Star-

ID CPU
Instructions 314,609 51,522,522 132,418 26,896,017

LOST

Centroid

Memory
(KiB) 30 27 53 40

LOST Star-

ID Memory
(KiB) 20 676 7 337

LOST

Availability
(%) 100 65 100 91

LOST

Error Rate
(%) 0 0 0 8

LOST

Attitude
Error
(degrees) 0.00944 0.06839 0.00696 0.02692

LOST

Database
Size (KiB) 41,088 336 10,162 303

C-Tetra

Star-ID

Desktop
Speed (μs) 10 10 100 150

C-Tetra

Availability

(%) 74 8 96 88

C-Tetra

Error Rate
(%) 0 1 3 10

C-Tetra

Database
Size (KiB) 5,185,467 5,185,467

4,222,711 4,222,711

In both low-noise cases, LOST produced an availability

of 100%. In the high-noise cases, LOST produced an

availability of 65% and 91% for a 20-degree FOV and a

45-degree FOV, respectively. For both low-noise cases,

LOST produces an error rate of 0%, and for high-noise

cases LOST produces an error rate of 0% and 8%. These

results indicate that LOST is consistently able to identify

images correctly, while preserving a low error rate, so

false positives rarely occur.

In both low-noise cases, LOST produces an attitude with

error between 0.00944 and 0.00696 degrees. In both

high-noise cases, LOST produces an attitude with error

between 0.06839 and 0.02692 degrees. It is surprising to

us that the attitude error in the 45-degree FOV scenarios

is lower than the error in the 20-degree FOV scenarios.

While a narrower FOV results in lower angular centroid

error (the pixel error is the same), the greater number of

stars visible in a wider FOV allows the attitude

estimation algorithm to find a best-squares solution over

a greater number of identified stars, helping to cancel out

error. However, for other sets of parameters, especially

in low noise conditions, the attitude error may be lower

at narrow FOVs.

The speed and memory in all 4 scenarios indicate that

LOST could be ported to run on low-compute hardware

such as embedded systems. Many low-power embedded

systems and relatively low-cost radiation embedded

hardware, such as the Vorago Cortex M4 CPUs, have a

clock rate of approximately 100 MHz. This is about

1/10th the clock rate of a Raspberry Pi, so it is reasonable

to estimate that LOST will take one order of magnitude

Polyakov 10 37th Annual Small Satellite Conference

longer on such low-compute hardware. Specifically,

LOST would likely be able to centroid and identify an

image in less than 0.5 seconds and could be made faster

by decreasing the image resolution. In the high-noise

case, LOST might take 1 second or more, which is still

acceptable for many missions. Further, the total number

of (x86) CPU instructions LOST uses to identify an

image is less than the number of CPU cycles most

microcontrollers can perform each second, further

supporting the idea that LOST could complete an

identification in less than a second (although different

architectures may require different numbers of CPU

cycles). Additionally, LOST’s memory usage stays

below 1 MiB in all cases, and radiation-hardened

memory of this size is widely available.

LOST maintains a higher availability and lower error

rate than C-Tetra. Notably in the high-noise 20o FOV

scenario, C-Tetra fails to identify the vast majority of the

images with an availability of 8%, while LOST is able to

keep availability above 65%.

CONCLUSION

We find that the star tracking algorithms implemented in

LOST achieve availability of 100% in low-noise cases

and at least 65% in cases with higher noise. Further, both

centroiding and star identification take a total of less than

3 milliseconds on desktop and < 35 milliseconds on

Raspberry Pi while consuming no more than 1 MiB of

memory. These results suggest that LOST could be

ported to low-compute hardware and run with

performance acceptable for many satellite missions.

Our evaluation also includes an analysis of how various

metrics vary with different noise sources, to aid in

decision-making about which algorithms to use for

different missions. In addition to performing the tests

listed here, LOST leaves the reader with a framework

that allows easily evaluating various algorithms under a

custom set of noise sources.

Satellite development is no longer limited to multi-

million dollar missions by well-funded organizations. As

startups, undergraduate engineering teams, and even

individuals increasingly develop their own satellites, the

need is strong for affordable and open star tracking

software. Our results demonstrate that LOST is a step in

this direction

LIMITATIONS & FUTURE WORK

The algorithms currently implemented in LOST are not

suitable for all missions. Pyramid requires accurate a

priori knowledge of the camera system’s parameters,

such as focal length, in order to reliably identify images.

Tetra requires a fairly large database (~70 MB). The

centroiding algorithms do not work when there are large

disruptions in the field of view (for example, if the Sun

or Earth are in the FOV), even if some stars are visible

in other parts of the FOV.

At the time of writing, LOST uses heap memory

allocation, which is undesirable on embedded systems

with limited memory. We plan to add variants of the

algorithm implementations that use stack memory only,

and have a maximum guaranteed memory footprint. For

example, a statically-allocated Star-ID implementation

would only be able to function up to some fixed

maximum number of centroids, but would be able to

identify images using only constant-size arrays and hash

tables based on that maximum number of centroids.

In the future, we plan to implement extra auxiliary

features in LOST. For example, it is possible to re-

estimate the camera’s focal length and lens distortion

based on a successful star identification, which can

improve attitude accuracy in case the lens was slightly

deformed during launch.

LOST will be at the core of HuskySat-2’s attitude

determination and control system. HuskySat-2 (HS-2) is

a CubeSat being developed by the University of

Washington’s Husky Satellite Lab. HS-2, expecting to

launch in 2025, is intended as a technology demonstrator

for cislunar and deep space attitude control featuring

multiple open-source systems, including LOST for

attitude determination and reaction wheels for attitude

control.

ACKNOWLEDGEMENTS

We would like to thank our faculty advisor Prof. Alvar

Saenz-Otero, as well as Prof. Kristi Morgansen, for their

support and invaluable help. LOST was developed by

members of the Husky Satellite Lab at the University of

Washington. We would like to thank all contributors to

LOST, especially Allen Aby and Andrew Smith, as well

as the rest of the team.

REFERENCES

1. “Arcsec Sagitta Star Tracker,” CubeSatShop,

https://www.cubesatshop.com/product/sagitta-

star-tracker/.

2. Brown, J. and K. Stubis. “TETRA: Star

Identification with Hash Tables.” Small

Satellite Conference, Student Competition,

August 2017.

3. Cheng, Y. and M.D. Shuster, “Robustness and

Accuracy of the QUEST Algorithm,”

http://www.malcolmdshuster.com/Pub_2007a_

C_cquest_MDS.pdf.

https://www.cubesatshop.com/product/sagitta-star-tracker/
https://www.cubesatshop.com/product/sagitta-star-tracker/
http://www.malcolmdshuster.com/Pub_2007a_C_cquest_MDS.pdf
http://www.malcolmdshuster.com/Pub_2007a_C_cquest_MDS.pdf

Polyakov 11 37th Annual Small Satellite Conference

4. Delabie, T., J.D. Schutter, and B.

Vandenbussche, “An Accurate and Efficient

Gaussian Fit Centroiding Algorithm for Star

Trackers,” The Journal of the Astronautical

Sciences, vol. 61, issue 2, March 2014,

https://doi.org/10.1007/s40295-015-0034-4.

5. Erlank, A.O., “Development of CubeStar: A

CubeSat-Compatible Star Tracker.”

Stellenbosch University, 2013.

https://core.ac.uk/download/pdf/37420644.pdf

6. Gutiérrez, S.T., C.I. Fuentes, and M.A. Díaz,

"Introducing SOST: An Ultra-Low-Cost Star

Tracker Concept Based on a Raspberry Pi and

Open-Source Astronomy Software," IEEE

Access, vol. 8, pp. 166320-166334, 2020, doi:

10.1109/ACCESS.2020.3020048.

7. Liebe, C. C. “Accuracy Performance of Star

Trackers - a Tutorial.” IEEE Transactions on

Aerospace and Electronic Systems, vol. 38, no.

2, Apr. 2002, pp. 587–99. DOI.org (Crossref),

https://doi.org/10.1109/TAES.2002.1008988.

8. Mortari, D. et al. “The Pyramid Star

Identification Technique.” Navigation, vol. 51,

no. 3, Sept. 2004, pp. 171–83. DOI.org

(Crossref), https://doi.org/10.1002/j.2161-

4296.2004.tb00349.x.

9. “Radiation Hardened ARM® Cortex®-M4.”

Vorago Technologies,

https://www.voragotech.com/products/va4162

0.

https://doi.org/10.1007/s40295-015-0034-4
https://core.ac.uk/download/pdf/37420644.pdf
https://doi.org/10.1109/TAES.2002.1008988
https://doi.org/10.1109/TAES.2002.1008988
https://doi.org/10.1002/j.2161-4296.2004.tb00349.x
https://doi.org/10.1002/j.2161-4296.2004.tb00349.x
https://www.voragotech.com/products/va41620
https://www.voragotech.com/products/va41620

