
SSC23-XII-05

Starr 1 37th Annual Small Satellite Conference

Development of Tactical and Strategic Operations Software for NASA’s Lunar Flashlight
Mission

Mason Starr

Graduate Research Assistant
Lunar Flashlight Operations Lead
Georgia Institute of Technology

766 Piedmont Ave NE, Atlanta GA 3038
mstarr32@gatech.edu

Faculty Advisor: Glenn Lightsey
Georgia Institute of Technology

glenn.lightsey@gatech.edu

ABSTRACT

Lunar Flashlight (LF) is an interplanetary CubeSat mission designed to demonstrate the use of a novel green
monopropellant propulsion system and characterize lunar surface ice with a near-infrared laser array and reflectometer.
LF is also the first Jet Propulsion Laboratory (JPL) mission to be operated entirely by students. While JPL provided
baseline tools to Georgia Tech (GT), bespoke tools and software were developed by GT operators. Four tools
developed by the author are discussed in this paper: (1) Downlink Helper is a Graphical User Interface (GUI) tool
which improves the tactical downlink of recorded spacecraft telemetry. The tool automatically creates and sends
downlink commands, displays an intuitive representation of telemetry onboard and downlinked from the spacecraft,
and aids operator decision making with predicted downlink times for onboard files. (2) The SeqGen tool suite uses a
Python-based object-oriented class structure to parse, generate, and manipulate LF command sequences from minimal
input parameters. SeqGen pulls from a database of modular components, performs calculations to insert command
parameters, and automatically version controls and archives sequences. SeqGen classes are flexible and are easily
ported into other tools and applications, such as the Linter. (3) The Linter is a command line tool that parses LF
command sequences and checks them against a database of mission flight rules. Flight rule violations and warnings
are automatically detected and displayed for the operator. (4) SMARTS is a GUI tool that enables operator-in-the-
loop propulsive burns on LF’s highly anomalous propulsion system. Thruster performance is variable and
unpredictable, preventing deterministic command sequences from being used to fire the thrusters, and threatening to
saturate LF’s reaction wheels. To manage spacecraft momentum, the spacecraft is rotated about a thruster’s force
vector while firing. SMARTS enables operators to tactically calculate, queue, and send command modules such that
they execute onboard at precise phases in the rotation. Lessons learned from the development process are condensed
and can be used to inform the operations of other student-led interplanetary small satellite missions.

INTRODUCTION

Mission Objectives and Concept of Operations

Theme 1 of NASA's Strategic Knowledge Gaps indicates
the importance of understanding and characterizing
lunar resources, most importantly water. Permanently
Shadowed Regions (PSRs) on the lunar poles are known
sources of water-ice, but the distribution of the water-ice
is unknown. Lunar Flashlight seeks to map the
distribution of surface water-ice in PSRs using active
infrared reflectance spectroscopy1. By mapping the
distribution of lunar water, LF can play a key role in the
acquisition of valuable lunar resources. However, to
accomplish this science, LF first must reach the Moon.

Entering an orbit around the Moon is not easy: it requires
a significant change in velocity (ΔV) imparted in order

change a spacecraft’s ballistic trajectory such that it is
captured by the Moon’s gravity. Many existing CubeSat
propulsion technologies cannot achieve the ΔV required
to enter a lunar orbit, but LF possesses an experimental
“green” monopropellant propulsion system that provides
the required ΔV, allowing for Lunar Orbital Insertion
(LOI). LF’s pre-launch Concept of Operations (ConOps)
reflected this capability, with a high intensity post-
launch phase and low intensity cruise phase leading up
to LOI. After LOI, LF would enter a Near Rectilinear
Halo Orbit (NRHO) and start a two-month high intensity
science campaign phase with low-altitude perilune
science passes every 6 days. In-flight propulsion
anomalies prompted a significant change in ConOps, and
LF is now targeting a trajectory of lunar flybys that has
a lower ΔV requirement while still enabling science.

SSC23-XII-05

Starr 2 37th Annual Small Satellite Conference

Throughout all mission phases, operators use NASA's
Deep Space Network (DSN) to communicate with
spacecraft in two-way contacts. Operators monitor
spacecraft health, respond to anomalies, and command
the spacecraft to execute activities. The most important
activity that operators perform are Trajectory Correction
Maneuvers (TCMs), in which the spacecraft fires its
thrusters to impart ΔV and change trajectories.

Figure 1: Lunar Flashlight Spacecraft and
Subsystems

Spacecraft Overview

Lunar Flashlight, shown in Figure 1, is a 6U CubeSat
classified as a technology demonstration mission under
NASA's Science and Technology Mission Directorate.
As a tech demo, LF utilizes a wide range of experimental
technologies that have never flown before, which are
indicated by TD subscripts in the subsystem breakdown2.
The LF subsystems are:

PayloadTD: A short wave infrared laser reflectometer
with four 72W lasers, a detector, and a dedicated battery
and power system. The payload produces a significant
amount of heat when operated, which is distributed to a
radiator via a novel phase change material.

Attitude Determination and Control System (ADCS): A
Blue Canyon Technologies XACT-50 attitude control
system with three reaction wheels, four sun sensor
arrays, an inertial measurement unit, a star tracker, and
independent firmware. The reaction wheels are used to
control the spacecraft’s attitude and store angular
momentum imparted on the spacecraft through external
torques such as solar radiation pressure or thruster
firings. If the reaction wheels saturate due to excessive
angular momentum buildup, such as that imparted by a
faulty propulsive burn, the spacecraft would spin out of
control and the mission would likely be lost.

Lunar Flashlight Propulsion System (LFPS)TD: A novel
propulsion system created in a collaboration between

Georgia Tech's Space Systems Design Laboratory, JPL,
and NASA’s Marshall Space Flight Center. A pump
feeds ASCENT monopropellant, a less toxic alternative
to hydrazine, through a 3D-printed titanium manifold’s
fuel lines to four thrusters. Unlike hydrazine, ASCENT
propellant must pass over heated catalyst beds in the
thrusters to react fully. Each thruster is placed off the
spacecraft center of mass and therefore exerts a torque
on the spacecraft when fired. The torques can be used to
perform desaturation maneuvers (desats) to dump
momentum out of the XACT's reaction wheels. To
nominally perform TCMs and achieve ΔV, the XACT
would command the four thrusters to pulse in unison,
exerting a translation force on the spacecraft while
autonomously balancing torques to avoid reaction wheel
saturation.

Power: Four solar arrays, an electrical power systems
board, and a 3s2p Li-Ion battery.

Command and Data Handling (C&DH)TD: A JPL-
provided radiation-hardened Sphinx flight computer
running flight software (FSW) written in JPL's F Prime
framework. LF FSW allows for command sequences to
be uplinked and executed onboard the spacecraft with
precision timing, but notably, these command sequences
are linear and do not allow for conditional branching
(i.e., no “if” statements).

Communications: An Iris radio with two pairs of patch
antennas, designed by JPL and built by Utah State
University's Space Dynamics Laboratory. Operators
communicate with LF via the DSN. The Iris supports
multiple data rates for both uplink and downlink,
broadcasts real-time telemetry, and allows for recorded
telemetry files to be downlinked.

The Mission Operations System

The Lunar Flashlight Mission Operations System (MOS)
is an interconnected network of teams, individuals, tools,
hardware, processes, data, and other resources. The
team-level interfaces of the MOS are shown in Figure 2,
as well as the entities composing the LF Project.

In the summer of 2021, JPL contracted Georgia Tech
(GT) as Lunar Flashlight’s primary Mission Operations
Center and Ground Data System (MOC/GDS), hereby
referred to as Ops. In doing so, GT became the first
university to operate a JPL mission. A team of four GT
grad students formed the initial Ops team, which grew to
13 operators over the next year: seven graduate students
and six undergraduate students.

SSC23-XII-05

Starr 3 37th Annual Small Satellite Conference

Figure 2: The Lunar Flashlight High-Level Mission
Operations System

The LF operations team is ultimately tasked with
commanding the spacecraft to achieve mission
objectives while maintaining spacecraft health and
safety. The responsibilities of Ops are divided into two
main categories: strategic and tactical. Tactical
operations are conducted while operators are in two-way
communication with the spacecraft via the DSN, and
strategic operations are conducted during the time in
between contacts.

Strategic operations include mission planning, DSN
scheduling, activity development, documentation
writing, software and tool development, telemetry
analysis, spacecraft modeling, and more. Mission
planning is the process in which future spacecraft
activities are formulated. Typically, mission planning is
broad in scope and has a long event horizon, meaning
that activities are planned out well into the future.
Factors such as key trajectory-related events, operator
availability, DSN scheduling, and activity priority must
all be considered during mission planning. During
mission planning meetings, activities are slotted into a
Mission Events Timeline (MET). The LF MET is a
Microsoft Excel file saved in cloud storage that details
activity planning, tactical contact times, meetings,
staffing, and parameters for the Sequence Generation

tool described later in this paper. A sub-section of the
MET is shown in Figure 3.

Figure 3: Lunar Flashlight Mission Events Timeline

During tactical operations, operators are in two-way
contact with the spacecraft using the DSN. Contacts are
typically one to two hours long, with an additional hour
of setup and half an hour of teardown, making a tactical
shift up to 4 hours long. Since LF operates in the Earth-
Moon system, the light time delay for radio
communications is on the order of single digit seconds.
Because of this, LF operators can manually “joystick”
the spacecraft during two-way contacts: sending a
command, observing a response, and using the response
to inform the next command. Since LF command
sequences do not allow for conditional checks or
branching logic, complicated activities with
dependencies are performed Human in the Loop (HitL).

During a contact, the tactical operations team executes
spacecraft activities such as propulsive maneuvers, laser
firings, and subsystem testing by following pre-approved
procedures. Operators may also tactically respond to
spacecraft anomalies. Three tools described later in this
paper are used for tactical operations: command line
scripts, Downlink Helper, and SMARTS.

Mission Timeline

Lunar Flashlight launched on December 11th, 2022,
aboard a SpaceX Falcon-9 as a secondary payload to
ispace’s Hakuto-R lunar lander. At 4:43 AM Eastern
Time, the Ops team successfully contacted LF for the
first time.

Most subsystems have performed remarkably well in
flight. Power, thermal, comms, C&DH, and ACS have
all exceeded expectations despite experiencing
occasional anomalies. Results from the Artemis launch
shave shown how difficult and risky deep space CubeSat

SSC23-XII-05

Starr 4 37th Annual Small Satellite Conference

missions can be3, so the fact that LF is still largely
functional is noteworthy. However, the propulsion
system has remained anomalous since day two of the
mission, when the first desat was attempted but resulted
in net momentum gain rather than loss.

After weeks of extensive propulsion testing, the root
cause of the propulsion anomaly was narrowed down to
a probable cause: Foreign Object Debris (FOD) was
blocking the fuel lines. The thrusters were operable, but
with highly variable and unpredictable performance
levels. Firing all thrusters simultaneously during a TCM
was not feasible: if the thrust levels became unbalanced,
the spacecraft would experience an unrecoverable
torque. A dramatic change in ConOps was required. The
LF project conceptualized a new mode of operation for
TCMs, in which the spacecraft rotates about an axis
while firing one thruster.

Rotating TCMs

Rotating TCMs (RTCMs) balance the spacecraft’s
momentum state such that the reaction wheels will not
saturate while firing a single thruster. This novel mode
of operation has required countless hours of testing,
analysis, modeling, and development, along with a flight
software update and ACS parameter updates. The
complete derivation of RTCMs is out of scope for this
paper, but an overview is given below.

When firing a thruster, the spacecraft is subject to a
torque 𝜏 equal to the cross product of the thruster
location with respect to spacecraft center of mass and the
thrust force vector. Within the spacecraft body frame, 𝜏
is constant in direction for a given thruster and scales
with thrust. Let ℎ⃗ be the angular momentum of the
spacecraft, including that stored in the spacecraft’s
reaction wheels. Note that torque is also the time
derivative of angular momentum.

During an RTCM, the spacecraft is rotated about a single
thrust vector. Figure 4 shows angular momentum ℎ⃗ in the
spacecraft body frame projected onto the 𝑥 -𝑦 plane,
which is normal to the thrust vector. As the spacecraft
rotates, ℎ⃗ traces a “momentum circle” circle on the plane.

At a key phase 𝜃 = 180°, 𝜏 directly opposes ℎ⃗. If the

thrusters are fired at this key phase with the correct thrust
magnitude, torque and change in angular momentum
will cancel out, preventing angular momentum buildup.
If the thrusters are fired when not at this key phase, the
angular momentum will build up and threaten to saturate
the reaction wheels.

Starting in late January, LF performed multiple
sequenced RTCMs and seemed to be on track to reach
the Moon. However, additional thruster degradation put

an end to the sequenced RTCM campaign and required
additional adaptation from the project, as time was
slipping away.

Progressively riskier thruster recovery activities were
performed, such as running the pump in reverse in an
attempt to dislodge FOD. Since FOD entering the fuel
pump from downstream threatens to shred the impeller,
the decision to try this approach was not taken lightly.
However, the tests paid off: results indicated that FOD
could be dislodged from the fuel lines with a reverse
pump operation. However, during subsequent burns,
cleared FOD would eventually settle in the fuel lines
again, reducing or completely cutting off propellant flow
after a variable amount of time. The current approach of
executing RTCMs with command sequences was no
longer sufficient; without branching logic, sequenced
commands required a certain level of predictability in
thrust to balance the spacecraft momentum state. An
entirely new mode of operation was conceived:
propulsive burns would be commanded, with the
required precision timing, by operator-developed ground
software known as SMARTS.

RTCM development is still ongoing; the ΔV produced
so far by the thrusters is much less than that required to
reach the Moon. The original reference trajectory has
been rejected in favor of a trajectory with lower ΔV
requirements. Rather than enter an NRHO, LF now
intends to perform multiple lunar flybys over a period far
longer than the mission’s intended lifespan. To achieve
this trajectory, Lunar Flashlight must work around the
FOD blockage and achieve significant ΔV in late April
and mid-May of 2023. Without this ΔV, LF will be

Figure 4: RTCM Momentum Circle

SSC23-XII-05

Starr 5 37th Annual Small Satellite Conference

ejected from the Earth-Moon system and enter a
heliocentric orbit.

SOFTWARE DEVELOPMENT APPROACH

This section describes key tools and software developed
by the author over the mission’s duration. All tools were
developed with the intention of decreasing operator
workload, which frees up operator resources for other
valuable work. This is particularly the case for tactical
tools, which are used under time-limited, sometimes
stressful conditions. Development of tools was iterative,
using lessons learned from Operational Readiness Tests
(ORTs), strategic testing, and flight events.

All software tools were version controlled in an export-
controlled GitHub repository.

Operations Environment

As a non-JPL institution interfacing with JPL resources
like the DSN, cybersecurity was of great concern when
developing the ground data system. Tactical operations
are conducted using Linux virtual machines (VMs)
hosted on computers in the MOC. The VMs are
segmented on their own network with no internet access,
so that unauthorized users cannot access the DSN by
tunneling through the GT network. Additionally, the
VMs were shown to be operable for previous missions
like MarCO. For these reasons, VMs are provided “as-
is” and are not updateable. Tactical tools were developed
in Python 2.7 to be compatible with VMs and strategic
tools, which can be run from any computer, were
developed in Python 3, but were written to be
backwards-compatible with Python 2.

Several tools utilize a JPL-developed tactical operations
software called the AMMORS Mission Data Processing
and Control System (AMPCS). AMPCS is highly
customizable and provides Graphical User Interfaces
(GUIs) for spacecraft commanding, file uplink,
telemetry visualization, and more. AMPCS is the
primary tool used for tactical operations; however, the
tools described in this paper satisfy operator needs that
AMPCS does not. To aid software development,
AMPCS has a backend Python-based API called MTAK
that allows Python scripts and applications to issue
commands to the spacecraft and parse incoming
telemetry. MTAK is utilized by tactical scripts,
Downlink Helper, and SMARTS.

Linux Command Line Scripts

Command line scripts written in Python or bash were the
first pieces of automation developed by the Ops team.
They are quick to develop but typically limited in scope,
performing a singular operation with all input parameters
provided at runtime.

Tactical scripts command the spacecraft or parse
telemetry, while strategic scripts are used for product
generation or mission planning. Strategic scripts include:

 MDNAV product generation scripts that facilitate
exchange of information between Ops and MDNAV
in a structured way. Ops scripts parse spacecraft
telemetry to generate and deliver spacecraft attitude
SPICE files, time kernels, and other data products to
the MDNAV team. Additionally, data products and
ephemeris files provided by MDNAV are
automatically ingested and processed into Ops
resources, such as testbed setup scripts.

 Mission planning scripts that parse the MET and
send out virtual meeting invites to the LF project for
each tactical contact.

 QuickLook generation scripts that parse spacecraft
telemetry to generate standardized plots, allowing
LF project members to assess telemetry quickly.
The templates governing plot creation are stored in
simple plain text files, which allows operators with
little technical experience to customize QuickLooks
without reading code.

Tactical scripts include:

 A propulsion readout script that rapidly sends
commands to the LFPS and parses the resulting
bytes in real-time telemetry to read out prop system
parameters. The creation of this script more than
halved the time of LFPS parameter readback.

 A spacecraft filesystem listing script that lists files
in a directory on the spacecraft, writes the results to
a file, then downlinks and parses the file.

 A script that reports momentum magnitude by
calculating the root sum squared of incoming
momentum telemetry.

Learning to use the Linux command line proved to be a
challenge for most new operators, so command line
training was included in the operator training plan. Even
after training, most operators were able to work much
more efficiently with GUIs for complex operations,
which motivated the development of the Downlink
Helper and SMARTS.

DOWNLINK HELPER

Motivation

During a contact, Lunar Flashlight transmits real-time
telemetry that is indicative of the spacecraft’s current
state. However, Ops needs to reconstruct the spacecraft
state during the time between contacts to look for
anomalies and assess spacecraft health and safety. To

SSC23-XII-05

Starr 6 37th Annual Small Satellite Conference

accomplish this, operators downlink recorded telemetry
files during contacts, in addition to receiving real-time
telemetry. The process of telemetry downlink and
Downlink Helper’s involvement is shown in Figure 5.

In compliance with CCSDS blue book standards4, LF
telemetry is separated into categories identified by
Application Process Identifiers (APIDs). Each APID
contains a group of telemetry, for example Event
Verification Records (EVRs) or channelized telemetry
for power, ACS, C&DH, etc. As per project flight rules,
operators first query the APID and time range to assess
APID file size and downlink feasibility before
initializing downlink. When downlinking recorded
telemetry, operators specify an APID and a time range
measured in spacecraft clock (SCLK) seconds. The raw
FSW commands for querying and downlinking
telemetry are not easily human readable: they require
referencing an APID table and converting a SCLK
argument to datetime format to understand.

During the first ORT, the processes for downlinking
recorded telemetry were wholly ineffective. Ops had
developed a system involving spreadsheets for tracking
what telemetry had been downlinked, and manually
generated commands for commanding the downlink.
Unsurprisingly, several commanding errors were made,
and downlinking telemetry became a significant blocker
in tactical procedures.

Implementation

To alleviate these issues, Downlink Helper was
developed. Downlink Helper, shown in Figure 6,

Figure 6: Downlink Helper User Interface

Figure 5: Telemetry
Downlink Data Flow

SSC23-XII-05

Starr 7 37th Annual Small Satellite Conference

provides a visual representation of recorded telemetry
that has been queried, downlinked, or left onboard the
spacecraft. Each row represents an APID, labeled by
human readable description rather than a number. Each
column, referred to as a “block”, represents a timespan
over which telemetry is queried and downlinked. The
timespan SCLK range has been converted to UTC and
displayed in a human-readable format. White boxes
indicate APIDs that are not queried or downlinked, blue
boxes represent queried telemetry that has not been
downlinked, and green boxes indicate telemetry that has
been downlinked. To downlink past telemetry, operators
create a new block if needed, then simply click the APID
buttons to issue query and downlink commands. All
command parameters and time ranges are automatically
handled by the tool. Downlink Helper is intuitive and
usable by operators with limited experience, which has
dramatically sped up the telemetry downlink process
during contacts.

To enable rapid response to any anomalies that occurred
between contacts, it is essential to parse and review
recorded telemetry as it is downlinked. The version of
AMPCS provided to Ops was not able to parse recorded
telemetry files as they were downlinked; they had to be
run in a separate instance of AMPCS. Because of this,
recorded telemetry could not be reviewed until after a
contract had been completed, which increased response
time to potential anomalies. To enable this rapid
response, the downlink helper was modified to detect
downlinked data product files, open them, and stream the
bytes to a parallel AMPCS session connected to the
primary AMPCS session via Java Messaging Service.
With this solution, operators were able to parse, view,
and assess recorded telemetry as soon as it was
downlinked, which enabled rapid anomaly response that
proved essential in flight.

After launch, updated models of spacecraft downlink
speeds were implemented into the downlink helper.
Using the file size of the APID returned by the query
command, the downlink helper calculated and displayed
the expected downlink time of each APID block. This
feature aided operator decision-making during contacts,
allowing them to quickly determine what APIDs they
had time to downlink when time in the contact was
running out.

Future Work

Currently, Downlink Helper does not handle real-time
telemetry, but it could be modified to do so. Real-time
telemetry transmission shares the total downlink budget
with recorded telemetry downlink, so the real-time
telemetry transmission rates affect file downlink times.
The downlink helper could automatically detect and
display the transmit rates of real time APIDs and allow

operators to quickly change the rates by sending the
appropriate commands. Using the packet size of each
APID, the total downlink budget being used by real-time
telemetry could be calculated, displayed, and used to
update predicted recorded-telemetry downlink times to
aid operator decision-making.

APID blocks are inflexible in Downlink Helper’s current
configuration. It would be preferable if APID blocks
could be combined, split, changed in size, or be separate
for each APID rather than each APID sharing a block.
An option to visually scale each block proportional to the
time the block contains would provide an intuitive sense
of a block’s time range, rather than the operator having
to look at the time ranges manually and compare them to
the MET.

When the spacecraft filesystem is relatively full,
tactically querying APID file sizes takes longer, which
can be a blocker to tactical activities. To save time,
queries could be conducted in the period between
contacts. The recorded EVRs that read out the file size
could be downlinked during the following contact, and
Downlink Helper could automatically parse the EVRs to
create blocks and populate file sizes.

SEQGEN

Motivation

Operators command LF by using 1086 FSW commands
defined in an XML command dictionary. Commands are
executed in one of two ways: sent in real-time by an
operator on the ground or executed onboard the
spacecraft by a command sequence. Like commands sent
in real-time, sequence commands have a command stem
and arguments, but unlike real-time commands,
sequenced commands each have a specified timing.
Commands can have relative timing, in which they are
executed after a specified length of time has passed from
the previous command, or absolute timing, in which the
command executes once a particular SCLK has passed.
Due to their timing functionality, sequences are used to
configure the spacecraft outside of contacts, perform
activities with precise timing constraints, or act as
timeout commands in the event of loss of signal.

Notably, LF sequences are linear and do not have
branching: they cannot have “if” statements or other
conditional logic. Sequences are written as ASCII text
then converted to a smaller-sized binary file that is

SSC23-XII-05

Starr 8 37th Annual Small Satellite Conference

uplinked to and executed on the spacecraft. Sequences
often contain hundreds of commands, each with
carefully chosen timing parameters and arguments. Ops
quickly learned that creating them manually is both time
consuming and prone to error. To alleviate these issues,
LF SeqGen tools were created to automatically generate
sequences with minimal input. LF SeqGen is
independent of the JPL Seqgen tool5.

Implementation

SeqGen is a Python-based tool that runs on an object-
oriented structure of Sequence and Command classes.
The object-oriented backend provides flexibility;
sequences are more easily manipulatable once parsed
into classes from a text file. The backend has been used
for sequence generation and tools like the Linter. The
overarching SeqGen data flow is shown in Figure 7.

SeqGen assembles sequences out of individual
components. A library of over 40 sequence components
was created, with each component representing a
specific series of commands within a sequence.
Components range in complexity, from configuring the
Iris radio for two-way comms to executing a full RTCM.
Each component is stored as a version-controlled text file
so that they are easily editable by operators with less
programming experience. Components often have
parameters that are calculated and filled in by automated
scripts and processes. Figure 8 shows a component that
charges the payload battery. Parameters are indicated by
brackets: the times at which to start and end the charging.

Other commands in the sequence are standard sequenced
commands with no parameters.

Figure 8: Payload Battery Charge Component

Component text files are read in by SeqGen and parsed
into an object-oriented library that is easily importable to
other Python scripts. A script using SeqGen accepts an
input, uses the input to choose components, calculates
component parameters, inserts parameters into
components, and ultimately assembles the components
to write out a command sequence. Separate command
files are generated for operators to easily uplink,
validate, and execute sequences onboard LF.

Additionally, SeqGen interfaces with a cloud-based
sequence database to automatically assign sequence
identification and version numbers using a templated

Figure 7: SeqGen and Linter Data Flow

SSC23-XII-05

Starr 9 37th Annual Small Satellite Conference

sequence name scheme. SeqGen tools also automatically
upload sequences to the database upon generation,
providing a development history and additional version
control.

Not all LF sequences are generated with SeqGen.
Developing scripts that parse input and calculate
parameters can be time-consuming, even though
applying the calculations to components and producing
sequences is trivial. Only sequences that are time-
consuming to generate, require specific calculations and
parameters, and will be used for multiple activities are
implemented in SeqGen.

The first implementation of SeqGen was a script that
ingests the MET and uses the specified contact timings
and activities to create bridge sequences: sequences that
“bridge” the gap from one contact to the next. After a
contact, a bridge sequence executes multiple
components that safely configure and power off
subsystems to put the spacecraft into an “idle” state.
Between contacts, components like payload battery
charging or the autonomous APID queries described in
the previous section can be executed. Before a contact,
bridge sequences prepare the spacecraft for tactical
operations by configuring the radio, slewing the
spacecraft to a sun-pointed inertial attitude, queuing
recorded telemetry for downlink, etc. Despite having
hundreds of commands, bridge sequences are generated
with a single command line input when using this script.
The time saved has allowed the generation and V&V of
bridge sequences to be handed off to undergraduate
students, who would not normally have the time for these
activities.

Sequence components are easily interchangeable,
allowing operators to quickly adapt sequences to flight
requirements. For example, during early flight
operations, operators were staffing three 4-hour tactical
contacts per day and struggling to keep pace with
strategic operations. To free up more time for activity
development, an “autonomous” contact component was
developed that configured the spacecraft for DSN
ranging, performed basic health and safety checkouts,
and downlinked recorded telemetry without an operator
on console. This autonomous component was completed
on December 23rd and allowed the LF project to take a
short but much-needed holiday vacation.

When the project moved into the RTCM campaign,
SeqGen was updated to generate RTCM sequences. The
RTCM component has 16 parameters to calculate and fill
in, relating to desired burn direction, time of execution,
thruster number, burn duration, etc. SeqGen
automatically calculates all these parameters from an
input of the MET, contact of burn execution, a

propulsion parameter file, and the desired right ascension
and declination of the burn as provided by MDNAV.
Using an in-house ACS tool called GTball, SeqGen runs
an internal ACS simulation: performing quaternion
transformations, importing and utilizing SPICE kernels
and spacecraft ephemeris, and modeling slews and
rotations to check for instrument keep out zone
violations. Calculations are displayed for the operator for
reference. Complicated burn sequences can be generated
in seconds, which vastly accelerates the activity
development for propulsive burns. Sequenced RTCMs
enabled by SeqGen were successful for several weeks
before thruster performance became too variable for
sequenced commanding. Now, SeqGen creates
sequences that set up RTCMs, but the prop system
commanding is handled by SMARTS.

Ultimately, SeqGen has saved the operations team
hundreds of hours of work and has likely prevented
dozens of command file errors that would have occurred
if sequences were generated manually. The framework is
flexible, and features like power or comms modeling
could be implemented with more development time. The
SeqGen framework has been used in other LF tools, such
as the sequence linter.

Future Work

SeqGen will be updated with additional components and
functionality as required by mission events.

LINTER

Motivation

Most spacecraft are operated in accordance with flight
rules: documented constraints that determine what shall
and shall not be done on the spacecraft. Flight rules can
be documented as early as mission conceptualization and
are expanded throughout a mission’s lifetime. Many
flight rules pertain to command sequences; for example,
LF flight rule PROP-16 refers to the order in which two
power rails must be enabled on the prop system: “The
5V power must always be turned on before the VBAT
power. The VBAT power must always be turned off
before the 5V power.”

During activity development, sequences and procedures
must be checked for flight rule violations. Of the 106 LF
flight rules, 52 are relevant to sequenced commanding.
Without automation, this activity V&V involves
manually filling out a checklist of flight rules, a process
so time-consuming that it frequently was abandoned in
favor of having expert operators review the sequence
during activity review. Fortunately, automation could
solve this problem.

SSC23-XII-05

Starr 10 37th Annual Small Satellite Conference

A linter is a static analysis tool that automatically checks
code for errors. Most modern development environments
have a background linter that examines code for syntax
errors, bad variables, or other issues as the code is being
written. The LF Linter is Python based command line
script that checks LF commands sequences for both
syntax errors and flight rule violations.

Implementation

Using SeqGen classes, the Linter backend parses
command sequences and stores them in an objected-
oriented format. Flight rules have also been implemented
in an object-oriented fashion. A main script parses a
command sequence, iteratively compares it to all the
flight rules, and displays the results in one of several
possible formats to the operator. As shown in Figure 9,
flight rules warnings, flight rule violations, and syntax
errors are highlighted, with specific violating commands
called out if applicable.

Figure 9: Example Linter Output

Future Work

Many flight rules were waived or modified after launch
and have yet to be updated in the Linter. Other tools,
such as SMARTS, have been a higher priority. Despite
being slightly outdated, the linter has saved operators
hours during the sequence generation and V&V process.

SMARTS

Motivation

After months of propulsion and ACS analysis, it was
determined that performing human-in-the-loop RTCMs
was the only way to achieve the ΔV required to reach the
Moon. RTCMs require a delicate balance between thrust
and momentum while the spacecraft is rotating to remain
stable and execute an extended burn. LF’s unpredictable
thrusters upset this balance, which can result in
dangerous momentum states. Unfortunately, LF has no
onboard controller that can measure thrust, let alone

control the spacecraft to account for it. LF’s linear, non-
branching command sequences were unable to account
for variations in thrust, and RTCMs were repeatedly
failing.

Implementation

To enable real-time response to thruster variations
during RTCMs, the Semi-Autonomous MTAK
Momentum Management And Reactive Time Script
(SMARTS) is being developed. With SMARTS,
operators can quickly adapt to thruster performance,
performing thruster burns, pump reversals, and other
propulsion operations with the click of a button. The GUI
display of SMARTS is shown in Figure 10.

Before using SMARTS, a background sequence is
executed on the spacecraft that initializes the propulsion
system and heats the thrusters before slewing to a burn
attitude and initializing a rotation. After an amount of
time derived from power and thermal analysis, typically
around 20 minutes, the sequence will end the rotation
and return to a sun-pointing attitude. All commanding of
propulsion maneuvers during the rotation are performed
with SMARTS.

The timing of commands executed during RTCMs must
be precise to properly manage the spacecraft’s
momentum state. As the spacecraft rotates about a thrust
vector at 6 degrees per second, burns must be started
within 6 degrees of a key phase angle. Therefore,
operators must be able to send ground commands in real-
time that execute on the spacecraft at a targeted time with
single-second precision. Human operators are not
capable of this level of precision, so automation is
required. Additionally, propulsive burns drain the
battery and rapidly heat the spacecraft. Flight models
yield a maximum burn duration of around 20 minutes.
With the low thrust provided by thrusters and the current
ΔV requirements, no time can be wasted during a burn.

Before any propulsive maneuvers, a latency calibration
is performed to calculate the time delay from telemetry
reception on the ground to command execution on the
spacecraft. Latency varies with light-time delay,
spacecraft radio usage, ground server processing times,
and other factors contributing to time delay. SMARTS
accounts for all these factors when performing a latency
calibration.

SMARTS internally models the spacecraft attitude,
momentum state, and rotational phase by logging and
transforming real-time ACS telemetry transmitted by
LF. Using the internal model of spacecraft state and

SSC23-XII-05

Starr 11 37th Annual Small Satellite Conference

calculated latency, SMARTS can reliably queue and
dispatch commands for execution at a particular phase.
Initial thread tests run on the spacecraft indicate a phase
execution precision of ±1 degree, far outperforming
activity requirements.

Depending on thruster performance and momentum
state, operators execute command “modules” such as
pump reversals, burn aborts, setup and takedown burns
to change the spacecraft momentum magnitude, or
extended primary burns. Modules are read in from text
files using the SeqGen framework. Module parameters
such as execution phase and pulse duration vary with
momentum state, thrust, and thruster duty cycle, which
can be manually set and locked by the operator. With the
provided inputs, SMARTS performs parameters
calculations internally and inserts them into modules,
displaying the results to the operator before sending
commands.

When using SMARTS, operators will follow a
procedural flowchart to quickly determine which
modules to send based on spacecraft state. However,
commanding the spacecraft with modules is risky: if
modules were to be sent in the wrong order or
unintentionally overlap, the prop system could suffer
damage. To prevent this, SMARTS also uses the internal
spacecraft model in tandem with a procedural state

machine to adaptively enable and disable the execution
of modules based on spacecraft state. For example, while
a burn is executing, the only modules available to send
are those which explicitly cancel out of a burn.

Future Work

SMARTS is still in its early stages but is on a rapid
development schedule to be completed by the ΔV
deadline in late April. A plotting interface is currently
under development.

Tactical thread test activities with increasing complexity
are being developed and conducted to take incremental
steps towards the critical upcoming burn campaigns in
April and May of 2023. Ultimately, executing RTCMs
using SMARTS is Lunar Flashlight’s best chance of
reaching the Moon.

CONCLUSION

Software developed by Ops has been essential for the
ongoing success of Lunar Flashlight. Downlink Helper
has allowed for faster, more intuitive downlinking of
recorded telemetry. SeqGen has enabled operators to
generate complex sequences with minimal input. The
Linter has saved significant time during sequence V&V
by automatically performing flight rule checks. Finally,
SMARTS enables Ops to perform RTCMs, unique

Figure 10: SMARTS Interface

SSC23-XII-05

Starr 12 37th Annual Small Satellite Conference

propulsive activities that can be used to achieve ΔV
without saturating LF’s momentum wheels. These tools,
in tandem with tactical and strategic scripts, serve to
remove obstacles in the MOS, reduce operator cognitive
load, and mitigate risk to the Lunar Flashlight project.

Lessons Learned

Ops greatly benefited from having the flexible, object-
oriented classes developed for SeqGen and LF command
sequences. The classes remain useful and can be used for
a variety of scripts and tools. However, they were
originally programmed in Python 3, which made using
them on tactical VMs not possible. They have since been
rewritten, and most Ops Python 3 tools are now
backwards compatible with Python 2.7.

Operators perform better with GUI tools rather than
command-line scripts for multi-step processes. The
additional strategic development time it takes to develop
a GUI can be worth the time it saves tactically.

Version controlling tools is an essential aspect of
development. A simple Git repository with no addons is
sufficient; if operators feel overwhelmed by Git
complexity they are less likely to use it.

ACKNOWLEDGMENTS

The author would like to thank their advisor Dr. Glenn
Lightsey, their fellow members of the Georgia Tech
operations team, the management, navigation, and
engineering support teams at JPL, the propulsion team,
the science team, and all other members of the Lunar
Flashlight project. Thank you to Emma Hansen and
Nathan Cheek for development assistance with the linter
and SMARTS. This work was conducted at the Georgia
Institute of Technology under contract from the NASA
Jet Propulsion Laboratory.

ACRONYMS

 ACS: Attitude Control System
 AMPCS: AMMOS Mission Data Processing and

Control System
 APID: Application Process Identifies
 C&DH: Command and Data Handling
 ConOps: Concept of Operations
 DSN: Deep Space Network
 EVR: Event Verification Records
 FOD: Foreign Object Debris
 FSW: Flight Software

 GT: Georgia Tech
 GUI: Graphical User Interface
 HitL: Human in the Loop
 JPL: Jet Propulsion Laboratory
 LF: Lunar Flashlight
 LFPS: Lunar Flashlight propulsion System
 MDNAV: Mission Design and Navigation
 MET: Mission Events Timeline
 MOS: Mission Operations System
 MTAK: (A)MPCS Test Automation Toolkit
 NRHO: Near Rectilinear Halo Orbit
 PSR: Permanently Shadowed Region
 RTCM: Rotating TCM
 SCLK: Spacecraft Clock
 SMARTS: Semi-autonomous MTAK Momentum

Management and Reactive Timing Script
 TCM: Trajectory Correction Maneuver
 V&V: Verification and Validation
 VM: Virtual Machine
 ΔV: Change in Velocity

REFERENCES

1. Vinckier, Quentin, Luke Hardy, Megan Gibson,
Christopher Smith, Philip Putman, Paul Hayne,
and R. Sellar. 2019. “Design and Characterization
of the Multi-Band SWIR Receiver for the Lunar
Flashlight CubeSat Mission.” Remote Sensing
11(4):440. doi: 10.3390/rs11040440.

2. Cheek, Nathan, Collin Gonzalez, Phillippe Adell,
John Baker, Chad Ryan, Shannon Statham, E.
Glenn Lightsey, Celeste R. Smith, Conner Awald,
and Jud Ready. n.d. “Systems Integration and Test
of the Lunar Flashlight Spacecraft.”

3. Zucherman, Aaron. 2023. “State of Interplanetary
CubeSats.”

4. Consultative Committee for Space Data Systems.
2020. “Space Packet Protocol.”

5. Streiffert, Barbara, and Taifun O’Reilly. 2008.
“The Evolution of Seqgen - A Spacecraft
Sequence Simulator.” in SpaceOps 2008
Conference. Heidelberg, Germany: American
Institute of Aeronautics and Astronautics.

