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ABSTRACT 

Lunar Flashlight (LF) is an interplanetary CubeSat mission designed to demonstrate the use of a novel green 
monopropellant propulsion system and characterize lunar surface ice with a near-infrared laser array and reflectometer. 
LF is also the first Jet Propulsion Laboratory (JPL) mission to be operated entirely by students. While JPL provided 
baseline tools to Georgia Tech (GT), bespoke tools and software were developed by GT operators. Four tools 
developed by the author are discussed in this paper: (1) Downlink Helper is a Graphical User Interface (GUI) tool 
which improves the tactical downlink of recorded spacecraft telemetry. The tool automatically creates and sends 
downlink commands, displays an intuitive representation of telemetry onboard and downlinked from the spacecraft, 
and aids operator decision making with predicted downlink times for onboard files. (2) The SeqGen tool suite uses a 
Python-based object-oriented class structure to parse, generate, and manipulate LF command sequences from minimal 
input parameters. SeqGen pulls from a database of modular components, performs calculations to insert command 
parameters, and automatically version controls and archives sequences. SeqGen classes are flexible and are easily 
ported into other tools and applications, such as the Linter. (3) The Linter is a command line tool that parses LF 
command sequences and checks them against a database of mission flight rules. Flight rule violations and warnings 
are automatically detected and displayed for the operator. (4) SMARTS is a GUI tool that enables operator-in-the-
loop propulsive burns on LF’s highly anomalous propulsion system. Thruster performance is variable and 
unpredictable, preventing deterministic command sequences from being used to fire the thrusters, and threatening to 
saturate LF’s reaction wheels. To manage spacecraft momentum, the spacecraft is rotated about a thruster’s force 
vector while firing. SMARTS enables operators to tactically calculate, queue, and send command modules such that 
they execute onboard at precise phases in the rotation. Lessons learned from the development process are condensed 
and can be used to inform the operations of other student-led interplanetary small satellite missions.

INTRODUCTION 

Mission Objectives and Concept of Operations 

Theme 1 of NASA's Strategic Knowledge Gaps indicates 
the importance of understanding and characterizing 
lunar resources, most importantly water. Permanently 
Shadowed Regions (PSRs) on the lunar poles are known 
sources of water-ice, but the distribution of the water-ice 
is unknown. Lunar Flashlight seeks to map the 
distribution of surface water-ice in PSRs using active 
infrared reflectance spectroscopy1. By mapping the 
distribution of lunar water, LF can play a key role in the 
acquisition of valuable lunar resources. However, to 
accomplish this science, LF first must reach the Moon. 

Entering an orbit around the Moon is not easy: it requires 
a significant change in velocity (ΔV) imparted in order 

change a spacecraft’s ballistic trajectory such that it is 
captured by the Moon’s gravity. Many existing CubeSat 
propulsion technologies cannot achieve the ΔV required 
to enter a lunar orbit, but LF possesses an experimental 
“green” monopropellant propulsion system that provides 
the required ΔV, allowing for Lunar Orbital Insertion 
(LOI). LF’s pre-launch Concept of Operations (ConOps) 
reflected this capability, with a high intensity post-
launch phase and low intensity cruise phase leading up 
to LOI. After LOI, LF would enter a Near Rectilinear 
Halo Orbit (NRHO) and start a two-month high intensity 
science campaign phase with low-altitude perilune 
science passes every 6 days. In-flight propulsion 
anomalies prompted a significant change in ConOps, and 
LF is now targeting a trajectory of lunar flybys that has 
a lower ΔV requirement while still enabling science.  
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Throughout all mission phases, operators use NASA's 
Deep Space Network (DSN) to communicate with 
spacecraft in two-way contacts. Operators monitor 
spacecraft health, respond to anomalies, and command 
the spacecraft to execute activities. The most important 
activity that operators perform are Trajectory Correction 
Maneuvers (TCMs), in which the spacecraft fires its 
thrusters to impart ΔV and change trajectories.  

 

Figure 1: Lunar Flashlight Spacecraft and 
Subsystems 

Spacecraft Overview 

Lunar Flashlight, shown in Figure 1, is a 6U CubeSat 
classified as a technology demonstration mission under 
NASA's Science and Technology Mission Directorate. 
As a tech demo, LF utilizes a wide range of experimental 
technologies that have never flown before, which are 
indicated by TD subscripts in the subsystem breakdown2. 
The LF subsystems are: 

PayloadTD: A short wave infrared laser reflectometer 
with four 72W lasers, a detector, and a dedicated battery 
and power system. The payload produces a significant 
amount of heat when operated, which is distributed to a 
radiator via a novel phase change material. 

Attitude Determination and Control System (ADCS): A 
Blue Canyon Technologies XACT-50 attitude control 
system with three reaction wheels, four sun sensor 
arrays, an inertial measurement unit, a star tracker, and 
independent firmware. The reaction wheels are used to 
control the spacecraft’s attitude and store angular 
momentum imparted on the spacecraft through external 
torques such as solar radiation pressure or thruster 
firings. If the reaction wheels saturate due to excessive 
angular momentum buildup, such as that imparted by a 
faulty propulsive burn, the spacecraft would spin out of 
control and the mission would likely be lost.  

Lunar Flashlight Propulsion System (LFPS)TD: A novel 
propulsion system created in a collaboration between 

Georgia Tech's Space Systems Design Laboratory, JPL, 
and NASA’s Marshall Space Flight Center. A pump 
feeds ASCENT monopropellant, a less toxic alternative 
to hydrazine, through a 3D-printed titanium manifold’s 
fuel lines to four thrusters. Unlike hydrazine, ASCENT 
propellant must pass over heated catalyst beds in the 
thrusters to react fully. Each thruster is placed off the 
spacecraft center of mass and therefore exerts a torque 
on the spacecraft when fired. The torques can be used to 
perform desaturation maneuvers (desats) to dump 
momentum out of the XACT's reaction wheels. To 
nominally perform TCMs and achieve ΔV, the XACT 
would command the four thrusters to pulse in unison, 
exerting a translation force on the spacecraft while 
autonomously balancing torques to avoid reaction wheel 
saturation.  

Power: Four solar arrays, an electrical power systems 
board, and a 3s2p Li-Ion battery. 

Command and Data Handling (C&DH)TD: A JPL-
provided radiation-hardened Sphinx flight computer 
running flight software (FSW) written in JPL's F Prime 
framework. LF FSW allows for command sequences to 
be uplinked and executed onboard the spacecraft with 
precision timing, but notably, these command sequences 
are linear and do not allow for conditional branching 
(i.e., no “if” statements). 

Communications: An Iris radio with two pairs of patch 
antennas, designed by JPL and built by Utah State 
University's Space Dynamics Laboratory. Operators 
communicate with LF via the DSN. The Iris supports 
multiple data rates for both uplink and downlink, 
broadcasts real-time telemetry, and allows for recorded 
telemetry files to be downlinked.  

The Mission Operations System 

The Lunar Flashlight Mission Operations System (MOS) 
is an interconnected network of teams, individuals, tools, 
hardware, processes, data, and other resources. The 
team-level interfaces of the MOS are shown in Figure 2, 
as well as the entities composing the LF Project.  

In the summer of 2021, JPL contracted Georgia Tech 
(GT) as Lunar Flashlight’s primary Mission Operations 
Center and Ground Data System (MOC/GDS), hereby 
referred to as Ops. In doing so, GT became the first 
university to operate a JPL mission. A team of four GT 
grad students formed the initial Ops team, which grew to 
13 operators over the next year: seven graduate students 
and six undergraduate students. 
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Figure 2: The Lunar Flashlight High-Level Mission 
Operations System 

The LF operations team is ultimately tasked with 
commanding the spacecraft to achieve mission 
objectives while maintaining spacecraft health and 
safety. The responsibilities of Ops are divided into two 
main categories: strategic and tactical. Tactical 
operations are conducted while operators are in two-way 
communication with the spacecraft via the DSN, and 
strategic operations are conducted during the time in 
between contacts.  

Strategic operations include mission planning, DSN 
scheduling, activity development, documentation 
writing, software and tool development, telemetry 
analysis, spacecraft modeling, and more. Mission 
planning is the process in which future spacecraft 
activities are formulated. Typically, mission planning is 
broad in scope and has a long event horizon, meaning 
that activities are planned out well into the future. 
Factors such as key trajectory-related events, operator 
availability, DSN scheduling, and activity priority must 
all be considered during mission planning. During 
mission planning meetings, activities are slotted into a 
Mission Events Timeline (MET). The LF MET is a 
Microsoft Excel file saved in cloud storage that details 
activity planning, tactical contact times, meetings, 
staffing, and parameters for the Sequence Generation 

tool described later in this paper. A sub-section of the 
MET is shown in Figure 3. 

 

Figure 3: Lunar Flashlight Mission Events Timeline  

During tactical operations, operators are in two-way 
contact with the spacecraft using the DSN. Contacts are 
typically one to two hours long, with an additional hour 
of setup and half an hour of teardown, making a tactical 
shift up to 4 hours long. Since LF operates in the Earth-
Moon system, the light time delay for radio 
communications is on the order of single digit seconds. 
Because of this, LF operators can manually “joystick” 
the spacecraft during two-way contacts: sending a 
command, observing a response, and using the response 
to inform the next command. Since LF command 
sequences do not allow for conditional checks or 
branching logic, complicated activities with 
dependencies are performed Human in the Loop (HitL).  

During a contact, the tactical operations team executes 
spacecraft activities such as propulsive maneuvers, laser 
firings, and subsystem testing by following pre-approved 
procedures. Operators may also tactically respond to 
spacecraft anomalies. Three tools described later in this 
paper are used for tactical operations: command line 
scripts, Downlink Helper, and SMARTS. 

Mission Timeline 

Lunar Flashlight launched on December 11th, 2022, 
aboard a SpaceX Falcon-9 as a secondary payload to 
ispace’s Hakuto-R lunar lander. At 4:43 AM Eastern 
Time, the Ops team successfully contacted LF for the 
first time.  

Most subsystems have performed remarkably well in 
flight. Power, thermal, comms, C&DH, and ACS have 
all exceeded expectations despite experiencing 
occasional anomalies. Results from the Artemis launch 
shave shown how difficult and risky deep space CubeSat 
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missions can be3, so the fact that LF is still largely 
functional is noteworthy. However, the propulsion 
system has remained anomalous since day two of the 
mission, when the first desat was attempted but resulted 
in net momentum gain rather than loss. 

After weeks of extensive propulsion testing, the root 
cause of the propulsion anomaly was narrowed down to 
a probable cause:  Foreign Object Debris (FOD) was 
blocking the fuel lines. The thrusters were operable, but 
with highly variable and unpredictable performance 
levels. Firing all thrusters simultaneously during a TCM 
was not feasible: if the thrust levels became unbalanced, 
the spacecraft would experience an unrecoverable 
torque. A dramatic change in ConOps was required. The 
LF project conceptualized a new mode of operation for 
TCMs, in which the spacecraft rotates about an axis 
while firing one thruster.  

Rotating TCMs 

Rotating TCMs (RTCMs) balance the spacecraft’s 
momentum state such that the reaction wheels will not 
saturate while firing a single thruster. This novel mode 
of operation has required countless hours of testing, 
analysis, modeling, and development, along with a flight 
software update and ACS parameter updates. The 
complete derivation of RTCMs is out of scope for this 
paper, but an overview is given below. 

When firing a thruster, the spacecraft is subject to a 
torque 𝜏 equal to the cross product of the thruster 
location with respect to spacecraft center of mass and the 
thrust force vector. Within the spacecraft body frame, 𝜏  
is constant in direction for a given thruster and scales 
with thrust. Let ℎ⃗ be the angular momentum of the 
spacecraft, including that stored in the spacecraft’s 
reaction wheels. Note that torque is also the time 
derivative of angular momentum. 

During an RTCM, the spacecraft is rotated about a single 
thrust vector. Figure 4 shows angular momentum ℎ⃗ in the 
spacecraft body frame projected onto the 𝑥 -𝑦  plane, 
which is normal to the thrust vector. As the spacecraft 
rotates, ℎ⃗ traces a “momentum circle” circle on the plane. 

At a key phase 𝜃 = 180°, 𝜏 directly opposes ℎ⃗. If the 

thrusters are fired at this key phase with the correct thrust 
magnitude, torque and change in angular momentum 
will cancel out, preventing angular momentum buildup. 
If the thrusters are fired when not at this key phase, the 
angular momentum will build up and threaten to saturate 
the reaction wheels. 

Starting in late January, LF performed multiple 
sequenced RTCMs and seemed to be on track to reach 
the Moon. However, additional thruster degradation put 

an end to the sequenced RTCM campaign and required 
additional adaptation from the project, as time was 
slipping away. 

Progressively riskier thruster recovery activities were 
performed, such as running the pump in reverse in an 
attempt to dislodge FOD. Since FOD entering the fuel 
pump from downstream threatens to shred the impeller, 
the decision to try this approach was not taken lightly. 
However, the tests paid off: results indicated that FOD 
could be dislodged from the fuel lines with a reverse 
pump operation. However, during subsequent burns, 
cleared FOD would eventually settle in the fuel lines 
again, reducing or completely cutting off propellant flow 
after a variable amount of time. The current approach of 
executing RTCMs with command sequences was no 
longer sufficient; without branching logic, sequenced 
commands required a certain level of predictability in 
thrust to balance the spacecraft momentum state. An 
entirely new mode of operation was conceived: 
propulsive burns would be commanded, with the 
required precision timing, by operator-developed ground 
software known as SMARTS. 

RTCM development is still ongoing; the ΔV produced 
so far by the thrusters is much less than that required to 
reach the Moon. The original reference trajectory has 
been rejected in favor of a trajectory with lower ΔV 
requirements. Rather than enter an NRHO, LF now 
intends to perform multiple lunar flybys over a period far 
longer than the mission’s intended lifespan. To achieve 
this trajectory, Lunar Flashlight must work around the 
FOD blockage and achieve significant ΔV in late April 
and mid-May of 2023. Without this ΔV, LF will be 

Figure 4: RTCM Momentum Circle 
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ejected from the Earth-Moon system and enter a 
heliocentric orbit. 

SOFTWARE DEVELOPMENT APPROACH 

This section describes key tools and software developed 
by the author over the mission’s duration. All tools were 
developed with the intention of decreasing operator 
workload, which frees up operator resources for other 
valuable work. This is particularly the case for tactical 
tools, which are used under time-limited, sometimes 
stressful conditions. Development of tools was iterative, 
using lessons learned from Operational Readiness Tests 
(ORTs), strategic testing, and flight events.  

All software tools were version controlled in an export-
controlled GitHub repository.  

Operations Environment 

As a non-JPL institution interfacing with JPL resources 
like the DSN, cybersecurity was of great concern when 
developing the ground data system. Tactical operations 
are conducted using Linux virtual machines (VMs) 
hosted on computers in the MOC. The VMs are 
segmented on their own network with no internet access, 
so that unauthorized users cannot access the DSN by 
tunneling through the GT network. Additionally, the 
VMs were shown to be operable for previous missions 
like MarCO. For these reasons, VMs are provided “as-
is” and are not updateable. Tactical tools were developed 
in Python 2.7 to be compatible with VMs and strategic 
tools, which can be run from any computer, were 
developed in Python 3, but were written to be 
backwards-compatible with Python 2.  

Several tools utilize a JPL-developed tactical operations 
software called the AMMORS Mission Data Processing 
and Control System (AMPCS).  AMPCS is highly 
customizable and provides Graphical User Interfaces 
(GUIs) for spacecraft commanding, file uplink, 
telemetry visualization, and more. AMPCS is the 
primary tool used for tactical operations; however, the 
tools described in this paper satisfy operator needs that 
AMPCS does not. To aid software development, 
AMPCS has a backend Python-based API called MTAK 
that allows Python scripts and applications to issue 
commands to the spacecraft and parse incoming 
telemetry. MTAK is utilized by tactical scripts, 
Downlink Helper, and SMARTS.    

Linux Command Line Scripts 

Command line scripts written in Python or bash were the 
first pieces of automation developed by the Ops team. 
They are quick to develop but typically limited in scope, 
performing a singular operation with all input parameters 
provided at runtime.  

Tactical scripts command the spacecraft or parse 
telemetry, while strategic scripts are used for product 
generation or mission planning. Strategic scripts include: 

 MDNAV product generation scripts that facilitate 
exchange of information between Ops and MDNAV 
in a structured way. Ops scripts parse spacecraft 
telemetry to generate and deliver spacecraft attitude 
SPICE files, time kernels, and other data products to 
the MDNAV team. Additionally, data products and 
ephemeris files provided by MDNAV are 
automatically ingested and processed into Ops 
resources, such as testbed setup scripts. 

 Mission planning scripts that parse the MET and 
send out virtual meeting invites to the LF project for 
each tactical contact.  

 QuickLook generation scripts that parse spacecraft 
telemetry to generate standardized plots, allowing 
LF project members to assess telemetry quickly. 
The templates governing plot creation are stored in 
simple plain text files, which allows operators with 
little technical experience to customize QuickLooks 
without reading code.  

Tactical scripts include: 

 A propulsion readout script that rapidly sends 
commands to the LFPS and parses the resulting 
bytes in real-time telemetry to read out prop system 
parameters. The creation of this script more than 
halved the time of LFPS parameter readback. 

 A spacecraft filesystem listing script that lists files 
in a directory on the spacecraft, writes the results to 
a file, then downlinks and parses the file. 

 A script that reports momentum magnitude by 
calculating the root sum squared of incoming 
momentum telemetry. 

Learning to use the Linux command line proved to be a 
challenge for most new operators, so command line 
training was included in the operator training plan. Even 
after training, most operators were able to work much 
more efficiently with GUIs for complex operations, 
which motivated the development of the Downlink 
Helper and SMARTS. 

DOWNLINK HELPER 

Motivation 

During a contact, Lunar Flashlight transmits real-time 
telemetry that is indicative of the spacecraft’s current 
state. However, Ops needs to reconstruct the spacecraft 
state during the time between contacts to look for 
anomalies and assess spacecraft health and safety. To 
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accomplish this, operators downlink recorded telemetry 
files during contacts, in addition to receiving real-time 
telemetry. The process of telemetry downlink and 
Downlink Helper’s involvement is shown in Figure 5. 

In compliance with CCSDS blue book standards4, LF 
telemetry is separated into categories identified by 
Application Process Identifiers (APIDs). Each APID 
contains a group of telemetry, for example Event 
Verification Records (EVRs) or channelized telemetry 
for power, ACS, C&DH, etc. As per project flight rules, 
operators first query the APID and time range to assess 
APID file size and downlink feasibility before 
initializing downlink. When downlinking recorded 
telemetry, operators specify an APID and a time range 
measured in spacecraft clock (SCLK) seconds. The raw 
FSW commands for querying and downlinking 
telemetry are not easily human readable: they require 
referencing an APID table and converting a SCLK 
argument to datetime format to understand.  

During the first ORT, the processes for downlinking 
recorded telemetry were wholly ineffective. Ops had 
developed a system involving spreadsheets for tracking 
what telemetry had been downlinked, and manually 
generated commands for commanding the downlink. 
Unsurprisingly, several commanding errors were made, 
and downlinking telemetry became a significant blocker 
in tactical procedures.  

Implementation 

To alleviate these issues, Downlink Helper was 
developed. Downlink Helper, shown in Figure 6, 

Figure 6: Downlink Helper User Interface 

Figure 5: Telemetry 
Downlink Data Flow 
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provides a visual representation of recorded telemetry 
that has been queried, downlinked, or left onboard the 
spacecraft. Each row represents an APID, labeled by 
human readable description rather than a number. Each 
column, referred to as a “block”, represents a timespan 
over which telemetry is queried and downlinked. The 
timespan SCLK range has been converted to UTC and 
displayed in a human-readable format. White boxes 
indicate APIDs that are not queried or downlinked, blue 
boxes represent queried telemetry that has not been 
downlinked, and green boxes indicate telemetry that has 
been downlinked. To downlink past telemetry, operators 
create a new block if needed, then simply click the APID 
buttons to issue query and downlink commands. All 
command parameters and time ranges are automatically 
handled by the tool. Downlink Helper is intuitive and 
usable by operators with limited experience, which has 
dramatically sped up the telemetry downlink process 
during contacts.  

To enable rapid response to any anomalies that occurred 
between contacts, it is essential to parse and review 
recorded telemetry as it is downlinked. The version of 
AMPCS provided to Ops was not able to parse recorded 
telemetry files as they were downlinked; they had to be 
run in a separate instance of AMPCS. Because of this, 
recorded telemetry could not be reviewed until after a 
contract had been completed, which increased response 
time to potential anomalies. To enable this rapid 
response, the downlink helper was modified to detect 
downlinked data product files, open them, and stream the 
bytes to a parallel AMPCS session connected to the 
primary AMPCS session via Java Messaging Service. 
With this solution, operators were able to parse, view, 
and assess recorded telemetry as soon as it was 
downlinked, which enabled rapid anomaly response that 
proved essential in flight.  

After launch, updated models of spacecraft downlink 
speeds were implemented into the downlink helper. 
Using the file size of the APID returned by the query 
command, the downlink helper calculated and displayed 
the expected downlink time of each APID block. This 
feature aided operator decision-making during contacts, 
allowing them to quickly determine what APIDs they 
had time to downlink when time in the contact was 
running out.  

Future Work 

Currently, Downlink Helper does not handle real-time 
telemetry, but it could be modified to do so. Real-time 
telemetry transmission shares the total downlink budget 
with recorded telemetry downlink, so the real-time 
telemetry transmission rates affect file downlink times. 
The downlink helper could automatically detect and 
display the transmit rates of real time APIDs and allow 

operators to quickly change the rates by sending the 
appropriate commands. Using the packet size of each 
APID, the total downlink budget being used by real-time 
telemetry could be calculated, displayed, and used to 
update predicted recorded-telemetry downlink times to 
aid operator decision-making.  

APID blocks are inflexible in Downlink Helper’s current 
configuration. It would be preferable if APID blocks 
could be combined, split, changed in size, or be separate 
for each APID rather than each APID sharing a block. 
An option to visually scale each block proportional to the 
time the block contains would provide an intuitive sense 
of a block’s time range, rather than the operator having 
to look at the time ranges manually and compare them to 
the MET.  

When the spacecraft filesystem is relatively full, 
tactically querying APID file sizes takes longer, which 
can be a blocker to tactical activities. To save time, 
queries could be conducted in the period between 
contacts. The recorded EVRs that read out the file size 
could be downlinked during the following contact, and 
Downlink Helper could automatically parse the EVRs to 
create blocks and populate file sizes.  

SEQGEN 

Motivation 

Operators command LF by using 1086 FSW commands 
defined in an XML command dictionary. Commands are 
executed in one of two ways: sent in real-time by an 
operator on the ground or executed onboard the 
spacecraft by a command sequence. Like commands sent 
in real-time, sequence commands have a command stem 
and arguments, but unlike real-time commands, 
sequenced commands each have a specified timing. 
Commands can have relative timing, in which they are 
executed after a specified length of time has passed from 
the previous command, or absolute timing, in which the 
command executes once a particular SCLK has passed. 
Due to their timing functionality, sequences are used to 
configure the spacecraft outside of contacts, perform 
activities with precise timing constraints, or act as 
timeout commands in the event of loss of signal.  

Notably, LF sequences are linear and do not have 
branching: they cannot have “if” statements or other 
conditional logic. Sequences are written as ASCII text 
then converted to a smaller-sized binary file that is 
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uplinked to and executed on the spacecraft. Sequences 
often contain hundreds of commands, each with 
carefully chosen timing parameters and arguments. Ops 
quickly learned that creating them manually is both time 
consuming and prone to error. To alleviate these issues, 
LF SeqGen tools were created to automatically generate 
sequences with minimal input. LF SeqGen is 
independent of the JPL Seqgen tool5.   

Implementation 

SeqGen is a Python-based tool that runs on an object-
oriented structure of Sequence and Command classes. 
The object-oriented backend provides flexibility; 
sequences are more easily manipulatable once parsed 
into classes from a text file. The backend has been used 
for sequence generation and tools like the Linter. The 
overarching SeqGen data flow is shown in Figure 7. 

SeqGen assembles sequences out of individual 
components. A library of over 40 sequence components 
was created, with each component representing a 
specific series of commands within a sequence. 
Components range in complexity, from configuring the 
Iris radio for two-way comms to executing a full RTCM. 
Each component is stored as a version-controlled text file 
so that they are easily editable by operators with less 
programming experience. Components often have 
parameters that are calculated and filled in by automated 
scripts and processes. Figure 8 shows a component that 
charges the payload battery. Parameters are indicated by 
brackets: the times at which to start and end the charging. 

Other commands in the sequence are standard sequenced 
commands with no parameters.   

 

Figure 8: Payload Battery Charge Component 

Component text files are read in by SeqGen and parsed 
into an object-oriented library that is easily importable to 
other Python scripts. A script using SeqGen accepts an 
input, uses the input to choose components, calculates 
component parameters, inserts parameters into 
components, and ultimately assembles the components 
to write out a command sequence. Separate command 
files are generated for operators to easily uplink, 
validate, and execute sequences onboard LF.  

Additionally, SeqGen interfaces with a cloud-based 
sequence database to automatically assign sequence 
identification and version numbers using a templated 

Figure 7: SeqGen and Linter Data Flow 
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sequence name scheme. SeqGen tools also automatically 
upload sequences to the database upon generation, 
providing a development history and additional version 
control.  

Not all LF sequences are generated with SeqGen. 
Developing scripts that parse input and calculate 
parameters can be time-consuming, even though 
applying the calculations to components and producing 
sequences is trivial. Only sequences that are time-
consuming to generate, require specific calculations and 
parameters, and will be used for multiple activities are 
implemented in SeqGen.  

The first implementation of SeqGen was a script that 
ingests the MET and uses the specified contact timings 
and activities to create bridge sequences: sequences that 
“bridge” the gap from one contact to the next. After a 
contact, a bridge sequence executes multiple 
components that safely configure and power off 
subsystems to put the spacecraft into an “idle” state. 
Between contacts, components like payload battery 
charging or the autonomous APID queries described in 
the previous section can be executed. Before a contact, 
bridge sequences prepare the spacecraft for tactical 
operations by configuring the radio, slewing the 
spacecraft to a sun-pointed inertial attitude, queuing 
recorded telemetry for downlink, etc. Despite having 
hundreds of commands, bridge sequences are generated 
with a single command line input when using this script. 
The time saved has allowed the generation and V&V of 
bridge sequences to be handed off to undergraduate 
students, who would not normally have the time for these 
activities. 

Sequence components are easily interchangeable, 
allowing operators to quickly adapt sequences to flight 
requirements. For example, during early flight 
operations, operators were staffing three 4-hour tactical 
contacts per day and struggling to keep pace with 
strategic operations. To free up more time for activity 
development, an “autonomous” contact component was 
developed that configured the spacecraft for DSN 
ranging, performed basic health and safety checkouts, 
and downlinked recorded telemetry without an operator 
on console. This autonomous component was completed 
on December 23rd and allowed the LF project to take a 
short but much-needed holiday vacation.  

When the project moved into the RTCM campaign, 
SeqGen was updated to generate RTCM sequences. The 
RTCM component has 16 parameters to calculate and fill 
in, relating to desired burn direction, time of execution, 
thruster number, burn duration, etc. SeqGen 
automatically calculates all these parameters from an 
input of the MET, contact of burn execution, a 

propulsion parameter file, and the desired right ascension 
and declination of the burn as provided by MDNAV. 
Using an in-house ACS tool called GTball, SeqGen runs 
an internal ACS simulation: performing quaternion 
transformations, importing and utilizing SPICE kernels 
and spacecraft ephemeris, and modeling slews and 
rotations to check for instrument keep out zone 
violations. Calculations are displayed for the operator for 
reference. Complicated burn sequences can be generated 
in seconds, which vastly accelerates the activity 
development for propulsive burns. Sequenced RTCMs 
enabled by SeqGen were successful for several weeks 
before thruster performance became too variable for 
sequenced commanding. Now, SeqGen creates 
sequences that set up RTCMs, but the prop system 
commanding is handled by SMARTS.  

Ultimately, SeqGen has saved the operations team 
hundreds of hours of work and has likely prevented 
dozens of command file errors that would have occurred 
if sequences were generated manually. The framework is 
flexible, and features like power or comms modeling 
could be implemented with more development time. The 
SeqGen framework has been used in other LF tools, such 
as the sequence linter. 

Future Work 

SeqGen will be updated with additional components and 
functionality as required by mission events. 

LINTER 

Motivation 

Most spacecraft are operated in accordance with flight 
rules: documented constraints that determine what shall 
and shall not be done on the spacecraft. Flight rules can 
be documented as early as mission conceptualization and 
are expanded throughout a mission’s lifetime. Many 
flight rules pertain to command sequences; for example, 
LF flight rule PROP-16 refers to the order in which two 
power rails must be enabled on the prop system: “The 
5V power must always be turned on before the VBAT 
power. The VBAT power must always be turned off 
before the 5V power.”  

During activity development, sequences and procedures 
must be checked for flight rule violations. Of the 106 LF 
flight rules, 52 are relevant to sequenced commanding. 
Without automation, this activity V&V involves 
manually filling out a checklist of flight rules, a process 
so time-consuming that it frequently was abandoned in 
favor of having expert operators review the sequence 
during activity review. Fortunately, automation could 
solve this problem. 
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A linter is a static analysis tool that automatically checks 
code for errors. Most modern development environments 
have a background linter that examines code for syntax 
errors, bad variables, or other issues as the code is being 
written. The LF Linter is Python based command line 
script that checks LF commands sequences for both 
syntax errors and flight rule violations. 

Implementation 

Using SeqGen classes, the Linter backend parses 
command sequences and stores them in an objected-
oriented format. Flight rules have also been implemented 
in an object-oriented fashion. A main script parses a 
command sequence, iteratively compares it to all the 
flight rules, and displays the results in one of several 
possible formats to the operator. As shown in Figure 9, 
flight rules warnings, flight rule violations, and syntax 
errors are highlighted, with specific violating commands 
called out if applicable. 

 

Figure 9: Example Linter Output 

Future Work 

Many flight rules were waived or modified after launch 
and have yet to be updated in the Linter. Other tools, 
such as SMARTS, have been a higher priority. Despite 
being slightly outdated, the linter has saved operators 
hours during the sequence generation and V&V process.  

SMARTS 

Motivation 

After months of propulsion and ACS analysis, it was 
determined that performing human-in-the-loop RTCMs 
was the only way to achieve the ΔV required to reach the 
Moon. RTCMs require a delicate balance between thrust 
and momentum while the spacecraft is rotating to remain 
stable and execute an extended burn. LF’s unpredictable 
thrusters upset this balance, which can result in 
dangerous momentum states. Unfortunately, LF has no 
onboard controller that can measure thrust, let alone 

control the spacecraft to account for it. LF’s linear, non-
branching command sequences were unable to account 
for variations in thrust, and RTCMs were repeatedly 
failing.  

Implementation 

To enable real-time response to thruster variations 
during RTCMs, the Semi-Autonomous MTAK  
Momentum Management And Reactive Time Script 
(SMARTS) is being developed. With SMARTS, 
operators can quickly adapt to thruster performance, 
performing thruster burns, pump reversals, and other 
propulsion operations with the click of a button. The GUI 
display of SMARTS is shown in Figure 10. 

Before using SMARTS, a background sequence is 
executed on the spacecraft that initializes the propulsion 
system and heats the thrusters before slewing to a burn 
attitude and initializing a rotation. After an amount of 
time derived from power and thermal analysis, typically 
around 20 minutes, the sequence will end the rotation 
and return to a sun-pointing attitude. All commanding of 
propulsion maneuvers during the rotation are performed 
with SMARTS.  

The timing of commands executed during RTCMs must 
be precise to properly manage the spacecraft’s 
momentum state. As the spacecraft rotates about a thrust 
vector at 6 degrees per second, burns must be started 
within 6 degrees of a key phase angle. Therefore, 
operators must be able to send ground commands in real-
time that execute on the spacecraft at a targeted time with 
single-second precision. Human operators are not 
capable of this level of precision, so automation is 
required. Additionally, propulsive burns drain the 
battery and rapidly heat the spacecraft. Flight models 
yield a maximum burn duration of around 20 minutes. 
With the low thrust provided by thrusters and the current 
ΔV requirements, no time can be wasted during a burn.  

Before any propulsive maneuvers, a latency calibration 
is performed to calculate the time delay from telemetry 
reception on the ground to command execution on the 
spacecraft. Latency varies with light-time delay, 
spacecraft radio usage, ground server processing times, 
and other factors contributing to time delay. SMARTS 
accounts for all these factors when performing a latency 
calibration.  

SMARTS internally models the spacecraft attitude, 
momentum state, and rotational phase by logging and 
transforming real-time ACS telemetry transmitted by 
LF. Using the internal model of spacecraft state and 
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calculated latency, SMARTS can reliably queue and 
dispatch commands for execution at a particular phase. 
Initial thread tests run on the spacecraft indicate a phase 
execution precision of ±1 degree, far outperforming 
activity requirements.  

Depending on thruster performance and momentum 
state, operators execute command “modules” such as 
pump reversals, burn aborts, setup and takedown burns 
to change the spacecraft momentum magnitude, or 
extended primary burns. Modules are read in from text 
files using the SeqGen framework. Module parameters 
such as execution phase and pulse duration vary with 
momentum state, thrust, and thruster duty cycle, which 
can be manually set and locked by the operator. With the 
provided inputs, SMARTS performs parameters 
calculations internally and inserts them into modules, 
displaying the results to the operator before sending 
commands.  

When using SMARTS, operators will follow a 
procedural flowchart to quickly determine which 
modules to send based on spacecraft state. However, 
commanding the spacecraft with modules is risky: if 
modules were to be sent in the wrong order or 
unintentionally overlap, the prop system could suffer 
damage. To prevent this, SMARTS also uses the internal 
spacecraft model in tandem with a procedural state 

machine to adaptively enable and disable the execution 
of modules based on spacecraft state. For example, while 
a burn is executing, the only modules available to send 
are those which explicitly cancel out of a burn.  

Future Work 

SMARTS is still in its early stages but is on a rapid 
development schedule to be completed by the ΔV 
deadline in late April. A plotting interface is currently 
under development. 

Tactical thread test activities with increasing complexity 
are being developed and conducted to take incremental 
steps towards the critical upcoming burn campaigns in 
April and May of 2023. Ultimately, executing RTCMs 
using SMARTS is Lunar Flashlight’s best chance of 
reaching the Moon. 

CONCLUSION 

Software developed by Ops has been essential for the 
ongoing success of Lunar Flashlight. Downlink Helper 
has allowed for faster, more intuitive downlinking of 
recorded telemetry. SeqGen has enabled operators to 
generate complex sequences with minimal input. The 
Linter has saved significant time during sequence V&V 
by automatically performing flight rule checks. Finally, 
SMARTS enables Ops to perform RTCMs, unique 

Figure 10: SMARTS Interface 
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propulsive activities that can be used to achieve ΔV 
without saturating LF’s momentum wheels. These tools, 
in tandem with tactical and strategic scripts, serve to 
remove obstacles in the MOS, reduce operator cognitive 
load, and mitigate risk to the Lunar Flashlight project.  

Lessons Learned 

Ops greatly benefited from having the flexible, object-
oriented classes developed for SeqGen and LF command 
sequences. The classes remain useful and can be used for 
a variety of scripts and tools. However, they were 
originally programmed in Python 3, which made using 
them on tactical VMs not possible. They have since been 
rewritten, and most Ops Python 3 tools are now 
backwards compatible with Python 2.7.  

Operators perform better with GUI tools rather than 
command-line scripts for multi-step processes. The 
additional strategic development time it takes to develop 
a GUI can be worth the time it saves tactically.  

Version controlling tools is an essential aspect of 
development. A simple Git repository with no addons is 
sufficient; if operators feel overwhelmed by Git 
complexity they are less likely to use it. 
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ACRONYMS 

 ACS: Attitude Control System 
 AMPCS: AMMOS Mission Data Processing and 

Control System 
 APID: Application Process Identifies 
 C&DH: Command and Data Handling 
 ConOps: Concept of Operations 
 DSN: Deep Space Network 
 EVR: Event Verification Records 
 FOD: Foreign Object Debris 
 FSW: Flight Software 

 GT: Georgia Tech 
 GUI: Graphical User Interface 
 HitL: Human in the Loop 
 JPL: Jet Propulsion Laboratory 
 LF: Lunar Flashlight 
 LFPS: Lunar Flashlight propulsion System 
 MDNAV: Mission Design and Navigation 
 MET: Mission Events Timeline 
 MOS: Mission Operations System 
 MTAK: (A)MPCS Test Automation Toolkit 
 NRHO: Near Rectilinear Halo Orbit 
 PSR: Permanently Shadowed Region 
 RTCM: Rotating TCM 
 SCLK: Spacecraft Clock 
 SMARTS: Semi-autonomous MTAK Momentum 

Management and Reactive Timing Script 
 TCM: Trajectory Correction Maneuver 
 V&V: Verification and Validation 
 VM: Virtual Machine 
 ΔV: Change in Velocity 
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