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ABSTRACT 
Time-to-insight is a critical measure in a number of satellite mission applications: detection and warning of fast-
moving events like fires and floods, or identification and tracking of satellites or missiles, for example. Current data 
flows delay the time-to-insight on the order of minutes or hours, as all collected data must be downlinked in one or 
more contact windows, then transited over terrestrial networks to the location of the analytic software. Additionally, 
mission applications on spacecraft are often static: built prior to launch, they cannot rapidly adapt to changing needs 
based on these insights. 

To reduce time-to-insight and provide a dynamic application update capability, Amazon Web Services (AWS), D-
Orbit, and Unibap conducted a joint experiment in which we deployed AWS edge compute and network 
management software onto Unibap’s SpaceCloud® iX5 platform for edge computing in space, integrated onto a D-
Orbit ION Satellite Carrier launched into low-earth orbit (LEO) in early 2022. 

In this paper, we present the results of this experiment. We will discuss the software specifics and network 
management capabilities we developed to write mission applications and update those mission applications on-orbit, 
and detail the process of mission deployment and modification, communications latency, and data volume reduction. 
We will also discuss how the space and satellite community can use this capability to deploy new applications, 
performing complex tasks and reducing time-to-insight, to cloud-enabled satellites immediately without needing to 
wait for a new launch. 

INTRODUCTION 
The AWS cloud is built to serve five primary user 
advantages: agility, to allow teams to experiment and 
innovate more frequently and quickly; cost savings, in a 
pay-for-use model that leverages the economies of 
cloud-scale infrastructure; elasticity, to easily scale to 
the needs of the mission; faster innovation, to focus on 
mission and not infrastructure; and global reach, 
providing the most extensive, reliable, and secure 
global cloud infrastructure. 

Increasingly, satellite operators and space enterprises 
tell us that they want access to these cloud advantages 
on their space assets; in particular, they want the agility 
to modify mission applications on their satellites post-
launch frequently, quickly, and securely, and they want 
the faster time to innovation, to more easily implement 
AI/ML capabilities to reduce downlink volumes and 
potentially enable autonomous operations. With this in 
mind, we developed a proof of concept that makes an 
in-orbit satellite look and operate like any other edge 
device in an AWS Virtual Private Cloud (VPC). This 
gives operators the ability to securely log into that edge 
device from the ground, start and stop processes, run 
ML inference on the satellite, securely copy data to the 

AWS cloud, and update mission software through 
standard software release methods. These are necessary 
components to quickly test and modify AI/ML 
capabilities, and additionally provide AWS’s built-in 
security, user access controls, and user interfaces.  

We successfully achieved the two primary goals of our 
experiment: perform inference and processing on data 
while in orbit using AWS edge capabilities, and change 
model configurations in flight using AWS edge service 
APIs. Below, we detail the specific software and 
hardware we used and the mission scenarios we tested 
to achieve those goals. 

 
SOFTWARE 

Communications 
To achieve our goal of looking and operating like any 
other edge device in AWS, we wanted to use existing 
AWS capabilities. AWS services are designed with an 
API-first methodology that allows communication with 
those services via the internet, specifically over IP 
links, so we first needed to develop a way to manage IP 
traffic across an RF link. With a LEO satellite, we also 
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needed to be able to handle intermittent connectivity on 
a set time schedule, which is not a common use case in 
our terrestrial applications. 

To do this, we built custom network proxies with added 
resiliency, managing the AWS-specific IP traffic over 
the satellite’s physical RF link and creating a 
connection between terrestrial AWS services and AWS 
edge services on the satellite, abstracting the connection 
so end users don’t need to spend time managing 
communications. One end of the connection is in a 
terrestrial VPC, with the other installed onto the 
satellite. 

We called the solution we created for the AWS cloud-
based end of this network pipe the space gateway. It 
runs on an Elastic Compute Cloud (EC2) instance, a 
virtualized computing environment, in an AWS VPC. 
For the satellite, we created software we called the 
space edge engine, which runs on the edge computer 
onboard, in this case the Unibap SpaceCloud® iX5 
platform for edge computing in space. 

During a pass, once the signal is acquired, the space 
edge engine on the satellite connects to the space 
gateway with a full Transport Layer Security (TLS) 
handshake. Users on the ground can then send 
instructions to the AWS assets on the satellite through 
the engine-to-gateway IP tunnel, and responses come 
back through the tunnel. If a request or response is too 
large to be sent before the end of signal, the gateway 

will cache the data, close the connection cleanly, and 
attempt to resume the data transfer during the next 
connection window. The gateway keeps track of all 
data transferred, and even if the signal is lost before 
closing the connection, it will smoothly pick up that 
data transfer the next time connection is re-established.  

Security 
At AWS, we build our applications, and recommend all 
customers build their applications, according to our 
published AWS Well-Architected Framework.  This 
framework consists of six pillars, one of which is 
security.  Our focus on security takes advantage of 
AWS technologies to protect data, systems, and assets, 
and we built our software for this experiment to adhere 
to the best practices of the security pillar.   

We utilized the AWS Identity and Access Management 
service to ensure that AWS services terrestrially, as 
well as space edge processing, can only be accessed by 
the proper users using the proper roles. We 
implemented Multi-Factor Authentication as a second 
factor for defense in depth.  We ensured that the IP 
traffic that flows through our gateway-to-edge tunnel 
between space and ground is cryptographically secured 
using AES-256 encryption in the TLS protocol, and 
encrypted the data that is stored within the AWS cloud 
by making using of private keys created and rotated 
within the AWS Key Management System (KMS). We 
also made use of logging and monitoring systems that 

Figure 1: A representative architecture of the extension of the AWS cloud to a small satellite. 
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come by default to all services within the AWS cloud 
such as logging of all API and network traffic, and 
automatic alerting via the Amazon CloudWatch system. 

Processing 
With the networking ability to communicate between 
AWS edge processing onboard and the AWS cloud in 
place, building on top of the secure foundation taking 
advantage of existing cloud services, we then examined 
options for how to run AWS services on the space edge 
computer. We knew we would be in an intermittently-
connected state, we wanted to run containerized 
applications, and we wanted to modify those 
applications in-flight.  

With those requirements in mind, we opted to 
implement AWS IoT Greengrass on the space edge 
engine.  Greengrass is an open-source Internet of 
Things (IoT) edge runtime and AWS cloud service that 
helps users build, deploy and manage IoT applications 
on devices. AWS IoT Greengrass inherently already 
had a lot of the capabilities that we wanted: it is 
lightweight and meant for edge devices that can go 
through long periods of disconnection, which a satellite 
could certainly be defined as; it is highly portable to 
any X86 or ARM processor; and it gives the capability 
to upload and deploy custom components that can run 
without needing an always-on connection back to the 
AWS cloud. The custom components give us flexibility 
in the type of applications we could run – these can be 
containers, micro-services, or even scripts. AWS IoT 
Greengrass also manages the memory and compute 
consumed by the components, so we didn’t need to 
create additional capabilities to avoid overloading the 
space edge computer.  Finally, Greengrass was a good 
choice for our requirements as it provides a lightweight 
level of container orchestration, including dependency 
adherence, monitoring, re-starting, and life-cycle 
management through Over-the-Air (OTA) updates that 
can be managed from our AWS VPC. 

Additionally, AWS IoT Greengrass can support 
machine learning inferencing, including the AWS 
AI/ML service, Amazon SageMaker.  SageMaker is a 
managed service to prepare data and build, train, and 
deploy machine learning models, is well-known within 
the data science and machine learning engineering 
communities, and is something we often use in-house to 
build models. SageMaker supports a variety of ML 
frameworks including TensorFlow, PyTorch, MXNet, 
and XSBoost, and AWS IoT Greengrass inference 
support allows models built with SageMaker (or other 
AI/ML on-site tools) to be deployed to Greengrass and 
make inferences on the edge device without additional 
tuning.  

AWS IoT Greengrass requires ARM or x86_64 
architectures, 256MB of disk space, 96MB of RAM, 
Java Runtime Environment (JRE) 8+ and GNU C 
Library version 2.25+. Disk and RAM needed by the 
custom components is in addition to these requirements. 

 
HARDWARE 

Satellite  
For this experiment, our main requirement was an IP-
based radio to support our space gateway-to-engine 
tunnel. We were not testing communication data rate or 
sensor capability; we wanted to focus on our capability 
to communicate between applications and AWS edge 
service APIs on the satellite and AWS assets on the 
ground, along with our capability to run ML inference 
on the satellite.  

We were happy to collaborate with D-Orbit, who built 
and operated the host satellite, the D-Orbit ION 
Satellite Carrier SCV-004, Elysian Elenora, and 
Unibap, who built the host space computer, the 
SpaceCloud® iX5 platform for edge computing in 
space.  D-Orbit’s ION Satellite Carriers have a 
customizable 64U satellite dispenser, and can both 
deploy CubeSats as well as directly integrate payloads 
onto the platform. SCV-004 launched into low-earth 
orbit (LEO) in early 2022 on the Falcon 9 Block 5, and 
the integrated payload is shared by multiple customers, 
one of which is AWS. 

 Space Edge Computer 
Given the requirements of AWS IoT Greengrass and 
the types of machine learning inference payloads we 
wanted to run, Unibap’s SpaceCloud® iX5 platform for 
edge computing in space was a fit for our needs. It has 
an embedded x86 AMD G-series System on Chip 
(SOC), up to 240GB of SSD storage and 2GB DDR3 
ECC RAM (CPU/GPU) coupled with accelerators for 
neural network inference. The computer is designed 
with a heterogeneous architecture with multiple 
execution hosts and access to high-speed IO from 
sensors and peripherals.  

 

MISSION SCENARIO TESTING 
Raw satellite imagery produces large amounts of data 
which must be downloaded in limited connection 
windows for LEO satellites. To account for this, most 
satellite imagery is tasked for areas of the Earth that are 
suspected to be of interest, with all post-processing 
taking place terrestrially after the raw imagery data is 
downloaded. The downside of this is that anomalous 
events may not be captured, and the downloaded data 
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may be of low information value due to natural 
phenomena like cloud cover. 

The natural remedy to this downside is to perform 
image processing and object detection on the satellite. 
We wanted to raise the bar a little further, and not just 
process and detect, but also create a capability to update 
that processing and parameters to machine learning 
inferencing in-orbit to accommodate changing mission 
objectives. 

With that in mind, we identified two primary goals with 
our experiments: perform inference and processing on 
data while in orbit, and change model configurations in 
flight. We tested four common mission scenarios that 
customers had indicated were of high importance: fire 
detection, cloud masking, image processing, and sensor 
outlier detection. 

Fire Detection 
In this scenario, we wanted to examine images of the 
Earth’s surface and alert when indications of a fire were 
present. Using labeled tiled images from NASA 
Worldview data1, we used Amazon SageMaker to train 
an EfficientNet-Lite image classification model on 
TensorFlow-Lite, a version of TensorFlow optimized 
for mobile, embedded, and edge devices [Figure 2]. In 
particular, we used EfficientNet-Lite0 due to low 

latency and small model size. The model we built 
achieved 95% accuracy on the testing dataset. 

As we weren’t testing the sensor with this model (and 
we would not wish for an actual fire), we loaded images 
to the satellite pre-launch to run our inference on. We 
packaged our model and our inference code as AWS 
IoT Greengrass custom components. We defined the 
inference interval as a configurable value, and set it to 
once per minute. The deployed model size was 
~2.5MB, with inference latency in the range of 50-
100ms.  

With this scenario, we were able to achieve our goal of 
running inference on the satellite in orbit with AWS 
edge capabilities. In future tests, we plan to change 
configuration values as well as use processed imagery 
from the on-board sensor. 

Cloud Masking 
The presence of clouds in Earth images can result in 
unusable images occupying download bandwidth, 
increasing costs and potentially reducing the amount of 
information we can obtain from a satellite pass. In this 
scenario, we created a custom model using Amazon 
SageMaker that identified cloud-obscured portions of 
an image based on a luminance threshold on pixels, 
with an additional test for contours of the identified 
portion to except rectangular shapes as those were 

Figure 2: NASA Worldview 1300x1870 images are split into overlapping 256x256 tiles, classified as fire or 
clear, then used to train a TF-Lite image classification model using EfficientNet-Lite0. 
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likely to be human-made objects. We then mask the 
cloud-covered segments of the image to reduce file size 
[Figure 3], with configurable settings for determining 
the type and amount of cloud cover to mask and 
download.  

 
Figure 3: Clouds are masked with full black 

#00000000, allowing greater compression of the 
image. 

We also successfully modified the thresholds for cloud 
cover using the AWS IoT Greengrass configuration 
update capability on the satellite to deploy new 
configuration files with the modified thresholds during 
a contact window.  

With this scenario, we were able to achieve both our 
goals: we performed inference and processing on the 
satellite in orbit with AWS edge capabilities and 
changed model configurations in flight using built-in 
AWS edge service capabilities and APIs. 

Image Processing 
New types of imagers and cameras are being employed 
and launched into orbit at an increasing rate. Often, the 
new imagers have increased spectral range and 
resolution, resulting in the onboard generation of very 
large image datasets. If the images collected are of 
novel type and resolution, then computer vision models 
trained on older image types will not perform 
optimally. To address this, we wanted to effectively 
compress these images for download but maximize the 
amount of variance preserved. We could then 
subsequently label and train computer vision models 
from the compressed images terrestrially, which would 
then be uploaded to the satellite for optimal 
performance on the satellite’s imagery. 

In this scenario, inspired by published technical work2, 
we processed images captured by a micro-opto-electro-
mechanical system (MOEMS) spectral imager with up 

to 49 bands. We wanted to project the images from 49 
to 3 bands, map those 3 bands to RGB [Figure 4], and 
encode as JPEG. This allows us to capitalize on 
efficient near-lossless JPEG compression. 

 
Figure 4: Multiple bands are efficiently compressed 
into three Principal Components, which are linear 

combinations of the original bands, selected to 
capture as much variance as possible. 

Using Amazon SageMaker, we performed Principal 
Component Analysis (PCA) on a set of 49-band images 
similar to what would be available from a satellite 
sensor, to project the information from 49 bands down 
to 3 composite bands. We packaged the PCA model as 
an AWS IoT Greengrass component and deployed it to 
the satellite. 

The three composite bands capture from 80 to 90% of 
the variability present in all 49 bands, and an image can 
be processed in the single millisecond range. We 
included JPEG encoding quality thresholds as a 
configurable value in the Greengrass component 
configuration, which allows operators to set the balance 
between file size and file integrity based on their 
mission parameters. 

With this scenario, we were able to achieve our goal of 
performing processing on the satellite in orbit with 
AWS edge capabilities. In future work, we anticipate 
that we can retrain the PCA model in orbit using images 
provided by the satellite sensor on-board. 

Sensor Outlier Detection 
For this scenario, we wanted to automatically determine 
when internal sensor readings from the satellite go out 
of nominal. We used Amazon SageMaker and sklearn 
to implement the Isolation Forest Algorithm3, which is 
an unsupervised method that creates binary trees to 
identify anomalous data points, without needing prior 
knowledge of nominal limits. We packaged this as an 
AWS IoT Greengrass custom component and deployed 
to the satellite.  
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In flight, we fed health data to the model, including 
readings such as CPU temperature, GPU temperature, 
and FPGA current [Figure 5]. The model identifies 
readings that are beyond a configurable threshold of 
number of branches created, and the threshold can be 
adjusted in Greengrass configuration. The configuration 
can also set the training windows for analysis.  

This scenario achieved our goal of processing using 
AWS edge capabilities, and also demonstrated the 
capability to use data produced by the satellite in orbit. 
We designed the component to be able to retrain on-
board, and our future work includes testing that 
capability. 

 
FUTURE DIRECTIONS 
In addition to the specific future work described above, 
we plan to work across AWS and our customers, 
including those with mission areas in agriculture, 
maritime, energy, automotive, and natural disaster 
response, to identify use cases that can be served by on-
orbit processing, develop the components to execute 
that processing, and deploy and run those components.  

Two additional use cases we have already identified are 
in the area of autonomous operations. The first is a tip-
and-cue system, in which we use computer vision or 
other modalities of ML inferencing models to identify, 
with low latency, objects of interest in sensor data; once 
identified, tips are sent to other satellites to track the 
object and maintain continuous sensor coverage. The 
other use case is in onboard planning and scheduling 
based on tips or other external factors. 

We are also working to improve the software we’ve 
developed for this experiment. We are driven by the 
democratization of space, and the extension of familiar 
AWS tools and capabilities to space: we want to enable 
any software developer to work on space applications, 
no longer constrained to those few with niche 
knowledge of protocols and systems. With this concept, 
developers can dynamically uplink and update 
applications based on changing mission needs, run 
advanced algorithms like sensor fusion, execute 
containerized applications, and trigger serverless 
compute jobs. With the flexibility that AWS IoT 
Greengrass provides, developers writing code in a 
variety of commonly-used languages such as Java, Go, 

Figure 5: Illustration of outlier detection in time series data of sensor readings, with outliers marked in red. 
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PowerShell, Node.js, C#, Python, and Ruby can write 
satellite mission applications, not just traditional 
embedded software languages. 

By extending cloud computing to small satellites, we 
also enable flexibility for mission software in a number 
of other ways.  These extensions of the AWS cloud to 
space provide for the ability to use normal software 
CI/CD (Continuous Integration/Continuous 
Deployment) methodologies for on-orbit applications, 
transition existing software applications directly from 
ground to space, test software mission applications in a 
completely virtualized and inexpensive environment in 
the cloud, reuse application software between missions, 
and update mission software and configurations without 
impacting critical command and data handling systems 
and flight software. The AWS cloud also provides a 
new measure of operational and tool consistency, 
giving the ability to manage and automate terrestrial 
and space deployments with the same tools, use tested 
AWS security and infrastructure management, set and 
manage access permissions across space and ground, 
and sync data between space and ground using normal 
APIs. 
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