
O’Donnell 1 37th Annual Small Satellite Conference

SSC23-XIII-04

Extension of Cloud Computing to Small Satellites

Kathryn O’Donnell, Meghan Weber, Joy Fasnacht, Jeff Maynard, Margaret Cote, Shayn Hawthorne
Amazon Web Services

1320 SW Broadway #400, Portland, OR 97201; 503-703-3638
klodon@amazon.com

ABSTRACT
Time-to-insight is a critical measure in a number of satellite mission applications: detection and warning of fast-
moving events like fires and floods, or identification and tracking of satellites or missiles, for example. Current data
flows delay the time-to-insight on the order of minutes or hours, as all collected data must be downlinked in one or
more contact windows, then transited over terrestrial networks to the location of the analytic software. Additionally,
mission applications on spacecraft are often static: built prior to launch, they cannot rapidly adapt to changing needs
based on these insights.

To reduce time-to-insight and provide a dynamic application update capability, Amazon Web Services (AWS), D-
Orbit, and Unibap conducted a joint experiment in which we deployed AWS edge compute and network
management software onto Unibap’s SpaceCloud® iX5 platform for edge computing in space, integrated onto a D-
Orbit ION Satellite Carrier launched into low-earth orbit (LEO) in early 2022.

In this paper, we present the results of this experiment. We will discuss the software specifics and network
management capabilities we developed to write mission applications and update those mission applications on-orbit,
and detail the process of mission deployment and modification, communications latency, and data volume reduction.
We will also discuss how the space and satellite community can use this capability to deploy new applications,
performing complex tasks and reducing time-to-insight, to cloud-enabled satellites immediately without needing to
wait for a new launch.

INTRODUCTION
The AWS cloud is built to serve five primary user
advantages: agility, to allow teams to experiment and
innovate more frequently and quickly; cost savings, in a
pay-for-use model that leverages the economies of
cloud-scale infrastructure; elasticity, to easily scale to
the needs of the mission; faster innovation, to focus on
mission and not infrastructure; and global reach,
providing the most extensive, reliable, and secure
global cloud infrastructure.

Increasingly, satellite operators and space enterprises
tell us that they want access to these cloud advantages
on their space assets; in particular, they want the agility
to modify mission applications on their satellites post-
launch frequently, quickly, and securely, and they want
the faster time to innovation, to more easily implement
AI/ML capabilities to reduce downlink volumes and
potentially enable autonomous operations. With this in
mind, we developed a proof of concept that makes an
in-orbit satellite look and operate like any other edge
device in an AWS Virtual Private Cloud (VPC). This
gives operators the ability to securely log into that edge
device from the ground, start and stop processes, run
ML inference on the satellite, securely copy data to the

AWS cloud, and update mission software through
standard software release methods. These are necessary
components to quickly test and modify AI/ML
capabilities, and additionally provide AWS’s built-in
security, user access controls, and user interfaces.

We successfully achieved the two primary goals of our
experiment: perform inference and processing on data
while in orbit using AWS edge capabilities, and change
model configurations in flight using AWS edge service
APIs. Below, we detail the specific software and
hardware we used and the mission scenarios we tested
to achieve those goals.

SOFTWARE

Communications
To achieve our goal of looking and operating like any
other edge device in AWS, we wanted to use existing
AWS capabilities. AWS services are designed with an
API-first methodology that allows communication with
those services via the internet, specifically over IP
links, so we first needed to develop a way to manage IP
traffic across an RF link. With a LEO satellite, we also

O’Donnell 2 37th Annual Small Satellite Conference

needed to be able to handle intermittent connectivity on
a set time schedule, which is not a common use case in
our terrestrial applications.

To do this, we built custom network proxies with added
resiliency, managing the AWS-specific IP traffic over
the satellite’s physical RF link and creating a
connection between terrestrial AWS services and AWS
edge services on the satellite, abstracting the connection
so end users don’t need to spend time managing
communications. One end of the connection is in a
terrestrial VPC, with the other installed onto the
satellite.

We called the solution we created for the AWS cloud-
based end of this network pipe the space gateway. It
runs on an Elastic Compute Cloud (EC2) instance, a
virtualized computing environment, in an AWS VPC.
For the satellite, we created software we called the
space edge engine, which runs on the edge computer
onboard, in this case the Unibap SpaceCloud® iX5
platform for edge computing in space.

During a pass, once the signal is acquired, the space
edge engine on the satellite connects to the space
gateway with a full Transport Layer Security (TLS)
handshake. Users on the ground can then send
instructions to the AWS assets on the satellite through
the engine-to-gateway IP tunnel, and responses come
back through the tunnel. If a request or response is too
large to be sent before the end of signal, the gateway

will cache the data, close the connection cleanly, and
attempt to resume the data transfer during the next
connection window. The gateway keeps track of all
data transferred, and even if the signal is lost before
closing the connection, it will smoothly pick up that
data transfer the next time connection is re-established.

Security
At AWS, we build our applications, and recommend all
customers build their applications, according to our
published AWS Well-Architected Framework. This
framework consists of six pillars, one of which is
security. Our focus on security takes advantage of
AWS technologies to protect data, systems, and assets,
and we built our software for this experiment to adhere
to the best practices of the security pillar.

We utilized the AWS Identity and Access Management
service to ensure that AWS services terrestrially, as
well as space edge processing, can only be accessed by
the proper users using the proper roles. We
implemented Multi-Factor Authentication as a second
factor for defense in depth. We ensured that the IP
traffic that flows through our gateway-to-edge tunnel
between space and ground is cryptographically secured
using AES-256 encryption in the TLS protocol, and
encrypted the data that is stored within the AWS cloud
by making using of private keys created and rotated
within the AWS Key Management System (KMS). We
also made use of logging and monitoring systems that

Figure 1: A representative architecture of the extension of the AWS cloud to a small satellite.

O’Donnell 3 37th Annual Small Satellite Conference

come by default to all services within the AWS cloud
such as logging of all API and network traffic, and
automatic alerting via the Amazon CloudWatch system.

Processing
With the networking ability to communicate between
AWS edge processing onboard and the AWS cloud in
place, building on top of the secure foundation taking
advantage of existing cloud services, we then examined
options for how to run AWS services on the space edge
computer. We knew we would be in an intermittently-
connected state, we wanted to run containerized
applications, and we wanted to modify those
applications in-flight.

With those requirements in mind, we opted to
implement AWS IoT Greengrass on the space edge
engine. Greengrass is an open-source Internet of
Things (IoT) edge runtime and AWS cloud service that
helps users build, deploy and manage IoT applications
on devices. AWS IoT Greengrass inherently already
had a lot of the capabilities that we wanted: it is
lightweight and meant for edge devices that can go
through long periods of disconnection, which a satellite
could certainly be defined as; it is highly portable to
any X86 or ARM processor; and it gives the capability
to upload and deploy custom components that can run
without needing an always-on connection back to the
AWS cloud. The custom components give us flexibility
in the type of applications we could run – these can be
containers, micro-services, or even scripts. AWS IoT
Greengrass also manages the memory and compute
consumed by the components, so we didn’t need to
create additional capabilities to avoid overloading the
space edge computer. Finally, Greengrass was a good
choice for our requirements as it provides a lightweight
level of container orchestration, including dependency
adherence, monitoring, re-starting, and life-cycle
management through Over-the-Air (OTA) updates that
can be managed from our AWS VPC.

Additionally, AWS IoT Greengrass can support
machine learning inferencing, including the AWS
AI/ML service, Amazon SageMaker. SageMaker is a
managed service to prepare data and build, train, and
deploy machine learning models, is well-known within
the data science and machine learning engineering
communities, and is something we often use in-house to
build models. SageMaker supports a variety of ML
frameworks including TensorFlow, PyTorch, MXNet,
and XSBoost, and AWS IoT Greengrass inference
support allows models built with SageMaker (or other
AI/ML on-site tools) to be deployed to Greengrass and
make inferences on the edge device without additional
tuning.

AWS IoT Greengrass requires ARM or x86_64
architectures, 256MB of disk space, 96MB of RAM,
Java Runtime Environment (JRE) 8+ and GNU C
Library version 2.25+. Disk and RAM needed by the
custom components is in addition to these requirements.

HARDWARE

Satellite
For this experiment, our main requirement was an IP-
based radio to support our space gateway-to-engine
tunnel. We were not testing communication data rate or
sensor capability; we wanted to focus on our capability
to communicate between applications and AWS edge
service APIs on the satellite and AWS assets on the
ground, along with our capability to run ML inference
on the satellite.

We were happy to collaborate with D-Orbit, who built
and operated the host satellite, the D-Orbit ION
Satellite Carrier SCV-004, Elysian Elenora, and
Unibap, who built the host space computer, the
SpaceCloud® iX5 platform for edge computing in
space. D-Orbit’s ION Satellite Carriers have a
customizable 64U satellite dispenser, and can both
deploy CubeSats as well as directly integrate payloads
onto the platform. SCV-004 launched into low-earth
orbit (LEO) in early 2022 on the Falcon 9 Block 5, and
the integrated payload is shared by multiple customers,
one of which is AWS.

 Space Edge Computer
Given the requirements of AWS IoT Greengrass and
the types of machine learning inference payloads we
wanted to run, Unibap’s SpaceCloud® iX5 platform for
edge computing in space was a fit for our needs. It has
an embedded x86 AMD G-series System on Chip
(SOC), up to 240GB of SSD storage and 2GB DDR3
ECC RAM (CPU/GPU) coupled with accelerators for
neural network inference. The computer is designed
with a heterogeneous architecture with multiple
execution hosts and access to high-speed IO from
sensors and peripherals.

MISSION SCENARIO TESTING
Raw satellite imagery produces large amounts of data
which must be downloaded in limited connection
windows for LEO satellites. To account for this, most
satellite imagery is tasked for areas of the Earth that are
suspected to be of interest, with all post-processing
taking place terrestrially after the raw imagery data is
downloaded. The downside of this is that anomalous
events may not be captured, and the downloaded data

O’Donnell 4 37th Annual Small Satellite Conference

may be of low information value due to natural
phenomena like cloud cover.

The natural remedy to this downside is to perform
image processing and object detection on the satellite.
We wanted to raise the bar a little further, and not just
process and detect, but also create a capability to update
that processing and parameters to machine learning
inferencing in-orbit to accommodate changing mission
objectives.

With that in mind, we identified two primary goals with
our experiments: perform inference and processing on
data while in orbit, and change model configurations in
flight. We tested four common mission scenarios that
customers had indicated were of high importance: fire
detection, cloud masking, image processing, and sensor
outlier detection.

Fire Detection
In this scenario, we wanted to examine images of the
Earth’s surface and alert when indications of a fire were
present. Using labeled tiled images from NASA
Worldview data1, we used Amazon SageMaker to train
an EfficientNet-Lite image classification model on
TensorFlow-Lite, a version of TensorFlow optimized
for mobile, embedded, and edge devices [Figure 2]. In
particular, we used EfficientNet-Lite0 due to low

latency and small model size. The model we built
achieved 95% accuracy on the testing dataset.

As we weren’t testing the sensor with this model (and
we would not wish for an actual fire), we loaded images
to the satellite pre-launch to run our inference on. We
packaged our model and our inference code as AWS
IoT Greengrass custom components. We defined the
inference interval as a configurable value, and set it to
once per minute. The deployed model size was
~2.5MB, with inference latency in the range of 50-
100ms.

With this scenario, we were able to achieve our goal of
running inference on the satellite in orbit with AWS
edge capabilities. In future tests, we plan to change
configuration values as well as use processed imagery
from the on-board sensor.

Cloud Masking
The presence of clouds in Earth images can result in
unusable images occupying download bandwidth,
increasing costs and potentially reducing the amount of
information we can obtain from a satellite pass. In this
scenario, we created a custom model using Amazon
SageMaker that identified cloud-obscured portions of
an image based on a luminance threshold on pixels,
with an additional test for contours of the identified
portion to except rectangular shapes as those were

Figure 2: NASA Worldview 1300x1870 images are split into overlapping 256x256 tiles, classified as fire or
clear, then used to train a TF-Lite image classification model using EfficientNet-Lite0.

O’Donnell 5 37th Annual Small Satellite Conference

likely to be human-made objects. We then mask the
cloud-covered segments of the image to reduce file size
[Figure 3], with configurable settings for determining
the type and amount of cloud cover to mask and
download.

Figure 3: Clouds are masked with full black

#00000000, allowing greater compression of the
image.

We also successfully modified the thresholds for cloud
cover using the AWS IoT Greengrass configuration
update capability on the satellite to deploy new
configuration files with the modified thresholds during
a contact window.

With this scenario, we were able to achieve both our
goals: we performed inference and processing on the
satellite in orbit with AWS edge capabilities and
changed model configurations in flight using built-in
AWS edge service capabilities and APIs.

Image Processing
New types of imagers and cameras are being employed
and launched into orbit at an increasing rate. Often, the
new imagers have increased spectral range and
resolution, resulting in the onboard generation of very
large image datasets. If the images collected are of
novel type and resolution, then computer vision models
trained on older image types will not perform
optimally. To address this, we wanted to effectively
compress these images for download but maximize the
amount of variance preserved. We could then
subsequently label and train computer vision models
from the compressed images terrestrially, which would
then be uploaded to the satellite for optimal
performance on the satellite’s imagery.

In this scenario, inspired by published technical work2,
we processed images captured by a micro-opto-electro-
mechanical system (MOEMS) spectral imager with up

to 49 bands. We wanted to project the images from 49
to 3 bands, map those 3 bands to RGB [Figure 4], and
encode as JPEG. This allows us to capitalize on
efficient near-lossless JPEG compression.

Figure 4: Multiple bands are efficiently compressed
into three Principal Components, which are linear

combinations of the original bands, selected to
capture as much variance as possible.

Using Amazon SageMaker, we performed Principal
Component Analysis (PCA) on a set of 49-band images
similar to what would be available from a satellite
sensor, to project the information from 49 bands down
to 3 composite bands. We packaged the PCA model as
an AWS IoT Greengrass component and deployed it to
the satellite.

The three composite bands capture from 80 to 90% of
the variability present in all 49 bands, and an image can
be processed in the single millisecond range. We
included JPEG encoding quality thresholds as a
configurable value in the Greengrass component
configuration, which allows operators to set the balance
between file size and file integrity based on their
mission parameters.

With this scenario, we were able to achieve our goal of
performing processing on the satellite in orbit with
AWS edge capabilities. In future work, we anticipate
that we can retrain the PCA model in orbit using images
provided by the satellite sensor on-board.

Sensor Outlier Detection
For this scenario, we wanted to automatically determine
when internal sensor readings from the satellite go out
of nominal. We used Amazon SageMaker and sklearn
to implement the Isolation Forest Algorithm3, which is
an unsupervised method that creates binary trees to
identify anomalous data points, without needing prior
knowledge of nominal limits. We packaged this as an
AWS IoT Greengrass custom component and deployed
to the satellite.

O’Donnell 6 37th Annual Small Satellite Conference

In flight, we fed health data to the model, including
readings such as CPU temperature, GPU temperature,
and FPGA current [Figure 5]. The model identifies
readings that are beyond a configurable threshold of
number of branches created, and the threshold can be
adjusted in Greengrass configuration. The configuration
can also set the training windows for analysis.

This scenario achieved our goal of processing using
AWS edge capabilities, and also demonstrated the
capability to use data produced by the satellite in orbit.
We designed the component to be able to retrain on-
board, and our future work includes testing that
capability.

FUTURE DIRECTIONS
In addition to the specific future work described above,
we plan to work across AWS and our customers,
including those with mission areas in agriculture,
maritime, energy, automotive, and natural disaster
response, to identify use cases that can be served by on-
orbit processing, develop the components to execute
that processing, and deploy and run those components.

Two additional use cases we have already identified are
in the area of autonomous operations. The first is a tip-
and-cue system, in which we use computer vision or
other modalities of ML inferencing models to identify,
with low latency, objects of interest in sensor data; once
identified, tips are sent to other satellites to track the
object and maintain continuous sensor coverage. The
other use case is in onboard planning and scheduling
based on tips or other external factors.

We are also working to improve the software we’ve
developed for this experiment. We are driven by the
democratization of space, and the extension of familiar
AWS tools and capabilities to space: we want to enable
any software developer to work on space applications,
no longer constrained to those few with niche
knowledge of protocols and systems. With this concept,
developers can dynamically uplink and update
applications based on changing mission needs, run
advanced algorithms like sensor fusion, execute
containerized applications, and trigger serverless
compute jobs. With the flexibility that AWS IoT
Greengrass provides, developers writing code in a
variety of commonly-used languages such as Java, Go,

Figure 5: Illustration of outlier detection in time series data of sensor readings, with outliers marked in red.

O’Donnell 7 37th Annual Small Satellite Conference

PowerShell, Node.js, C#, Python, and Ruby can write
satellite mission applications, not just traditional
embedded software languages.

By extending cloud computing to small satellites, we
also enable flexibility for mission software in a number
of other ways. These extensions of the AWS cloud to
space provide for the ability to use normal software
CI/CD (Continuous Integration/Continuous
Deployment) methodologies for on-orbit applications,
transition existing software applications directly from
ground to space, test software mission applications in a
completely virtualized and inexpensive environment in
the cloud, reuse application software between missions,
and update mission software and configurations without
impacting critical command and data handling systems
and flight software. The AWS cloud also provides a
new measure of operational and tool consistency,
giving the ability to manage and automate terrestrial
and space deployments with the same tools, use tested
AWS security and infrastructure management, set and
manage access permissions across space and ground,
and sync data between space and ground using normal
APIs.

ACKNOWLEDGEMENTS
We would like to thank all the people who provided
support during the design, development, testing, and
operations of our experiment. This includes our
colleagues in the AWS Space Services Team, the AWS
Aerospace & Satellite team, and the AWS Professional
Services team, with particular appreciation to Nic
Ansell and his tremendous innovation and contribution,
and Kara Yang and Dan Iancu, our formidable Data
Scientists. We also would not have been able to
perform this experiment without our partners at D-Orbit
and Unibap.

REFERENCES
1. Imagery from the Worldview Snapshots

application (https://wvs.earthdata.nasa.gov), part
of the Earth Observing System Data and
Information System (EOSDIS).

2. Chen, G. and S.-E. Qian, “Evaluation and
comparison of dimensionality reduction
techniques and band selection”, Can. J. Rem.
Sens. 34, no. 1, pp. 26-36, 2008.

3. Liu, F.T., K.M. Ting and Z. -H. Zhou, "Isolation
Forest," 2008 Eighth IEEE International
Conference on Data Mining, Pisa, Italy, 2008,
pp. 413-422, doi: 10.1109/ICDM.2008.17.

