
[SSC23-XII-04]

Enabling Mission Success: A Student’s
Perspective on Developing a Ground Station

Sean Svihla1, Adrian Bryant2, Lucia Witikko3

Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, 1234 Innovation Drive,
Boulder, CO, 80303

Abstract

In recent years, The University of Colorado Boulder’s Laboratory for Atmospheric and Space Physics
(LASP) has grown its SmallSat Operations (SMOPS) program into a large team of students and pro-
fessionals managing the operations of multiple SmallSat missions. The team responsible for the on-site
ground station (GSOPS) includes a small team of students alongside professionals who help manage the
on-site UHF and S-band antennas, making use of open-source, commercial, and in-house software. In this
process, the student ground station team has adapted the limited time and resources of a single ground
station to accommodate the needs and science objectives of multiple missions. These accommodations
include the development of best practices for scheduling around pass overlap, the design of automation
capable of handling multiple missions without manual reconfiguration, and the implementation of robust
error handling and intuitive paging to reduce the need for human intervention. This paper describes in
more detail the students’ perspective on the challenges and creative solutions of maintaining and improv-
ing the ground station.

1Command Controller, LASP. Graduate Student, Applied Mathematics, University of Colorado Boulder
2Command Controller, LASP. Undergraduate Student, Aerospace Engineering, University of Colorado Boulder
3Command Controller, LASP. Undergraduate Student, Aerospace Engineering, University of Colorado Boulder

Contents

1 Introduction 2

2 Description of Hardware and Software 2

3 Objectives and Constraints 2
3.1 Objectives . 3
3.2 Constraints . 3

4 Approach and Perspective 4
4.1 Pass Automation . 4
4.2 Paging and Fault Tolerance . 4
4.3 Scheduling . 5

5 Results 5
5.1 Lessons Learned . 5
5.2 Accomplishments . 5

6 Final Remarks 6

7 Acknowledgements 6

Appendix A: Scheduling Processes 7
Previous Scheduling Process . 7
Current Scheduling Process . 7
Notable Changes . 7

Appendix B: Terminal Scheduling Tool 8

Svihla 1 37th Annual Small Satellite Conference

1 Introduction

As Laboratory for Atmospheric and Space
Physics’s (LASP) SmallSat Operations (SMOPS)
program has grown, so have the needs of its ground
station, incentivizing the inclusion of students in its
development and maintenance. The team responsible
for the on-site ground station (GSOPS) now includes
a small team of students who help manage the on-
site UHF and S-band antennas, making use of open-
source, commercial, and in-house software. GSOPS
is, among other things, responsible for generating
weekly schedules consistent with the science objec-
tives of in-flight missions, assisting with (primarily)
end-to-end testing of in-development missions, and
responding to anomalies related to the ground sta-
tion.

The SMOPS team now provides mission opera-
tions for three in-flight missions: Colorado Ultravio-
let Transit Experiment (CUTE), Compact Total Ir-
radiance Monitor (CTIM), and Colorado Inner Radi-
ation Belt Experiment (CIRBE). Since its creation,
the student ground station team has adapted the lim-
ited time and resource budgets of a single ground
station to accommodate the needs and science objec-
tives of multiple missions. The goal of this paper is
to share our, the student GSOPS team’s, perspective
on this development and on the challenges of operat-
ing a ground station under the constraints of multiple
missions.

In the following sections, we outline our goals for
addressing the challenge of accommodating multiple
missions with limited hardware, the constraints we
operated under, our solutions, and our lessons learned
from the process.

2 Description of Hardware and
Software

Fig.1 displays the command and control interfaces
of LASP’s in-flight missions. The ops machine ex-
changes commands and telemetry with the Ultra
High Frequency (UHF) band ground station machine
during real-time commanding, and the S-Band infras-
tructure acts as a channel for the high-rate downlink
of science data.

On both the UHF and S-Band Software Defined
Radio (SDR) machines, software interprets radio sig-
nals to and from the spacecraft. Our ground station
uses GNURadio, a free and open source SDR. Due to
different needs, each spacecraft has a slightly different
radio configuration.

In order to account for the Doppler Effect on the

frequency from a satellite moving nearly 7.5 km/s,
we apply a Doppler Correction on the ground. This
functionality is facilitated by a free and open source
software called Gpredict. Gpredict ingests the latest
two-line element (TLE) measurements from NORAD
and uses them to track a CubeSat’s orbit. This func-
tionality also allows Gpredict to act as our UHF ro-
tator control, commanding the physical antenna to
track the satellite across the sky. As the UHF SDR
interprets telemetry information, it forwards it to our
command and command and control software for an
operator to interact with. The S-Band GS system,
conversely, is self contained, operating independently.
It uses an SDR configured for a much higher S-Band
frequency. The data it detects and decodes is dis-
tributed to the CubeSat science teams. The S-Band
dish is a more complex system than the UHF rotator
and requires a different software, TrackGUI, to sup-
ply pointing commands. Since the tracking and radio
is split across two computers, the S-Band SDR also
requires Gpredict to apply a Doppler Correction.

Figure 1: GSOPS Data Concept

3 Objectives and Constraints

Because the ground station consists of only a single
UHF and single S-band antenna, it provides an inher-
ent scheduling challenge, and the unique constraints
of each mission demand careful coordination and con-
sideration of individual missions’ needs and science

Svihla 2 37th Annual Small Satellite Conference

objectives. As overlap is unavoidable and has the po-
tential to interrupt the delivery of data to the science
teams, it is the primary constraint around which we
have tried to organize operation of the ground sta-
tion.

Our ultimate goal is to manage the ground sta-
tion so as to provide timely delivery of data to the
science teams; however, this task requires more than
just time for downlinks. Throughout each planning
cycle, the planning and science teams coordinate with
one another on when science data will be collected,
when science data will be downlinked, and, most im-
portantly, when the spacecraft will be commanded to
do any of this. The latter two tasks, as well, require
the coordination of the ground station.

A ground station which serves a single missions
can be run with little automation: An instance of
Gpredict may be started as needed or left configured
for the mission indefinitely to allow for automated
commanding or scheduled overnight downlinks. A
second mission requires the operations team to either
invest a great deal of time in reconfiguring the ground
station between passes so that both missions can be
serviced or sacrifice otherwise good passes during pe-
riods when the ground station is configured for the
wrong mission. Both options prevent the ground sta-
tion from participating in an efficient cycle of plan-
ning and downlinking. Add a third mission, and this
task becomes almost impossible without around-the-
clock hands-on operating. The “off-console” work re-
quired to coordinate the process is just as time con-
suming.

Our desire for the ground station is that it can
(1) coordinate the schedules of multiple missions, (2)
operate with as much autonomy as is reasonable (in-
cluding reconfiguring itself between passes), and (3)
be adapted to new missions with novel scheduling
needs in the future. In the following sections, we de-
scribe the more concrete objectives we set in order to
meet this desire as well as the factors we identified as
limiting our ability to do so.

3.1 Objectives

The final implementation of the ground station
should be fault tolerant. A highly automated
ground station is only useful inasmuch as it can re-
spond to faults. One that requires hours of attention
responding to faults is not much better than one that
requires hours of attention to operate. A usefully au-
tonomous ground station is able to diagnose and re-
solve its own faults and elevate the issue to a human
operator only when absolutely necessary.

Of course, the ideal system does not have faults at

all; however, acknowledging that faults in general are
unavoidable, our goal is to create a system which is
robust to faults. Necessary for being robust to faults
is identification of common and easy-to-resolve faults
as well as a helpful paging system—that is, one that
does not “over-page” and thus get ignored. Wher-
ever reasonable, we would like the ground station to
resolve faults quietly and return quickly to normal
operation.

Some degree of human input cannot be avoided
(and might even be desired), but where this is nec-
essary the ground station should be easy to use.
Even a fault-tolerant system might be cumbersome if
anomaly resolution and routine human interactions
are unintuitive and needlessly complicated. Again, a
usefully autonomous ground station is able to guide
the user through its routine uses and meaningfully
point to unidentified or unresolved faults. This re-
duces the intensity with which future team member
need to be trained as well as makes the ground station
more accessible to non-members of the team.

The ground station is unlikely to ever be “fin-
ished”: There will continue to be new bugs patched
and new behaviors implemented; therefore, the sys-
tem should be easy to change. The software should
be modular to facilitate future work. Because we
want to minimize necessary downtime, anticipated
changes such as the addition of a new mission should
be possible through a user-interface.

3.2 Constraints

Development of a new system is constrained in that
we should not expand existing hardware. The
inclusion of other ground stations in the LASP net-
work might be a sensible solution; however, relying
on expansion of hardware alone comes at a steep cost
considering that a single set of hardware has ample
time to accommodate multiple missions, if only it can
be managed properly. Our improvements should fo-
cus on development of software that optimizes the use
of existing hardware rather than expansion of hard-
ware. If the system makes efficient use of limited soft-
ware first, then whenever hardware is expanded, we
can be more confident in the necessity of the expense
and effort.

A further constraint of this development is that
current operations cannot be halted even as the
need for improvement grows. We can neither halt
operations entirely during development nor leave the
old system in place until it is complete. This con-
strains both the manner and rhythm of development
as we are required to release features of the final de-
sign periodically as standalone updates. The result

Svihla 3 37th Annual Small Satellite Conference

is that design decisions might be made prematurely
or under more constraints than might otherwise be
present.

The operations team is responsible for more tasks
than planning and scheduling the ground station—
telemetry monitoring and delivery of science data, to
name a few–and many of these tasks require interfac-
ing with the spacecrafts’ schedule. As such, the new
system must operate within existing workflows.
These points of interface are the most immediate con-
straints on development, as the new system should be
outwardly identical to the old in order to not require
rewriting of an even larger set of software.

4 Approach and Perspective

4.1 Pass Automation

In reference to the data concept illustrated in Fig.1,
instances of ground station automation are hosted on
the SDR machines, which are the interface between
the physical antennas and the rest of the operations
system. We identified the need for reconfiguration
between passes as the primary source of unnecessary
human effort (and the primary challenge for automa-
tion to address).

Although every mission shares an interface to the
antennas, each requires a unique software-defined ra-
dio (SDR), tracking configuration, and radio con-
figuration, which contain such information as loca-
tion, uplink/downlink frequencies, modulation, and
encoding—without any of which even routine oper-
ations become infeasible. GNURadio makes it sim-
ple to setup and execute mission-specific SDRs from
the command-line; Gpredict, however, makes track-
ing and radio configuration inaccessible from the
command-line by default. We identified two behav-
iors we wished to be free of human interaction: the
abilities to (1) track and engage radio and rotator
controllers and (2) configure for a given satellite and
transponder.

With some effort, we implemented in our fork4

of Gpredict the option to track and engage the first
available radio and rotator on startup as well as
an expansion of the available configuration options.
These changes allow automation to swap predefined
mission-specific configuration files in and out of Gpre-
dict’s configuration directory and enable it to begin
tracking a satellite on startup automatically. Our
automation software now needs only to ingest the
ground station’s schedule and configure and execute
these programs as passes approach.

This newfound autonomy satisfies our desire for
the new system to be easy to use. Whereas the pre-
vious paradigm forced us to decide between wasted
effort or wasted passes, the new system can handle
complex schedules without human input—in fact, in
some cases, it can tear down and set up between
passes faster than a human operator, increasing the
total number of passes we can run in a day. Moreover,
because our design philosophy emphasized configura-
tion files, the system is easy to change to accommo-
date new missions.

4.2 Paging and Fault Tolerance

Fault tolerance consists of two halves: fault detec-
tion and fault response. The ground station should
be able to detect its own errors either resolve them or
escalate the issue to a human operator. To do this,
we needed to identify the most common detectable
errors, their urgency, and whether or not they can be
resolved procedurally.

Our paging design differentiates between “inter-
nal” and “external” fault detection. Pass automa-
tion can detect three internal faults: a failure of its
own sub-processes, the absence has a schedule file,
and invalid configuration files. If a fault interrupts
the automation process, however, we lose all inter-
nal fault detection. As automation might run indef-
initely without human input, such catastrophic fail-
ures might go unnoticed without a secondary paging
system.

This possibility necessitates an external watchdog
process. The watchdog references the pass schedule
to compare the running process with what it expects
at certain points in a pass. While in a pass, it expects
the SDR, tracking software (Gpredict), and pass au-
tomation to be running, and outside a pass it expects
only pass automation to be running. At regular in-
tervals throughout the day, the cron daemon executes
a program to assess and report on the status of the
entire ground station. This approach also allowed the
watchdog program to run to completion every time,
minimizing the inherent risk found in internal fault
detection.

With reliable fault detection in place, the system
becomes capable of several fault responses—for ex-
ample, the SDR might fail on startup, but internal
fault detection can detect this failure and restart the
program. The issue is escalated to a human opera-
tor only when necessary, a practice which helps to
prevent “page blindness”. A overactive notification
system with unimportant warnings can cause impor-

4A “fork” is a term used to describe a copy made of an open-source piece of code. Changes made to this copy affect the
internal implementation of the program without affecting the publicly available code.

Svihla 4 37th Annual Small Satellite Conference

tant warnings to be ignored.

If fault tolerance determines an issue is important
enough for intervention, then the tools required to fix
a problem should be built into the system. Pages in-
clude the detected error(s), the common response to
each error, and a diagnostic screenshot of the alert-
ing computer. The person in the loop can identify if
it is a common error and then follow the Standard
Operating Procedure (SOP) for that error.

4.3 Scheduling

As much effort is required to operate the ground sta-
tion according to a complex multi-mission schedule,
at least as much is required to design such a schedule.
The scheduling process must balance the objectives
and constraints of several missions, and doing so re-
quires the synthesis of information from a wide range
of tools and software, with more interfacing than any
other part of operations.

The primary factor complicating the scheduling
process is pass overlap, an increasingly present chal-
lenge with the addition of more missions. A human
scheduler must keep and delete weeks-worth of passes
according to mission-specific constraints on minimum
number of downlinks, maximum time between down-
link, and maximum elevation. This process occurs in
collaboration with science planning teams, and when
the science planning and ground station schedules
disagree, the scheduler is responsible for rescheduling.
As the number of missions increased, this juggling
act quickly became unmanageable and error-prone for
a single person, even with the minimal automation
which existed.

Despite its complexity, large parts of the schedul-
ing process are formulaic and lend themselves to au-
tomation. We compiled the many tools used by the
scheduler into a single piece of software able to gener-
ate a tenable schedule and, more importantly, iden-
tify where it fails to meet known constraints. The
task of the scheduler, then, becomes to review the
schedule and decide if and how failures to meet con-
straints can be mitigated.

This more autonomous process satisfies our de-
sire for the new system to be easy to use by removing
human input except where it is desired—that is, in re-
viewing the final schedule and making arbitrary con-
flict resolutions. Moreover, this ease of use makes the
system easy to change as well, as a modified schedule
can be generated quickly in response to immediate
operational needs.5

5 Results

5.1 Lessons Learned

The task of improving a functioning ground station
upon which operations of missions depends forced us
to compromise on the scope and speed of our devel-
opment. Working on such a dynamic system without
the option of downtime forced us to greatly compart-
mentalize our changes and design them in such a way
that they can be easily reverted from without disrupt-
ing the normal flow of operations. This fact further
constrained us to making improvements which fit in-
side of the current framework. The current state of
the ground station has room for improvement, but
we have placed it in a state that allows us to manage
the complex coordination required to operate it—and
the bandwidth the further improve upon it.

Any system, no matter how well-designed, will
encounter failures. Recognizing this, we designed a
system that is focused on robustness to faults rather
than removal of faults. Of course, when they are iden-
tified, bugs are pursued and solutions are attempted;
however, it is often the case that bugs are found in
operations rather than testing. In such cases, the
ground station should be able to operate until a patch
can be made. This ability is all the more important
in the development environment described, in which
more immediate tasks need to be dealt with in the
interest of continuous operations.

The improvements made to pass scheduling
taught us to evaluate the degree of manual control
necessary for an effective tool. Early on, we imag-
ined a completely autonomous scheduling process.
Throughout development, however, we found that
individual mission needs could change on a day-by-
day basis and impacted one another during periods of
pass overlap. We changed our philosophy from creat-
ing a tool to automate the entire process to a tool that
automated the most difficult steps. A computer can
better cross-check ground pass times against space-
craft downlinks, while a person can decide to priori-
tize a mission so its operations team can resolve an
anomaly. This lesson emphasized the importance of
good user interface design and accessibility of tools.

5.2 Accomplishments

These improvements culminated in a demonstrably
improved Ground System. The focus on ease-of-use
and adaptability meant that the addition of a third

5For a more detailed description of the changes between the previous and current versions of the scheduling process see Ap-
pendix A: Scheduling Processes. For a visual representation of the current scheduling tool in action, see Appendix B: Terminal
Scheduling Tool.

Svihla 5 37th Annual Small Satellite Conference

mission, CIRBE, was seamless. CIRBE’s rapid inte-
gration into the UHF and S-Band systems meant it
was fully commissioned in five days, a milestone pro-
jected by conservative estimates to be measured in
weeks.

Pass automation’s ability to recover from common
issues prevented an occasional SDR bug from causing
missed passes. Over the most active 12 day period,
the LASP Ground Station was able to successfully
complete 12% more UHF passes and 9% more S-Band
passes than it could have otherwise. These figures do
not include the increased pass time due to automatic
configuration between passes.

The most drastic upgrades to the Ground System
were within pass scheduling. New scheduling meth-
ods included the use of a more accurate pass propa-
gation software. Since pass schedules are created at a
weekly cadence, pass times should be accurate to at
least 6 days after generation. 6 days after creation,
the new pass propagation software was 16x as accu-
rate. Additionally, the previous method of weekly
pass scheduling was time and labor intensive. The
new method of pass scheduling reduced a 2 hour pro-
cess to a 15 minute process, a speedup of 8x.

6 Final Remarks

Our development of the ground station has been
driven by the need to more efficiently make use of
limited time and human resources to accommodate
multiple CubeSat missions. We identified scheduling
and pass configuration as the primary contributors
to wasted effort and created procedures to carry out
routine tasks within a fault-tolerant framework that
usefully guides human operators through tasks where
their input is needed. Critical to the ground station’s
success is its ability to adapt to new missions with
unique scheduling and configurational needs in the
future. Under this framework, operators are able to
focus their effort where it is most useful and depend
on a reliable system of automation. The current state
of the ground station is an efficient and easily main-
tainable system of automation capable of adapting to
unique needs in the future.

7 Acknowledgements

The LASP student ground station team would like
to thank the LASP Mission Operations team and the
LASP Smallsat Operations team for their support.

Special thanks to the following people:

Sierra Flynn -
LASP Mission Operations Manager for SmallSats,
LASP Flight Director

Gabe Bershenyi -
LASP Flight Controller

Dr. Adalyn Fyrhie -
LASP Systems Engineer

Scott Genari -
LASP Ground Station Enginner

Nicholas DeCicco -
LASP Professional Research Assistant

Svihla 6 37th Annual Small Satellite Conference

Appendix A: Scheduling Processes

Previous Scheduling Process

1. On each mission’s development computer, find all scheduled ATS downlinks for that mission

2. On the UHF SDR computer, generate the pass schedule for the next two weeks using an IDL script.

3. Manually edit pass schedule file:

(a) Open the schedule file in a csv editor.

(b) Manually verify that all overlaps were mitigated correctly.

(c) Manually verify that all passes with ATS downlinks are kept.

4. Convert the schedule file into .sav file using an IDL script.

5. On both the UHF SDR and S-band SDR computers, manually verify that automation is looking for
correct schedule and restart automation.

6. On the S-Band Dish computer, manually add every kept pass into TrackGUI.

7. On the UHF SDR computer, manually transfer all files to correct destinations.

8. On each mission’s development computer, generate and send the dayproc6 for that mission.

9. On each mission’s operations computer, restart OASIS-CC with the new dayproc for the mission.

10. Notify the ground station and smallsat mission operations teams that the scheduling process has been
completed.

Current Scheduling Process

1. On the UHF SDR computer, call the schedule generation python script for the next two weeks.

2. Use the manual editing functionality in this script to easily change the schedule (no manual checks
required, all are done automatically).

3. On both the UHF SDR and S-band SDR computers, manually verify that automation is looking for
correct schedule and restart automation.

4. On the S-Band Dish computer, mark all kept passes as track in TrackGUI (they will have been added
automatically).

5. On each mission’s operations computer, restart OASIS-CC7 with the new dayproc for the mission (they
will have been automatically generated and sent from the development computers).

Notable Changes

Many steps in the previous version of the scheduling process were automated when moving to the current
version. These step include: determining the scheduled ATS8 downlink times for each mission, checking that
all pass overlaps were correctly mitigated, checking that all passes with ATS downlinks are kept, converting
the schedule into desired file types, adding all kept passes to TrackGUI, transferring all files to correct
destinations, generating and sending the dayproc for each mission, and notifying all correct channels of the
completion of the scheduling process. With the automation of all these steps and the simplification of the
manual editing process, the total amount of time required to complete the weekly scheduling process dropped
from roughly two hours to under fifteen minutes.

6A “dayproc” is automation that allows the command and control computer to automatically connect to the ground station
at the correct pass time.

7OASIS-CC is LASP’s internal Command and Control software used to view spacecraft telemetry and send commands.
8”An “ATS” (Absolute Time Sequence) refers to commands stored onboard a spacecraft that execute at predetermined

times. The spacecraft is loaded with future pass times at which it is instructed to begin S-Band downlinks.

Svihla 7 37th Annual Small Satellite Conference

Appendix B: Terminal Scheduling Tool

Step 1:
The TLEs for each mission
are pulled from the web,
and are verified to be up to
date.
Step 2:
Using these TLEs, infor-
mation from the yml file,
and the python package
SkyField, the passes for all
missions are sorted by AOS
time.

Step 3:
Conflicts between mis-
sions are automatically
mitigated, and passes
with elevations under the
minimum requirement for
the UHF and S-Band an-
tennas are deleted. These
decisions are displayed in
the terminal for reference.

Svihla 8 37th Annual Small Satellite Conference

Step 4:
ATS downlink times oc-
curring within the sched-
ules time window are deter-
mined and printed to the
terminal for reference.

Svihla 9 37th Annual Small Satellite Conference

Step 5:
The initial schedule is
checked for overlaps, mis-
sion requirements, and
ATS downlink times. Er-
rors found by these checks
are printed to the terminal
for reference.

Schedule Display:
The current version of the
schedule is printed to the
terminal with specialized
highlighting to point out
errors.

Svihla 10 37th Annual Small Satellite Conference

Step 6:
Suggestions for edits are
displayed in the terminal
and the users is prompted
to begin manual editing.
The specific index of the
schedule chosen for manual
editing is displayed with all
suggestions.

Step 7:
The edited schedule is
checked for overlaps, mis-
sion requirements, and
ATS downlink times. Er-
rors found by these checks
are printed to the terminal
for reference.

Svihla 11 37th Annual Small Satellite Conference

Error Message:
The user is once again
prompted to manually edit,
after the schedule is dis-
played. If the user chooses
not to manually edit while
errors are still present, they
are once again prompted
to return to scheduling. If
they still choose not to, a
message will print to the
terminal noting this choice.

Step 8:
The schedule data is con-
verted into a .pkl file.
Step 9:
The schedule data is con-
verted into a .csv file.
Step 10:
The schedule data is con-
verted into a .xml file.
Step 11:
The .xml schedule file
is sent to TrackGUI via
HTTP POST request
where the passes are auto-
matically ingested.
Step 12:
The .pkl schedule file and
the .csv schedule file are
sent to various other loca-
tions for different scripts
to access.
Step 13:
The dayprocs are gen-
erated for each mission
and sent to that missions
corresponding operations
computer.
Step 14:
The ground station and
smallsat missions opera-
tions teams are notified
of the creation of the
schedule.

During the execution of this script, all pertinent information is logged in the schedule log file for that week,
and all error messages are additionally logged in the schedule error log file for that week. This ensures that
each weeks scheduling process is well documented, allowing for reference and analysis later down the road.

Svihla 12 37th Annual Small Satellite Conference

	Introduction
	Description of Hardware and Software
	Objectives and Constraints
	Objectives
	Constraints

	Approach and Perspective
	Pass Automation
	Paging and Fault Tolerance
	Scheduling

	Results
	Lessons Learned
	Accomplishments

	Final Remarks
	Acknowledgements
	Appendix A: Scheduling Processes
	Previous Scheduling Process
	Current Scheduling Process
	Notable Changes

	Appendix B: Terminal Scheduling Tool

