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Motivation: Advance technology for low-cost RPO missions, e.g.

– Space debris remediation

– Inspection/servicing/assembly of other systems

Mission: Develop a physical satellite platform and GNC 

framework for CubeSat rendezvous & formation flight

Vehicles: Two identical 3Us

Presentation Focus: Optimization-based guidance for RPO emphasizing:

• Autonomy

• Safety

• Reference tracking performance

• Fuel economy

Funding: NASA Space Technology Mission Directorate
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Automaton Representation Transition balance from fuel-economy

to formation flying performance

Return focus to fuel
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Close the Vast Majority of Intersatellite Distance

SC

Resident 

Space 

Object 

(RSO)

Active

Spacecraft

(SC)

Optimization Structured for Fuel Economy

• Once terminal state error is “good enough”,

exclusively focus on minimizing fuel use

• Cost function design yields more impulsive 

thrust trajectory than typical optimal controllers

Optimal Feedforward Net Thrust Trajectory

Generated by Sequential Convex Programming

• Numerous optimizations with nonlinear models

• Optimization 𝑖 informs optimization 𝑖 + 1
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+ Online measurement feedback
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Enabled by switching to typical quadratic 

cost function

Feedback includes both SC & RSO states
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“Safety Ellipse” Formations

⟹ Collision Avoidance & Fuel Economy

Safety Ellipse: unforced response of Clohessy-

Wiltshire linearization of relative astrodynamics

Ingress Requires More Accuracy

than Other Stages

• MPC tuned for greater robustness & aggression

– e.g. 75% shorter reoptimization period

INGRESS

6

Attain Desired Flying Formation

SC

RSO

Along-

Track

Radial

Passively Safe Ellipse Geometry:

SC position trajectory never crosses 

RSO along-track direction

Safety Ellipse

Enables switch from nonlinear to linear MPC
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Disturbances Degrade Formation Over Time

Ingress error, linearization error, knowledge error, 

non-spherical gravitation, drag, etc.

Reference Tracking is Relaxed to Reduce Fuel Use

• Formation is easier to hold than enter

• Deadzone: error below threshold is treated as zero
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Along-

Track
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Safety Ellipse

Passively Safe Ellipse Geometry:

SC position trajectory never crosses 

RSO along-track direction
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• Risk known before launch; redesigned MPPT rolled 

out to other vehicles, but did not fit in 3U CPOD bus

Disturbances from Cold Gas Prop System

• Rebuilds by system vendor reduced total Δv

• 2 thrusters stuck open on one vehicle

• Plenum pressure varied widely (up to 75% error)

⟹ Thrust force likely varied widely

ON-ORBIT HARDWARE CHALLENGES
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Out on 

Flight 1

Out on 

Flight 2

Challenges from external hardware

limited the mission and 

stress-tested RPO capabilities
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Two major semi-autonomous experiments were performed

157 km 0.36 km

997 km 2.57 km

12 days

Δv = 0.3 m/s

7 days

Δv = 2.2 m/s
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Two major semi-autonomous experiments were performed

157 km 0.36 km

997 km 2.57 km

12 days

Δv = 0.3 m/s

7 days

Δv = 2.2 m/s

Substantially better than the 

closure desired to switch to 

full autonomy (5-50 km) 
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Fully Autonomous Experiment Telemetry (All Thrusters Closeable)
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Fully Autonomous Experiment Telemetry (All Thrusters Closeable)

Passive Safety

Min. Dist. To Desired 

Safety Ellipse: 473 m
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Fully Autonomous Experiment Telemetry (All Thrusters Closeable)

Passive Safety

Min. Dist. To Desired 

Safety Ellipse: 473 m

Initial Condition:

SC Drifting Away
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Safety Ellipse: 473 m

Initial Condition:

SC Drifting Away

Autonomous
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Autonomous
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Fully Autonomous Experiment Telemetry (All Thrusters Closeable)

Passive Safety

Min. Dist. To Desired 

Safety Ellipse: 473 m

Initial Condition:

SC Drifting Away

Autonomous

Orbit Raising 

and Lowering

Termination due to 

Solar Cell Outage

Countermeasure: 

Constrain Attitude to 

Maximize Power Gen
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Fully Autonomous Experiment Telemetry (2 Thrusters Stuck Open)
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Termination due to 

Fuel Depletion

Fully Autonomous Experiment Telemetry (2 Thrusters Stuck Open)
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Termination due to 

Fuel Depletion

Fully Autonomous Experiment Telemetry (2 Thrusters Stuck Open)

Passive Safety

Min. Dist. To Desired 

Safety Ellipse: 254 m
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Termination due to 

Fuel Depletion

Robustness:

Rejection of Propulsion System 

Disturbances

Fully Autonomous Experiment Telemetry (2 Thrusters Stuck Open)

Passive Safety

Min. Dist. To Desired 

Safety Ellipse: 254 m
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Flight Telemetry vs. Simulation With Constant Thruster Force

Plotted from RPO start time to time of minimum position error on-orbit
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Flight Telemetry vs. Simulation With Constant Thruster Force

Plotted from RPO start time to time of minimum position error on-orbit
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• Plenum pressure error varies widely

⟹ assumption violated in reality
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Flight Telemetry vs. Simulation With Constant Thruster Force

Plotted from RPO start time to time of minimum position error on-orbit
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RPO Design Provides Robustness



w w w. t e r r a n o r b i t a l . c o m

ON-ORBIT RPO RESULTS

12

Flight Telemetry vs. Simulation With Constant Thruster Force

Plotted from RPO start time to time of minimum position error on-orbit
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Flight Telemetry vs. Simulation With Constant Thruster Force

Plotted from RPO start time to time of minimum position error on-orbit
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(All thrusters closeable) Largest Simulation Assumption: 

Known Constant Thruster Force

• Plenum pressure error varies widely

⟹ assumption violated in reality

RPO Design Provides Robustness

• SC stably converges to target

Disturbances still impact outcome

• Simulation converges faster
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Key Accomplishments

• 5 major experiments yielding rendezvous and passively safe formations

• 3 guidance algorithms validated on-orbit for autonomous RPO

• Exceptional robustness to disturbance forces

Key Lesson Learned

• Primary performance bottleneck: propulsion system reliability

• Dynamic modeling will improve performance with existing hardware

• Improved hardware will further increase performance and flexibility
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