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Motivation:

Vehicles:

Presentation Focus:

@/ Funding:

Mission:

Advance technology for low-cost RPO missions, e.g.
— Space debris remediation
— Inspection/servicing/assembly of other systems

Develop a physical satellite platform and GNC
framework for CubeSat rendezvous & formation flight

Two identical 3Us

Optimization-based guidance for RPO emphasizing:
* Autonomy

« Safety

* Reference tracking performance
* Fuel economy

NASA Space Technology Mission Directorate N
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Automaton Representation

—

Far-Field
Rendezvous

Near-Field
Rendezvous

Model Predictive
Control
(Nonlinear)

Sequential Convex
Programming

Transition balance from fuel-economy
to formation flying performance

Operator
Command \ Return focus to fuel
Intersatellite Distance \

Condition \

Formation Position /Velocity
Error Condition .

Ingress

Formation
Maintenance

Model Predictive
Control
(Linear)

Linear Quadratic
Regulator
+ Deadzone
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FAR-FIELD RENDEZVOUS

Close the Vast Majority of Intersatellite Distance

Active
Spacecratft

Resident
Space
Object
(RSO)



FAR-FIELD RENDEZVOUS
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Close the Vast Majority of Intersatellite Distance

Optimization Structured for Fuel Economy

* Once terminal state error is “good enough”,
exclusively focus on minimizing fuel use

« Cost function design yields more impulsive
thrust trajectory than typical optimal controllers

Resident
Space
Object
(RSO)

Active
W, Spacecraft
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Close the Vast Majority of Intersatellite Distance

Optimization Structured for Fuel Economy

* Once terminal state error is “good enough”,
exclusively focus on minimizing fuel use

« Cost function design yields more impulsive
thrust trajectory than typical optimal controllers

Optimal Feedforward Net Thrust Trajectory
Generated by Sequential Convex Programming
 Numerous optimizations with nonlinear models
e Optimization i informs optimization i + 1

Resident
Space
Object
(RSO)

Active
v Spacecraft
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Compensate for Error Accumulation of Feedforward Guidance in Far-Field Rendezvous



NEAR-FIELD RENDEZVOUS
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Compensate for Error Accumulation of Feedforward Guidance in Far-Field Rendezvous

Model Predictive Control

Periodic reoptimization of thrust trajectory

+ Online measurement feedback
= Disturbance rejection

>

Reference —
o _Q_PE'{';'l_Z_e_r__M _____ U
| f Tuning § antA ode; ———
|:Parameters:: P | Trajectory

Extract First
Time Step

Model Predictive Control (MPC)

u

P
Thrust

Now

Plant

Output
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Compensate for Error Accumulation of Feedforward Guidance in Far-Field Rendezvous

Model Predictive Control Full Autonomy & Onboard Optimization
Periodic reoptimization of thrust trajectory Enabled by switching to typical quadratic
+ Online measurement feedback cost function
= Disturbance rejection Feedback includes both SC & RSO states
: Model Predictive Control (MPC)

Reference — . Output
r e T Opth1)||zerM - U _ Extract First u_ | Plant Yy
—# Hning ant OGS | Thrust Time Step | Thrust P

Parameters:: P | Trajectory " Now
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Attain Desired Flying Formation

“Safety Ellipse” Formations
= Collision Avoidance & Fuel Economy sC Safety Ellipse

Safety Ellipse: unforced response of Clohessy- m
UUU \ RSO

Wiltshire linearization of relative astrodynamics
Radial‘

Along-
Track

<«
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INGRESS

Attain Desired Flying Formation

“Safety Ellipse” Formations

— Collision Avoidance & Fuel Economy sc Safety Ellipse
Safety Ellipse: unforced response of Clohessy- Along-
Wiltshire linearization of relative astrodynamics Track

UV N\

Radial |

RSO

Passively Safe Ellipse Geometry:
SC position trajectory never crosses
RSO along-track direction
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INGRESS

Attain Desired Flying Formation

“Safety Ellipse” Formations

— Collision Avoidance & Fuel Economy sc Safety Ellipse
Safety Ellipse: unforced response of Clohessy- Along-
Wiltshire linearization of relative astrodynamics Track

UV N\

Radial |

RSO

Passively Safe Ellipse Geometry:
SC position trajectory never crosses
RSO along-track direction




@ TERRAN ORBITAL
ING RESS www.terranorbital.com

Attain Desired Flying Formation

“Safety Ellipse” Formations
— Collision Avoidance & Fuel Economy e

Safety Ellipse: unforced response of Clohessy-
Wiltshire linearization of relative astrodynamics

Enables switch from nonlinear to linear MPC UUU \
RSO

Radial |

Safety Ellipse

Along-
Track

Passively Safe Ellipse Geometry:
SC position trajectory never crosses
RSO along-track direction
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Attain Desired Flying Formation

“Safety Ellipse” Formations
— Collision Avoidance & Fuel Economy

Safety Ellipse: unforced response of Clohessy-
Wiltshire linearization of relative astrodynamics

Enables switch from nonlinear to linear MPC

Ingress Requires More Accuracy
than Other Stages

 MPC tuned for greater robustness & aggression
— e.g. 75% shorter reoptimization period

sC Safety Ellipse
Along-
Track

T =

Radial |

Passively Safe Ellipse Geometry:
SC position trajectory never crosses
RSO along-track direction
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Indefinite Compensation for Disturbances

N

Safety Ellipse

Radial !

SC

Along-
Track

RSO

Passively Safe Ellipse Geometry:
SC position trajectory never crosses
RSO along-track direction
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Indefinite Compensation for Disturbances

Disturbances Degrade Formation Over Time Safety Ellipse

Ingress error, linearization error, knowledge error, 2
non-spherical gravitation, drag, etc.
Radial

Along-
Track

RSO

Passively Safe Ellipse Geometry:
SC position trajectory never crosses
RSO along-track direction
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Indefinite Compensation for Disturbances

Disturbances Degrade Formation Over Time Safety Ellipse
Ingress error, linearization error, knowledge error, SC
non-spherical gravitation, drag, etc.

\ RSO
Reference Tracking is Relaxed to Reduce Fuel Use Radial ‘/
 Formation is easier to hold than enter passively Safe Ellipse Geometry:

« Deadzone: error below threshold is treated as zero SC position trajectory never crosses
RSO along-track direction

Along-
Track
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Reduced Solar Power Generation
« Both vehicles lost 5-10 W of generation capacity

« Likely due to an inaccurate integrated circuit spec

* Risk known before launch; redesigned MPPT rolled
out to other vehicles, but did not fit in 3U CPOD bus

Disturbances from Cold Gas Prop System
« Rebuilds by system vendor reduced total Av
« 2 thrusters stuck open on one vehicle

* Plenum pressure varied widely (up to 75% error)
= Thrust force likely varied widely

Out on

b Flight 2

Command Thrusters Closed + Plenum Prssr = Orbit A

6875.5

Mean Semimajor Axis [km]
2 g
o J o [ o
q o ¥ » g
w (@) ] SN (@)] (&)]

6872.5

= Leaking Thrusters

°
o

S
o

e .

= S

FLT 2 Telemetry |
FLT 2 Linear Fit
FLT 1 Telemetry
FLT 1 Linear Fit
I FLT 1 Pressurized |

Mar 30

Apr 02 Apr 05 Apr 08

Time [UTC]

Apr 11
2023 8
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V/

Out on
) Flight 2

Out on
Flight 1

Cha”enges from e)fteltnal hardware Command Thrusters Closed + Plenum Prssr = Orbit A
limited the mission and - Leaking Thrusters

6875.5
stress-tested RPO capabilities T b
X 6875 [N TS
L2 *'§::::§,
< 687451 y T
5 #QQI::\ |
T 6874} R
é ¥:::::'¢
® 6873.5 FLT 2 Telemetry |- " aiia
N ' : : el
""" FLT 2 Linear Fit %:Q,.
C '§:§§
S 6873 FLT 1 Telemetry il N
s [eeees FLT 1 Linear Fit prN
68725 I FLT 1 Pressurized |

Mar 30 Apr 02 Apr 05 Apr 08 Apr 11
Time [UTC] 2023 8
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Two major semi-autonomous experiments were performed

12 days
157 km » 0.36 km
Av = 0.3 m/s

7 days
Av =2.2m/s

997 km » 2.57 km
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Two major semi-autonomous experiments were performed

157 km

997 km

/ ~
12 days f \,
—» (0.36 km |
Av =0.3 m/s | |
|
l
|
7 days | |
—> 2.57 km 1
Av =2.2 m/s . !
SN e e e e o e 7’

Substantially better than the
closure desired to switch to
full autonomy (5-50 km)
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Fully Autonomous Experiment Telemetry (All Thrusters Closeable)

Target's Radial Direction [km]

1
—
T

1
N

1
w

Two Views of Spacecraft Position Relative to Target's State

o

r

Target's Orbit-normal Direction [km]
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[ ]
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Passive (Post-RPO)

% Target
O SC Start
B SCEnd

-4 -3 -2 -1 0 1
Target's Radial Direction [km]
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Fully Autonomous Experiment Telemetry (All Thrusters Closeable)

Passive Safety
Two Views of Spacecraft Position Relative to Target's State _ _ _
- Min. Dist. To Desired

Passive (Pre-RPO)

Ingress
Passive (Post-RPO)

: Rendezvous Safety E”lpse 473 m

o

o
o
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T T
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o
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Fully Autonomous Experiment Telemetry (All Thrusters Closeable)

Passive Safety
Two Views of Spacecraft Position Relative to Target's State _ _ _
p—— - Min. Dist. To Desired
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Fully Autonomous Experiment Telemetry (All Thrusters Closeable)

~ Two Views of Spacecraft Position Relative to Target's State

* Passive (Pre-RPO)
* Rendezvous
Ingress

-0.51

Target's Radial Direction [km]

Target's Orbit-normal Direction [km]
o

% Target
O SC Start
B SCEnd

Passive Safety

Min. Dist. To Desired
Safety Ellipse: 473 m

Passive (Post-RPO)
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Fully Autonomous Experiment Telemetry (All Thrusters Closeable)

Passive Safety
~ Two Views of Spacecraft Position Relative to Target's State

. Min. Dist. To Desired

* Passive (Pre-RPO) . .
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Fully Autonomous Experiment Telemetry (All Thrusters Closeable)

Passive Safety
~ Two Views of Spacecraft Position Relative to Target's State
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Fully Autonomous Experiment Telemetry (All Thrusters Closeable)

Passive Safety
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Fully Autonomous Experiment Telemetry (All Thrusters Closeable)

Termination due to
Solar Cell Outage

Countermeasure:
Constrain Attitude to
Maximize Power Gen
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Fully Autonomous Experiment Telemetry (2 Thrusters Stuck Open)
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Fully Autonomous Experiment Telemetry (2 Thrusters Stuck Open)

Two Views of Spacecraft Position Relative to Target's State
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Fully Autonomous Experiment Telemetry (2 Thrusters Stuck Open)

Two Views of Spacecraft Position Relative to Target's State
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Fully Autonomous Experiment Telemetry (2 Thrusters Stuck Open)

Two Views of Spacecraft Position Relative to Target's State
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Fully Autonomous Experiment Telemetry (2 Thrusters Stuck Open)

Target's Radial Direction [km]

Two Views of Spacecraft Position Relative to Target's State
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Fully Autonomous Experiment Telemetry [(2 Thrusters Stuck Open))

~

&

mo Views of Spacecraft Position Relative to Target's State

Robustness:

Disturbances

=

Rejection of Propulsion System
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Flight Telemetry vs. Simulation With Constant Thruster Force
Plotted from RPO start time to time of minimum position error on-orbit

Orbit-normal [km]

(All thrusters closeable)
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Flight Telemetry vs. Simulation With Constant Thruster Force
Plotted from RPO start time to time of minimum position error on-orbit

(All thrusters closeable) Largest Simulation Assumption:
Known Constant Thruster Force

o o
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Flight Telemetry vs. Simulation With Constant Thruster Force
Plotted from RPO start time to time of minimum position error on-orbit

g (All thrusters closeable) Largest Simulation Assumption:
g 03 Known Constant Thruster Force
s -0.5 - :
& * Plenum pressure error varies widely
s 18 = assumption violated in reality
'q/ &
0’79\} 10
/>
‘90,{./ 8
T
* Flight : Rendezvous ®  Flight: Ingress
Sim : Rendezvous Sim : Ingress 0
¥  Target O SC Start o -]
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Flight Telemetry vs. Simulation With Constant Thruster Force
Plotted from RPO start time to time of minimum position error on-orbit

(:4‘} TERRAN ORBITAL"

g (All thrusters closeable) Largest Simulation Assumption:
g 03 Known Constant Thruster Force
s -0.5 - :
& * Plenum pressure error varies widely
s 18 = assumption violated in reality
%, - RPO Design Provides Robustness
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Flight Telemetry vs. Simulation With Constant Thruster Force

Plotted from RPO start time to time of minimum position error on-orbit

(All thrusters closeable) Largest Simulation Assumption:

Known Constant Thruster Force
) ))—\ * Plenum pressure error varies widely
14\

o o
(@) [e]é)]

18

Orbit-normal [km]

= assumption violated Iin reality

RPO Design Provides Robustness
« SC stably converges to target

* Flight : Rendezvous ®  Flight: Ingress
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Flight Telemetry vs. Simulation With Constant Thruster Force

Plotted from RPO start time to time of minimum position error on-orbit

(All thrusters closeable) Largest Simulation Assumption:

Known Constant Thruster Force
) ))—\ * Plenum pressure error varies widely
14\

o o
(@) [e]é)]

18

Orbit-normal [km]

= assumption violated Iin reality

RPO Design Provides Robustness
« SC stably converges to target

g Rendezvors =+ Fioht: Inaress Disturbances still impact outcome

Sim : Rendezvous Sim : Ingress 0 0
¥ Target O SC Start o 1
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Flight Telemetry vs. Simulation With Constant Thruster Force
Plotted from RPO start time to time of minimum position error on-orbit

(All thrusters closeable) Largest Simulation Assumption:

Known Constant Thruster Force
) ))—\ * Plenum pressure error varies widely
14\

o o
(@) [e]é)]

18

Orbit-normal [km]

= assumption violated Iin reality

RPO Design Provides Robustness
« SC stably converges to target

g Rendezvors =+ Fioht: Inaress Disturbances still impact outcome

Sim : Rendezvous Sim : Ingress 0 0 ° i i
* oot 0 ae e L Simulation converges faster
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Key Accomplishments

* 5 major experiments yielding rendezvous and passively safe formations
« 3 guidance algorithms validated on-orbit for autonomous RPO

« EXxceptional robustness to disturbance forces

Key Lesson Learned

* Primary performance bottleneck: propulsion system reliability
« Dynamic modeling will improve performance with existing hardware
« Improved hardware will further increase performance and flexibility

Funding Acknowledgment
NASA Space Technology Mission Directorate
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