

CubeSat **Proximity Operations Demonstration** (CPOD) **Mission Results**

August 9, 2023

I. A. Spiegel, B. Zhou, R. J. Goodloe, B. Fox, J. DiMatteo

CPOD INTRODUCTION

Motivation: Advance technology for low-cost RPO missions, e.g.

Space debris remediation

Inspection/servicing/assembly of other systems

Mission: Develop a physical satellite platform and GNC

framework for CubeSat rendezvous & formation flight

Vehicles: Two identical 3Us

Presentation Focus: Optimization-based guidance for RPO emphasizing:

Autonomy

Safety

Reference tracking performance

Fuel economy

Funding: NASA Space Technology Mission Directorate

RPO ARCHITECTURE OVERVIEW

Automaton Representation

RPO ARCHITECTURE OVERVIEW

Close the Vast Majority of Intersatellite Distance

FAR-FIELD RENDEZVOUS

Close the Vast Majority of Intersatellite Distance

Optimization Structured for Fuel Economy

- Once terminal state error is "good enough", exclusively focus on minimizing fuel use
- Cost function design yields more impulsive thrust trajectory than typical optimal controllers

FAR-FIELD RENDEZVOUS

Close the Vast Majority of Intersatellite Distance

Optimization Structured for Fuel Economy

- Once terminal state error is "good enough", exclusively focus on minimizing fuel use
- Cost function design yields more impulsive thrust trajectory than typical optimal controllers

Optimal Feedforward Net Thrust Trajectory

Generated by Sequential Convex Programming

- Numerous optimizations with nonlinear models
- Optimization i informs optimization i + 1

NEAR-FIELD RENDEZVOUS

Compensate for Error Accumulation of Feedforward Guidance in Far-Field Rendezvous

NEAR-FIELD RENDEZVOUS

Compensate for Error Accumulation of Feedforward Guidance in Far-Field Rendezvous

Model Predictive Control

Periodic reoptimization of thrust trajectory

- + Online measurement feedback
 - = Disturbance rejection

NEAR-FIELD RENDEZVOUS

Compensate for Error Accumulation of Feedforward Guidance in Far-Field Rendezvous

Model Predictive Control

Periodic reoptimization of thrust trajectory

- + Online measurement feedback
 - = Disturbance rejection

Full Autonomy & Onboard Optimization

Enabled by switching to typical quadratic cost function

Feedback includes both SC & RSO states

"Safety Ellipse" Formations

⇒ Collision Avoidance & Fuel Economy

Safety Ellipse: unforced response of Clohessy-Wiltshire linearization of relative astrodynamics

"Safety Ellipse" Formations

⇒ Collision Avoidance & Fuel Economy

Safety Ellipse: unforced response of Clohessy-Wiltshire linearization of relative astrodynamics

"Safety Ellipse" Formations

⇒ Collision Avoidance & Fuel Economy

Safety Ellipse: <u>unforced</u> response of Clohessy-Wiltshire linearization of relative astrodynamics

"Safety Ellipse" Formations

⇒ Collision Avoidance & Fuel Economy

Safety Ellipse: <u>unforced</u> response of Clohessy-Wiltshire <u>linearization</u> of relative astrodynamics Enables switch from nonlinear to linear MPC

INGRESS

Attain Desired Flying Formation

"Safety Ellipse" Formations

⇒ Collision Avoidance & Fuel Economy

Safety Ellipse: <u>unforced</u> response of Clohessy-Wiltshire <u>linearization</u> of relative astrodynamics Enables switch from nonlinear to linear MPC

Ingress Requires More Accuracy than Other Stages

- MPC tuned for greater robustness & aggression
 - e.g. 75% shorter reoptimization period

Indefinite Compensation for Disturbances

FORMATION MAINTENANCE

Indefinite Compensation for Disturbances

Disturbances Degrade Formation Over Time

Ingress error, linearization error, knowledge error, non-spherical gravitation, drag, etc.

FORMATION MAINTENANCE

Indefinite Compensation for Disturbances

Disturbances Degrade Formation Over Time

Ingress error, linearization error, knowledge error, non-spherical gravitation, drag, etc.

Reference Tracking is Relaxed to Reduce Fuel Use

- Formation is easier to hold than enter
- Deadzone: error below threshold is treated as zero

ON-ORBIT HARDWARE CHALLENGES

Reduced Solar Power Generation

- Both vehicles lost 5-10 W of generation capacity
- Likely due to an inaccurate integrated circuit spec
- Risk known before launch; redesigned MPPT rolled out to other vehicles, but did not fit in 3U CPOD bus

Out on Flight 1 Flight 2

Disturbances from Cold Gas Prop System

- Rebuilds by system vendor reduced total Δν
- 2 thrusters stuck open on one vehicle
- Plenum pressure varied widely (up to 75% error)
 ⇒ Thrust force likely varied widely

ON-ORBIT HARDWARE CHALLENGES

Challenges from external hardware limited the mission and stress-tested RPO capabilities

Two major semi-autonomous experiments were performed

Two major semi-autonomous experiments were performed

Substantially better than the closure desired to switch to full autonomy (5-50 km)

TERRAN ORBITAL www.terranorbital.com

ON-ORBIT RPO RESULTS

Fully Autonomous Experiment Telemetry (2 Thrusters Stuck Open)

Two Views of Spacecraft Position Relative to Target's State **Termination due to** 0.2 **Fuel Depletion** 0.15 0.05 Robustness: Rejection of Propulsion System -0.05 **Disturbances** -0.1-0.15

Flight Telemetry vs. Simulation With Constant Thruster Force

Plotted from RPO start time to time of minimum position error on-orbit

Flight Telemetry vs. Simulation With Constant Thruster Force

Plotted from RPO start time to time of minimum position error on-orbit

Largest Simulation Assumption: Known Constant Thruster Force

Flight Telemetry vs. Simulation With Constant Thruster Force

Plotted from RPO start time to time of minimum position error on-orbit

Largest Simulation Assumption: Known Constant Thruster Force

Plenum pressure error varies widely
 ⇒ assumption violated in reality

Flight Telemetry vs. Simulation With Constant Thruster Force

Plotted from RPO start time to time of minimum position error on-orbit

Largest Simulation Assumption: Known Constant Thruster Force

Plenum pressure error varies widely
 ⇒ assumption violated in reality

RPO Design Provides Robustness

Flight Telemetry vs. Simulation With Constant Thruster Force

Plotted from RPO start time to time of minimum position error on-orbit

Largest Simulation Assumption: Known Constant Thruster Force

Plenum pressure error varies widely
 ⇒ assumption violated in reality

RPO Design Provides Robustness

SC stably converges to target

Flight Telemetry vs. Simulation With Constant Thruster Force

Plotted from RPO start time to time of minimum position error on-orbit

Largest Simulation Assumption: Known Constant Thruster Force

Plenum pressure error varies widely
 ⇒ assumption violated in reality

RPO Design Provides Robustness

SC stably converges to target

Disturbances still impact outcome

Flight Telemetry vs. Simulation With Constant Thruster Force

Plotted from RPO start time to time of minimum position error on-orbit

Largest Simulation Assumption: Known Constant Thruster Force

Plenum pressure error varies widely
 ⇒ assumption violated in reality

RPO Design Provides Robustness

SC stably converges to target

Disturbances still impact outcome

Simulation converges faster

CPOD CONCLUSION

Key Accomplishments

- 5 major experiments yielding rendezvous and passively safe formations
- 3 guidance algorithms validated on-orbit for autonomous RPO
- Exceptional robustness to disturbance forces

Key Lesson Learned

- Primary performance bottleneck: propulsion system reliability
 - Dynamic modeling will improve performance with existing hardware
 - Improved hardware will further increase performance and flexibility

Funding Acknowledgment

NASA Space Technology Mission Directorate