
Ramirez 1 37th Annual Small Satellite Conference

SSC23-X-02

A Decision Framework for Allocation of Constellation-Scale Mission Compute
Functionality to Ground and Edge Computing

Jaime Ramirez, Caleb Royer, Brian Free, Owen Brown, Robert Polutchko

Scientific Systems Company Inc.
500 W Cummins Pkwy, Woburn, MA; 978-500-9553

jaime.ramirez@ssci.com

ABSTRACT
This paper explores constellation-scale architectural trades, highlights dominant factors, and presents a decision
framework for migrating or sharing mission compute functionality between ground and space segments. Over recent
decades, sophisticated logic has been developed for scheduling and tasking of space assets, as well as processing and
exploitation of satellite data, and this software has been traditionally hosted in ground computing. Current efforts exist
to migrate this software to ground cloud-based services. The option and motivation to host some of this logic “at the
edge” within the space segment has arisen as space assets are proliferated, are interlinked via transport networks, and
are networked with multi-domain assets. Examples include edge-based Battle Management, Command, Control, and
Communications (BMC3) being developed by the Space Development Agency and future onboard computing for
commercial constellations.

Edge computing pushes workload, computation, and storage closer to data sources and onto devices at the edge of the
network. Potential benefits of edge computing include increased speed of response, system reliability, robustness to
disrupted networks, and data security. Yet, space-based edge nodes have disadvantages including power and mass
limitations, constant physical motion, difficulty of physical access, and potential vulnerability to attacks.

This paper presents a structured decision framework with justifying rationale to provide insights and begin to address
a key question of what mission compute functionality should be allocated to the space-based "edge", and under what
mission or architectural conditions, versus to conventional ground-based systems. The challenge is to identify the
Pareto-dominant trades and impacts to mission success. This framework will not exhaustively address all missions,
architectures, and CONOPs, however it is intended to provide generalized guidelines and heuristics to support
architectural decision-making. Via effects-based simulation and analysis, a set of hypotheses about ground- and edge-
based architectures are evaluated and summarized along with prior research. Results for a set of key metrics and
decision drivers show that edge computing for specific functionality is quantitatively valuable, especially for
interoperable, multi-domain, collaborative assets.

INTRODUCTION

In this paper we discuss the problem of identifying the
value of running software at the edge as opposed to on
the ground, in the case of satellite systems and in
particular proliferated LEO (P-LEO) architectures. We
attempt to provide an ontology of the problem and a
framework to analyse the value of migrating software
and executing processing at the space edge.

This problem has parallels to other distributed and fog
computing problems, yet it goes beyond the resource
allocation process and provides unique challenges given
certain specific characteristics of the space operations
and its applications.

In particular, the path latency derived from the large
distances involved and the effects of the type of data
workflow (which usually requires reliability and tight

timelines) is a driver of differentiation to analysis for
ground-based solutions. The decision of where certain
processing is running is not only defined by optimizing
resource usage but should include other factors like
security and reliability. Lastly, the inability of user
input/output at the data source is a unique element to this
problem. This last one characteristic is a main driver of
the desire to understand this problem, since there seems
to be significantly value in providing command and
control autonomy to the system for making decisions
about the data, but that involves that specific processing
should be occurring driven itself by the data.

We examine recent literature that addresses similar
problems in the contexts of asymmetric distributed
computing platforms (e.g. fog computing), drawing
parallels and identifying some approaches to define the
best use of resources, simulating scenarios of interest and

Ramirez 2 37th Annual Small Satellite Conference

identifying key drivers that support the decision process
in architecting software for distributed proliferated space
systems

Background
Overall, the problem of distributing computation among
processors connected by a network is not new and
recently with the advent of the cloud and fog
computation and the realizations of the Internet of
Things (IoT) it has received more specific attention to
provide practical solutions in the case of unreliable or
varying network capability, varying demand, and
computationally capable edge nodes.

This concept in particular, becomes important with the
advent of systems deploying flexible capability at the
edge in space via “software defined satellites”, where
applications developed and deployed at the edge can
provide new capabilities to an already deployed space
asset. Systems like the USSF Space Development
Agency (SDA) Transport Layer, with a flexible
computational infrastructure using their BMC3 module,
enables some of this flexibility. Design processes to
understand when it is valuable to deploy processing
capability to orbit and make best use of the overall
integrated system is an ingoing question to be resolved.

Of relevance, the concept of fog processing has been
recently studied as a mechanism to provide intermediate
computation capability between low computationally
capable nodes and highly available and capable cloud
computing in order to address latency and network
availability limitations. Bonomi et al. [5] introduced the
concept of fog computing as a paradigm that brings
computation and storage capabilities closer to the
network edge. The highlighted benefits of fog computing
include reduced latency, improved scalability, and
enhanced privacy and security.

In terms of the applicability of edge processing for space
applications, Bhattacherjee [18] explored the concept of
in-orbit computing as a thought experiment delving into
the possibility of deploying computing resources directly
in space, specifically in orbit around the Earth, and
discuss the potential benefits and challenges associated
with such a paradigm. In Furano et al.[7] the authors
explore the potential of utilizing artificial intelligence
(AI) on the edge in space systems. The authors discuss
the challenges and opportunities associated with
integrating AI techniques, focusing on the benefits of
processing data locally at the edge rather than relying
solely on centralized systems. They highlight the
advantages of edge AI in terms of reduced
communication latency, enhanced autonomy, and
improved resilience. The paper offers valuable insights
into the challenges and opportunities but do not provide

any specific framework, as of how and when porting
processing to orbit makes sense.

The problem of distributing computation functions
across computational nodes has been observed from
different perspectives. In some work, the focus is on
identifying the architecture mechanisms to best move the
processes around to most efficiently utilize the resources
[2,3,8], in other work it has been focused on solving the
constrained optimization problem of computation and
bandwidth resources as an optimization problem [1,
11,6,13]. Most of these approaches provide
formulations to solve as a function of quantifiable
metrics like latency and power utilization, but become
less applicable to addressing the bigger problem, where,
as we claim in this paper, other metrics, some of them
specific to the problem and some of them not
quantifiable, drive the decision process.

iFogSim is a tool proposed by Gupta, Harshit, et al [4] to
simulate and trade resource management techniques. It
provides a pragmatic and useful solution to studying the
Fog computation problem and a step in the right
direction of providing a framework for analysis, however
like other tools, it seems mostly focused on static
network environment and quantifiable/modelable
metrics of performance.

Most of the above work, although partially applicable,
has not focused on the aspects relevant to satellite
systems or military application in hostile environments.
Such aspects specifically affect the analysis when
metrics like reliability, security, accuracy and other
metrics of military utility determine the ultimate value of
the system.

App deployment in hostile environment is explicitly
analyzed in the work by Satyanarayanan [12]. They
propose the use of cloudlets, (small-scale cloud data
centers deployed in close proximity to mobile devices)
to address the challenges faced by mobile devices in
hostile or resource-constrained environments, such as
limited connectivity, high latency, and unreliable
network conditions, providing some analysis of key
considerations for resource allocation, load balancing,
and security.

Other work, has more specifically considered the
computation allocation with applications to the space
edge computation problem.

Pfandzelter and Bermbach [14] considered the problem
of quality-of-service (QoS)-aware resource placement
for low Earth orbit (LEO) satellite edge computing. The
authors propose a framework that aims to optimize the
placement of computing resources in LEO satellite
networks to ensure efficient and reliable service delivery

Ramirez 3 37th Annual Small Satellite Conference

while considering QoS requirements, formulating it as a
mixed-integer linear programming (MILP) resource
placement problem while considering various factors
such as communication latency, processing capabilities,
and resource availability.

Dong et al. [15], introduce a computation offloading
strategy for a low Earth orbit (LEO) constellation edge
cloud network. The authors propose an algorithm that
optimizes the computation offloading decisions to
minimize energy consumption and latency while
ensuring efficient resource utilization. They consider the
unique characteristics of LEO satellite networks,
including limited bandwidth, communication delay, and
resource constraints, in formulating the offloading
strategy. Other work by Lai et al., addressed the
construction of cost-effective content distribution
networks (CDNs) using emerging low Earth orbit (LEO)
satellites and clouds. The authors propose a cooperative
approach that leverages both LEO satellites and cloud
resources to distribute content efficiently and minimize
the operational cost of CDNs.

Qiu et al.[19] discuss the architectures, key technologies,
and challenges associated with deploying Mobile Edge
Computing (MEC) in Space-Air-Ground (SAG)
integrated networks. They highlight the importance of
MEC in enabling real-time data processing, low-latency
communications, and efficient resource utilization in
dynamic and distributed SAG environments. The paper
presents various MEC architectures tailored for SAG
networks, considering different deployment scenarios
and network topologies. The authors also discuss key
technologies and components such as edge servers,
communication protocols, resource management, and
security considerations specific to SAG environments.
Additionally, the paper addresses the challenges and
open research issues in integrating MEC into SAG
networks, including resource allocation, mobility
management, network scalability, and QoS provisioning.

All this work substantiates the need for an analysis
framework to define where computation shall happen,
yet they are focused on particular applications and focus
on defining metrics of performance solely focused on
latency and resource utilization, missing the fact that
other, more complex factors, may actually drive the
applicability of performing some of the edge processing
on board.

To the authors’ knowledge, no other work has attempted
a holistic look at understanding when certain
computations processes should be performed in orbit,
considering the fact that there are different reasons and
different applications of why to do that.

Approach
At a high-level, we propose to analyze the problem of
when an application provides advantages by running at
the space edge. To do that, it is necessary to perform an
identification of the value of a specific application and a
functional breakdown to identify how the distribution
takes place, what is the functionality that can be
deployed and what are the attributes that need to be
resolved to provide a solution. The overall problem
addressed in this paper is beyond the computation
resource allocation problem.

We start by providing an ontology of the software
distribution problem, then defining a process to validate
the value of software migration to the edge and lastly,
based on that, we simulate some scenarios to understand
how specific functional allocation trades.

ONTOLOGY OF SOFTWARE IN SPACE EDGE
APPLICATIONS

In this section we provide a simple ontological
description of the mission execution problem, by using
the concept of mission pipeline graphs. This approach is
related to an MBSE-style functional allocation, and we
provide specific structure and define some artifacts that
are useful in the specific edge application analysis.

Our first definition statement is that a mission is
performed by a composition of functions. Functions are
logical units of work to transform input to output by
interacting with the world and functions can be
iteratively decomposed. Functions may have
interdependencies, and may exchange, share, and
compete for resources. The composition of functions can
be defined as a graph that defines the connection of
function outputs to function input. Functions, as
elements of a process chain can be parallelizable or
serialized.

The composition of functions to address a mission is
defined as a mission pipeline graph.

Software implements functions that execute as
computation processes by interacting with computation
processors via the instruction set, other functions can
interact with other hardware elements (e.g. hardware
actuators, antennas).

A second statement is that the output of executing a
computation process can be qualified in three competing
dimensions: time, accuracy and resource usage
(program managers might be familiar with this trifecta).

• Time, refers to as how fast the output is generated
with respect to the input. It may have some
qualifiers, including availability (for how long that

Ramirez 4 37th Annual Small Satellite Conference

timeline is achieved), periodicity (how repeatable is
that timeline) and reliability (will it ever happen)

• Accuracy, refers to how close the outcome is to the
intended output. It also has qualifiers: how robust it
is (accuracy with respect to the set of inputs), how
resilient it is (accuracy despite intentionally bad
inputs)

• Lastly, resources are limited and depending how the
function is implemented and the operations it needs
to perform, it may require more or less resources.

Software, as a specific implementation of functions, has
a realized profile that can help define its attributes, for
example:

• how much data per unit of time it received as input
it can process,

• how much output data per unit of time it produces,
• how much time it takes to run on a given processor,
• what is its expected accuracy
• How available it is, e.g. in duty cycle
• How robust it is to certain events, e.g. lack of input

data, wrong input data, adversarial input data.
• Etc.

We propose a breakdown of the software (running either
at the edge or not) by the functionality that it provides:

1. System Software (Infrastructure): Software that
implement functions that provide infrastructure to
run other processes and interface with sensors and
effectors. Includes in-node security and
manipulation of infrastructure data. Implies any
calculations and processing necessary to maintain
the spacecraft operational and includes execution of
payload commands (for example, executing a
collection).

2. Application software: Software that leverages the
system software functionality to execute a mission,
it includes:
a. Data processing Software: Implement

functionality that executes manipulation of the
mission data. This means processing and
exploitation algorithms to extract or convert the
data. Examples of this functionality include:

i. Signal generation
ii. Single and multichannel signal processing

iii. Radar Processing:
1. Image formation
2. Ranging
3. MTI

iv. Image and Video processing:
1. Geo-registration
2. Channel adjustment

v. Target/Pattern Recognition
vi. Fusion

b. Command and control Software: Implement
functionality to perform decision making about
how to generate, use and share mission data and
decision making on how to achieve the mission.
Examples includes:

i. Creating and maintaining a Situational
Awareness picture,

ii. Communication and Collaboration
decisions,

iii. Resource Management,
iv. Tasking and Mission Planning,
v. Monitoring and Security and Access

Control
c. Testing and debugging Software: provide

functionality that can support analyzing data
and identifying issues either at the system
software or at the application software level.

It is important to note that this includes software running
on components that provide functionality, like for
example payloads or integrated communication systems,
since in theory for some cases, depending on specifics,
some of that functionality could run on a different
location.

SPACE EDGE PROCESSING
Many new space missions propose utilization of in-space
processing resources to execute software components at
the edge, there exists therefore a question of what
processes and software shall exist and operate at the
space edge.

The overall concept of utilizing a connected network of
space assets is that, a networked operation can enable
distributed sensors and effectors, connected via a
network, to perform an Observe, Orient, Decide and Act
(OODA) loop achieving better mission performance
than a single node would. A space processor is thus, just
an element of a larger interconnected network of
processing capability, sensors and/or effectors, with
varying levels of connectivity. The objective of
performing any computation is to obtain an output,
which can be observed as information to feed other
processes along a pipeline of data to achieve the OODA
loop. The attributes of each processing outcome can be
qualified in 3 dimensions: time, accuracy and resource
utilization.

Space-borne nodes, have particular advantages and
disadvantages with respect to other network nodes
operating in a different domain, being air, maritime or
ground infrastructure. Their most important advantage is
that their payloads (primarily sensors and
communication links) have a larger field of regard over
and beyond the earth surface (including restricted
aerospace) per cost of deployment. The second one, is

Ramirez 5 37th Annual Small Satellite Conference

that given the distances involved, space assets are harder
to detect and physically access. This implies lower
vulnerability in some adversarial scenarios. The third
characteristics is that they can get nearby or physically
access other objects in space.

Those characteristics can also pose disadvantages. Since
these nodes are difficult to physically access, extracting
data or repairing in case of failure is difficult. They are
intrinsically uncrewed, and human intervention to
directly manipulate or use the data at location is not
available. Lastly, they are mostly predictable, and can
be vulnerable, since space is a less controlled
environment, it can be difficult to observe and maintain
awareness, and there are less tools to defend against
specific adversarial attacks or environmental threats.

In addition, space nodes have two clear (but not
necessarily unique) constraints that must be considered:

1. They are resource limited (power and mass), which
imposes constraints on the amount of onboard
computation, the amount of transmission bandwidth,
and/or a duty cycle of operation. (Driven by the available
local power supply and storage and by the thermal
dissipation constraints).

2. They are constantly moving with respect to the ground
(except for the especial case of GEOs) and there is not a
lot of flexibility on how much their trajectory can be
altered.

These characteristics and constraints must be the drivers
that influence the decision if an application should be run
on a space node or on a terrestrial node.

Given these factors and constraints, we propose to
identify a methodology to assess the effects of executing
software functionality in space. First by exploring a (not
exhaustive) taxonomy of applications and software
functionality, then, describing a step-wise decision
framework and lastly highlighting some examples.

TAXONOMY OF USE CASES FOR SPACE EDGE
PROCESSSING
The Table 1 below, provides a list of example space
mission use cases. Users of the methodology are
encouraged to use it as a reference to identify
functionality migration opportunities to be investigated
and in support of defining mission pipeline graphs.

Table 1: Taxonomy of edge-software use cases

Mission Type Mission
Objective

Mission Key Metrics

Remote Sensing Image collection Volume of data
Revisit Time

Resolution
Speed of response for
specific resolution

1st derivative
analysis

Identification of
objects

Number of detected
objects
Sensitivity, specificity
metrics

Geolocation and
tracking

Number of tracks
created
Track accuracy
Track deconfliction
metrics

2nd derivatives
analysis

Activity based
intelligence:
-Forecasting,
-Pattern of life

Prediction accuracy,
sensitivity, specificity
metrics

Target
processing: -
Target custody
- Target statistics

Total track number
over time
Track accuracy over
time

Geospatial
Information:
Structure
Weather
Mapping

Geographical extent
Accuracy

PNT Signal broadcast
Solution delivery

Solution accuracy
Solution latency

Communications Bulk Data
Small point to
point
Area Distribution

Bandwidth
Latency
Service area capacity
(BW per Area size)

System
Management

Planning
(scheduling,
tasking)
Infrastructure
management
Network control
Security

Management scope

Management capacity
(number of resources
served)

PROPOSED ANALYSIS AND DECISION
FRAMEWORK

The proposed decision framework attempts to be un-
opinionated, generally useful, systems-thinking-based
approach with grounding in necessary decision data. The
framework includes the fact that migration of functions
to the edge requires both qualitative and quantitative
analysis, and requires a wholistic view and not isolated
numerical calculations, simulations, or single-factor
thinking. This framework is not a turn-the-crank,
prescriptive recipe – it requires knowledgeable
individuals to perform trades and create options within
the framework. This framework is provided as a
methodology of how to think about the problem, with the
intent to help the reader decide what functionality may
be better placed at the edge or on the ground.

Ramirez 6 37th Annual Small Satellite Conference

The overall proposed framework flow is visually shown
in Figure 2. For the math-minded reader, “Independent
Variables” can be considered to be the mission
objectives (as defined by selected Metrics of Value), the
function and interrelation (described by the mission
pipeline graph), and the deployment of those functions
across processing capability in the network nodes.
“Dependent Variables” will be the Metrics of Value,
which are driven by models and trades, and themselves
guide the final decision outcome which is a selected
architecture.

In particular, the framework considers 4 steps:

1. Generation of a mission pipeline graph
The first step in assessing (an) application(s) suitability
for edge or ground-based hosting is to define the
application (mission) functional workflow as a graph,
that is, identifying how inputs relate to outputs from
other functional elements, dependencies and resources,
and how the function output feeds into other functional
elements. The goal is to break down the functionality
into computational units that could be placed at specific
nodes in the network (see [11]), and enable trade
analysis.

The key process in defining if functionality shall be
allocated to a specific node (space or ground) is to
evaluate (qualitatively and quantitatively) how the
execution of an application or process in a particular
node affects the performance drivers, while considering
the constraints, the advantages and the disadvantages and
to quantify how each of these three drivers affect the end
metric of performance of the mission.

To perform this analysis process there are few steps that
need to be performed:

1. Identify the application definition
2. Identify how it can be “connected”

That is, how a particular application fits within a data
workflow, how its required input can be provided by
another process in the system and how its output are
useful to another process in the system.

This requires, first identifying the mission or missions it
can support as use cases and then identifying where in
those missions.

To do so, several dimensions are to be considered.

1. Generic use case addressed: identifying how the
utilization of a functional software element fits
within a given mission profile. In section 4 we
provide a taxonomy of use cases that can be useful
in identifying the functional workflow.

2. Application functional type: Following the
descriptions in section 2, the user can support the
description of the interconnected graph

3. Prerequisites: Clear identification of what are the
specifics of the input.

4. Identification of System Assumptions:
Qualitative (soft) assessment of the ability of the
application to be ported within an operational
framework, i.e., does it provide the functionality
required for the operational use cases?, does its
input/output profile fits within an operational
need?

The outcome of this first step should be the definition of
a functional graph that for the functional modules that
are being traded, able to capture the interfaces between
processes.

Examples

Figure 1 - Figure 4 graphically describe some examples
for some missions of interest. 1: ISR mission, 2: SSA
mission, 3: ISAM mission, 4: PNT mission and 5:
Communications mission. They provide the description
for notional missions describing the overall concept of
mission pipeline graphs. The level of fidelity in the steps
and the scope of the overall pipeline has to be defined
driven by the software function that is being analyzed.

For example, in the ISR mission the objective is to
identify targets on the earth surface by using an EO/IR
sensor and we are identifying if elements of the In order
to do that we identify the functional composition of the
mission going into some detail to some of the predictive
modeling software is useful to be run onboard. Possible
functional decomposition, the level of detail granularity
shall be determined by the specific analysis, in order to
make sure the modeling described in section 2, supports
the analysis of trading the functionality to the edge.

The overall sequence for this mission is assumed to
include:

1. Area selections: namely, some process with or
without human interaction must define where the
system is looking for targets.

2. Collection planning: based on a definition of
locations, the system shall define how it is collecting
data at those locations. In order to make that
decision it uses to functions, one is modeling the
performance metrics that drive the selection, the
other one is the combinatorial exploration and
selection form the action space. The performance
function include sun artifact prediction, cloud
coverage and GSD prediction.

3. Execution of the collection (which required input
from the process maintaining state of the system)

Ramirez 7 37th Annual Small Satellite Conference

4. Image processing: includes georectification
5. Target recognition

Figure 1. Models the described scenario in example 1.

Figure 1. Mission Pipeline Graph Example for an target
recognition ISR mission

In the SSA mission, there are cycles, driven by the fact
that the plan of collections for tracking, affects the
overall plan for collections.

Figure 2. Example of a mission pipeline graph for an SSA
mission

In the ISAM mission example, the calculation of a
sequence of activities is driven both, by the function that
define the next objective and the analysis of the relative
pose of the system.

Figure 3. Example of a mission pipeline graph for an
ISAM mission

In the case of the PNT mission graph is very simple, we
assume there is a constant function of maintaining
ephemeris and clock drift, which affects the generation
of the PNT signal to be transmitted.

Figure 4. Example of a mission pipeline graph for a PNT
mission

Lastly, a mission pipeline graph example of a satellite
communication mission that receives data from a user to

be sent to another location, requires collecting the data
from the user, scheduling the transmission to the
destination, modulating the signal as needed, and finally
transmitting.

Figure 5. Example of a Rx-Tx Satellite communications
mission

2. Identify and Model Key Metrics of Value

The second step in the process is the definition of
Metrics-of-Value and an approach to measuring these
figures.

A mission pipeline graph, as a composition of functions
where each function has time, accuracy and resource
usage attributes (as defined in section 2). A way to think
about the composition of the Metrics of Value is by
looking at thse categories of time, accuracy and resource
usage.

The overall composed mission timeline can be derived
from the composition of mission pipeline graph
functions timelines. Similarly, the overall composed use
of resources, can be derived from the composition of
mission pipeline graph functions resource usage and can
be ultimately compiled as a mission cost metric, given
that to provide the resources there will be a monetary
cost.

Lastly, the overall composed mission accuracy is the
Mission Performance Metric (i.e. its outcome is as close
to as intended). Mission performance has different
dimensions, since the ultimate mission utility can have
quantifiable tangible and intangible attributes of success.

The Metrics-of-Value need constraints or expectations,
without it the system design can be non-sensical and can
include metrics such as Intangibles and Goodwill, or
Quality metrics.

Both qualitative and quantitative metrics might
necessary for a complete evaluation, and for the purposes
of the framework, quality attributes and
binary/categorical factors are also termed “metrics”, as it
is assumed they can be verified in some way
(“measured”). If it is not possible to verify a requirement
or desire, it cannot be included in the assessment.

There is no magic formula to compose mission
performance from individual function composition,
since the effects of the inputs to a function and the way
resources are used can have different very different
effects to the output, based on the solution

Ramirez 8 37th Annual Small Satellite Conference

implementation. However, we believe the above
framework provides a way to think about how to define
Metrics of Value.

Methods to measure the metrics may include usage of
checklists (for categorical or scorable factors), publicly
available “comparables” data, parametric models,
physics-based models, and high or low-fidelity
simulations that allow assessing the resulting metrics in
a repeatable (though not necessarily deterministic)
manner. Moreover, the Metrics of Value can be analyzed
for subsets of the mission without having to define the
ultimate end-to-end Metrics.

Overall, most metrics fall within a few categories and the
specific mission must tailor these to the desired [sub]set.
The Metric of Value categories and notional examples
are provided in Table 1.

Table 2: Metrics of Value and Examples

Metric Category Example

TIME
• Latency
• Availability
• Periodicity

(“1000ms maximum delay from
photons on sensor to processed
output”)
(“50% Orbit-Average duty cycle
for payload operations”)
(“1 pps +/- 0.0001%”)

COST
• Components
• Resource Usage $
Or as derived from
resource needs:
• Quantity
• Type
• Usage Model

(“Total cost $20M per satellite”)
(“Maximum cost of $100,000 per
week for provisioned downlink”)

(“Min. 3 simulataneuos observation
points [satellites]”)
(“Min. 3 sats with onboard GPUs”)
(“Requires consuming 10m/s of
delta-V per week of the host”)

PERFORMANCE
Measurable quantities
• Probability of Success
• Numeric Performance

Intangibles and goodwill
success:
• User Preference
• Feedback/Visibility
• Confidence/Trust
• Ease of Use
• Environmental, Social,

Governance (ESG)
Categorical Quality
• Security and

Classification
Constraints

• Compliance
Open Standards

(“Mean-Time-Between-Failures of
1000 hours”)
(“1 meter 3-sigma error of the
position solution”)

(“Users like the intuitiveness of the
User Interface”)
(“Users ignored reported warnings
after being overloaded with
warning signals”)
(“The use case is more
environmentally responsible”)

(“System is certifiable by DISA to
DoD Impact Level 6”)
(“System uses CCSDS standard for
all uplink/downlink transmissions”)

In some cases, it may be possible to reduce the Metrics
of Value to a subset, and reducing to purely quantitative
metrics may be useful to build “lumped parameter”
models, such as adding up all of the delays in a system
to trade competing architectures (at least along a ‘Time’
metric, though potentially changing Cost or other
metrics).

In the metric selection process, it is important to identify
metrics that can be calculated from a modeling and
simulation activity, as these will potentially require
development of such models and/or simulations. If
required, the modeling & simulation (M&S), must be
carefully selected to be able to implement the traded
scenarios and provide the required data. The fidelity of
the models should be tailored in accordance to the
desired fidelity of the answer.

It is beyond the scope of this paper to identify the main
influential trades and metrics for all possible missions
and Mission Function Graphs, and future work may
address the Pareto-dominant trades and metrics.

3. Step 3 – Modeling and iteration
The modeling and iteration step focuses on generating a
representation of the Metrics-of-Value identified in step-
2 to the necessary level of fidelity such that they can be
traded against variations of the mission pipeline graph
and its allocation to nodes. The objective is to iteratively
obtain numeric and qualitative values of the traded
configuration and improve the solution. Figure 7 and
Figure 8 show the solution trade space in terms in the
example 1 in section 6 shows a description of the type of
trades that should be performed based on the mission
pipeline graph.

The process in this step shall focus on iteratively
identifying options, generating metrics and performing
trade analysis of the alternatives. As the process evolves,
the designer shall focus on asking 2nd-level questions,
looking at the definition of mission pipelines that may
improve or may provide insight into the solution space.
Are there options? How do those options trade?

For example, in a time sensitive mission, the system
designer may consider how latency can be reduced by
modifying the input: Is adding more links to the design
and placing the software process in other satellites an
option in the design? Can the process be located on the
ground and add more receiving ground stations? Is that a
feasible option?

Or for example, in a mission where security is a key
metric, how can mission security be ensured where the
raw data is unclassified but processed data is classified?
Can black data be downlinked to ground for fusion, then

Ramirez 9 37th Annual Small Satellite Conference

perform high side fusion? Can data be processed in orbit
in a classified “enclave” and use classified connections
to the ground? Which of these solutions provide better
outcomes with respect to the identified metrics? Does it
need higher level of fidelity?

4. Step 4 – Decision Analysis
In order to feedback into the iteration of options in step-
3, setting up some mechanism to analyze the trades is
necessary. In particular, it is necessary to address the
fact that the problem is a multi-objective optimization
problem, with multiple dimensions and quantifiable and
non-quantifiable metrics. We recommend 3 major
elements to be used in the analysis:

1. A pareto analysis with linear combination of scores,
by defining a simple numerical scale to the intangible
metrics

2. A scorecard with pass/fail analysis of intangible
utility requirements

3. A decision template that defines hard/medium/soft
requirements.

A resourceful exploration of these analysis elements will
provide guidance in the design and will enable, process-
based decision making about when certain software
functionality should de deployed in orbit.

Ramirez 10 37th Annual Small Satellite Conference

Figure 6: Overall Decision Framework Workflow

Ramirez 11 37th Annual Small Satellite Conference

RESULTS

In order to test the proposed process, we implemented a
couple of examples with different level of complexity.
The results are described in this section.

Example 1. Trade-off analysis functionality edge
processing target recognition.

For this example, we focused on analyzing the trade-off
of performing target recognition for an ISR mission at
the space edge vs. on the ground.

In the example we use a low-fidelity model to quantify
and analyze the performance against time and accuracy
leading to two possible functional implementations,
either geo-rectifying and performing ATR in orbit or
sending images to the ground and performing ATR on
ground infrastructure. Figure 7 and Figure 8 show the
solution trade space in terms of the distribution of the
pipeline elements. The analysis shows that depending on
the capacity of the network connectivity between the
edge nodes and the ground, performing edge processing
in orbit can be a better option.

Figure 7. Option A: ISR target recognition mission with
processing on the ground

Figure 8. Option B: ISR target recognition mission with
in-orbit processing

The analysis compared a traditional execution, described
in Figure 7, where images are collected and sent to the
ground for processing, vs. a scenario where images are
processed on board and the resulting data is delivered
described in Figure 8.

Notice that the graph description helps identifying the
reasonable allocation of functionality at the node. It is
not useful for example to ‘just move’ the analyzed
function to the edge, some of the required input
functionality also should to be moved with it.

Figure 3 shows an example of the trades that the analysis
framework enables, providing some visibility of the
value of pursuing some of the porting of functionality to
operate at the edge when only considering the time of
execution as the key Metric-of-Value. Option A does
only improve with increased bandwidth, whereas option
B is limited by the onboard processing. At some high
bandwidth point, the trade lines cross and Option A has
a better performance than Option B.

Figure 9. Average time to data delivery as the metric-of-
value for option A and option B

Example 2: Edge processing trade-off for a complex
combined space and air missions

In this example, we developed an example based on a
more complex system, examining the trade between edge
and ground-based processing for a fire monitoring
mission which involves coordination between space-
based assets searching for active wildfires and air-based
UAV assets performing higher resolution fire
monitoring surveillance. In this case, we implement a
simulation of the entire system. We model the dynamics
of the system using a physics-based simulator and the
steps in the logic when processing the sensor data and
the decision making in the involved nodes, as well as the
network latency and routing of data.

In the mission simulated, the space layer is providing
advanced notice of wildfire areas based on infrared
sensing of hot spots, for the air-layer to route around,

Ramirez 12 37th Annual Small Satellite Conference

avoiding these risk areas to enable image capture in less
smoky air. Figure 3 below shows the difference in this
mission when satellite image processing is done on the
ground versus at the edge, onboard the satellites.

In this case, the modeling provides an analysis of a
combined performance metric, which is the average and
standard deviation of the time that the aircraft spent on
high risk, high smoke zones. This metric was selected as
the key metric of success of the entire system. The results
are then captured via MonteCarlo simulation which
enable to capture statistics and analyse performance and
robustness to initial conditions. The example shows a
2.7% improvement in the median time spent in risk zones
by using edge processing as opposed to ground
processing with the associated delays. This improvement
mostly arises from the improved response time due to
edge computing, which provides relevant mission
information to the air-layer with more time to allow for
rerouting around risk zones.

Figure 10. In a fire monitoring mission, the satellites
identify wildfire locations with either ground or edge
processing and relay the information to the air-based
assets, which collect higher resolution data. The air-based
assets route around the identified high-risk areas, which
have smoke that will occlude data collection. Box plots are
shown with the median indicated in orange, the 25th and
75th percentiles indicated by the blue box, and the gray lines
indicating the full extent of the data.

CONCLUSIONS

In this paper we provided a view of the problem of
identifying when a software application should be
deployed to the space edge. We presented a structured
decision framework with justifying rationale to provide
insights and begin to address a key question of what
mission compute functionality should be allocated to the

space-based "edge", and under what mission or
architectural conditions, versus to conventional ground-
based systems.

This framework does not exhaustively address all
missions, architectures, and CONOPs, however it is
intended to provide generalized guidelines and heuristics
to support architectural decision-making.

Results for a set of missions highlighting different key
metrics and decision drivers show that in several cases,
edge computing for specific functionality is
quantitatively valuable, especially for interoperable,
multi-domain, collaborative assets.

Acknowledgements
The authors would like to thank Gavin Strunk and Joseph
Jackson for also contributing on modeling activities that
provided the initial ideas for this paper and Dr. Michael
Pagels at the Space Development Agency who originally
posed some of the questions that inspired the authors to
think about this problem.

References
1. Taneja, Mohit, and Alan Davy. "Resource aware

placement of IoT application modules in Fog-
Cloud Computing Paradigm." 2017 IFIP/IEEE
Symposium on Integrated Network and Service
Management (IM). IEEE, 2017.

2. Dutta, Debojyoti, et al. "Embedding paths into
trees: VM placement to minimize congestion."
Algorithms–ESA 2012: 20th Annual European
Symposium, Ljubljana, Slovenia, September 10-
12, 2012. Proceedings 20. Springer Berlin
Heidelberg, 2012.

3. Lukovszki, Tamás, and Stefan Schmid. "Online
admission control and embedding of service
chains." Structural Information and
Communication Complexity: 22nd International
Colloquium, SIROCCO 2015, Montserrat, Spain,
July 14-16, 2015. Post-Proceedings 22. Springer
International Publishing, 2015.

4. Gupta, Harshit, et al. "iFogSim: A toolkit for
modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog
computing environments." Software: Practice and
Experience 47.9 (2017): 1275-1296.

5. Bonomi, Flavio, et al. "Fog computing and its role
in the internet of things." Proceedings of the first
edition of the MCC workshop on Mobile cloud
computing. 2012.

6. Keshavarznejad, Maryam, Mohammad Hossein
Rezvani, and Sepideh Adabi. "Delay-aware

Ramirez 13 37th Annual Small Satellite Conference

optimization of energy consumption for task
offloading in fog environments using
metaheuristic algorithms." Cluster Computing
(2021): 1-29.

7. Furano, Gianluca, et al. "Towards the use of
artificial intelligence on the edge in space systems:
Challenges and opportunities." IEEE Aerospace
and Electronic Systems Magazine 35.12 (2020):
44-56.

8. Akbar, Aamir, et al. "SDN-enabled adaptive and
reliable communication in IoT-fog environment
using machine learning and multiobjective
optimization." IEEE Internet of Things Journal 8.5
(2020): 3057-3065.

9. Liu, Bingwei, et al. "Information fusion in a cloud
computing era: a systems-level perspective." IEEE
Aerospace and Electronic Systems Magazine
29.10 (2014): 16-24.

10. Munir, Arslan, et al. "Artificial intelligence and
data fusion at the edge." IEEE Aerospace and
Electronic Systems Magazine 36.7 (2021): 62-78.

11. Wang, Shiqiang, Murtaza Zafer, and Kin K.
Leung. "Online placement of multi-component
applications in edge computing environments."
IEEE Access 5 (2017): 2514-2533.

12. Satyanarayanan, Mahadev, et al. "The role of
cloudlets in hostile environments." IEEE
Pervasive Computing 12.4 (2013): 40-49.

13. Mahmoodi, S. Eman, R. N. Uma, and K. P.
Subbalakshmi. "Optimal joint scheduling and
cloud offloading for mobile applications." IEEE
Transactions on Cloud Computing 7.2 (2016):
301-313.

14. Pfandzelter, Tobias, and David Bermbach. "QoS-
Aware Resource Placement for LEO Satellite
Edge Computing." 2022 IEEE 6th International
Conference on Fog and Edge Computing
(ICFEC). IEEE, 2022.

15. Dong, Feihu, et al. "A Computation Offloading
Strategy in LEO Constellation Edge Cloud
Network." Electronics 11.13 (2022): 2024.

16. Lai, Zeqi, et al. "Cooperatively constructing cost-
effective content distribution networks upon
emerging low earth orbit satellites and clouds."
2021 IEEE 29th International Conference on
Network Protocols (ICNP). IEEE, 2021.

17. Pfandzelter, Tobias, and David Bermbach. "Edge
(of the earth) replication: Optimizing content
delivery in large leo satellite communication
networks." 2021 IEEE/ACM 21st International

Symposium on Cluster, Cloud and Internet
Computing (CCGrid). IEEE, 2021.

18. Bhattacherjee, Debopam, et al. "In-orbit
computing: An outlandish thought experiment?."
Proceedings of the 19th ACM Workshop on Hot
Topics in Networks. 2020.

19. Qiu, Yuan, et al. "Mobile Edge Computing in
Space-Air-Ground Integrated Networks:
Architectures, Key Technologies and
Challenges." Journal of Sensor and Actuator
Networks 11.4 (2022): 57.

20. Guo, Yaning, et al. "Towards Optimization for
Large-scale Earth Observation Missions from a
Global Perspective." 5th Asia-Pacific Workshop
on Networking (APNet 2021). 2021.

21. Picard, Gauthier. "Auction-based and distributed
optimization approaches for scheduling
observations in satellite constellations with
exclusive orbit portions." arXiv preprint
arXiv:2106.03548 (2021).

22. Zeleke, Desalegn Abebaw, and Hae-Dong Kim.
"A New Strategy of Satellite Autonomy with
Machine Learning for Efficient Resource
Utilization of a Standard Performance CubeSat."
Aerospace 10.1 (2023): 78.

23. Cruz, Helena, et al. "A review of synthetic-
aperture radar image formation algorithms and
implementations: a computational perspective."
Remote Sensing 14.5 (2022): 1258.

24. Zhang, Liang, et al. "Fast superpixel-based non-
window CFAR ship detector for SAR imagery."
Remote Sensing 14.9 (2022): 2092.

25. Zhang, Fan, et al. "Accelerating spaceborne SAR
imaging using multiple CPU/GPU deep
collaborative computing." Sensors 16.4 (2016):
494.

26. Agrawal, A. K., et al. "Accelaerated SAR image
generation on GPGPU platform." 2011 3rd
International Asia-Pacific Conference on
Synthetic Aperture Radar (APSAR). IEEE, 2011.

	A Decision Framework for Allocation of Constellation-Scale Mission Compute Functionality to Ground and Edge Computing
	ABSTRACT
	Introduction
	Background
	Approach

	Ontology of software in space EDGE APPLICATIONS
	SpACe EDGE PROCESSING
	TAXONOMY OF USE CASES FOR SPACE EDGE PROCESSSING
	1. Generation of a mission pipeline graph
	2. Identify and Model Key Metrics of Value
	3. Step 3 – Modeling and iteration
	4. Step 4 – Decision Analysis
	Acknowledgements
	References

