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ABSTRACT 
This paper explores constellation-scale architectural trades, highlights dominant factors, and presents a decision 
framework for migrating or sharing mission compute functionality between ground and space segments. Over recent 
decades, sophisticated logic has been developed for scheduling and tasking of space assets, as well as processing and 
exploitation of satellite data, and this software has been traditionally hosted in ground computing. Current efforts exist 
to migrate this software to ground cloud-based services. The option and motivation to host some of this logic “at the 
edge” within the space segment has arisen as space assets are proliferated, are interlinked via transport networks, and 
are networked with multi-domain assets. Examples include edge-based Battle Management, Command, Control, and 
Communications (BMC3) being developed by the Space Development Agency and future onboard computing for 
commercial constellations. 

Edge computing pushes workload, computation, and storage closer to data sources and onto devices at the edge of the 
network. Potential benefits of edge computing include increased speed of response, system reliability, robustness to 
disrupted networks, and data security. Yet, space-based edge nodes have disadvantages including power and mass 
limitations, constant physical motion, difficulty of physical access, and potential vulnerability to attacks.  

This paper presents a structured decision framework with justifying rationale to provide insights and begin to address 
a key question of what mission compute functionality should be allocated to the space-based "edge", and under what 
mission or architectural conditions, versus to conventional ground-based systems. The challenge is to identify the 
Pareto-dominant trades and impacts to mission success. This framework will not exhaustively address all missions, 
architectures, and CONOPs, however it is intended to provide generalized guidelines and heuristics to support 
architectural decision-making. Via effects-based simulation and analysis, a set of hypotheses about ground- and edge-
based architectures are evaluated and summarized along with prior research. Results for a set of key metrics and 
decision drivers show that edge computing for specific functionality is quantitatively valuable, especially for 
interoperable, multi-domain, collaborative assets. 

INTRODUCTION  

In this paper we discuss the problem of identifying the 
value of running software at the edge as opposed to on 
the ground, in the case of satellite systems and in 
particular proliferated LEO (P-LEO) architectures.  We 
attempt to provide an ontology of the problem and a 
framework to analyse the value of migrating software 
and executing processing at the space edge. 

This problem has parallels to other distributed and fog 
computing problems, yet it goes beyond the resource 
allocation process and provides unique challenges given 
certain specific characteristics of the space operations 
and its applications. 

In particular, the path latency derived from the large 
distances involved and the effects of the type of data 
workflow (which usually requires reliability and tight 

timelines) is a driver of differentiation to analysis for 
ground-based solutions.  The decision of where certain 
processing is running is not only defined by optimizing 
resource usage but should include other factors like 
security and reliability. Lastly, the inability of user 
input/output at the data source is a unique element to this 
problem. This last one characteristic is a main driver of 
the desire to understand this problem, since there seems 
to be significantly value in providing command and 
control autonomy to the system for making decisions 
about the data, but that involves that specific processing 
should be occurring driven itself by the data. 

We examine recent literature that addresses similar 
problems in the contexts of asymmetric distributed 
computing platforms (e.g. fog computing), drawing 
parallels and identifying some approaches to define the 
best use of resources, simulating scenarios of interest and 
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identifying key drivers that support the decision process 
in architecting software for distributed proliferated space 
systems 

Background 
Overall, the problem of distributing computation among 
processors connected by a network is not new and 
recently with the advent of the cloud and fog 
computation and the realizations of the Internet of 
Things (IoT) it has received more specific attention to 
provide practical solutions in the case of unreliable or 
varying network capability, varying demand, and 
computationally capable edge nodes. 

This concept in particular, becomes important with the 
advent of systems deploying flexible capability at the 
edge in space via “software defined satellites”, where 
applications developed and deployed at the edge can 
provide new capabilities to an already deployed space 
asset. Systems like the USSF Space Development 
Agency (SDA) Transport Layer, with a flexible 
computational infrastructure using their BMC3 module, 
enables some of this flexibility. Design processes to 
understand when it is valuable to deploy processing 
capability to orbit and make best use of the overall 
integrated system is an ingoing question to be resolved.  

Of relevance, the concept of fog processing has been 
recently studied as a mechanism to provide intermediate 
computation capability between low computationally 
capable nodes and highly available and capable cloud 
computing in order to address latency and network 
availability limitations. Bonomi et al. [5] introduced the 
concept of fog computing as a paradigm that brings 
computation and storage capabilities closer to the 
network edge. The highlighted benefits of fog computing 
include reduced latency, improved scalability, and 
enhanced privacy and security. 

In terms of the applicability of edge processing for space 
applications, Bhattacherjee [18] explored the concept of 
in-orbit computing as a thought experiment delving into 
the possibility of deploying computing resources directly 
in space, specifically in orbit around the Earth, and 
discuss the potential benefits and challenges associated 
with such a paradigm.  In Furano et al.[7] the authors 
explore the potential of utilizing artificial intelligence 
(AI) on the edge in space systems. The authors discuss 
the challenges and opportunities associated with 
integrating AI techniques, focusing on the benefits of 
processing data locally at the edge rather than relying 
solely on centralized systems. They highlight the 
advantages of edge AI in terms of reduced 
communication latency, enhanced autonomy, and 
improved resilience. The paper offers valuable insights 
into the challenges and opportunities but do not provide 

any specific framework, as of how and when porting 
processing to orbit makes sense. 

The problem of distributing computation functions 
across computational nodes has been observed from 
different perspectives. In some work, the focus is on 
identifying the architecture mechanisms to best move the 
processes around to most efficiently utilize the resources 
[2,3,8], in other work it has been focused on solving the 
constrained optimization problem of computation and 
bandwidth resources as an optimization problem [1, 
11,6,13].  Most of these approaches provide 
formulations to solve as a function of quantifiable 
metrics like latency and power utilization, but become 
less applicable to addressing the bigger problem, where, 
as we claim in this paper, other metrics, some of them 
specific to the problem and some of them not 
quantifiable, drive the decision process. 

iFogSim is a tool proposed by Gupta, Harshit, et al [4] to 
simulate and trade resource management techniques. It   
provides a pragmatic and useful solution to studying the 
Fog computation problem and a step in the right 
direction of providing a framework for analysis, however 
like other tools, it seems mostly focused on static 
network environment and quantifiable/modelable 
metrics of performance. 

Most of the above work, although partially applicable, 
has not focused on the aspects relevant to satellite 
systems or military application in hostile environments. 
Such aspects specifically affect the analysis when 
metrics like reliability, security, accuracy and other 
metrics of military utility determine the ultimate value of 
the system. 

App deployment in hostile environment is explicitly 
analyzed in the work by Satyanarayanan [12]. They 
propose the use of cloudlets, (small-scale cloud data 
centers deployed in close proximity to mobile devices) 
to address the challenges faced by mobile devices in 
hostile or resource-constrained environments, such as 
limited connectivity, high latency, and unreliable 
network conditions, providing some analysis of key 
considerations for resource allocation, load balancing, 
and security. 

Other work, has more specifically considered the 
computation allocation with applications to the space 
edge computation problem. 

Pfandzelter and Bermbach [14] considered the problem 
of quality-of-service (QoS)-aware resource placement 
for low Earth orbit (LEO) satellite edge computing. The 
authors propose a framework that aims to optimize the 
placement of computing resources in LEO satellite 
networks to ensure efficient and reliable service delivery 
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while considering QoS requirements, formulating it as a 
mixed-integer linear programming (MILP) resource 
placement problem while considering various factors 
such as communication latency, processing capabilities, 
and resource availability.  

Dong et al. [15], introduce a computation offloading 
strategy for a low Earth orbit (LEO) constellation edge 
cloud network. The authors propose an algorithm that 
optimizes the computation offloading decisions to 
minimize energy consumption and latency while 
ensuring efficient resource utilization. They consider the 
unique characteristics of LEO satellite networks, 
including limited bandwidth, communication delay, and 
resource constraints, in formulating the offloading 
strategy. Other work by Lai et al., addressed the 
construction of cost-effective content distribution 
networks (CDNs) using emerging low Earth orbit (LEO) 
satellites and clouds. The authors propose a cooperative 
approach that leverages both LEO satellites and cloud 
resources to distribute content efficiently and minimize 
the operational cost of CDNs.  

Qiu et al.[19] discuss the architectures, key technologies, 
and challenges associated with deploying Mobile Edge 
Computing (MEC) in Space-Air-Ground (SAG) 
integrated networks. They highlight the importance of 
MEC in enabling real-time data processing, low-latency 
communications, and efficient resource utilization in 
dynamic and distributed SAG environments. The paper 
presents various MEC architectures tailored for SAG 
networks, considering different deployment scenarios 
and network topologies. The authors also discuss key 
technologies and components such as edge servers, 
communication protocols, resource management, and 
security considerations specific to SAG environments. 
Additionally, the paper addresses the challenges and 
open research issues in integrating MEC into SAG 
networks, including resource allocation, mobility 
management, network scalability, and QoS provisioning. 

All this work substantiates the need for an analysis 
framework to define where computation shall happen, 
yet they are focused on particular applications and focus 
on defining metrics of performance solely focused on 
latency and resource utilization, missing the fact that 
other, more complex factors, may actually drive the 
applicability of performing some of the edge processing 
on board.  

To the authors’ knowledge, no other work has attempted 
a holistic look at understanding when certain 
computations processes should be performed in orbit, 
considering the fact that there are different reasons and 
different applications of why to do that. 

Approach 
At a high-level, we propose to analyze the problem of 
when an application provides advantages by running at 
the space edge. To do that, it is necessary to perform an 
identification of the value of a specific application and a 
functional breakdown to identify how the distribution 
takes place, what is the functionality that can be 
deployed and what are the attributes that need to be 
resolved to provide a solution. The overall problem 
addressed in this paper is beyond the computation 
resource allocation problem.  

We start by providing an ontology of the software 
distribution problem, then defining a process to validate 
the value of software migration to the edge and lastly, 
based on that, we simulate some scenarios to understand 
how specific functional allocation trades. 

ONTOLOGY OF SOFTWARE IN SPACE EDGE 
APPLICATIONS 

In this section we provide a simple ontological 
description of the mission execution problem, by using 
the concept of mission pipeline graphs. This approach is 
related to an MBSE-style functional allocation, and we 
provide specific structure and define some artifacts that 
are useful in the specific edge application analysis. 

Our first definition statement is that a mission is 
performed by a composition of functions. Functions are 
logical units of work to transform input to output by 
interacting with the world and functions can be 
iteratively decomposed. Functions may have 
interdependencies, and may exchange, share, and 
compete for resources. The composition of functions can 
be defined as a graph that defines the connection of 
function outputs to function input. Functions, as 
elements of a process chain can be parallelizable or 
serialized.  

The composition of functions to address a mission is 
defined as a mission pipeline graph. 

Software implements functions that execute as 
computation processes by interacting with computation 
processors via the instruction set, other functions can 
interact with other hardware elements (e.g. hardware 
actuators, antennas). 

A second statement is that the output of executing a 
computation process can be qualified in three competing 
dimensions: time, accuracy and resource usage 
(program managers might be familiar with this trifecta). 

• Time, refers to as how fast the output is generated 
with respect to the input. It may have some 
qualifiers, including availability (for how long that 
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timeline is achieved), periodicity (how repeatable is 
that timeline) and reliability (will it ever happen) 

• Accuracy, refers to how close the outcome is to the 
intended output. It also has qualifiers: how robust it 
is (accuracy with respect to the set of inputs), how 
resilient it is (accuracy despite intentionally bad 
inputs) 

• Lastly, resources are limited and depending how the 
function is implemented and the operations it needs 
to perform, it may require more or less resources. 

Software, as a specific implementation of functions, has 
a realized profile that can help define its attributes, for 
example: 

• how much data per unit of time it received as input 
it can process,  

• how much output data per unit of time it produces,  
• how much time it takes to run on a given processor,  
• what is its expected accuracy  
• How available it is, e.g. in duty cycle 
• How robust it is to certain events, e.g. lack of input 

data, wrong input data, adversarial input data. 
• Etc. 

We propose a breakdown of the software (running either 
at the edge or not) by the functionality that it provides: 

1. System Software (Infrastructure): Software that 
implement functions that provide infrastructure to 
run other processes and interface with sensors and 
effectors. Includes in-node security and 
manipulation of infrastructure data. Implies any 
calculations and processing necessary to maintain 
the spacecraft operational and includes execution of 
payload commands (for example, executing a 
collection). 

2. Application software: Software that leverages the 
system software functionality to execute a mission, 
it includes: 
a. Data processing Software: Implement 

functionality that executes manipulation of the 
mission data. This means processing and 
exploitation algorithms to extract or convert the 
data. Examples of this functionality include: 

i. Signal generation 
ii. Single and multichannel signal processing 

iii. Radar Processing: 
1. Image formation 
2. Ranging 
3. MTI 

iv. Image and Video processing: 
1. Geo-registration 
2. Channel adjustment 

v. Target/Pattern Recognition 
vi. Fusion 

b. Command and control Software: Implement 
functionality to perform decision making about 
how to generate, use and share mission data and 
decision making on how to achieve the mission. 
Examples includes: 

i. Creating and maintaining a Situational 
Awareness picture, 

ii. Communication and Collaboration 
decisions,  

iii. Resource Management,  
iv. Tasking and Mission Planning, 
v. Monitoring and Security and Access 

Control 
c. Testing and debugging Software: provide 

functionality that can support analyzing data 
and identifying issues either at the system 
software or at the application software level.  

It is important to note that this includes software running 
on components that provide functionality, like for 
example payloads or integrated communication systems, 
since in theory for some cases, depending on specifics, 
some of that functionality could run on a different 
location. 

SPACE EDGE PROCESSING 
Many new space missions propose utilization of in-space 
processing resources to execute software components at 
the edge, there exists therefore a question of what 
processes and software shall exist and operate at the 
space edge. 

The overall concept of utilizing a connected network of 
space assets is that, a networked operation can enable 
distributed sensors and effectors, connected via a 
network, to perform an Observe, Orient, Decide and Act 
(OODA) loop achieving better mission performance 
than a single node would. A space processor is thus, just 
an element of a larger interconnected network of 
processing capability, sensors and/or effectors, with 
varying levels of connectivity. The objective of 
performing any computation is to obtain an output, 
which can be observed as information to feed other 
processes along a pipeline of data to achieve the OODA 
loop. The attributes of each processing outcome can be 
qualified in 3 dimensions: time, accuracy and resource 
utilization. 

Space-borne nodes, have particular advantages and 
disadvantages with respect to other network nodes 
operating in a different domain, being air, maritime or 
ground infrastructure. Their most important advantage is 
that their payloads (primarily sensors and 
communication links) have a larger field of regard over 
and beyond the earth surface (including restricted 
aerospace) per cost of deployment. The second one, is 
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that given the distances involved, space assets are harder 
to detect and physically access. This implies lower 
vulnerability in some adversarial scenarios. The third 
characteristics is that they can get nearby or physically 
access other objects in space. 

Those characteristics can also pose disadvantages. Since 
these nodes are difficult to physically access, extracting 
data or repairing in case of failure is difficult. They are 
intrinsically uncrewed, and human intervention to 
directly manipulate or use the data at location is not 
available.  Lastly, they are mostly predictable, and can 
be vulnerable, since space is a less controlled 
environment, it can be difficult to observe and maintain 
awareness, and there are less tools to defend against 
specific adversarial attacks or environmental threats. 

In addition, space nodes have two clear (but not 
necessarily unique) constraints that must be considered: 

1. They are resource limited (power and mass), which 
imposes constraints on the amount of onboard 
computation, the amount of transmission bandwidth, 
and/or a duty cycle of operation. (Driven by the available 
local power supply and storage and by the thermal 
dissipation constraints). 

2. They are constantly moving with respect to the ground 
(except for the especial case of GEOs) and there is not a 
lot of flexibility on how much their trajectory can be 
altered. 

These characteristics and constraints must be the drivers 
that influence the decision if an application should be run 
on a space node or on a terrestrial node.  

Given these factors and constraints, we propose to 
identify a methodology to assess the effects of executing 
software functionality in space. First by exploring a (not 
exhaustive) taxonomy of applications and software 
functionality, then, describing a step-wise decision 
framework and lastly highlighting some examples. 

TAXONOMY OF USE CASES FOR SPACE EDGE 
PROCESSSING 
The Table 1 below, provides a list of example space 
mission use cases. Users of the methodology are 
encouraged to use it as a reference to identify 
functionality migration opportunities to be investigated 
and in support of defining mission pipeline graphs. 

Table 1: Taxonomy of edge-software use cases 

Mission Type Mission 
Objective 

Mission Key Metrics 

Remote Sensing Image collection Volume of data 
Revisit Time 

Resolution 
Speed of response for 
specific resolution 

1st derivative 
analysis 

Identification of 
objects 

Number of detected 
objects 
Sensitivity, specificity 
metrics 

Geolocation and 
tracking 

Number of tracks 
created 
Track accuracy 
Track deconfliction 
metrics 

2nd derivatives 
analysis 

Activity based 
intelligence: 
-Forecasting,  
-Pattern of life 

Prediction accuracy, 
sensitivity, specificity 
metrics 

Target 
processing: - 
Target custody 
- Target statistics 

Total track number 
over time 
Track accuracy over 
time 

Geospatial 
Information: 
Structure 
Weather 
Mapping 

Geographical extent 
Accuracy 

PNT Signal broadcast 
Solution delivery  

Solution accuracy 
Solution latency 

Communications Bulk Data 
Small point to 
point 
Area Distribution 

Bandwidth 
Latency 
Service area capacity 
(BW per Area size) 

System 
Management 

Planning 
(scheduling, 
tasking) 
Infrastructure 
management 
Network control 
Security 

Management scope 
 
Management capacity 
(number of resources 
served) 

 

PROPOSED ANALYSIS AND DECISION 
FRAMEWORK 

The proposed decision framework attempts to be un-
opinionated, generally useful, systems-thinking-based 
approach with grounding in necessary decision data. The 
framework includes the fact that migration of functions 
to the edge requires both qualitative and quantitative 
analysis, and requires a wholistic view and not isolated 
numerical calculations, simulations, or single-factor 
thinking. This framework is not a turn-the-crank, 
prescriptive recipe – it requires knowledgeable 
individuals to perform trades and create options within 
the framework. This framework is provided as a 
methodology of how to think about the problem, with the 
intent to help the reader decide what functionality may 
be better placed at the edge or on the ground. 
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The overall proposed framework flow is visually shown 
in Figure 2. For the math-minded reader, “Independent 
Variables” can be considered to be the mission 
objectives (as defined by selected Metrics of Value), the 
function and interrelation (described by the mission 
pipeline graph), and the deployment of those functions 
across processing capability in the network nodes. 
“Dependent Variables” will be the Metrics of Value, 
which are driven by models and trades, and themselves 
guide the final decision outcome which is a selected 
architecture.  

In particular, the framework considers 4 steps: 

1. Generation of a mission pipeline graph 
The first step in assessing (an) application(s) suitability 
for edge or ground-based hosting is to define the 
application (mission) functional workflow as a graph, 
that is, identifying how inputs relate to outputs from 
other functional elements, dependencies and resources, 
and how the function output feeds into other functional 
elements. The goal is to break down the functionality 
into computational units that could be placed at specific 
nodes in the network (see [11]), and enable trade 
analysis. 

The key process in defining if functionality shall be 
allocated to a specific node (space or ground) is to 
evaluate (qualitatively and quantitatively) how the 
execution of an application or process in a particular 
node affects the performance drivers, while considering 
the constraints, the advantages and the disadvantages and 
to quantify how each of these three drivers affect the end 
metric of performance of the mission. 

To perform this analysis process there are few steps that 
need to be performed: 

1. Identify the application definition 
2. Identify how it can be “connected” 

That is, how a particular application fits within a data 
workflow, how its required input can be provided by 
another process in the system and how its output are 
useful to another process in the system. 

This requires, first identifying the mission or missions it 
can support as use cases and then identifying where in 
those missions. 

To do so, several dimensions are to be considered.  

1. Generic use case addressed: identifying how the 
utilization of a functional software element fits 
within a given mission profile. In section 4 we 
provide a taxonomy of use cases that can be useful 
in identifying the functional workflow. 

2. Application functional type: Following the 
descriptions in section 2, the user can support the 
description of the interconnected graph 

3. Prerequisites: Clear identification of what are the 
specifics of the input. 

4. Identification of System Assumptions: 
Qualitative (soft) assessment of the ability of the 
application to be ported within an operational 
framework, i.e., does it provide the functionality 
required for the operational use cases?, does its 
input/output profile fits within an operational 
need?  

The outcome of this first step should be the definition of 
a functional graph that for the functional modules that 
are being traded, able to capture the interfaces between 
processes. 

Examples 

Figure 1 - Figure 4 graphically describe some examples 
for some missions of interest. 1: ISR mission, 2: SSA 
mission, 3: ISAM mission, 4: PNT mission and 5: 
Communications mission. They provide the description 
for notional missions describing the overall concept of 
mission pipeline graphs. The level of fidelity in the steps 
and the scope of the overall pipeline has to be defined 
driven by the software function that is being analyzed. 

For example, in the ISR mission the objective is to 
identify targets on the earth surface by using an EO/IR 
sensor and we are identifying if elements of the   In order 
to do that we identify the functional composition of the 
mission going into some detail to some of the predictive 
modeling software is useful to be run onboard. Possible 
functional decomposition, the level of detail granularity 
shall be determined by the specific analysis, in order to 
make sure the modeling described in section 2, supports 
the analysis of trading the functionality to the edge. 

The overall sequence for this mission is assumed to 
include: 

1. Area selections: namely, some process with or 
without human interaction must define where the 
system is looking for targets. 

2. Collection planning: based on a definition of 
locations, the system shall define how it is collecting 
data at those locations. In order to make that 
decision it uses to functions, one is modeling the 
performance metrics that drive the selection, the 
other one is the combinatorial exploration and 
selection form the action space. The performance 
function include sun artifact prediction, cloud 
coverage and GSD prediction. 

3. Execution of the collection (which required input 
from the process maintaining state of the system)  
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4. Image processing: includes georectification  
5. Target recognition 

Figure 1. Models the described scenario in example 1. 

 

Figure 1. Mission Pipeline Graph Example for an target 
recognition ISR mission 

In the SSA mission, there are cycles, driven by the fact 
that the plan of collections for tracking, affects the 
overall plan for collections.   

 

Figure 2. Example of a mission pipeline graph for an SSA 
mission 

In the ISAM mission example, the calculation of a 
sequence of activities is driven both, by the function that 
define the next objective and the analysis of the relative 
pose of the system. 

 

Figure 3. Example of a mission pipeline graph for an 
ISAM mission 

In the case of the PNT mission graph is very simple, we 
assume there is a constant function of maintaining 
ephemeris and clock drift, which affects the generation 
of the PNT signal to be transmitted. 

 

Figure 4. Example of a mission pipeline graph for a PNT 
mission 

Lastly, a mission pipeline graph example of a satellite 
communication mission that receives data from a user to 

be sent to another location, requires collecting the data 
from the user, scheduling the transmission to the 
destination, modulating the signal as needed, and finally 
transmitting. 

 

Figure 5. Example of a Rx-Tx Satellite communications 
mission 

2. Identify and Model Key Metrics of Value 

The second step in the process is the definition of 
Metrics-of-Value and an approach to measuring these 
figures. 

A mission pipeline graph, as a composition of functions 
where each function has time, accuracy and resource 
usage attributes (as defined in section 2). A way to think 
about the composition of the Metrics of Value is by 
looking at thse categories of time, accuracy and resource 
usage. 

The overall composed mission timeline can be derived 
from the composition of mission pipeline graph 
functions timelines. Similarly, the overall composed use 
of resources, can be derived from the composition of 
mission pipeline graph functions resource usage and can 
be ultimately compiled as a mission cost metric, given 
that to provide the resources there will be a monetary 
cost. 

Lastly, the overall composed mission accuracy is the 
Mission Performance Metric (i.e. its outcome is as close 
to as intended). Mission performance has different 
dimensions, since the ultimate mission utility can have 
quantifiable tangible and intangible attributes of success.  

The Metrics-of-Value need constraints or expectations, 
without it the system design can be non-sensical and can 
include metrics such as Intangibles and Goodwill, or 
Quality metrics. 

Both qualitative and quantitative metrics might 
necessary for a complete evaluation, and for the purposes 
of the framework, quality attributes and 
binary/categorical factors are also termed “metrics”, as it 
is assumed they can be verified in some way 
(“measured”). If it is not possible to verify a requirement 
or desire, it cannot be included in the assessment. 

There is no magic formula to compose mission 
performance from individual function composition, 
since the effects of the inputs to a function and the way 
resources are used can have different very different 
effects to the output, based on the solution 
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implementation. However, we believe the above 
framework provides a way to think about how to define 
Metrics of Value. 

Methods to measure the metrics may include usage of 
checklists (for categorical or scorable factors), publicly 
available “comparables” data, parametric models, 
physics-based models, and high or low-fidelity 
simulations that allow assessing the resulting metrics in 
a repeatable (though not necessarily deterministic) 
manner. Moreover, the Metrics of Value can be analyzed 
for subsets of the mission without having to define the 
ultimate end-to-end Metrics.  

Overall, most metrics fall within a few categories and the 
specific mission must tailor these to the desired [sub]set. 
The Metric of Value categories and notional examples 
are provided in Table 1. 

Table 2: Metrics of Value and Examples 

Metric Category Example 

TIME 
• Latency  
• Availability 
• Periodicity 

(“1000ms maximum delay from 
photons on sensor to processed 
output”) 
(“50% Orbit-Average duty cycle 
for payload operations”) 
(“1 pps +/- 0.0001%”) 

COST  
• Components 
• Resource Usage $ 
Or as derived from 
resource needs: 
• Quantity  
• Type  
• Usage Model 

 
(“Total cost $20M per satellite”)  
(“Maximum cost of $100,000 per 
week for provisioned downlink”) 
 
(“Min. 3 simulataneuos observation 
points [satellites]”) 
(“Min. 3 sats with onboard GPUs”) 
(“Requires consuming 10m/s of 
delta-V per week of the host”) 

PERFORMANCE 
Measurable quantities 
• Probability of Success  
• Numeric Performance  

Intangibles and goodwill 
success: 
• User Preference  
• Feedback/Visibility 
• Confidence/Trust  
• Ease of Use  
• Environmental, Social, 

Governance (ESG) 
Categorical Quality 
• Security and 

Classification 
Constraints 

• Compliance 
Open Standards 

 
(“Mean-Time-Between-Failures of 
1000 hours”) 
(“1 meter 3-sigma error of the 
position solution”) 
 
(“Users like the intuitiveness of the 
User Interface”)  
(“Users ignored reported warnings 
after being overloaded with 
warning signals”) 
(“The use case is more 
environmentally responsible”) 
 
 
(“System is certifiable by DISA to 
DoD Impact Level 6”) 
(“System uses CCSDS standard for 
all uplink/downlink transmissions”) 

 

In some cases, it may be possible to reduce the Metrics 
of Value to a subset, and reducing to purely quantitative 
metrics may be useful to build “lumped parameter” 
models, such as adding up all of the delays in a system 
to trade competing architectures (at least along a ‘Time’ 
metric, though potentially changing Cost or other 
metrics). 

In the metric selection process, it is important to identify 
metrics that can be calculated from a modeling and 
simulation activity, as these will potentially require 
development of such models and/or simulations. If 
required, the modeling & simulation (M&S), must be 
carefully selected to be able to implement the traded 
scenarios and provide the required data. The fidelity of 
the models should be tailored in accordance to the 
desired fidelity of the answer. 

It is beyond the scope of this paper to identify the main 
influential trades and metrics for all possible missions 
and Mission Function Graphs, and future work may 
address the Pareto-dominant trades and metrics.  

3. Step 3 – Modeling and iteration 
The modeling and iteration step focuses on generating a 
representation of the Metrics-of-Value identified in step-
2 to the necessary level of fidelity such that they can be 
traded against variations of the mission pipeline graph 
and its allocation to nodes. The objective is to iteratively 
obtain numeric and qualitative values of the traded 
configuration and improve the solution. Figure 7 and 
Figure 8 show the solution trade space in terms in the 
example 1 in section 6 shows a description of the type of 
trades that should be performed based on the mission 
pipeline graph. 

The process in this step shall focus on iteratively 
identifying options, generating metrics and performing 
trade analysis of the alternatives. As the process evolves, 
the designer shall focus on asking 2nd-level questions, 
looking at the definition of mission pipelines that may 
improve or may provide insight into the solution space.  
Are there options? How do those options trade? 

For example, in a time sensitive mission, the system 
designer may consider how latency can be reduced by 
modifying the input:  Is adding more links to the design 
and placing the software process in other satellites an 
option in the design? Can the process be located on the 
ground and add more receiving ground stations? Is that a 
feasible option? 

Or for example, in a mission where security is a key 
metric, how can mission security be ensured where the 
raw data is unclassified but processed data is classified? 
Can black data be downlinked to ground for fusion, then 
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perform high side fusion?  Can data be processed in orbit 
in a classified “enclave” and use classified connections 
to the ground? Which of these solutions provide better 
outcomes with respect to the identified metrics? Does it 
need higher level of fidelity? 

4. Step 4 – Decision Analysis 
In order to feedback into the iteration of options in step-
3, setting up some mechanism to analyze the trades is 
necessary.  In particular, it is necessary to address the 
fact that the problem is a multi-objective optimization 
problem, with multiple dimensions and quantifiable and 
non-quantifiable metrics. We recommend 3 major 
elements to be used in the analysis:  

1. A pareto analysis with linear combination of scores, 
by defining a simple numerical scale to the intangible 
metrics 

2. A scorecard with pass/fail analysis of intangible 
utility requirements 

3. A decision template that defines hard/medium/soft 
requirements. 

A resourceful exploration of these analysis elements will 
provide guidance in the design and will enable, process-
based decision making about when certain software 
functionality should de deployed in orbit.  

 



Ramirez 10 37th Annual Small Satellite Conference 

 

 
Figure 6: Overall Decision Framework Workflow 
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RESULTS 

In order to test the proposed process, we implemented a 
couple of examples with different level of complexity. 
The results are described in this section.  

Example 1. Trade-off analysis functionality edge 
processing target recognition.  

For this example, we focused on analyzing the trade-off 
of performing target recognition for an ISR mission at 
the space edge vs. on the ground. 

In the example we use a low-fidelity model to quantify 
and analyze the performance against time and accuracy 
leading to two possible functional implementations, 
either geo-rectifying and performing ATR in orbit or 
sending images to the ground and performing ATR on 
ground infrastructure. Figure 7 and Figure 8 show the 
solution trade space in terms of the distribution of the 
pipeline elements. The analysis shows that depending on 
the capacity of the network connectivity between the 
edge nodes and the ground, performing edge processing 
in orbit can be a better option. 

 

Figure 7. Option A: ISR target recognition mission with 
processing on the ground 

 

 

Figure 8. Option B: ISR target recognition mission with 
in-orbit processing 

The analysis compared a traditional execution, described 
in Figure 7, where images are collected and sent to the 
ground for processing, vs. a scenario where images are 
processed on board and the resulting data is delivered 
described in Figure 8. 

Notice that the graph description helps identifying the 
reasonable allocation of functionality at the node. It is 
not useful for example to ‘just move’ the analyzed 
function to the edge, some of the required input 
functionality also should to be moved with it. 

Figure 3 shows an example of the trades that the analysis 
framework enables, providing some visibility of the 
value of pursuing some of the porting of functionality to 
operate at the edge when only considering the time of 
execution as the key Metric-of-Value. Option A does 
only improve with increased bandwidth, whereas option 
B is limited by the onboard processing. At some high 
bandwidth point, the trade lines cross and Option A has 
a better performance than Option B. 

 

Figure 9. Average time to data delivery as the metric-of-
value for option A and option B 

 

Example 2: Edge processing trade-off for a complex 
combined space and air missions 

In this example, we developed an example based on a 
more complex system, examining the trade between edge 
and ground-based processing for a fire monitoring 
mission which involves coordination between space-
based assets searching for active wildfires and air-based 
UAV assets performing higher resolution fire 
monitoring surveillance. In this case, we implement a 
simulation of the entire system. We model the dynamics 
of the system using a physics-based simulator and the 
steps in the logic when processing the sensor data and 
the decision making in the involved nodes, as well as the 
network latency and routing of data. 

In the mission simulated, the space layer is providing 
advanced notice of wildfire areas based on infrared 
sensing of hot spots, for the air-layer to route around, 
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avoiding these risk areas to enable image capture in less 
smoky air. Figure 3 below shows the difference in this 
mission when satellite image processing is done on the 
ground versus at the edge, onboard the satellites.  

In this case, the modeling provides an analysis of a 
combined performance metric, which is the average and 
standard deviation of the time that the aircraft spent on 
high risk, high smoke zones. This metric was selected as 
the key metric of success of the entire system. The results 
are then captured via MonteCarlo simulation which 
enable to capture statistics and analyse performance and 
robustness to initial conditions. The example shows a 
2.7% improvement in the median time spent in risk zones 
by using edge processing as opposed to ground 
processing with the associated delays. This improvement 
mostly arises from the improved response time due to 
edge computing, which provides relevant mission 
information to the air-layer with more time to allow for 
rerouting around risk zones. 

 

Figure 10. In a fire monitoring mission, the satellites 
identify wildfire locations with either ground or edge 
processing and relay the information to the air-based 
assets, which collect higher resolution data. The air-based 
assets route around the identified high-risk areas, which 
have smoke that will occlude data collection. Box plots are 
shown with the median indicated in orange, the 25th and 
75th percentiles indicated by the blue box, and the gray lines 
indicating the full extent of the data. 

 

CONCLUSIONS 

In this paper we provided a view of the problem of 
identifying when a software application should be 
deployed to the space edge. We presented a structured 
decision framework with justifying rationale to provide 
insights and begin to address a key question of what 
mission compute functionality should be allocated to the 

space-based "edge", and under what mission or 
architectural conditions, versus to conventional ground-
based systems.  

This framework does not exhaustively address all 
missions, architectures, and CONOPs, however it is 
intended to provide generalized guidelines and heuristics 
to support architectural decision-making.  

Results for a set of missions highlighting different key 
metrics and decision drivers show that in several cases, 
edge computing for specific functionality is 
quantitatively valuable, especially for interoperable, 
multi-domain, collaborative assets. 
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