
[SSC23-IX-08]

Space Networking Implementation for Lunar Operations

Nathan Drzadinski, Stephanie Booth, Blake LaFuente, Daniel Raible
NASA Glenn Research Center

Cleveland, Ohio 44135; 414-731-8220
ndrzadinski@gmail.com

Abstract

The High-Rate Delay Tolerant Networking (HDTN) project at NASA has developed a performance
optimized and open-source Delay Tolerant Networking (DTN) implementation. The primary goal is to
create a scalable networking solution to increase the scientific data return rate of space missions. To reach
this goal, HDTN must span multiple edge cases in space networking by including tools and configurations
to accommodate a wide range of space systems. Typically, HDTN evaluations are conducted on a
laboratory emulation test bed, made up of hardware accelerated x86 based systems capable of data rates
over 10 Gbps. HDTN must have an effective implementation process on a wide range of systems to
increase the sustainability of the design.

One important implementation option is with low-level embedded systems which could be used on
small robotic missions. This paper details the implementation process, benchmark testing, and perfor-
mance results of HDTN in multiple configurations on Raspberry Pi 4 devices. By implementing HDTN
on a Raspberry Pi 4, a process for building HDTN onto ARM processors was developed and utilized to
conduct benchmark tests in multiple network configurations, achieving a data rate performance exceed-
ing 600 Mbps. Based on these results, HDTN proved to run on small ARM based systems with slight
modifications to the build procedure. These results were then extended to evaluating an implementation
of the HDTN software parsed across several Raspberry Pi 4 nodes. To test this capability, HDTN was
configured in a simplified cut-through setup and distributed among multiple Raspberry Pi 4 processors.
This distributed architecture was benchmark tested in a similar fashion to the testing of a singular HDTN
implementation. The results from the benchmark testing are used to examine how these implementation
options and capabilities can expand the use cases for DTN, and particularly with small robotic missions.

Introduction

The High-Rate Delay Tolerant Network-
ing (HDTN) project at NASA aims to be
capable of supporting high-rate communica-
tions in space, an imperative quality for a
future space internet and increasing the data
throughput of all space missions. At a high
level, a single HDTN node is made up of 5
main services (see Figure 1): Ingress, Stor-
age, Scheduler, Router, and Egress.3 Each
service interacts and communicates as inter-
nal ZMQ sockets. ZMQ is a concurrency
framework built to create distributed appli-
cations while minimizing latency and max-
imizing reliability.11 During this particu-
lar research and testing, a cut-through ver-
sion of HDTN was used. This bypasses the
Storage, Scheduler, Router, Contact Graph
Routing Client, and Contact Plan. The cut-
through setup eliminates any potential de-

creases in data rates by avoiding a solid-state
drive (SSD) storage system which could limit
rate performance.

Figure 1: High Level HDTN Architecture

The HDTN software is open-source and is
publicly accessible on the HDTN GitHub.6

To achieve its goals, HDTN must have ro-
bust implementation capabilities with an ar-
ray of different computer systems, such as
supporting ARM processor systems and a

Drzadinski 1 37th Annual Small Satellite Conference

https://github.com/nasa/HDTN


multitude of edge cases. This is essential
as NASA and other entities start colonizing
the moon and increase lunar surface robotic
presence.

The Raspberry Pi is a low cost, credit-
card sized single board computer that con-
tains a quad-core Cortex-A72 (ARM v8)
processor. The Raspberry Pi Foundation
claims that the Raspberry Pi has the capa-
bilities of a typical desktop computer while
being accessible to people of all ages and lev-
els of knowledge.10 Because of this, Rasp-
berry Pis are moving into a plethora of in-
dustries and applications, including space.
One example of this is the Raspberry Pi
Foundation’s strong partnership with the
European Space Agency (ESA) with their
Astro Pi challenges. The challenge inspires
young Raspberry Pi users by giving them
an opportunity to have their code run on
Raspberry Pis(Astro Pis) aboard the ISS.1

Another example is how Raspberry Pis are
being implemented aboard CubeSats, such
as Utah State University’s Get Away Spe-
cial Passive Attitude Control Satellite (GAS-
PACS) mission, operational during 2022.9

Raspberry Pis have become prevalent too
the point where NASA JPL has a guide-
line specifically for using Raspberry Pis in
space applications.2 Due to the ease of use,
projected relevance, and differences from the
typical HDTN test benches, Raspberry Pis
were an obvious choice for testing HDTN’s
software.

The Raspberry Pi 4 was used through-
out integration and testing. Each device ran
the Ubuntu Desktop 64-bit operating sys-
tem (OS) because HDTN has the most her-
itage on the Ubuntu OS. Therefore it was
presumed, the installation, build, and test-
ing processes’ issues would minimized. Once
HDTN was built on its first ARM system,
performance evaluations in multiple network
architectures and three convergence layers
configurations were performed. To standard-
ize all benchmark testing, each benchmark

test followed these specifications:

• 5 minutes run time,

• Cut-through version of HDTN,

• No Linux optimizations

Note, running optimization would cause all
the tested rates to greatly improve but were
not necessary for this initial benchmark test-
ing.

1 Simple End-to-end Raspberry Pi Architec-
ture

1.1 High-Rate Delay Tolerant Networking on
an ARM Processor

HDTN was built on large x86 pro-
cessors, so the established build process
was not able to be executed. The steps
for building HDTN had to be rewritten
specifically for Raspberry Pis. Within
the build process for HDTN, the typical
CMakeCache.txt edits must be made along-
side additional modifications. Since the
Ubuntu Desktop ran in 64-bit and not
32-bit during our testing, a position in-
dependent command line option (-fPIC)
must be added to the CMAKE CXX FLAGS

RELEASE:STRING=-03 -DNDEBUG line in the
CMakeCache.txt file. Also, HDTN was de-
veloped on machines running x86 processors
which use a Complex Instruction Set Com-
puter (CISC) CPU design while ARM pro-
cessors use a Reduced Instruction Set Com-
puter (RISC) CPU design. To alleviate this
problem, the x86 HARDWARE ACCELERATION

and the LTP RNG USE RDSEED must be set
to BOOL=OFF inside the CMakeCache.txt
file. The last modification that must be
made is due to the cpuid.h library used to
conduct a CPU Flag Detection test, one of
the unit-tests for HDTN. However, this li-
brary only works with x86 processor sys-
tems, and therefore the CPU Flag Detec-
tion test fails. There are two places where
the CPU Flag Detection test has to be com-
mented out of the script from the unit-test

Drzadinski 2 37th Annual Small Satellite Conference



call and the common utility function. Once
these modifications are performed, the Rasp-
berry Pi 4s will pass all unit tests and be
ready to run benchmark tests.

Figure 2: Raspberry Pi to Raspberry Pi Ar-
chitecture

1.2 Testing

The test architecture used two Raspberry
Pis, (1) a sender Pi hosting BPGen and a
HDTN node and (2) a receiver Pi hosting
a second HDTN node and BPSink. BP-
Gen is the bundle generator, and BPSink
is the bundle receiver (see Figure 2). The
tests were configured with each of the con-
vergence layers: TCPCL v4, STCP, and LTP
over UDP. Each configuration benchmark
test was performed three times to detect out-
liers, as well as an additional three times
reversing the Raspberry Pis (i.e., switching
sender/receiver roles) to detect Raspberry
Pi specific board discrepancies. In addi-
tion, each test measured the payload exclu-
sive data rate, the total data rate, the high-
est recorded rate, the lowest recorded rate,
the bundle count and the bundle rate.

To benchmark the effectiveness of the
HDTN nodes, a total of 18 tests were con-
ducted. To remove skewed data caused by
startup and shutdown, the first and last data
points were removed from the analyzed data
set. The average data for all the 18 tests can
be seen in Table 1. To see how well HDTN
functions, look to the payload data rate and
bundle rate. The highest and lowest rates
give the range that would be valid in a new
implementation. From this data, it was clear
that the direction the data traveled had no
effect on the data rate.

Table 1: Data Table of Initial Raspberry Pi
Benchmark Testing Averages

2 Distributed Raspberry Pi Architecture

2.1 Parsing HDTN

A possible use case for HDTN could be
where a single node of HDTN is distributed
among multiple processors. This would be
done by splitting apart HDTN at the ZMQ
level. A system like this would most likely
run on multiple low-level computers where a
single processor might struggle handling the
entirety of a HDTN node but be capable of
handling a single sub-service. To test this
type of implementation, it made sense to use
the Raspberry Pis as the test bed. While the
Raspberry Pi 4 proved it could handle an en-
tire HDTN node, it is still a low-level ARM
system that will allow for easier extrapola-
tion to other low-level systems. To set this
up, the individual HDTN json ZMQ config-
uration files had to be edited (see Section 10
of the User Guide4). The ingress has to port
its output to the other Raspberry Pi running
the egress and the egress had to accept the
ingress from the other Raspberry Pi.

To benchmark the effectiveness of the dis-
tributed HDTN nodes on the Raspberry Pis,
similar tests were conducted as with the sim-
ple end-to-end tests. Each test measured the
payload data rate, the total data rate, the
highest recorded rate, the lowest recorded
rate, the bundle count, and the bundle rate.
The tests were configured with each of the
convergence layers: TCP, STCP, and LTP
over UDP. Each configuration was operated
three times and had their data results aver-
aged.

Drzadinski 3 37th Annual Small Satellite Conference



2.2 Testing

A few parsed architectures were tested
when exploring the possibilities of a dis-
tributed version of HDTN. First, a parsed
version of HDTN was attempted in the most
simple structure. Two Raspberry Pis host a
single HDTN node, one ran BPGen and the
HDTN Ingress while the other ran HDTN
Egress and BPSink (see Figure 3). This was
done to minimize the complexity of the set
up and focus on making sure a parsed ver-
sion was possible without inhibiting HDTN’s
functionality. A total of 9 tests were con-
ducted. Again, the first and last data points
were removed to eliminate discrepancies due
to start-up and shutdown transients, and the
resultant data of the individual configuration
tests were averaged (see Table 2).

Figure 3: 2 Raspberry Pi Distributed Bench-
mark Architecture

Table 2: Data Table of Figure 3 Benchmark
Testing Averages

Comparing the distributed values ob-
tained to those from the simple end-to-end
tests (see Table 1), the payload data rates
experienced negligible change with a minor
exception of STCP which increased by about
7%. These data rates prove the viability
of a parsed system within a HDTN net-
work. Looking closer at the data, an in-
crease of the data rate was to be expected
from only running a single HDTN node in-
stead of two. This could point to STCP
speeds being more effected by the number

of nodes in a HDTN network than TCPCL
and LTP over UDP. The testing produced re-
spectable performance results; however, run-
ning BPGen or BPSink on the same Pi as the
parsed HDTN node does not reflect how the
system would work in real world scenarios.
A second architecture using 4 devices run-
ning each piece separately would make for a
stronger characterization of the parsed sys-
tem. Three Raspberry Pis were used along
with a laptop. The laptop ran BPGen while
one Pi ran HDTN Ingress, a second Pi ran
HDTN Egress, and a third Pi ran BPSink
(see Figure 4). The laptop running BPGen
would not be processing any data, thus not
impacting the tests results. The same bench-
mark tests that were run for the previous
parsed architecture were used here.

Figure 4: Isolated 2 Raspberry Pi Distributed
Benchmark Architecture

Table 3: Data Table for Figure 4 Benchmark
Testing Averages

This second architecture produced inter-
esting results. The TCPCL and LTP over
UDP again had negligible payload data rate
effects, and the STCP’s payload rate de-
creased by about 13%. This similarly proved
the viability of a parsed system in a HDTN
network with negligible impact on the per-
formance. Analyzing further, the STCP pay-
load decrease seems to be correlated to the
number of devices running HDTN in addi-
tion to the number of HDTN nodes. Con-
tinuing with testing, it made sense to run an
architecture which would be more directly

Drzadinski 4 37th Annual Small Satellite Conference



comparable to the initial simple end to end
HDTN on two Raspberry Pis. This third
architecture used 3 Raspberry Pis: one run-
ning BPGen and Ingress, one running just
the Egress and one running a full HDTN
node and BPSink (see Table 5). The same
benchmark tests were run as the previous
two parsed architectures.

Figure 5: 2 Raspberry Pi Distributed to
Raspberry Pi Benchmark Architecture

Table 4: Data Table of Figure 5 Benchmark
Testing Averages

These tests found that parsed HDTN had
negligible differences in payload data rate
from the initial two whole HDTN node tests.
This solidified the concept of parsed HDTN
having negligible impact on network perfor-
mance. The biggest difference was in the
STCP tests with a decrease in speed by 3%.
As seen with the previous two architecture
tests, this is probably attributed to the one
additional device operating in the network.

3 Documentation for Implementation

The general Raspberry Pi setup require-
ments are accessible from the Raspberry Pi
Foundation website.10 These are: download
the desired OS image (Ubuntu) to the Mi-
cro SD card, boot up the Raspberry Pi, and
complete the set up instructions given to
the user from the OS. Before downloading
the HDTN code from GitHub and perform-
ing the build, make sure to update and up-
grade the Pi. The process for building a sin-
gle Raspberry Pi HDTN node, as explained

in section 1.1, is documented in full at the
publicly accessible HDTN GitHub6 and the
user guide found there.4 This will provide
the necessary package installations, the list
of package download commands with direc-
tory locations, the cmake build process for
HDTN, and all the necessary lines to edit.
To make sure the system is working properly,
run the unit tests also documented on the
GitHub. In case of errors, there is an added
extra section that details how to fix some
common and reoccurring problems. The pro-
cess for editing the configuration files to set
up architectures such as the tested parsed
systems are also located in these documents.

4 Small Robotic Missions

Low-level ARM systems, like a Raspberry
Pi, are suitable for use on robotic systems
all over the planet today. As more inter-
planetary robotic missions are being pro-
duced, they will become highly integrated
into a space communications network. One
relevant example of this is in the develop-
ments and progression of lunar infrastruc-
ture to support the Artemis program. This
will bring these systems to the lunar surface
where they will play a major part in lunar
habitats, transportation, and exploration.
In the farther future, these devices will go
to Mars and beyond. Enabling HDTN on
these systems will assist in providing net-
worked capability to the space environment.

5 Conclusion & Future Work

HDTN is a versatile technology that can
work in most space applications. Through
this testing process, HDTN proved it can op-
erate on low-level ARM based systems and
in a parsed architecture. This opens the door
to more universal compatibility and mission
infusion. HDTN can be operated on a vari-
ety of new systems and thus use cases, one
being small robotic missions. It was deduced
that, in an emulation environment, STCP is

Drzadinski 5 37th Annual Small Satellite Conference



affected by the number of devices and num-
ber of nodes in a network, but not by di-
rection of data flow. For TCPCL and LTP
over UDP the direction of data flow, number
of devices, and number of nodes in the net-
work have negligible impact on payload data
rates.

There are many more future exploration
and investigation opportunities for HDTN
implementations like these. Listing a few, a
thorough investigation into how STCP pay-
load data rates are affected by different ar-
chitectures would be a good starting point.
An opportunity exists for further data rate
characterization. Second, a deeper explo-
ration into larger networks running on low-
level ARM systems such as Raspberry Pis
would be insightful, and could probably go
with the STCP investigation. Third, the
small robotic test bed at GRC could have
HDTN implemented on it. This test bed
could be connected to the onsite HDTN net-
work, take pictures, and transmit them on
the emulation network. Next, as noted in the
introduction, HDTN has not been optimized
for these initial tests. A complete optimiza-
tion could yield large increases in data rates,
and show the maximum potential of a Rasp-
berry Pi HDTN node. Finally, an investiga-
tion into determining the minimum require-
ments for a system running HDTN could be
pursued as the Raspberry Pis were capable
of handling the HDTN software.

Acknowledgments

The authors would like to thank the
NASA Space Communications and Naviga-
tion (SCaN) program and the Delay Toler-
ant Networking (DTN) project for support-
ing this work.

References

[1] Astropi, astro-pi.org/.

[2] Guertin, Steven M. NASA, Rasp-
berry Pis for Space Guideline, 2021,

nepp.nasa.gov/docs/papers/2021-
Guertin-Raspberry-Pi-Guideline-CL-
21-5641.pdf.

[3] Hylton, Alan, et al. “IEEE Aerospace
Conference 2022.” NASA, New
Horizons For A Practical And
Performance-Optimized Solar
System Internet, 1 Mar. 2022,
ntrs.nasa.gov/api/citations/20220003634/downloads/AeroConf 2022 New Horizons 20220228.pdf.

[4] LaFuente, Blake, et al. High-Rate
Delay Tolerant Networking (HDTN)
User Guide Version 1, Apr. 2023,
ntrs.nasa.gov/api/citations/20230000826/downloads/TM-
2023000826.pdf.

[5] NASA’s Moon to Mars Strat-
egy and Objectives Development,
www.nasa.gov/sites/default/files/atoms/files/m2m strategy and objectives development.pdf.

[6] “NASA/HDTN: High-Rate Delay Tol-
erant Network (HDTN) Software.”
GitHub, github.com/nasa/HDTN.

[7] Raspberry Pi. “Raspberry Pi 4 Model
B Specifications.” Raspberry Pi,
www.raspberrypi.com/products/raspberry-
pi-4-model-b/specifications/.

[8] Schlieder, Sarah. “Pave the Way for
Artemis: Send NASA Your Mini
Moon Payload Designs.” NASA, 9
Apr. 2020, www.nasa.gov/mini-moon-
payload-designs.

[9] University, Utah State. “GAS-
PACS CubeSat: Projects: Gas:
Physics.” Utah State University,
www.usu.edu/physics/gas/projects/gaspacs.

[10] “What Is a Raspberry Pi?”
Raspberry Pi, 20 Aug. 2015,
www.raspberrypi.org/help/what-
%20is-a-raspberry-pi/.

[11] ZeroMQ, zeromq.org/.

Drzadinski 6 37th Annual Small Satellite Conference


	Simple End-to-end Raspberry Pi Architecture
	High-Rate Delay Tolerant Networking on an ARM Processor
	Testing

	Distributed Raspberry Pi Architecture
	Parsing HDTN
	Testing

	Documentation for Implementation
	Small Robotic Missions
	Conclusion & Future Work

