Imaging Spectrometer Implementation on a Small Satellite Platform for Aquatic Ecosystems Science

Corrie Smeaton, Ronald Lockwood, Michael Chrisp – MIT Lincoln Laboratory; Charles Bachmann – Rochester Institute of Technology; Laura Kennedy, Steven Gillmer, Linda Fuhrman, Derrick Brouhard, Jade Wang – MIT Lincoln Laboratory

Science/Mission Payloads – Small Satellite Conference

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Department of the Air Force under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of the Air Force.

8 August 2023

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY © 2023 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

Coastal Zone Remote Sensing

Changes to coastal ecosystems impact human health, food, water, safety, and global climate change

Spectral Sensing Challenges	Optical System Requirements
Varying reflectance of scene content	High dynamic range (9000:1)
Resolution of boundaries between ecosystems	Small ground sample distance (≤ 30 m)
Signal dominated by radiance from the atmosphere	High signal-to-noise ratio (> 250)
Large spectral bandwidth	VNIR – SWIR (380 – 2500 nm)
Species identification and discrimination	Spectral resolution (≤ 10 nm)

CONOPS Challenges	Mission Requirements
Monitoring transient environmental conditions	Short revisit times
Global coverage	Wide swath width and/or constellations

- Aquatic Ecosystem Science from Space
- Enabling Technologies for SmallSat HSI
 - SmallSat Instrument Design
 - Predicted System Performance
 - Summary & Next Steps

Enabling Component Technologies for SmallSat HSI

Chrisp Compact VNIR-SWIR Imaging Spectrometer (CCVIS)

Unique Design Features

- Excellent aberration control
- Spectral accuracy and precision
- Small SWaP (x11 smaller than state-of-the-art)
- Flat grating that is easily manufactured
- Thermally and mechanically stabilized
- Modular implementation

Design Parameter	Predicted Performance
Spectral range	380 - 2500 nm
Spectral resolution	10 nm
SNR	> 400 (380 – 1100 nm); > 250 (1100 – 2500 nm)
Spatial-spectral uniformity	± 0.5 μm
Spatial samples	1600

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CCVIS Compared to Current State of the Art

	JPL HyspIRI	JPL CWIS	LL CCVIS
	Slit Convex Grating FPA -32 cm	Concave Grating Slit FPA 32.5 cm	Slit Flat Grating FPA
	H. Bender et al. https://doi.org/10.1117/12.2062768	B. Gorp et al. https://doi.org/10.1117/12.2062886	
	HyspIRI	CWIS	CCVIS
Spectral Bandwidth (nm)	380 - 2500		
Optics	All reflective Reflective & refractive		
F-number (limit)	2.8	1.8	2.3
Dual-blaze Grating	Convex	Concave	Flat
Volume (cm3)	~6400	3988	352

JPL - Jet Propulsion Laboratory HyspIRI - Hyperspectral Infrared Imager **CWIS - Compact Wide-swath Imaging Spectrometer**

Stacking For Large Swath Hyperspectral Imaging

Stacking For Large Swath Hyperspectral Imaging

Stacked CCVIS spectrometers get much larger effective swath width and maintain resolution using a single wide field telescope

Fabrication of Slit and Dual-Angle Grating

Grayscale photolithography fabrication process enables high performance, low cost spectrometer gratings and slits

Aquatic Ecosystem HSI - 10 CVS 07/08/23 [1] M. A. Smith et al., "Design, simulation, and fabrication of three-dimensional microsystem components using grayscale photolithography," J. Micro/Nanolith. MEMS MOEMS, vol. 18, no. 04, p. 1, Nov. 2019, doi: 10.1117/1.JMM.18.4.043507.

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Jerram, Beletic; https://doi.org/10.1117/12.2536040

Teledyne CHROMA Sensor

si.com/products/Documents/CHROMA%20Br

 Substrate-removed MCT allows for sensitivity over broad bandwidth

COTS broadband focal planes available for HSI applications in the visible-SWIR bands

Compact lasercom terminals demonstrate downlink capability for large data volume

- Aquatic Ecosystem Science from Space
- Enabling Technologies for SmallSat HSI
- ➡ SmallSat Instrument Design
 - Predicted Performance
 - Summary & Next Steps

Hyperspectral Imaging Small Satellite Design

Aquatic Ecosystem HSI - 14 CVS 07/08/23 FOV – Field Of View

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Payload Predicted Performance

Г

		4000 — Decadal Survey — CEOS — Decadal Survey Requirement
Design Parameter	Predicted Performance	
Telescope	26 cm aperture, f/2.5 TMA	1000 mit 10 m
Field of view	9.6° cross track	
Spectral range	380 – 2500 nm	0 500 1000 1500 2000 2500
Spectral resolution	< 10 nm	Wavelength (nm)
Ground sample distance	25 m (nadir)	Single readout
Nadir swath	75 km	Ξ ^{0.25} —Effective —Sensor
Bus	ESPA-grande Class	-CEOS Requirement
Orbit	450 km sun-synchronous orbit	

1000

900

700

Wavelength (nm)

800

600

0

400

500

Data Acquisition: Pitchback Maneuver

- Spacecraft will execute a pitchback
 maneuver
 - Image of the slit projected onto the surface is slowly scanned while recording FPA readouts at a higher rate.
 - Effective frame rate determined by time to scan the projected slit one GSD
- Avoids saturation over land while obtaining higher SNR over water

Summary & Next Steps

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Aquatic Ecosystem HSI - 17 CVS 07/08/23

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Department of the Air Force under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of the Air Force.

© 2023 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.