
McComas 1 37th Annual Small Satellite Conference

SSC23-P3-29

cFS Basecamp: A Flight Software STEM Education Ecosystem

David McComas, William Tandy

Open STEMware Foundation

15634 Thistle Downs Court Woodbine, MD 21797

443-547-0201

dmccomas63@gmail.com

ABSTRACT

The open-source core Flight System (cFS) Basecamp ecosystem includes several cFS-based STEM educational

projects and provides the infrastructure for users to create their own. Basecamp’s tool suite and app repositories

function much like a smartphone’s App Store model. The initial cFS Basecamp installation includes several built-in

tutorials that help users learn NASA’s cFS application environment and shorten their path to productivity. Online

resources describe Basecamp’s goal-oriented software/hardware projects. These projects are designed so students

understand how to create app-based solutions to meet a particular goal. This approach evolved after years of being

engaged with teaching the cFS and learning which teaching methods were most effective.

Users begin by installing a lightweight Python GUI with minimal external dependencies. This approach helps avoid

platform-specific issues so Basecamp can be used in classroom settings where students have diverse computing

platforms. With Basecamp’s GUI installed, students are ready to work on projects. A preinstalled demonstration app

in conjunction with a self-guided tutorial helps users understand an app’s command/telemetry interface and the cFS

application runtime environment. A built-in app generation tool creates a “Hello World” app to help students take a

first step into cFS app development. From there, they can work through Code-As-You-Go (CAYG) lessons that

introduce topics. Each new topic is reinforced with hands-on exercises. These lessons are more suitable for

instructor-led classes that can be held virtually or in person.

The next level of projects requires Basecamp’s github app repositories. Using the GUI, students can select and

install Basecamp cFS apps from github with only a few mouse clicks. For example, the General-Purpose

Input/Output (GPIO) Demo project requires a cFS Raspberry Pi interface library and an app to control an LED

connected to a Raspberry Pi through the GPIO connector. To implement this project, students first connect an LED

to a Raspberry Pi, install Basecamp on the Pi, download/install the library/app, and rebuild/run the cFS. A second

Basecamp instance installed on a separate computer can remotely control the Raspberry Pi. This is achieved by

using Basecamp’s MQTT Gateway app. This app utilizes the Internet of Things (IoT) MQTT messaging service that

has freely available broker servers.

Basecamp’s modular approach with plug ‘n play cFS apps make it an ideal platform for creating STEM educational

projects. These projects will help students learn valuable hardware/software skills while using NASA’s award -

winning flight software that has a large user base in the aerospace community.

BACKGROUND AND MOTIVATION

NASA licensed its core Flight System1,2 (cFS) as open

source in 2015 and, since then, it has played a

significant role in the rapidly expanding aerospace

industry. The cFS’ international user base includes

academic, government, and commercial organizations.

During the same period of community growth, there

have been organizations that evaluated the cFS and

decided not to use it. Here are a few of the current cFS

adoption challenges:

1. Where should someone start learning how to

use the cFS?

2. How do they use the cFS to solve their

project’s needs?

3. What cFS processor/operating system ports are

available and if needed, how do I create a new

port?

McComas 2 37th Annual Small Satellite Conference

4. What existing libraries/apps are available and

how should they be configured/combined with

project-specific libraries/apps to provide a

fully functioning system?

5. Are there cFS open-source community

benefits?

OpenSatKit3 was released in 2017 to help address

challenges 1, 2, 4, and 5. OpenSatKit includes a

reference mission cFS target, the Ball Aerospace

COSMOS ground system4, and NASA’s 42 dynamic

simulator5. While OpenSatKit helped with the situation,

it also suffers from adoption and maintenance

challenges. Users install OpenSatKit as a monolithic

tool so the installation can be over 20 minutes. In

addition, the current version of COSMOS used in

OpenSatKit, uses an old version of Ruby with an

outdated graphics library that doesn’t always install

correctly on the latest Linux platforms so successful

installations are inconsistent. OpenSatKit’s

dependencies on 42, COSMOS, the cFS Framework,

and several NASA cFS apps makes it hard to maintain

as each of these packages continue to evolve.

OpenSatKit’s current cFS Framework is a major release

version behind NASA’s most recent cFS Framework

due to the timing of NASA apps that are compatible

with the cFS Framework. In addition, COSMOS

underwent a major architectural change and the

management of COSMOS transitioned from Ball

Aerospace to OpenC36. At the time of this writing,

OpenSatKit has not been refactored to the new

COSMOS nor updated to the latest cFS Framework and

app versions.

The design concepts and motivation for creating cFS

Basecamp7 were driven by OpenSatKit user feedback

and by in-person experiences of using OpenSatKit for

educational and aerospace project consultation

purposes. Basecamp’s architecture is the inverse of

OpenSatKit’s monolithic architecture. Basecamp

includes a minimalistic Python command and control

system that communicates with a cFS target that

includes an app suite that provides an operational

runtime environment. The default cFS target has more

than enough functionality to be used for cFS training.

Basecamp’s fast and easy installation combined with a

short learning curve means users can quickly focus on

learning the cFS.

OpenSatKit provides a reference mission that can be

very helpful to new cFS developers because it shows

how an app suite can solve a mission’s functional

requirements. However, experience has shown that

breaking down the problem space into smaller parts and

incrementally showing how to solve individual parts of

the problem is what many missions need. Common

questions include, “How do I create an app to manage a

payload?” “How do I create an attitude control app?”

Separate Basecamp projects can be created to address

each question.

In 2023, Basecamp projects were successfully used

during a hands-on workshop at the 2023 FSW

Workshop8 and for a University of Maryland Space

Systems lecture and homework assignment. The

Basecamp online resources for apps and projects will

continue to mature so users can use them independent

of an instructor. These resources will provide guidance

for how the cFS community can contribute apps and

projects. In addition, apps and projects are not limited

to the aerospace community: they can be used for

general STEM education as well.

CFS ARCHITECTURE AND TERMINOLOGY

This section briefly introduces the cFS application

architecture to provide context for Basecamp. Figure 1

shows the cFS layered architecture. The Platform

Abstraction layer includes the Operating System

Abstraction Layer (OSAL) and the Platform Support

Package (PSP). This layer allows the Core Flight

Executive (cFE) to be ported across different

processor/operating system (OS) platforms. The cFE

layer provides a runtime environment for applications

through five services: Executive, Time, Events, Table,

and the publish/subscribe messaging system called the

Software Bus. Libraries run in the context of the app

that is using them. The bottom and top layers are

partially shaded blue because the cFS provides some

functionality that is augmented by users with project-

specific functionality. The term cFS target refers to all

the software components that are built and deployed on

a single processor/OS platform.

Figure 1: cFS Layered Architecture

The cFS Framework (bottom two layers) provides

services to apps via function calls defined in each

layer’s Application Programming Interface (API).

(Libraries and applications can make calls outside of

the cFS Framework but, if they do, they won’t be as

portable.)

McComas 3 37th Annual Small Satellite Conference

The cFS Framework is built as a single binary image

and libraries and applications are built as individual

object files. A startup script defines the order in which

libs/apps are loaded. The script also defines parameters

such as an app’s priority and local memory

requirements. App resources are acquired and released

through cFS Framework APIs. Each app has its own

execution thread and can spawn child tasks. Apps can

be restarted and reloaded during runtime without the

need to reboot.

Figure 2 shows a traditional cFS “lollipop” diagram that

serves as a cFS target app context diagram. Typically,

target apps are shown along with significant interfaces.

It’s also common practice to color code the apps to

identify app heritage. The names of the apps help

identify the decomposition of functional responsibilities

and connecting the apps via the Software Bus

emphasizes that all apps can communicate via

messages.

Figure 2: cFS Target App Context

CFS BASECAMP ECOSYSTEM

Figure 3 shows the components of the Basecamp

ecosystem. The Basecamp box represents the Python

Graphical User Interface (GUI), the tools used to build

and operate cFS targets, and the tool to export the

command and telemetry definitions. The cloud

represents internet-based resources that include an App

Exchange hosted by GitHub, instructional YouTube

videos, and project webpages hosted on

OpenMissionStack.com (OMS) 9.

Figure 3: cFS Basecamp Components

Users engage with these resources according to their

needs. Basecamp includes built-in tutorials and online

videos to help users gain proficiency with Basecamp

itself and to learn the cFS. The structure of Basecamp’s

learning material is also much different than

OpenSatKit’s. A majority of Basecamp’s instructional

material is goal-oriented lessons. For example, instead

of describing a cFS Framework Application

Programming Interface (API) such as the cFS Software

Bus messaging system, Basecamp walks users through

the process of sending a command from the ground to a

particular app. This use case answers the question,

“How do I send a command to an app?” and in the

process of answering this question the relevance of the

API is revealed to the user. Goal-oriented learning

reveals the purpose of the API rather than simply

describing an API’s capabilities and functionality. The

videos also encourage viewers to try things for

themselves using Basecamp to create an immersive

learning experience. There’s still a need for material

that can be used as a reference, but that is typically

more helpful once someone has achieved some basic

cFS skills.

The next level of cFS education addresses project-

oriented problems such as, “How do I create a cFS app

to manage a spacecraft payload?” Basecamp’s App

Repo and online project webpages address these types

of questions. Basecamp includes libraries and apps that

can be installed on Basecamp’s cFS target with a

couple of mouse clicks. Users can assemble new

projects or go to Basecamp’s project webpages to

download preassembled projects that provide solutions

to these types of problems.

McComas 4 37th Annual Small Satellite Conference

The App Repo and project assembly processes are

feasible because Basecamp uses a NASA cFS toolchain

called cfe-eds-framework10 that was released as open

source in 2021. This toolchain was developed under a

technological effort and allows app command/telemetry

definitions to be defined once using CCSDS Electronic

Data Sheets (EDS) 11 and the toolchain produces flight

and ground code from the single definition. Basecamp

leverages the toolchain so apps can automatically be

added and removed from the cFS target. Efforts are

underway at NASA to add an EDS toolchain to the cFS.

EDS application command/telemetry definitions are

already included with the current cFS Framework.

The use of EDS to define application interfaces and the

inclusion of a runtime app suite as part of the standard

Basecamp distribution allow the flight and ground

software to be architected as a single system. Figure 4

illustrates how the EDS app specs provide single source

definitions used by the build process to generate and

propagate artifacts for both the ground and flight

systems. When an app is added to Basecamp, the app’s

command and telemetry screens are generated using the

EDS-defined Python bindings, so the user does not

have to manually input any definitions nor modify

python code.

Figure 4: EDS Toolchain Artifacts

PYTHON GUI

Basecamp’s Python GUI assists users with using the

App Exchange, managing a cFS target, running a cFS

target, and accessing built-in educational resources. The

GUI uses PySimpleGUI12 which helps minimize

dependencies and simplify installation. The main screen

is shown in Figure 5. Section A provides mechanisms

for user input, and status on the current target. Parts of

the section will be described in more detail later.

Section B displays print statements and events

messages from a running cFS target. Section C displays

ground events. Figure 6 shows parts of Section A that

allow a user to build, start, and stop a cFS target.

Information about the cFS target is displayed as well as

the communication status between the cFS target and

the GUI.

Figure 5: Basecamp Main Screen

Figure 6: cFS Target Management Fields

The Send Cmd and View Tlm drop down menus located

in Section A are shown in Figures 7 and 8 respectively.

They provide access to all telecommand, and telemetry

messages defined for a cFS target. The EDS definitions

use the term Topic to identify a message independent of

a cFS target. A separate Software Bus message

identifier is used within a cFS target deployed on a

processor/OS platform.

Figure 7: Send Command Menu

Figure 8: View Telemetry Menu

McComas 5 37th Annual Small Satellite Conference

Figure 9 shows the File Manager app’s “Send File

Information” command screen as an example command

that requires user input. Figure 9 shows File Manager’s

“File Information” telemetry that is sent in response to

the command.

Figure 9: Example Command Input Screen

Figure 10: Example Telemetry Screen

The static contents of the menus and screens shown in

Figures 7 through 10 are retrieved from the Python

libraries generated by the EDS toolchain. Therefore,

when a new cFS target is built, no new Python coding is

required. The only required action is to restart the

Basecamp GUI so it uses the new cFS Target Python

libraries.

OPS SERVICE APPS

The default Basecamp cFS target comes preconfigured

with several libraries and applications that provide a

fully functional operational runtime environment. These

apps are maintained by the Basecamp development

team so they will always be compatible with the latest

NASA cFS Framework that is released in the cfe-eds-

framework project. This avoids OpenSatKit’s issue of

trying to maintain a default cFS target app suite

containing non-OSK apps that is compatible with the

latest NASA cFS Framework release.

The Ops Service app suite includes:

Command Ingest: Receives telecommands from

external interfaces and publishes command messages

on the Software Bus.

Telemetry Output: Receives telemetry messages from

the Software Bus and sends them to an external

interface.

File Manager: Provides a ground command/telemetry

interface for managing onboard directories and files.

File Transfer: Transfers files between flight and

ground using a file transfer protocol implemented in

both the flight and ground systems.

Scheduler: Periodically send messages using a time-

based message scheduler table.

Having a standard suite of ops service apps combined

with EDS allows the flight and ground software to be

architected as a single system. The File Browser tool

shown in Figure 11 highlights the integrated ground-

flight perspective of Basecamp. The left pane lists the

files in the current ground system working directory.

Most operations can be performed using the default

ground file server directory. The right pane shows the

current flight software working directory that defaults

to the directory where the cFS apps reside that are

loaded during cFS initialization.

Common file management operations can be performed

by right clicking within the ground or flight panes. To

send a file from the flight to ground, the user simply

highlights the file in the flight windowpane, right

clicks, and selects Send to Ground from the menu. The

file transfer process is automatically invoked, and the

ground directory listing is updated after the file transfer

is complete.

Figure 11: File Browser

APP REPOS

The Developer menu shown in Figure 12 lets users

download apps from GitHub repositories and

add/remove apps from the cFS target. The Download

app screen is shown in Figure 13. The contents of this

screen are generated from the GitHub repositories. The

Add App menu item launches a screen that guides users

through the steps for adding apps to the cFS target and

rebuilding it. The user does not have to edit any files.

Commented [BT1]: This needs a figure number

McComas 6 37th Annual Small Satellite Conference

Figure 12: App Repo Menu

Figure 13: Download App Screen

Automated app integration is made possible because

command and telemetry packets are defined using EDS,

and each app has a JSON specification file and a JSON

runtime initialization file. All Basecamp apps use

Basecamp’s application framework library called

APP_C_FW that provides utilities to process the JSON

initialization files. APP_C_FW is important because it

allows apps to be developed with a common design that

can be utilized by Basecamp tools. It’s somewhat

analogous to smartphone app frameworks but on a

much smaller scale.

Figure 14 shows an excerpt from File Manager’s EDS

XML file for the “Send File Information” command

shown in Figure 9. Figure 15 shows the “cfs” object

portion of File Manager’s JSON spec file. This defines

default configurations for integrating the app into the

build system and for loading it during the cFS

initialization.

Figure 14: File Manager EDS Excerpt

Figure 15: Download App Screen

Basecamp’s App Repo approach has several benefits.

For STEM education settings, it allows students to

focus on the problem being solved by the apps and not

be concerned with the underlying plumbing. For new

flight software developers, they can start using and

learning the cFS and eventually learn the underlying

build and deploy system when they have a better

understanding of the cFS’ architecture. The Add App

screen has manual options that help teach each of the

app integration steps. The App Repo also helps

educational projects that use one or more apps to easily

be created and maintained. Lastly, Basecamp’s

standardized app spec allows the user community to

contribute apps and projects which could have a

substantial impact on the breadth and depth of STEM

educational material.

REMOTE OPS

Initially, Basecamp is installed and run in a Linux

environment so the Basecamp GUI and cFS target are

running on the same Linux platform. This environment

is suitable for learning the cFS and for many software-

only projects. If you need to control a remote cFS

target, you need to configure four items.

First, the GUI that will be controlling the remote target

must use a Python library that was generated from a

cFS build that has the same app suite as the remote

target. This ensures the same EDS definitions are used

by the local GUI and the remote cFS target.

Second, the ability to start/stop the remote target is

required. Directly starting a remote target is outside the

scope of Basecamp but is an option in many situations.

Basecamp provides the capability for the GUI to

communicate with a second Basecamp Python tool

called Remote Ops. Figure 16 shows Basecamps local

remote ops screen. This screen provides commands for

starting/stopping a cFS target. For this to be helpful, the

Remote Ops python process must be started on the

remote target as part of the boot sequence.

McComas 7 37th Annual Small Satellite Conference

Figure 16: Remote Ops Target Control

The remote ops python process communication uses an

MQ Telemetry Transport (MQTT)13 broker. MQTT is

the de-facto messaging protocol standard for the

Internet of Things (IoT) and MQTT messaging brokers

are freely available.

Third, there needs to be a communications path from

the local GUI to the remote cFS target for

telecommands. If a direct network connection can’t be

made, then Basecamp’s MQTT gateway app

MQTT_GW14 can be used. The local GUI can be

configured to send commands to an MQTT broker. The

MQTT_GW app running on the remote target converts

MQTT messages to cFS command messages and

publishes them on the Software Bus.

Fourth, there needs to be a communications path from

the remote cFS target to the local GUI for telemetry. If

a direct network connection can’t be made, then the

MQTT_GW app is required on both the local and

remote cFS targets. They provide a telemetry path from

the remote cFS target through an MQTT broker to the

local cFS target where the MQTT_GW app publishes

the telemetry messages on the Software Bus. The local

Telemetry Output app sends the messages to the Python

GUI.

TOPIC-BASED LEARNING

Topic-based learning means Basecamp’s ecosystem

includes learning resources that are targeted to teaching

a single topic at a time. Whenever possible the topics

are goal-oriented so as a user works towards a goal,

they learn how it is achieved. Basecamp’s Python GUI

and cFS target contain material so a user can

immediately start engaging with the cFS. The default

cFS target includes a demo app called APP_C_DEMO

that contains enough functionality so users can step

through a series of learning exercises to learn how to

control an app from the GUI. Basecamp comes with

built-in tutorials as shown in Figure 17. The

“Basecamp Feature Overview” tutorial relies heavily

on APP_C_DEMO.

Figure 17: Built-in Tutorials

The built-in tutorials are intended to get a user started.

The OpenMissionStack website9 and OpenSatKit’s

YouTube channel15 contain articles and videos that are

updated over time. Lessons, whether an article or video,

are focused and short in duration so users can

incrementally learn as they have time.

PROJECT-BASED LEARNING

Most missions have a payload that needs to be managed

so developers ask, “How do I use the cFS to manage a

payload?”. Basecamp projects use customized cFS

targets that are designed to help teach how to solve

complex problems that are broader in scope than a

single topic. For instance, the Payload Sim project

provides a software-only project that teaches a method

for how to design and write an app to interface to a

payload and write the payload’s data to files. Since it is

software-only, users can start learning the cFS app

strategy before their mission-specific hardware is

available. In addition, the Payload Sim project teaches

another development strategy where non-flight libraries

and apps can be used to simulate an external component

before it is available to the flight software team.

Payload Sim only answers part of the initial problem,

because embedded in the first question is, “How do I

use the cFS to interface to an external device?”

Basecamp has the Raspberry Pi General-Purpose

McComas 8 37th Annual Small Satellite Conference

Input/Output (GPIO) Demo project to help answer that

question. This project uses a low-cost Raspberry Pi to

host the cFS target. The target includes a hardware

interface library and an app to control an LED that is

connected to the Raspberry Pi’s GPIO header.

Each Basecamp project is documented on the

OpenMissionStack website with links to videos hosted

on OpenSatKit’s YouTube channel and, if needed, a

link to a GitHub project repo16. The GitHub project

repo is optional because some projects are only

intended to be assembled by the user accessing

Basecamp’s App Repo so a repository with the

completed project is unnecessary and would only create

a maintenance burden.

Basecamp’s apps and projects are meant to serve as a

starting point for the cFS community. The real utility of

Basecamp will be realized if the user community

contributes apps and projects. Note that Basecamp

GUI’s built-in tutorials are discovered when the GUI

starts so a project can replace the built-in tutorials

making it self-documented. Projects can be designed as

part of a curriculum or to retain institutional knowledge

to address a common concern with university led

CubeSats that often suffer from student turnover and

struggle with retaining acquired technical knowledge.

FUTURE WORK

First, the Basecamp development team should continue

to create new apps, videos, and projects. At least one

advanced project like a rover should be maintained by

the Basecamp team.

Second, the Basecamp team should mature artifacts that

enable the community to create content. This includes

formalizing and documenting the app spec so people

can publish compliant apps. Also, training material

should be developed to support teachers so they can

learn how to use Basecamp for developing apps and

projects to meet their needs.

Finally, the ability to easily transition from Basecamp

to fully functioning ground systems like OpenC3’s

COSMOS needs to be developed. The general solution

is to have an EDS-to-XTCE (XML Telemetric and

Command Exchange) converter. However, this would

be a significant undertaking. A more viable and

immediate solution would be to provide instructions for

customizing the EDS tool chain to export command and

telemetry definitions formatted for a particular ground

system.

SUMMARY

The cFS Basecamp ecosystem provides articles, videos,

apps, and projects intended to serve as educational

material for the aerospace community and for STEM

education. It uses NASA’s cFS that has decades of

flight heritage. Basecamps standardized app design

with app specs combined with its use of EDS provide

the infrastructure to automate the process of integrating

an app to a cFS target. This same infrastructure allows

the cFS community to contribute apps and projects so

educational content can grow as the community grows.

Acknowledgments

The authors would like to acknowledge and thank Joe

Hickey for maintaining a cFS distribution with an EDS

toolchain10. Basecamp would not be possible without

his efforts. In addition, they would like to thank the

PySimpleGUI12 and NASA cFS1,2 teams for creating

and maintaining outstanding products.

References

1. NASA Goddard Space Flight Center, Flight

Software Systems Branch, core Flight System

Overview,

https://cfs.gsfc.nasa.gov/Introduction.html

2. NASA core Flight System open-source

repository, https://github.com/nasa/cFS.

3. OpenSatKit project,

https://github.com/OpenSatKit/OpenSatKit/wiki

4. Ball Aerospace COSMOS,

https://github.com/BallAerospace/COSMOS

5. NASA 42 Dynamic Simulator,

https://github.com/ericstoneking/42

6. OpenC3 COSMOS,

https://github.com/OpenC3/cosmos

7. cFS Basecamp, https://github.com/cfs-tools/cfs-

basecamp

8. 2023 FSW Workshop,

https://flightsoftware.org/workshop/FSW2023

9. OpenMissionStack,

https://openmissionstack.com/

10. Joe Hickey cFS Distribution with EDS,

https://github.com/jphickey/cfe-eds-framework

11. CCSDS XML Specifications for Electronic Data

Sheets for Onboard Devices and Software

Components, 2015,

http://cwe.ccsds.org/fm/Lists/Projects/DispForm.

aspx?ID=269

12. PySimpleGUI, Python GUIs for Humans

https://pysimplegui.readthedocs.io/en/latest/

13. MQ Telemetry Transport (MQTT),

https://mqtt.org/

https://cfs.gsfc.nasa.gov/Introduction.html
https://github.com/nasa/cFS
https://github.com/OpenSatKit/OpenSatKit/wiki
https://github.com/BallAerospace/COSMOS
https://github.com/ericstoneking/42
https://github.com/OpenC3/cosmos
https://github.com/cfs-tools/cfs-basecamp
https://github.com/cfs-tools/cfs-basecamp
https://flightsoftware.org/workshop/FSW2023
https://openmissionstack.com/
https://github.com/jphickey/cfe-eds-framework
http://cwe.ccsds.org/fm/Lists/Projects/DispForm.aspx?ID=269
http://cwe.ccsds.org/fm/Lists/Projects/DispForm.aspx?ID=269
https://pysimplegui.readthedocs.io/en/latest/
https://mqtt.org/

McComas 9 37th Annual Small Satellite Conference

14. cFS Basecamp MQTT Gateway App,

https://github.com/cfs-apps/mqtt_gw

15. OpenSatKit YouTube Training Video Channel,

https://www.youtube.com/channel/UC2wfvAIkrr

gyC4ITwL3zokg

16. cFS Basecamp Project Repos,

https://github.com/cfs-projects

https://github.com/cfs-apps/mqtt_gw
https://github.com/OpenSatKit/OpenSatKit/wiki
https://github.com/OpenSatKit/OpenSatKit/wiki
https://github.com/OpenSatKit/OpenSatKit/wiki
https://github.com/cfs-projects

