Utah State University

Instructional resources	Integrating Elementary-Level Mathematics Curricula with Expansively-Framed Computer Science Instruction

9-2023

Cache Code Math Computer Lab Lesson Plans: Repeated Addition \& Multiplication

Jody Clarke-Midura
Utah State University, jody.clarke@usu.edu
Jessica Shumway
Utah State University, jessica.shumway@usu.edu
Kimberly Beck
kimberly.beck@usu.edu
Umar Shehzad
Utah State University, umar.shehzad@usu.edu
Mimi Recker
Utah State University, mimi.recker@usu.edu
Follow this and additional works at: https://digitalcommons.usu.edu/eled_support_instructional
Part of the Education Commons

Recommended Citation

Clarke-Midura, Jody; Shumway, Jessica; Beck, Kimberly; Shehzad, Umar; and Recker, Mimi, "Cache Code Math Computer Lab Lesson Plans: Repeated Addition \& Multiplication" (2023). Instructional resources. Paper 10.
https://digitalcommons.usu.edu/eled_support_instructional/10

This Curriculum is brought to you for free and open access by the Integrating Elementary-Level Mathematics Curricula with Expansively-Framed Computer Science Instruction at DigitalCommons@USU. It has been accepted for inclusion in Instructional resources by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

CACHE CODE MATH
 Repeated Addition \& Multiplication

Fall 2023

A Stanford
University

Math Vocabulary

Addend: a number that is added to another

Base: the number that is used as the repeated factor in exponential form
Exponent: the number that tells how many times the base is used as a factor

Variable Block

Sets the specified variable to the amount entered

In this code, what is the value of the variable, $A D D E N D$?

Stamp and Repeat Block

The stamp block is a pen block. It will stamp (copy) the sprite.

The repeat block will loop (or repeat) the code that is put within the block code.

How many times will the 2nd repeat block loop?
How many stamps will there be?

Repeated Addition

Repeated addition of addends can be represented by a multiplication equation:

$5+5=10$
$5 \times 2=10$

Read \& Predict

What do you think this code will do?
 What will be the final value of the variable RESULT?

Watch the Code

See the Code

Go the the following URL \& click "See Inside"

https://scratch.mit.edu/projects/873533865

(4) See inside

CACHE CODE

Select Tera

Run the Code

Understand the Code

Understand the Code

Tera moves to a new row after leaving 5 "stamps" (copies) of itself underneath.

In one row, Tera is stamped ADDEND times (variable ADDEND is set to 5). In math this would be represented as: 1+1+1+1+1

5 Teras are displayed in that row.

Understand the Code

The rows of Tera are repeated FACTOR number of times (FACTOR is set to 2).

Total is stored in the RESULT variable (10).
$5 \times 2=10$
$5+5=10$

Tera: ADDEND	5
Tera: FACTOR	2
Tera: RESULT	10

Your Turn!

Change Tera's code to model
$3 \times 4=12$
$3+3+3+3=12$

set	ADDEND $~$	to 3
set	FACTOR $~$	to
	4	
set	RESULT $~$	to

Your Turn!

Change the code to model a multiplication problem of your choice!

Share with your neighbor.

Reset Tera's Code

Click Tera and reset the variables in your Tera code.

set ADDEND $~$ to 5
 set FACTOR to 2
 set RESULT \sim to 0

Set ADDEND To 5. Set FACTOR to 2. Set RESULT to 0.

Repeated Multiplication

Repeated multiplication of factors can be efficiently represented by

$$
\begin{aligned}
& 2^{5}=32 \\
& 2 \times 2 \times 2 \times 2 \times 2=32
\end{aligned}
$$ exponent notation.

Modifying Tera

We will modify the repeated addition code to program repeated multiplication.
2^{5}
$2 \times 2 \times 2 \times 2 \times 2=32$

Select Ladybug

CACHE CODE MATH

Change Variables

Change ADDEND to BASE and

 set value to 2 .
Change FACTOR to EXPONENT and set value to 5 .

Set RESULT value to 1 .

Chicks sprite has the correct code for exponents

CACHE CODE MATH

Repeat Blocks

In repeat blocks:
Change

FACTOR
EXPONENT

Change

Operator Block

Remove addition operator block and replace with multiplication operator block

CACHE CODE MATH

Assign Operators

Add the RESULT and BASE variables to the multiplication operator

```
set RESULT ~ to ( RESULT ) * BASE
```

Chicks sprite has the correct code for exponents

Tutarals
Join Scratch Sign in

Run the Code

Press spacebar to run the code!

Uh Oh!

The ladybugs duplicate to a number where they start to duplicate outside the screen area

Tera: ADDEND	5
Tera: FACTOR	2
Tera: RESULT	10

Fix the Code

We can use an "if, then" control block and a sensing block to help the duplicating ladybugs stay within the screen.

CACHE CODE MATH

Control Block

Add "If, then" control block in the repeat RESULT block under move block.

Tutorials

digh:

Show $\odot \subseteq$

CACHE CODE MATH

Sensing Block

Add touching block to the "if, then" control block and set to "edge."

Join Scratch Sign in

Understand the Code

Run the Code

Click the green flag to run Tera. Press the spacebar to run LadyBug2.

What differences do you notice?

Understand the Programs

There are 2^{5} ladybugs.
We get this answer by repeated multiplication of BASE and RESULT, EXPONENT number of times.

In a math equation, this is: $2 \mathrm{x} 2 \mathrm{x} 2 \mathrm{x} 2 \mathrm{x} 2=32$

Your Turn!

Change the code to model $3^{4}=81$
$3 \times 3 \times 3 x 3=81$

Your Turn!

Change the code to model an exponent of your choice!

Share with your neighbor.

CACHE

Complete Exit Ticket

Click:

https://usu.co1.qualtrics.com/jfe/form/S V cT14yQ9tTxbQbRk

