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ABSTRACT 

Satellite-to-ground station telecommunication is a crucial aspect of satellite missions, representing a single point of 

failure of the entire space system. 

Each failed contact is an issue for all satellite missions, leading to a potential data loss. The detection and forecasting 

of data transfer failures are critical challenges in satellite operations, given the unpredictability and variety of potential 

causes for such anomalies. 

Considering the spectral waterfall plot the most appropriate tool to describe the anatomy of satellite contacts, an 

automatic waterfall analysis could help satellite mission operators, by promptly discovering potential data 

transmission failures between satellites and ground stations, and by forecasting anomaly behaviors. 

The work reported in this paper exploits machine-learning models, trained with spectrogram waterfall diagrams to 

provide real-time and automatic anomaly detection of data transmission failures. Long-Short Term Memory and Deep 

learning models have been trained and validated, for anomaly detection and forecasting of contacts failures, with a 

dataset encompassing a semester’s worth of satellite contacts in both S-band and X-band. 

With examples to identify the most appropriate model, this research will present practical outcomes and data-informed 

best practices in support of mission operators. 

 

INTRODUCTION 

RF (Radio Frequency) communications in satellite 

systems are susceptible to various anomalies that can 

degrade the quality of the signal, disrupt communication, 

or even lead to complete signal loss. In recent years, 

there has been a growing interest in developing effective 

anomaly detection techniques to address these 

challenges and improve the overall performance and 

reliability of satellite communication systems. 

Anomaly detection in RF communications involves the 

identification and characterization of abnormal events or 

patterns that deviate significantly from the expected 

behavior. In the context of satellite communications, 

anomalies can arise from a multitude of sources, 

including environmental conditions, and equipment 

malfunctions. Valuable insights into the spectral 

characteristics and temporal dynamics of the RF signal 

are obtained through the signal waterfall plot. 

 

Figure 1: Telecommunication between a ground 

station and a satellite. 
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Traditional approaches for anomaly detection in RF 

communications rely on manually designed threshold-

based methods or rule-based systems that compared the 

observed signal characteristics to pre-defined thresholds.  

In our research, we present an approach to anomaly 

detection which uses machine learning techniques. We 

explore the effectiveness of LSTM recurrent neural 

networks in forecasting the RF waterfall, and in 

detecting anomalies by comparing predicted RF 

waterfall with real behavior. By establishing a maximum 

deviation threshold, we could identify instances where 

the signal diverges significantly from the predicted 

forecast, indicating the presence of anomalies. This 

methodology serves as a simple yet powerful application 

for anomaly detection, highlighting the potential of 

LSTM networks in this domain. 

DATASET 

The data used for this research encompasses six months 

of waterfall RF data for S-band and X-band 

communications, providing a comprehensive and 

representative set of samples for the model selection and 

assessment processes. The dataset counts about 500 RF 

waterfall samples. A distinct contact between a satellite 

and a ground station is represented by each sample, 

portraying a waterfall RF signal. 

 

 

Figure 2: Dataset processing with sliding windows. 

 

In this study, the dataset utilized was obtained from the 

Leaf Space ground station network. To ensure the 

incorporation of a wide spectrum of environmental 

conditions, satellite operations, and communication 

scenarios, the data collection procedure involved the 

continuous capture of waterfall RF signals over a 

duration of six months.  

To facilitate the training of the LSTM model, the 

waterfall RF data is preprocessed and organized into 

input-output pairs. The input data consists of a sliding 

window of n time-stamps on which predictions are made, 

capturing the temporal dependencies in the RF spectrum. 

The output data are the corresponding m time-stamps in 

the future, representing the desired prediction. This 

ensures the LSTM model learns to forecast the future 

behavior of the RF signal based on past observations.  

 

 

Figure 3: Waterfall of an S-band signal sample. 

 

The model was trained and assessed using the hold-out 

technique: the dataset was divided into two main subsets 

used in the respective phases. It was chosen not to 

perform k-folding as the chunk extraction process 

explained above contributed to a significant increase of 

the actual data-points fed to the model. The initial subset, 

which constituted 90% of the samples, was utilized for 

the model selection stage. The remaining 10% of the 

dataset was reserved for the model evaluation phase. To 

adequately tackle concerns related to underfitting and 

overfitting, the model selection subset was subsequently 
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split into two separate datasets: one for training the 

model and another for validation purposes. 

 

Figure 4: Normalized and reduced S-band waterfall 

plot sample. 

 

The data underwent preprocessing prior to being used in 

the experiments. All waterfalls plot were subjected to 

normalization, resulting in values ranging from 0 to 1. 

This standardization technique is widely acknowledged 

to enhance performance in machine learning tasks. 

 

METHOD 

Currently, there are two main approaches to anomaly 

detection. The traditional approach involves setting 

thresholds that determine the limits outside of which a 

data point will be considered anomalous. Although this 

approach has the advantage of being very cheap under a 

computational point of view, it has the limitation of 

requiring ad-hoc knowledge and experience to determine 

the thresholds (Langfu CUI, 2021). For this reason, 

traditional methods lack scalability and present quite a 

significant overhead per scenario, particularly since 

satellite communications are not strictly standardized 

and as such present a vast range of scenarios. Therefore 

new data-driven approaches are favorable in this context. 

Their usage has been well documented in a multitude of 

usages, such as fraud detection (Waleed Hilal, 2022) and 

manufacturing monitoring (Andrey Kharitonova, 2022). 

However, some of these approaches, such as k-NN 

classification do not extend well to scenarios where data 

also has a temporal dimension (M. Munir, 2019), while 

other approaches, such as Support Vector Machines, 

required label data to be trained, which implies 

significant limitations in terms of accessibility and 

scalability of the model.   

Studies such as (Nistha Tandiya, 2018) provide 

encouraging proof that such methods can also be 

successfully applied to spectrum activity analysis, so the 

data in the form of a time series. However, most existing 

work concerns wireless networks as the diffusion of 

technologies such as IoT has put increasing importance 

on being able to detect potential security threats in real-

time.   

In this paper, we look at extending this approach to 

satellite communications which present some additional 

difficulties. Unlike Wi-Fi, which operates on 

standardized protocols, satellite communications lack 

such standardization, making the detection of anomalies 

more challenging. Furthermore, satellite 

communications are inherently less reliable due to 

factors such as atmospheric conditions, signal 

interference, and signal degradation over long distances. 

This kind of spectrum activity also has an added layer of 

complexity due to the measures in place to compensate 

for the Doppler effect.   

 

 

Figure 5: Architecture of sequence-to-sequence 

LSTM with encoder and decoder layer. 

Advancements in artificial intelligence (AI) and deep 

learning is revolutionizing various domains, including 

space telecommunications and anomaly detection 
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approaches. Considering the temporal nature of RNNs 

models, we conducted experiments utilizing an LSTM 

(Long Short-Term Memory) sequence-to-sequence with  

encoder and decoder layer model that was specifically 

tailored for the purpose of forecasting the RF waterfall 

in satellite ground station communications, particularly 

in the S-band and X-band frequencies. The primary 

objective of this model is to predict the future behavior 

of the signal Fourier transform in order to then detect 

anomalies by comparing the observed waterfall with the 

forecasted waterfall. 

The proposed LSTM sequence-to-sequence model 

comprises two primary layers: an encoder and a decoder 

layer. The encoder layer accepts the historical sequence 

of signal Fourier transform as input and acquires the 

ability to extract pertinent characteristics from the data. 

The decoder component then utilizes the encoded 

features to generate the forecasted signal waterfall for 

future time steps. The architecture of the LSTM 

sequence-to-sequence model is illustrated in Figure 5. 

Given the task of forecasting the signal waterfall, the 

mean squared error (MSE) loss has been used, to 

measure the discrepancy between the predicted and the 

real signal. During the training phase, the model 

optimizes the parameters by minimizing the MSE loss 

using gradient descent-based optimization Adam 

algorithm.  

Once the LSTM sequence-to-sequence model is trained, 

it can be utilized for anomaly detection by comparing the 

observed signal waterfall with the forecasted plot. 

Anomalies are detected when there is a significant 

deviation between the two plots. To quantify the 

dissimilarity between the observed and forecasted 

signals, we used the mean squared error. 

By setting the appropriate threshold, data behavior can 

be classified as anomalous. The LSTM model, combined 

with an anomaly detection mechanism, could provide a 

framework for real-time monitoring of signal waterfalls 

and the timely identification of anomalies. 

During our experiments, we performed a model selection 

exploiting a grid search, with the goal of optimize the 

hyperparameters of the best model. We considered MSE 

as a performance parameter to select the model, being a 

regression task.  Then we performed the model 

assessment, extracting the performances using a portion 

of the dataset, not used during the model selection phase. 

 

Figure 6: Model selection and model assessment 

processes. 

 

During the model selection phase, we trained and 

evaluated several different hyperparameter sets using 

hold-out cross-validation. The models were assessed 

based on their performance on the testing set, and the 

model with the highest performance was selected as the 

final model. 

RESULTS 

During the model selection phase, some 

hyperparameters were taken into account. These 

included the number of LSTM units, the number of past 

time steps, the number of future time steps, and the 

training epochs. The LSTM units parameter determines 

the number of memory cells within the LSTM layer. The 

number of past time steps hyperparameter defines the 

size of the window on which the prediction is made. The 

number of future time steps hyperparameter indicates the 

number of forecasted waterfall diagram rows in the 

model's future predictions.  

 

Figure 7: Loss chart of selected best model, during 

the training phase, for S-band signal. 
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For each model selection phase execution, we have 

obtained the train and validation error chart, during the 

epochs. The Figure 7 shows the loss plot, generated 

during the best model training. 

After careful experimentation and evaluation, the best 

model configuration was identified. The 

hyperparameters identified are shown in the Table 1 

Table 1: Best model hyperparameters. 

Hyperparameter Value 

LSTM Units 10 

Number of  the past time steps (as input) 5 

Number of the future time steps (forecast) 1 

Training epochs 50 

 

The top-performing model achieved a mean squared 

error of ~183 in the assessment phase, when comparing 

the actual and predicted RF waterflows. 

We have generated a plot of the forecasted waterfall, 

using the selected model (Figure 8).  

 

Figure 8: Forecasted waterfall by the best LSTM 

model for S-band signals. 

 

As show in the Figure 8, the model identifies the 

common pattern of RF waterfall, with the most recurrent 

frequencies occupied by the signal. The behavior on the 

y axis is not picked up well due to the fact that generally 

the patterns along the time axis are not as strong and 

mainly depend on what kind of packets are exchanged, 

which is related to the specific data that is being 

transmitted, and not on absolute patterns.  

Other models could perform better for the anomaly 

detection, like convolutional deep neural networks using 

labeled datasets. The main focus of this study is to 

understand the adequacy of sequence-to-sequence 

LSTM in the field of waterfall analysis; being the LSTM 

and in general the RNNs models used with time series. 

The architecture of these models is clean and the theory 

behind is well structured. However, in our case and our 

implementation, this model could be a simple solution 

for early anomaly detection analysis. Targeting an 

advanced anomaly detection system for waterfall, we 

could suggest to the reader that pattern recognition 

models for images could extract more features from this 

kind of data; however, taking into consideration that 

RNNs models lends themself well to incremental and 

real-time data. 

ANOMALY DETECTION WITH LSTM 

 

Figure 9: Anomaly detection  system architecture, 

with LSTM models. 

Figure 9 shows the design of a system that detects 

anomalies in RF waterfall of S-band and X-band signals, 

based on LSTM models. The input of this system is the 

RF waterfall obtained from the radio, step by step in real-

time. The real waterfall becomes the input of the LSTM 

model that forecasts the future rows of the plot. The 

system computes the MSE of the real and the forecasted 

waterfall time-step by time-step. If the error exceeds the 

threshold, the system identifies a potential anomaly 

alarm, inviting a human operator to check the contact 

between the satellite and the ground station. 
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FUTURE WORKS 

Considering the results obtained with sequence-to-

sequence LSTM model experimented in this work, 

future research involves exploring pattern recognition 

models applied to the RF waterfalls as images. These 

models can help identifying distinct patterns or clusters 

within the RF waterfalls data, that could be associated 

with different types of anomalies. This includes a 

supervised approach of the machine learning, producing 

a proper labeled dataset with a large collection of 

nominal and abnormal different cases.  

CONCLUSION 

In conclusion, our research has demonstrated that LSTM 

(Long Short-Term Memory) models exhibit a good 

performance in forecasting of RF waterfalls, which could  

potentially be exploited to detect  anomalies in the signal. 

This model possesses the capability to capture frequent 

patterns in Fourier transform time-series of the RF signal 

received from the satellite in S-band and X-band. The 

study was motivated by the theoretical elegance of 

Recurrent Neural Networks; however, the obtained 

performances and results indicate the need to investigate 

alternative Machine Learning models for addressing 

anomaly detection in Satellite-ground stations RF 

communications. To focus on implementing a 

sophisticated anomaly detection system for waterfall 

analysis, we will consider the use of pattern recognition 

models, specifically designed for images, considering 

waterfalls plots as images instead of time-series data. 

These models have the potential to extract a greater 

range of features from this type of data. 
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