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• As CubeSats are subject to a large initial tumble during 
orbital injection, democratizing low-cost passive or 
active attitude control systems (PACS/AACS) is key to 
enabling accessible nanosatellite missions ranging 
from remote sensing to space debris tracking

• Magnetic stabilization techniques such as hysteresis 
rods or magnetorquers offer good rotational 
detumbling performance while being ideal for satellites 
with low-power budgets

• Rigorously ground-testing these sub-systems in a 
laboratory setting benefits from simulating the transient 
magnetic conditions in LEO (ex. overflying the poles)

• However, doing so in a large enough volume for a 
satellite to tumble in with flightlike high magnetic 
spatial homogeneity, all while keeping costs down for 
accessibility to student groups and researchers 
presents a complex optimization challenge

• We present a miniaturized, homogeneity-optimized 3-
axis Helmholtz Cage of a modified squircle shape that 
can reproduce transient LEO magnetic fields for 1U 
satellites with high homogeneity (<1% 𝐁-field 
deviation) and for 2U satellites with modest 
homogeneity (<3% 𝐁-field deviation)

• We believe this to be a first-of-its kind homogeneity and 
size optimization of a CubeSat Helmholtz cage
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Homogeneity optimization

CubeSat 
size

Radius of sphere 
required (mm)

Maximum 
B-field magnitude 

deviation (%)

Maximum 
B-field direction 

deviation (°)

1U 86.6 0.68 0.23

2U 122.5 2.50 0.96
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Hard and soft iron correction:
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𝑏𝑖 , ෝ𝒆𝒊 : calibration eigenvector-eigenvalue
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