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Abstract

Complex distributed systems are critical to scientific discovery in
space. Future missions will take place in increasingly remote planetary
environments where human intervention will neither be feasible, nor
scalable toward fleet-wide mission control. To this end, autonomous
onboard fault mitigation will be necessary. The unique topology of
fleet systems offers opportunities for high-level contextual
understanding of faults and coordinated fault mitigation not
possible for single agents. We present a framework that augments
single-agent fault mitigation with the context provided by a fleet.
Multi-Agent Anomaly Detection (MAAD) operates on time-series
sensor data to build a unidimensional distribution against which we
can compare individual agents in order to detect faulty sensing
hardware.

Figure 1: We model windowed drone frames features as a single
distribution and flags outliers as anomalous events.

Multi-Agent Anomaly Detection

Given n agents producing S” sensor frames at each timestep, we model
the feature extracted frames x’..x" as a single distribution and evaluate
the likelihood that each agent falls outside the distribution. The choice
of feature extraction function F, model construction function G, and
likelihood estimate function ¢ will depend on the deployment context.
We show autoencoder reconstruction error (AE), mean-square error
(MSE), and windowed-absolute gradient for F, construct gaussian
models G, and use z-score thresholding £ to determine outliers.

Algorithm 1 Multi-Agent Anomaly Detection

1: n : number of agents

2: T : timesteps in batch

3: k : number of mnemonics in one data frame

4: d : number of features extracted from a data frame
5: S™ : n batches of science frames

6: I' : Set of anomalous agents

7. F: R¥ — R? feature extraction function

8: G: R™¥T _3 A Model construction function

9: £: M NR*T 5 R! Likelihood estimation function
10: oyp - anomaly threshold value

e
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. detecting < True

12: while detecting do

13:  S_r « S\ I Remove known anomalies

14:  z' «+ F(S*) for i = 1..n Extract features

15: C «+ z'...z" Concatenate context

16: M « G(C) Create model

17:  p < E(M,z") for i = 1..n Likelihood under model
18:  detecting < False

19: for all p* € p do

20: if p' < oy, then

21: [« TuU{i}

22: detecting +— True Keep looking for anomalies
23: end if

24: end for
25: end while
26: return I’

Simulated Visual Anomalies

Simulation Environment

We controlled a multi-agent drone swarm within the AirSim
simulation environment to serve as a proxy satellite fleet. Each drone
records a 256x144 color camera image at each timestep. Drones are
issued mid level commands that are then carried out by onboard
controllers to survey the landscape beneath them.

Fleets of five drones surveyed the surface for ten, 80 second trials
producing around 3400 frames of video per drone in total. For both
of our anomalous hardware conditions: (1) Gaussian noise, (2) Perlin
noise, we apply the anomaly to every frame in a single randomly
selected drone's camera feed. Gaussian noise is sampled per frame to
simulate electrical noise, while a single randomized Perlin noise map
is used for all frames in a trial to simulate accumulated debris
partially occluding the camera lens. In addition we simulate
randomized rain streaks on all drone cameras to test robustness to
environmental sources of noise.

Figure 2: Anomalous images from downward facing drone
cameras. Left-to-right: None, Perlin noise, Gaussian Noise, Rain

Simulation Results

We show results for two choices of feature F: a non-parametric
first-order feature, Mean Squared Error (MSE), and a deep learning
feature, the reconstruction error of a convolutional autoencoder (AE).
Drones are classified as anomalous or nominal in each two second
window.

The separation between each experimental condition and the baseline
(none) in figure 3 indicate the anomalies are detectable with a low
false positive rate. Drones experiencing no anomaly lie on the black
line. In the case of rain (green), all drones experience the
environmental anomaly and no anomaly detection signal is raised.
Reconstruction error more easily distinguishes between conditions
and results in a greater Area Under the Curve (AUC) score (figure 4).
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Figure 3: Moving average +/- one standard deviation of Mean
Squared Error (MSE) and Convolutional Autoencoder
reconstruction error (AE) features for rain, white noise, perlin noise,
and control (none) conditions.
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Figure 4: Receiver Operating Characteristic curve for Autoencoder

reconstruction error and Mean Squared Error features. The AUC 1s
0.945 for AE and 0.789 for MSE.

Real World Dataset

Gas Concentration Data
Real-world drones were equipped with scientific instruments with ten
methane detecting sensors. Sensors 3 and 10 were non-functioning,
while Sensors 1 and 5 display anomalous behavior.

Normalized and smoothed calibration data

1.0 A

0.8 1

0.6 4

FrYyyyYyryryy
SEREEEREEE

0.4 1

Resistance (rescaled)

0.2 4

|

0 200 400 600 800 1000 1200 1400
Timestep

0.0 4

Figure 5: Sensor resistance calibration data from climate monitoring
drones. The data is standardized to a 0-1 range and smoothed with a
moving average filter to remove noise.

With the functioning sensors, we form a univariate distribution by
taking the moving average our feature, the absolute one-step gradient.
We find all deviant sensors (1 and 5) by comparing each sensor’s
z-score under this distribution to a threshold at each step.
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Figure 6: ROC curve for gas sensor anomaly detection using
windowed absolute gradient. AUC is 0.97

Conclusion

Our framework performs anomaly/novelty detection by
leveraging multiple-agents to contextualize sensor readings,
allowing for the differentiation of environmental vs.
hardware anomalies. The fleet’s task is implicitly considered by
assuming similar sensor feed characterizations. Agents that differ
from this expectation are flagged as anomalous. A meta-agent
collects the context and looks for anomalies not detectable
by a single agent. This work shows that onboard intelligence can
support resilience and novel science discovery in future missions.




