
 Optimization Of Command Execution Testing Procedures
Akhila Yellapragada, Vedika Ghildyal, Sydney Whilden, Deepak Mishra

akhila.yellapragada@uga.edu, Vedika.ghildyal@uga.edu, sydney.whilden25@uga.edu, dmishra@uga.edu,
Small Satellite Research Laboratory, University of Georgia

2023 SmallSat Research Conference
Logan, Utah

Research Background
The Multiview Onboard Computational Imager (MOCI) is a 6U Cube
Satellite under development at The University of Georgia Small Satellite
Research Laboratory. MOCI will capture images of the Earth's surface from
low-earth orbit (LEO) and utilize custom in-house Structure-from-Motion
(SfM) algorithms to produce Digital Elevation Models (DEMs) of ground
targets. MOCI will also be measuring the effectiveness of its in-house
machine learning algorithms to perform object classification of
pre-defined man-made ground targets. The testing and evaluation of each
command that will be sent to the MOCI satellite is a crucial procedure that
must be completed in order to ensure that the satellite and its subsystems
successfully execute against commands received from the SSRL ground
station over the course of the mission. MOCI is projected to launch early
next year.

Abstract + Motivation
● Current Command Execution Testing (CET) procedures are conducted

manually and can be arduous and impractical for frequent testing
● Inefficiency of an integral testing procedure can lead to delays within

the other teams involved in the development of the cube satellite

Methods
Method 1: Automation of the program
● Integration of scripting techniques enables full automation of the test.
● Minimal human intervention is required with this approach.
● Automation can help address the challenges of manual command

execution.
● Optimal results in the efficiency of the program can streamline overall

testing development amongst the flight software and MOPS teams.

Additional Methods
Method 2: Match commands with related anomalies

● Identify anomalies using the MOCI RVMS and other subsystems working
● Match those anomalies with the command and telemetry list
● Ensure the anomalies exist and are being tested by flight software in TMTCLab
● Specify which commands go into CET

Method 3: Perform Command Execution Testing for each of the respective tests

● Classify sections of commands according to their associated associated testing
procedures

● Incorporate Command-Execution-Testing Procedures into the remaining four
tests

● Evaluate commands that are not attributed to a specific testing procedure within
the original Command Execution Test

Results & Evaluation
Method 1:

● Simultaneous execution of commands is not possible with the On Board
Computer (OBC) due to its limited capability.

● The OBC can only process one command at a time and lacks multithreading
support.

● Commands can be run concurrently based on a priority queue approach.
● The fragmented distribution of commands across different code sections

makes comprehensive automation in a single step unfeasible.

Results & Evaluation (contd.)
● Methods 2 and 3 involve rehashing and procedural

changes to the existing CET procedures
● Efficiency of each method depends on the ability for

either method to eliminate potential bottlenecks
● Bottlenecks may include dependencies on external

teams, insufficient testing documentation, and
inconsistencies in the testing process.

The table below demonstrates how method 3 can be
accomplished through classification of commands
according to testing procedure

Future Research:
The proper evaluation of methods 2 & 3 to determine the
most optimal one is yet to be determined through
performance evaluation of Command Execution Testing
procedures at a future date.

Figure 1 - Modes of MOCI

Acknowledgements:
Cameron Bonesteel, Josh Messitte, Current & Former lab
members

Figure 2 (R):
TMTCLab
Figure 3 (L):
Automation
Script

Figure 4: TMTCLab Parameters Figure 5: FlatSat

mailto:Vedika.ghildyal@uga.edu
mailto:dmishra@uga.edu

