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Introduction

Health monitoring of spacecrafts is a crucial task in Space operations. Fault Detection, Isolation

and Recovery (FDIR) plays a critical role in ensuring the safety and successful operation of a

spacecraft by detecting and isolating faults, and then executing recovery actions. Currently, the

FDIR process is carried out mostly on ground, with only anomaly detection typically performed

onboard the spacecraft using out-of-limit (OOL) threshold techniques, whereas fault isolation and

recovery is managed by operators on the ground.

This approach has two major limitations. Firstly, OOL approach is not capable of identifying subtle

anomalies that occur within the parameters’ nominal operational range, limiting its effectivity in

identifying a wide range of anomalies. Secondly, the need for ground investigation to isolate

the fault prior to the implementation of a recovery action introduces a delay in the overall FDIR

pipeline.

Overview

In this work, we propose an AI-based onboard FDIR solution capable of detecting and identifying

anomalies, and to suggest recovery actions in complete autonomy. It is composed of two main

modules: a Sensing Service, responsible for anomaly detection, and a Reasoning Service, which

deals with isolation and recovery.

The Sensing Service relies on Deep Learning algorithms trained on nominal telemetry data to

perform time-series forecasting. During inference, anomalous patterns are identified employing a

reconstruction-based error technique. This solution allows to identify a wider range of anomalies

with respect to traditional OOL techniques.

The Reasoning Service is triggered upon reception of an alert from the Sensing Service. The

central component is represented by a Knowledge-Based System that validates the alert against

false-positives and infers the most likely root causes for the anomaly. Given the classification

output, the Reasoning Service determines suggestions on the best recovery action, that can be

immediately applied or communicated to the ground for validation.

This work is the outcome of the Health-AI project, an ESA funded activity, where AIKO worked

in collaboration with Tyvak International and IngeniArs.

Traditional FDIR

The FDIR process comprises three main functions: Detection, Identification, and Recovery. Tradi-

tional FDIR systems onboard spacecrafts implement only limited detection capabilities (Figure 1).

Upon detection, automatic actions are usually taken to ensure the safety of the asset, which usually

consists in triggering the transition to a lower operating mode where the anomalous component or

subsystem is deactivated or excluded. Anomaly investigation, identification, and recovery are then

performed on the ground by operators based on data downlinked to the control centre. In addition,

subtle anomalies might go undetected onboard and only be discovered by human inspection.

Figure 1. Traditional FDIR approach.

AI-based onboard FDIR

By largely relying on ground-in-the-loop, the traditional FDIR process is prone to long intervals

between anomaly occurrence and solution, during which the spacecraft is unavailable or operating

with reduced efficiency. Our system aims to move all FDIR functions on board as much as possible

(Figure 3). In particular, it shall be able to reliably discover a large set of anomaly classes thanks

to advanced detection capabilities. Moreover, automatic identification is mandatory to enable

automatic recovery without human-in-the-loop. In addition to post-event analysis and continuous

monitoring, human intervention is still foreseen in the recovery step.

Figure 2. Onboard FDIR approach.

In order to fully detect and identify anomalies, and to suggest recovery actions, the envisioned

architecture implements a two-step approach that exploits its Sensing and Reasoning Services.

Specifically, the Sensing Service is responsible for anomaly detection, while the Reasoning Service

performs isolation and recovery functions.

Figure 3. Two-step FDIR approach: Sensing and Reasoning service.

The central component of the Sensing Service is a Deep Learning (DL) model, whose role is

to predict the future nominal evolution of selected satellite’s telemetry points. Concerning the

Reasoning Service instead, the central components is characterized by a Knowledge-Based System

(KBS), in charge of classifying the detection performed at Sensing level.

Use case description

We applied the developed system architecture to a use case aimed at identifying anomalies related

to the Attitude, Determination and Control Subsystem (ADCS) of a 6U satellite. In particular, the

goal was to detect and classify the among different anomaly types:

Reaction Wheel (RW): nominal strain, controller instability, wheel stiction, desaturation and

detumbling

Inertial Measurement Unit (IMU): stuck and out-of-scale IMU

Solar Angle Sensor (SAS): stuck SAS and silent stuck SAS

The available dataset comprises of both real anomalies experienced by different satellites, as well as

synthetic examples generated trhough a Flatsat. A total of 83 faults are available, divided between

12 real and 71 synthetic examples. Additionally, dataset containing only nominal behaviour of the

dataset are available, which are used to train the DL model, core of the Sensing Service.

Results

The results obtained running the AI-based FDIR approach proposed in this work have been

compared to the ones obtained using the traditional FDIR, implemented on current spacecrafts’

missions.

Table 1 shows the results in terms of number of better or worse detections with respect to

traditional FDIR (in terms of response timing), undetected anomalies, and correctly classified and

unclassified detections.

Table 1. AI-based detection and classification results.

CASE # Better Worse Undetected Correct Wrong

Controller instability 13 12 0 1 11 1

Wheel stiction 4 4 0 0 4 0

Nominal strain 3 - - - - -

Desaturation 11 10 1 0 4 7

Detumbling 10 9 0 1 9 0

Stuck IMU 11 0 11 0 9 2

Out-of-scale IMU 11 8 3 0 2 8

Stuck SAS 10 4 0 6 4 0

Silent stuck SAS 10 10 0 0 10 0

Table 2 shows the results in terms of number detection and classification delay with respect to the

actual start of the anomaly and the FDIR detection.

Table 2. Response timing wrt anomaly and FDIR detection.

CASE # Anomaly FDIR

Controller instability 13 11.2 min -inf

Wheel stiction 4 15 sec -45 sec

Nominal strain 3 - -

Desaturation 11 48.8 min -35.5 min

Detumbling 10 20 sec -

Stuck IMU 11 5.1 min 4.6 min

Out-of-scale IMU 11 16.6 min 13.6 min

Stuck SAS 10 24.0 min -

Silent stuck SAS 10 17.5 min -inf
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