
SSC23-P5-25

An Update on the Virtual Mission Control Room

Felix Sittner, Oliver Hartmann & Sergio Montenegro
JMU Würzburg, Department of Computer Science, Chair VIII: Aerospace Information Technology

Emil-Fischer-Straße 70, D-97074 Würzburg; +49-931-3188786
felix.sittner@uni-wuerzburg.de

Jan-Philipp Friese, Larissa Brübach & Marc Erich Latoschik
Human-Computer Interaction (HCI) Group, University of Würzburg

Am Hubland, D-97074 Würzburg
jan-philipp.friese@stud-mail.uni-wuerzburg.de

Carolin Wienrich
Psychology of Intelligent Interactive Systems, University of Würzburg

Oswald-Külpe-Weg 82, D-97074 Würzburg
carolin.wienrich@uni-wuerzburg.de

ABSTRACT

In 2021 we presented the Virtual Mission Control Room (VMCR) on the verge from fun educational
project to testing ground for remote cooperative mission control. Since then, we successfully participated in
ESA’s 2022 campaign “New ideas to make XR a reality”, which granted us additional funding to improve the
VMCR software and conduct usability testing in cooperation with the chair of human-computer-interaction.
In this paper and the corresponding poster session we give an update on the current state of the project,
the new features and project structure. We explain the changes suggested by early test users and ESA to
make operators feel more at home in the virtual environment. Subsequently, our project partners present
their first suggestions for improvements to the VMCR as well as their plans for user testing. We conclude
with lessons learned and and a look ahead into our plans for the future of the project.

The Virtual Mission Control Room started as a
Virtual Reality (VR) scene implemented in Unity,
enabling the user to look and move around within
a futuristic mission control room featuring not-yet-
interactive consoles, huge wall displays and a cen-
tral floating globe orbited by satellites. The wall
displays were browser windows, on which telemetry
data could be displayed using web-based visualiza-
tion tools like Grafana.1 This early setup had few
ways to exchange data and only required access to a
web server and a simple script for passing TLEs for
the globe in addition to the VR scene itself. While
the first VMCR scene was designed for multiple op-
erators, the multi-user functions were not added be-
fore the redesign.

The second iteration of the scene - which we de-
scribed in our 2021 paper2 - was initially a single-
user design, which put the operator at the very cen-
ter. The main screens and consoles were arranged
in a semi-circle in front of the operator and the
globe was moved from the center of the scene to

a smaller room at the back. Multiple assets, such
as the browser-based telemetry displays were reused
from the prior implementation. While we were im-
plementing the second scene, preparations for the
InnoCube mission started, and we began working
on a new ground station software. In the course of
this, we redefined the objective of the VMCR project
to create an environment that was - at least for the
timespan of a satellite pass - suitable for real mis-
sion control. We implemented multiple web-based
telemetry visualizations, and started development of
a telecommand web frontend to integrate into the
consoles in the virtual scene.

Since then, we have developed the VMCR into
a multi-user environment and added the features
and cooperation tools we will talk about in the next
chapters. We are now in the process of improving us-
ability, reducing VR sickness and fixing issues that
our early test users brought to our attention. At the
same time, we are preparing the first round of user
tests with our colleagues from the XR Hub.3

Sittner 1 37th Annual Small Satellite Conference



VR SCENE DEVELOPMENT

The VR scene is what the operators experience
when using the VMCR client software. They uti-
lize their hand-held controllers to navigate and in-
teract with special game objects which are part of
the scene. The user’s virtual hands emit a visible
beam called ray cast that changes color when inter-
secting with an object the user can interact with.

As we explained scene creation in-depth in our
previous paper,2 we only provide a very brief recap
covering the terms and basic concepts to facilitate a
better understanding of the following sections.

Figure 1: The second VMCR 3D scene in the
Unity editor

A scene in Unity is built out of objects called
game objects.4 Game objects are hierarchical con-
tainers, containing components5 such as a 3D model
and a transform holding information about the
objects position and orientation. Many parts of
the scene are simple non-interactive game objects,
such as walls, floor and other immovable objects.
Some game objects, interactables, contain compo-
nents which can be triggered by the user to perform
actions. A prefab combines all components of a
game object (child objects, scripts, settings) into a
reusable asset. The panels (3D menus), VR key-
boards, and consoles are examples of prefabs.

Several features of the scene, i.e. those connected
to outside services, such as the voice chat, in-game
web browser, and gesture tracking are built with
the help of plugins.6 Plugins contain game objects,
scripts and pre-compiled executables providing ac-
cess to system calls or third-party libraries. The XR
Interaction Toolkit7 provides a set of APIs, prefabs
and scripts that can be used to extend a 3D scene
into a VR scene.

The users do not need to install any additional
software, since all required parts provided by the
used plugins are included in the VMCR executable.

MULTI-USER FEATURES

We give a short summary of the cooperative tools
implemented since our last publication:

Multiplayer

The first step towards creating a cooperative
scene was of course to transform it into a multi-user
environment (multiplayer). This feature was imple-
mented as part of a student’s master thesis, using
Unity Netcode for GameObjects:8

They first added Netcode’s NetworkManager
component to the scene and created the Connec-
tionPanel user interface and implemented the main
ControlRoomConnectionManager script. This script
provides the connection settings based on the user
input (server address, port, username, password),
the amount and kind of network objects and config-
ured bandwidth limitations. It also reacts on user
input and triggers connection setup and termina-
tion. Subsequently, they added basic player avatars
and attached Netcode’s Client-NetworkTransform
scripts to synchronize their positions over the net-
work so that operators can see representations of
each other in the shared virtual scene.

Usage Each VMCR executable can function as
client or local server for testing purposes. In normal
operation the server is only run on the main back
end server and operators connect as clients, using
the default connection settings configured by their
VMCR administrators.

Each operator is initially placed in their own
private room and can then connect to the server to
join the multi-user VMCR scene using the connec-
tion panel depicted in Figure 2. They can enter the
connection data using a VR keyboard, which is set
up to float in front of the user avatar upon selecting
any text input field. As it was rather tedious to
input the required data each time a connection was
made, they added an option to automatically popu-
late the fields with predefined values. The panel was
created as a reusable asset and is usually attached
to a wall in the virtual scene. All panels can be
pulled closer by clicking on a button or activating a
special interactable.

Operators can activate a virtual laser pointer:
while the thumbstick button is held, the emitted ray
cast of that controller - normally only seen by the
user - is also made visible to other operators

Sittner 2 37th Annual Small Satellite Conference



Figure 2: Connection panel and keyboard floating in front of the test user ray cast

Security Due to other plugins and dependencies,
our student was working in a version of the Unity
editor not compatible with Unity Transport9 version
2.0. Hence, they could not easily implement accept-
able encryption using the Netcode version available
to them. Hence we postponed this part and the
first multiplayer implementation transferred data
unencrypted relying on the security (and usage) of
an external VPN connection. Since we upgraded
the project in the meantime, this issue is currently
being addressed.

In addition to adding multiplayer functionality,
our student also implemented the shared browser
views and voice chat integration which are described
in the following sections.

Voice Chat

The first collaboration tool we added to the
multi-user scene was voice chat. We assessed sev-
eral voice chat plugins, with the prerogative to use a
free and open source software solution if possible. In
addition, we were looking for a solution that is free
to use and does not require subscription or monthly
payments.

However, our most important requirement was
based on data security: we deemed it essential that
the employed protocol offers up-to-date encryption

and the option to use a self-hosted server, with no
unencrypted data relayed to any other, especially
no non-european, backend infrastructure. These re-
quirements ruled out using most popular voice chat
plugins featured in the Unity Asset Store, such as
Photon, Agora and Vivox.

Due to our criteria, we decided on using the
Mumble10 protocol and Murmur server together
with the Unity plugin code the open source Mumble-
Unity11 project provides. The plugin provided an
example script our student built upon and a code
base they expanded and adapted to fix some minor
issues. They created the user interface panel de-
picted in Figure 3 and corresponding scripts tapping
into the plugin functions, in order to allow users to
control the mumble client software made accessible
by the plugin.

Users can enter the connection data using a VR
keyboard. Like for the control panel, it is set up to
float in front of the user avatar upon selecting any
input field. They can also use a button to auto-
matically fill all input fields with the preset default
values. Users can connect, disconnect and switch
channels using this panel. In addition they can mute
and unmute their microphone when connected, as
can be seen in Figure 3. The panel was created as a

Sittner 3 37th Annual Small Satellite Conference



reusable asset and is also usually attached to a wall
in the virtual scene.

Figure 3: Voice chat user interface panel be-
fore and during connection (muted)

It is important to note that participants can join
the voice chat either from the multi-user scene, their
personal VR scene or their real-world working en-
vironment; experts consulted via voice chat are not
obliged to join the VMCR.

The integration of the Murmur server and other
server-side services into our backend architecture is
explained in the backend section of this paper.

Shared Browser Views

All operators should see the same information
on the main wall displays at the front of the virtual
room. However, the displays render web page data.

The problem: If an externally hosted web page
is accessed, e.g. to look for information on a topic,
the users might be served data depending on their
web browser settings or the location they access the
site from. Even if operators scroll through Grafana
telemetry dashboards provided by our own servers,
they see different data depending on their interac-
tion with the page. But in order to cooperate and
discuss, they need to see the same data as they
would if the were in the same physical control room.
Operators should be able to point out details and
anomalies, interesting things or share a web-based
whiteboard solution.

To facilitate this, the synchronized displays are
implemented as network objects. Network objects
are game objects that are synchronized over the net-
work and have owners. When the user who has own-
ership of a display calls a website, this triggers a

remote procedure call on the server. The website
content is always fetched by the back end server and
distributed to all connected clients. Users can forfeit
ownership of a display, which allows other users to
claim it and control the browser front end.

Implementation: Presently, the web page is
fetched by the back end browser, rendered as a tex-
ture and transmitted to all clients. Hence, user in-
teractions must be recorded, sent to the back end
and replayed there.

To mitigate the bandwidth problem at hand, all
textures are compressed before transmission and the
page content is synchronized at most once per 0.6
seconds. If however the maximum acceptable data
rate is exceeded the transmission will be stopped and
a warning message displayed. Therefore, the present
solution is obviously not suitable for video streaming
or very feature-laden web apps.

The operators can then open the respective web
page or web app in a non-synchronized browser in-
stance on their consoles or another wall display. If
a user decides to stop the synchronization, a warn-
ing message is shown next to the display to indicate
the display’s contents might differ from the other
instances’.

Text Chat

No multi-user environment is complete without
a text chat, so we implemented this basic feature
as well. After connecting to the cooperative envi-
ronment, users can send and receive messages in a
simple text chat window. When a user tries to send
a message without being connected to the main con-
trol room, a warning is displayed as an overlay over
the chat. The chat can be attached to a wall or
displayed on a console screen. We are going to add
more features, such as enabling the user to make the
chat interactable follow them trough the scene.

SCENE CUSTOMIZATION

One main advantage of a virtual control room is
that it can be adapted quickly and with almost no
additional cost, to match an individual operator’s
needs and preferences. The scene customization was
implemented as part of a student bachelor thesis
and is currently extended by our staff.

How it Works

A customization overlay is part of every com-
plex customizable game object, i.e. the worksta-

Sittner 4 37th Annual Small Satellite Conference



tions. This overlay is normally invisible and and
non-interactable. If the operator activated cus-
tomization via the Customization Control Panel, a
script component of the customizable game object
activates the overlays when the user moves near it.
An example can be seen in Figure 4: a POV picture
taken directly after the user rotated the desk.

Figure 4: Desk prefab with customization
overlays triggered by user proximity

When the user activates an element of the cus-
tomization overlay, a script is called that changes
properties the game object: for example, clicking on
any resize menu will adapt values of the transform
component the selected game object. In addition,
the customizable elements can be picked up, moved
and set down. This also changes the values of their
transform component.

In Unity a prefab of every object that can be in-
stantiated in-game to be “added” to the scene must
already be part of the scene at compile time. Our
students had to work around this, rather amusingly,
by hiding various prefabs under the floor out of sight
and reach of the users.

Customization Examples

After activating scene customization, users can
add, delete and clone different workstations. They
can configure the position, width and height of a
workstation, and also configure the child objects:
There are overlays enabling the user to add, delete
and flip and re-size displays as well as arrange them
within a plane. Several child-components of the
workstations can be set active or inactive, exam-
ples are keyboard, browser windows, chat window
and virtual camera feeds. This way the monitors

and workstation table top can be assigned differ-
ent functions. When a user is finished configuring
a workstation, they can lock it to prevent acciden-
tally moving it. Wall displays can be added, deleted
and arranged within a slot system.

For various simple static objects, such as ceil-
ing, walls and floor only textures can be changed
and some attached decorative elements switched on
or off. These settings can be adapted via the Cus-
tomization Panel.

The current proof-of-concept implementation of
customization menu can easily expanded by adding
new workstation prefabs as well as span buttons and
prefabs for other customizable objects.

Configuration Saving and Loading

Loading and saving of the configured scenes is
rather complicated in Unity, as - unlike some other
game engines - Unity provides no simple way to
save the whole changed scene from within a run-
ning game. We implemented functions to store the
configurable attribute values for every configurable
component. When a user saves the scene, a script is
called that inspects all game objects in the scene and
serializes the state of each object with the “config-
urable” attribute to a special save file. When loading
a configuration, this file is read, the existing config-
urable objects are destroyed, new objects are created
and adapted based the loaded data.

The Question at Hand

The users’ ability to configure their scenes makes
it necessary to decide what happens when the op-
erator joins the multi-user environment. Obviously,
each user should see the same scene (notwithstand-
ing other operator’s personal workstation monitor
content) when working together within a shared vir-
tual environment.

We discussed several approaches to prevent un-
canny experiences: One option would be that each
operator can configure their private (local) scene and
the shared scene is either preconfigured or can only
be adapted by an administrator. Operators would
then start in their personal room and enter an (from
their point of view) immutable shared scene after
connecting to the VMCR multiplayer. This could be
made less uncanny by the avatar “stepping” trough
a door into the shared scene. While this would be
the simplest option to implement, we agreed that it
would take too much flexibility out of the VMCR.

Sittner 5 37th Annual Small Satellite Conference



Figure 5: Structure of the Ultraleap integration in the VMCR

We prefer to create a solution where every op-
erator is able configure a part of the central scene
assigned to them. This can be done in two different
ways: Either the users configure their workspace be-
fore connecting and changes are synchronized when
they connect to the multiplayer. This would then,
upon joining, trigger a sudden update of the re-
spective user’s area for all other operators, but they
would not be distracted by a user “redecorating”.
Or the users could be to allowed to change their
console setup while connected, so changes to the
shared scene are introduced one at a time. In this
case, we would need add an option to mask the area
to prevent distraction.

If time permits, we will enable the operators to
configure a local workspace and their part of the
shared VMCR. As discussions are still ongoing we
have not finally decided on the details of shared
workspace configuration.

GESTURE BASED INTERACTION

As working in a virtual environment such as the
Virtual Mission Control Room means staying in vir-
tual reality for extended periods of time, it is impor-
tant to make interactions with this virtual workspace
as comfortable and intuitive as possible. One ma-
jor obstacle for this are the VR controllers used in
combination with most common HMDs. They are
not precise and rather slow for common work related
tasks such as typing on keyboards, and holding them
for extended periods can put strain on users hands

and wrists. To alleviate these issues we implemented
hand tracking controls for the Virtual Control Room
Scene by using an Ultraleap Stereo IR170 camera12

and the Ultraleap Unity plugin13 software.

Ultraleap

Ultraleap devices are capable of tracking hand
movements by first illuminating an area in front of
them in infrared light, and then searching for ob-
jects they recognize as hands in the highlighted area
with their two cameras. The gathered tracking in-
formation from the Ultraleap control panel software
can then be used via an API or plugins for games
engines such as Unity.

Implementation

With this implementation, we focus on two key
features along with making the scene interactable
via hand tracking in general. The first is a new
and improved virtual keyboard, while the second is
controller-less locomotion.

Design Considerations & Guidelines

Along with their plugins, Ultraleap offers design
guidelines for hand tracking applications.14 These
deal with both the technical limitations of the hand
tracking devices and how to work with them, as well
as user comfort and ease of use. We specifically focus
on the guidelines regarding the classification of hand
tracked interactions in two main groups, as well as
the occlusion of hands.

Sittner 6 37th Annual Small Satellite Conference



Types of Interactions According to Ultraleap,
all hand tracked actions can be categorized as ei-
ther physical or learned interactions. Physical inter-
actions mimic actions that would be possible with
the users real hands outside of a virtual space, like
touching and grabbing objects, and are thus intu-
itive and easy to understand. Learned interactions
on the other hand may offer more possibilities, but
also require training. Because of this, physical inter-
actions should always be chosen over learned ones,
if they are an option. In this project we additionally
lock most learned interactions to only be available
while the user is raising their left hand so that the
palm is facing the camera, in order to avoid acciden-
tally triggering them.14

Occlusion The hand tracking software can com-
pensate for a partially occluded hand, such as cov-
ered fingers by predicting their position based on
the visible part of the hand. Since this can however
result in incorrect hand poses and errors, situations
that may result in occlusion should be avoided when
designing interactive elements.

Basic Hand Tracking

Basic hand tracking features and scene interac-
tions can easily be achieved by using components in-
cluded in the Ultraleap Unity plugin,13 the most im-
portant of which is the LeapServiceProvider. When
attached to the player rig it acts as the connection
between the Ultraleap Control Panel and Unity, so
that objects in the engine have access to the track-
ing data. Using this data, we then add three sep-
arate components to build up the features of the
hands. Visual Hands visualize the tracked hands in
the scene, Interaction Hands allow them to interact
with it, and Attachment Hands allow us to connect
additional game objects to them. In addition, the
UI Input Event System component allows for inter-
action with distant objects by pointing at them with
a raised hand, and pinching thumb and index finger.
As it can be difficult to spot this ranged cursor over
longer distances, we added an optional visible ray.

Dynamic Keyboard

We first replaced the previously used Can-
vasKeyboard15 with the XR Keyboard16 provided by
Ultraleap. This VR keyboard asset was specifically
designed for use with hand tracking and features
raised buttons that react to nearby hands and but-
ton presses.

Figure 6: Ultraleap keyboard buttons react-
ing to tracked hands in proximity, and direct
touch

To then change the behavior to give the user full
control over the keyboard with its activity status
and position, we combined multiple components of
the Unity plugin. The script pair Anchorable Behav-
ior and Anchor allow for attaching an additional
object to a tracked hand, while also being able to
grab the object and place it in any spot within the
scene. Combined with the Workstation Behavior,
which will activate a new object in the scene when-
ever such an anchorable object is dropped in the
scene, we can then activate and move the keyboard
at will.

Subsequently, we added two more quality of life
features: first, a button to recenter the keyboard in
front of the user to the palm of the left hand. And
second, we added the option to move the keyboard
by dragging an anchored object into the scene; which
works even when there is already an active keyboard.

Lastly, we tried to reduce occlusion issues, to
which virtual keyboards are in general more prone
to, since the fingers are often covered by the rest of
the hand from the perspective of the camera while
typing. We therefore set the height of the automatic
keyboard reposition low enough to counteract this
as much as possible, and add an invisible volume
around the keyboard to disable the ranged interac-
tions for the tracked hands while they are being used
for typing.

Figure 7: Dynamic keyboard with cube an-
chorable object next to hand representation
with recenter button

Sittner 7 37th Annual Small Satellite Conference



Figure 8: Grabbed Jump Gem projecting ray
to teleportation target area

Locomotion

The implemented locomotion is based on Ultra-
leap’s Jump Gem approach of having a hovering ob-
ject next to the tracked hands, that can be grabbed
to project a ray marking the desired location when it
intersects with the floor. After aiming with the ray,
letting go of the object will trigger a teleportation
to the highlighted location. While this approach is
already functional, it lacks rotational controls when
compared to the locomotion options offered by VR
controllers. These can be implemented in a vari-
ety of ways, such as simple buttons that trigger a
snap rotation attached, simple gesture recognition
for pointing in a certain direction, or by adding a
virtual input device in front of the user, that can be
operated to more directly replace the VR controller.

NEW PROJECT STRUCTURE

Since 2021, we have added several features that
rely on software run outside of unity, such as voice
chat and satellite emulation. Those services had
to be set up and configured manually, which was
acceptable for a test setup. But with prospective
users from other facilities we needed to structure
and document the project in a more professional
way.

Client-Server-Setup

The basic setup of the VMCR, as depicted in Fig-
ure 9, is split into the standalone VMCR Application
run at each operator’s computer and the applications
run on the central back end server. The back end
server hosts the master VR scene to which opera-
tors can connect as well as the services supporting
features of the scene.

Figure 9: User (client) scenes connected to
the VMCR back end over a VPN

Division into Sub-Projects

One major drawback of having everything within
one big project was, that everybody had to down-
load the whole virtual scene, even if they were only
improving some details of the back end setup. We
divided the VMCR into several git projects orga-
nized in a group, to enable developers and testers to
only check out the parts of the project they intend
to work with.

In the following section, we provide a short
overview of the components the project is made of
and which functions they add to the VMCR. The VR
scene is what the operators directly experience when
putting on their head mounted displays (HMDs) and
start their VMCR client software. The back end ser-
vices are everything apart from the VMCR master
Unity scene, that runs on the VMCR server.

Back End Design

We redesigned the back end as microservice ar-
chitecture so prospective users can switch out parts
to adapt the project as needed: We choose to provide
each back end service, except for the main-unity-
scene, within its own Docker17 container. These con-
tainers are linked together within in a virtual net-
work to interact and facilitate the VMCR.

Sittner 8 37th Annual Small Satellite Conference



Figure 10: VMCR back end service containers within a virtual machine

Developers and administrators are able to add
their own back end services by adapting the docker
compose file to include their own containerized ap-
plications. In that way, a university or agency can
plug in their own satellite simulation data or web-
based ground station graphical user interface (GUI).

In addition, we prepared a pre-configured virtual
machine (VM) for our test users who need to de-
ploy the back end on a windows server, without the
option to run docker-compose within the Windows
Subsystem for Linux (WSL).

Figure 10 depicts one of multiple possible VMCR
back end setups: this VM is configured for train-
ing purposes, with a locally run instance of our
CORFU18-based on-board software and control
front end provided by the Telestion19 ground station
software developed by WueSpace.20

The (satellite) emulation container is where our
RODOS-based on-board software is deployed and
run. This container is connected to two other back
end containers: The egse2influx container holds a
very minimal CORFU18-based ground station soft-
ware, that receives telemetry and stores the data
in the InfluxDB21 database located in another con-
tainer. The Telestion back end container hosts an in-
stance of the Telestion ground station back end with
a special extension that allows it to decode CORFU
messages. It is connected to the front end / message
broker service and also to two database containers,

the InfluxDB instance and a Redis22 database for
long-term storage.

The containers visible on the right side of the
figure host the services the VR scene plugins con-
nect to: All of these services, except for the mur-
mur server depicted at the bottom, are accessed with
the help of the web browser plugin. The Grafana1

container serves the telemetry visualizations to be
shown on the huge wall displays in the front of
the VMCR scene. The Telestion front end pro-
vides user authentication and sets up the message
broker session between the web-app run in the op-
erator’s browser and the Telestion back end. The
file browser23 back end facilitates an easy way to
exchange files, e.g. to share documentation, from
within the scene. Lastly, the Murmur server pro-
vides the back end for the Mumble-based voice chat.

For real missions the emulation container is re-
placed by a container that forwards data through
a secured channel from and to the (UHF) ground
station radio control server.

Documentation

All documentation was moved into the Docu-
mentation subproject and made accessible within
a wiki. This wiki is structured in three sections
providing documentation tailored towards adminis-
trators, developers and users.

Sittner 9 37th Annual Small Satellite Conference



The admin manual focuses on set-up and main-
tenance of the server side VMCR applications, and
intersects partly with the back end developers’ man-
ual pages.

The developer manual provides information
and how-tos to help developers adapt and extend
the VMCR. Like the VMCR itself, it is structured
in two main parts: the VR-focused sections explain
how to adapt, extend and compile the VMCR scenes
using Unity3D and working with plugins, assets, pre-
fabs and a C#-IDE. The remaining sections teach
developers how to fork and adapt the back end and
provide links to the documentation of several sub
projects, such as the CORFU-based satellite simu-
lation and the Telestion ground station software.

The user manual covers everything from setting
up the VR headset over menu-interaction guides to
how to adjust one’s personal VMCR scene in-game.

EARLY USER FEEDBACK

We presented the second iteration of the VMCR
to several test users as well as our ESA contacts.
These are the problems we found and addressed dur-
ing development, prior to the official, structured user
testing phase.

Control Room Scene

Among the first responses to the VMCR was,
that while the futuristic scene was an interesting
concept, our prospective users envisioned a bigger,
more conventional scene with a stronger resemblance
to their real mission control rooms.

As a first measure, we created a more conven-
tional scene, of which the floor plan can be seen in
Figure 11. In this scene, the operator avatar spawns
in a vestibule, depicted in the right side area of the
floor plan. They can then either connect to the chats
and multiplayer using the control panels and “walk”
into the more spacious room or enter a tutorial.

All components and functions developed for the
futuristic scene are also available within the conven-
tional VMCR, as the same scripts, assets and prefabs
created by our students were used to build it.

Figure 11: Conventional scene floor plan

This scene will be adapted further according to
user input in the course of this project and other
designs are already in the making. The scenes ap-
proved by ESA will then be included in the final
delivery as part of the unity-scenes subproject.

Tutorial

Several users were overwhelmed when directly
entering the VMCR without any introduction to the
various ways to interact in there. Even more so, after
we added some tutorial elements to the main scene.
To address this issue, we created a separate simple
tutorial scene, which new operators can experience
before they enter the VMCR.

Figure 12: A new user’s POV from the tuto-
rial scene prototype

Sittner 10 37th Annual Small Satellite Conference



At the very beginning users are shown and prac-
tice basic movement, later on they learn to enter
data into fields and adapt their environment. Users
can at any time quit the tutorial and transition
to the main VMCR scene using the Scene Loading
Menu panel. Our tutorial scene is still very basic and
will be improved as part of a student thesis within
the year.

Shared Whiteboard

In addition, the ESA operators were concerned
about the shared whiteboard being implemented as
an in-browser-solution, with which they had mixed
experiences in the past. Hence, we are reimple-
menting the shared whiteboard as a Netcode8-based
Unity-native solution.

VPN Service

We initially planned to ship an open-source VPN
solution as part of the VMCR back end. But as most
facilities are bound to use a predetermined VPN
technology with specific settings and/or provider-
specific solution, we do not include that anymore.

Panel Design

Another (minor) issue mentioned was that most
panels and menus while functioning, are basically
out-of-the-unity-tutorial-designs and not yet styled
in an appealing manner. In addition, ESA remarked
that for the voice-chat control, they would prefer an
asset modeled to resemble the table top voice loop
control panel used at the ESA mission control.

Figure 13: Connection, mumble and cus-
tomization panel prototypes

We are currently working on improving the de-
sign and usability of the VMCR with the help of
our colleagues from the XR Hub3 located at our

University during the current phase of the project.
They present their plans and findings in the follow-
ing chapter.

IMPROVING USABILITY

VR Application

The following section provides an overview about
minor usability issues we found in the VR appli-
cation and additional design suggestions how the
ground station software could be improved in VR.

Figure 14: No highlighting of selection

When the user iterates through different options
of menu items, the interaction symbol (e.g. an ar-
row) was not highlighted in some cases (Figure 14).
The user sees the ray of the controller but cannot
be sure whether the interaction surface is really tar-
geted. To solve this issue, we will highlight the item
in a color which has a high contrast compared to
the colors of the rest of the menu. The low contrast
of some selected menu items also presented a sig-
nificant usability issue since the user is not able to
distinguish between the selection and the rest of the
menu. The same solution as explained before should
be applied here as well.

Figure 15: Proposed HUD notification

During the creation of new control workstations,
the new workstation is placed at the main spawn
point of the virtual environment. If the user is not

Sittner 11 37th Annual Small Satellite Conference



located there or the gaze direction is different to
the spawn location, he will be not informed that
a new workstation has been generated. This can
be avoided by adding a HUD message which gives
the user a hint (Figure 15). Alternatively, a flash-
ing direction arrow could be inserted on the edge
of the screen indicating where the workstation has
spawned. This arrow should disappear when the
user turns to face the workstation. Lastly, a few
small bugs will be fixed that could lead to motion
sickness.

Ground Station Software User Interface

Figure 16 depicts the standard ground station
software developed for the InnoCube mission. A web
application of similar design was later developed to
be accessed from the console screens in the VMCR.

Figure 16: CORFU-generated ground station
GUI with a pop-up telecommand window

The on-board software applications are listed
horizontally, telecommands can be issued by clicking
the named buttons on the right side, the standard
telemetry is shown as text in the middle and the
extended telemetry for each app can be opened by
clicking the buttons on the right.

Due to the long item- and data lists of the ground
station software, we first suggest splitting up the
standard telemetry data from the main window be-
cause they are mandatory for the usage of the ap-
plication and have to be visible at any time for
the user. Subsequently we can group the different
functions of the software and create new sub-menus.
Each sub-menu contains one data point where users
can send the associated commands and receive ex-
tended telemetry data from the satellite. The stan-

dard telemetry of the data point is separated in an
extra window as previously described.

Regarding the telecommand input, it would be
beneficial to only display a number pad instead of
a whole keyboard when a user selects an input field
only accepting number values. This has the advan-
tage that the individual fields of the input field can
be designed larger and thus increases readability and
making them easier to hit with the ray cast.

We also discussed whether a more graphical de-
sign such as a vector representation of the data
would be beneficial. This suggestion was discarded
because users are already familiar with the represen-
tation of satellite displays and the design idea would
take up too much space in the standard telemetry
display.

Figure 17: VR telecommand input overlay

Interaction Technologies

To control the software mentioned above, we dis-
cussed different technologies which could be poten-
tially relevant for interacting with our virtual envi-
ronment. One crucial factor is user movement in
VR. The goal is to get a good mixture of efficient
and precise freedom movement in the mission control
room. By implementing multiple travel techniques
like walking-based- and selection-based travel, the
user can precisely adjust his position with the joy-
sticks of the motion controller (walking-based). In
addition, the possibility to teleport by pointing to
a specific location provides far distance navigation.
The combination of both could result in an efficient
solution for navigating through the control room.

Another key consideration is the ergonomic
control of user inputs. Aside from communication
over voice, the primary interactions with the ap-
plication involve sending commands and receiving
telemetry data. Users employ a keyboard to insert
data for the commands. One type of control devices

Sittner 12 37th Annual Small Satellite Conference



is the motion controller of the VR setup. By utiliz-
ing ray selection, users can select the different let-
ters by pointing with the physical motion controller
to the associated key on the keyboard and pressing
a button on the motion controller to select that key.

A second type of control device is the Ultra-
Leap Hand Tracking System where the user’s phys-
ical hands are tracked by infrared light to type on a
keyboard. The advantage of the UltraLeap system
is an intuitive way of interaction, but the user has no
haptic but only visual feedback. A long-time usage
could be also exhausting because the keyboard isn’t
located on a surface where the user can put down his
hands on a table. Instead, inputs need to be made in
mid-air, which may become fatiguing over prolonged
usage.

A third interaction technique could be a phys-
ical keyboard equipped with markers so that the
VR application can track the keyboard. Although
the physical keyboard would reduce the effort for
typing compared to typing in the air with the Ul-
traLeap technology, a permanent surface is still re-
quired. The main advantages here are the haptic
feedback and ergonomic typing in case of a support
surface. Further user tests will provide more insights
into the individual technologies.

User Testing

To evaluate our changes to the user interface and
the discussion about the interaction techniques, it
is mandatory to test our findings with real users.
Therefore, it is planned to conduct a user study
where students of the chair of aerospace informa-
tion technology are traversing a satellite flyover in
the virtual mission control room. The study fo-
cuses the main interaction with the ground control
software and will evaluate the usability of the ap-
plication’s functions as well as other notable mea-
sures such as motion sickness or stress induction.
We will probably use questionnaires like the Simu-
lator Sickness Questionnaire24 for motion sickness,
the NASA-TLX Questionnaire25 for workload anal-
ysis and PASA Questionnaire26 for stress induction.
This satellite flyover will take around 20 - 30 minutes
for each participant. In addition to the VR applica-
tion test, we will evaluate the revised VR-interface of
the ground software with a pluralistic walkthrough
and an expert review.

The pluralistic walkthrough is a corporate
meeting of target users, developers and usability ex-
perts where the user accomplishes a task and oc-

curring usability issues are discussed afterward with
all participants. Through this collaborative analy-
sis, the developers gain direct access to new design
ideas which are developed in conjunction with the
usability experts and the users.27

To gather more ideas how we could improve
our application design, a contextual inquiry (contex-
tual design process) would provide more information
about the working structure, communication and de-
tailed working processes during a satellite flyover.

A contextual inquiry consists of two parts. The
first one is a traditional interview where the re-
searchers gain an overview about the relation of
the user’s life to the target activity and information
about tools that are used during the activity. The
second part is the main inquiry and it is more an
observation and discussion than a regular interview.
The emphasis lies on the user’s actions during the
tasks and the artifacts employed, with the researcher
interpreting these observations and engaging the
user in discussions to obtain their interpretations.
For instance, the user should be asked after a phone
call about the content of the call because this could
be essential for subsequent analysis, understanding
user needs and generating design concepts.28

We are preparing to use both of these user cen-
tered methods in our upcoming meeting with em-
ployees from the European Space Agency. With
an in-depth analysis of an expert workflow, we are
able to increase the efficiency of the VR application
and distinguish between user needs and user wishes.
This distinction is essential in determining the ap-
propriate requirements for application design as the
VR environment introduces new benefits while si-
multaneously posing challenges for the user.

LESSONS LEARNED & OUTLOOK

The open source community provides millions of
projects, many of the tools we use and all of the
services our back end is built of. We set out to cre-
ate a solution using closed source and proprietary
software as sparingly as possible But this is rather
difficult in the VR-department.

Limits of our free and Open Source Approach

First of all, the Unity editor and engine are
proprietary. Unity-Technologies published refer-
ence C# source code29 for both GitHub under a
reference-only-license, which permits developers to
look into the source code to better understand how

Sittner 13 37th Annual Small Satellite Conference



the engine works and “reproduce and use the Soft-
ware for Reference Purposes only.”.30 While Unity
is free to use for noncommercial users, small stu-
dios and education, bigger companies and institu-
tions such as ESA might have to purchase a profes-
sional license.

Second, the (optional) gesture-based control is
facilitated by drivers and plugins provided by Ultra-
leap Technologies.13 While the SDK is not free-to-
use, purchasing the hardware needed to use this fea-
ture - the camera development kit - also comes with
the SDK and plugin licence for commercial use.

And lastly, the most used VR headsets require
proprietary Unity-plugins and driver software.

These three obvious issues notwithstanding, we
tried to abstain from using any software that would
force developers building upon our solution to pur-
chase any additional licenses, in order to to enable
as many people as possible to work with our code.
There are plenty of free to use open source plugins,
and even catalogs31 of them, as well as thousands
of free Assets in the Unity store. Many of these
assets are provided under the very permissive MIT
License32 or the more restrictive Unity Asset Store
License.33

The problem: At the moment there is no really
“production-ready” free browser-plug-in for unity.

To “use” a web-browser within Unity, the con-
tent must be fetched by a “normal” browser instance
(usually made available as part of an unity plugin),
and a snapshot of the website must then be rendered
as a 2D texture and handed to Unity to be rendered
onto an in-game object. In addition, commands,
such as entering an URL to navigate to and start
loading a website must be made accessible in the
front end and be sent back to the browser instance.
So to really navigate and use a website, a ground sta-
tion software web interface especially, one must be
able to click on buttons and enter data into fields.
Interactions with website elements are made possi-
ble by determining the exact position of the user
input and forwarding the position, interaction and
text input to the browser. Apart from this not in-
significant task, web browsers are updated often and
new Unity versions are not always backwards com-
patible, keeping a browser plugin up to date requires
constant attention and work.

Initially, we included the open source Sim-
pleWebBrowser34 Unity plugin provided by Vitaly
Chashin under the GPL−3.0 license. This plugin
was developed five years ago and is compatible with
Unity up to version 2020.3.20f1 LTS. Unfortunately

we need to work in a more recent version of Unity
to develop for current VR hardware.

Lesson Learned If depending strongly on an
open source component provided by a single devel-
oper, a project should be prepared to commit a few
person months to help keep that component alive or
even improve it. We did not plan or allot time for
this at the beginning of the VMCR and presently do
not have the resources to contribute to a free browser
plug-in implementation in the course of this project.

As a pragmatic solution, we will provide our
source code as well as the compiled executables, that
were created using a licensed proprietary browser
plugin. Even so, the compiled VMCR executable
and our source code are still freely shareable by ESA.
However, to modify the scenes in Unity, develop-
ers will need to buy the license for the commercial
browser plugin asset.

When a suitable free browser plugin becomes
available, developers are free to adapt the scene,
scripts and prefabs to work with that instead of the
commercial solution included at present.

Outlook

Which features we adapt and/or implement next
depends mostly on the results of the first round of
user tests scheduled for summer 2023. And we hope
to deliver a usable and well-documented VMCR pro-
totype to ESA at the end of the funding period in
May 2024. But this date does in no case mark the
end of the project. Our chair will continue work
on the VMCR not only by facilitating student the-
sis and internships, but also actively developing it.
When further advanced, the project and code will
be made available openly.

Acknowledgments

The development of the Virtual Mission Control
Room is co-funded by the European Space Agency
(ESA) as part of their “New ideas to make XR a
reality”35 campaign.

We would also like to thank all members of the
open source community for providing many of the
tools and assets we are using during development.

References

[1] https://grafana.com/.

Sittner 14 37th Annual Small Satellite Conference

https://grafana.com/


[2] Felix Sittner, Cedric Liman, Gino Schulze, Jan
Schmieder, Jan Tischhöfer, Marlene Busch, and
Sergio Montenegro. Creating a Setup to Assess
the Use of Virtual Reality for Mission Control.
Small Satellite Conference, 2021.

[3] https://xr-hub.hci.uni-wuerzburg.de/.

[4] https://docs.unity3d.com/Manual/
GameObjects.html.

[5] https://docs.unity3d.com/Manual/
Components.html.

[6] https://docs.unity3d.com/Manual/Plugins.html.

[7] https://docs.unity3d.com/Packages/com.unity
.xr.interaction.toolkit@2.3/manual/index.html.

[8] https://unity.com/products/netcode.

[9] https://docs-multiplayer.unity3d.com/
transport/current/about/index.html.

[10] https://wiki.mumble.info.

[11] https://github.com/BananaHemic/Mumble-
Unity.

[12] https://www.ultraleap.com/product/stereo-ir-
170/.

[13] https://github.com/ultraleap/UnityPlugin/
releases/.

[14] https://docs.ultraleap.com/xr-guidelines/.

[15] http://talesfromtherift.com/vr-canvas-
keyboard/.

[16] https://github.com/ultraleap/XR-Keyboard/.

[17] https://www.docker.com/.

[18] Frank Flederer and Sergio Montenegro. Model-
Based Framework for On-Board-Software.
Small Satellite Conference, 2021.

[19] https://telestion.wuespace.de/.

[20] https://www.wuespace.de/.

[21] https://www.influxdata.com/products/influxdb/.

[22] https://redis.io/.

[23] https://github.com/filebrowser/filebrowser.

[24] Robert S. Kennedy, Norman E. Lane, Kevin S.
Berbaum, and Michael G. Lilienthal. Simulator
Sickness Questionnaire: An Enhanced Method
for Quantifying Simulator Sickness. The Inter-
national Journal of Aviation Psychology, 3:203–
220, 1993.

[25] Sandra G. Hart and Lowell E. Staveland. De-
velopment of NASA-TLX (Task Load Index):
Results of Empirical and Theoretical Research.
1988.

[26] Jens Gaab. PASA – Primary Appraisal Sec-
ondary Appraisal. Verhaltenstherapie, 19:114–
115, 06 2009.

[27] Jakob Nielsen. Usability Inspection Methods.
Conference companion on Human factors in
computing systems, pages 413–414, 1994.

[28] Karen Holtzblatt and Hugh Beyer. Contextual
Design (Second Edition). Morgan Kaufmann,
2017.

[29] https://github.com/Unity-
Technologies/UnityCsReference.

[30] https://unity.com/legal/licenses/unity-
reference-only-license.

[31] https://github.com/StefanoCecere/awesome-
opensource-unity.

[32] https://en.wikipedia.org/wiki/MIT License.

[33] https://unity.com/legal/as-terms.

[34] https://github.com/tunerok/unity browser.

[35] The ESA Discovery Campaign
on extended realities (XR).
https://www.esa.int/Enabling Support/
Preparing for the Future/Discovery and Preparation/
The Discovery Campaign on extended realities XR.

Sittner 15 37th Annual Small Satellite Conference

https://digitalcommons.usu.edu/smallsat/2021/all2021/223/
https://digitalcommons.usu.edu/smallsat/2021/all2021/223/
https://xr-hub.hci.uni-wuerzburg.de/
https://docs.unity3d.com/Manual/GameObjects.html
https://docs.unity3d.com/Manual/GameObjects.html
https://docs.unity3d.com/Manual/Components.html
https://docs.unity3d.com/Manual/Components.html
https://docs.unity3d.com/Manual/Plugins.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.3/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.3/manual/index.html
https://unity.com/products/netcode
https://docs-multiplayer.unity3d.com/transport/current/about/index.html
https://docs-multiplayer.unity3d.com/transport/current/about/index.html
https://wiki.mumble.info
https://github.com/BananaHemic/Mumble-Unity
https://github.com/BananaHemic/Mumble-Unity
https://www.ultraleap.com/product/stereo-ir-170/
https://www.ultraleap.com/product/stereo-ir-170/
https://github.com/ultraleap/UnityPlugin/releases/
https://github.com/ultraleap/UnityPlugin/releases/
https://docs.ultraleap.com/xr-guidelines/
http://talesfromtherift.com/vr-canvas-keyboard/
http://talesfromtherift.com/vr-canvas-keyboard/
https://github.com/ultraleap/XR-Keyboard/
https://www.docker.com/
https://digitalcommons.usu.edu/smallsat/2021/all2021/184/
https://digitalcommons.usu.edu/smallsat/2021/all2021/184/
https://telestion.wuespace.de/
https://www.wuespace.de
https://www.influxdata.com/products/influxdb/
https://redis.io/
https://github.com/filebrowser/filebrowser
https://github.com/Unity-Technologies/UnityCsReference
https://github.com/Unity-Technologies/UnityCsReference
https://unity.com/legal/licenses/unity-reference-only-license
https://unity.com/legal/licenses/unity-reference-only-license
https://github.com/StefanoCecere/awesome-opensource-unity
https://github.com/StefanoCecere/awesome-opensource-unity
https://en.wikipedia.org/wiki/MIT_License
https://unity.com/legal/as-terms
 https://github.com/tunerok/unity_browser
https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/The_Discovery_Campaign_on_extended_realities_XR
https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/The_Discovery_Campaign_on_extended_realities_XR
https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/The_Discovery_Campaign_on_extended_realities_XR
https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/The_Discovery_Campaign_on_extended_realities_XR
https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/The_Discovery_Campaign_on_extended_realities_XR

