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Autonomous on-board maneuvering

The advancement of conventional approaches towards methods with enhanced autonomy is a

continuous and ongoing process, which ensures superior performance, reliability, and scalability.

Autonomous Guidance and Control (G&C) systems are set to become a crucial technology in

applications such as low-thrust orbit transfers, station keeping, rendezvous, and deep space

maneuvers. In this context, our primary objective is to develop a comprehensive framework for

autonomous on-board G&C that is adaptable and applicable across diverse scenarios.

Overview

The focus of our initial application scenario centers around a low-thrust orbit transfer in Low-

Earth Orbit (LEO). This specific use-case has been chosen due to its inherent challenges, including

the requirements for robustness and real-time computation.

We propose anAI-based solution capable of autonomous and robust on-board G&C. The core of

our approach leverages a Deep Neural Network (DNN) trained through Reinforcement Learning

(RL) techniques. Our method aims at enhancing a traditional guidance approach by managing

environmental perturbations, it processes the on-board navigation coordinates and provides

the thrust to be imposed by the propulsion subsystem.

Our approach demonstrates effectiveness in performing maneuvers changing semi-major axis

(SMA), eccentricity (ECC), and inclination (INC), operating continuously with a control horizon

of several days. Robustness is tested by using physical model uncertainties, introducing distur-

bances in the mission coordinates, and injecting perturbations in subsystems.

Architecture

The Preprocessing module is in charge of transforming the Cartesian measurements coming from

the Navigation Subsystem into a processed form that is meaningful for theManeuver Computation

block, which encloses the DNN. It produces as output the force vector to be imposed in the center

of mass. The Spacecraft Simulator propagates the orbit while applying the thrust, this control

loop is iterated until the target orbit is reached. The period of action currently used is 10 minutes.

Figure 1. Maneuvering loop structure.

The mission is identified through the starting orbital configuration, the target orbital configuration,

the epoch, and the tolerance ranges of acceptance for the maneuver to be considered complete.

These ranges have to be properly set according to the specific maneuvers. In our scenario, the

followings are chosen: 2 km for SMA, 0.001 for ECC, and 0.005 deg for INC.

Simulation scenario

Platform

12U CubeSat with 15kg mass,

14.5kg dry mass. Attitude con-

trol is considered decoupled.

Thruster

Low-thrust engine with contin-

uous throttle. Maximum thrust

is 2.5mN with 1200s specific im-

pulse.

Use-case

LEO maneuvers to change the

semi-major axis (hundreds of

km), the eccentricity, and the in-

clination (up to 1° corrections).

Validation

To push our framework towards the real-world, it is crucial to validate the robustness of the

closed-loop maneuvering interaction. Simulations must be physically accurate and address non-

nominalities of the models that could influence the potential deployment.

We employ Basilisk [3] simulator to validate our solutions. We use Runge-Kutta 4th order prop-

agation with 60s of integration step, including J70 gravity perturbation, msis atmospheric drag

and CannonBall solar radiation pressure models, and third-body gravity perturbation by sun and

moon. Since the actual initial orbital coordinates of the mission may vary from the planned ones,

we introduce an orbital displacement in the initial conditions of the maneuvers, using normal

distribution bounded within standard station-keeping ranges.

Sensors and actuators uncertainties

Data coming from the on-board navigation cannot be considered exact since hardware sub-

systems are subject to measurement errors. To make sure that our solution is robust to such

non-nominalities, we provide distorted Cartesian coordinates instead of the real position and

velocity. Distorted values are sampled with normal distribution within an ellipsoid lying along the

tangential direction.

Figure 2. Visualization of the probabilistic distribution for the perturbed position and for the thrust direction. Green

values represent variations close to nominal states, while red values represent more critical discrepancies.

Our algorithm requests the imposition of a continuous force vector to the thrust subsystem, but

we cannot assure that this value would be exactly produced. In order to verify the robustness to

non-nominalities in thrust production, we inject normal perturbations in the actual force provided

within the simulation, both in direction and magnitude.

Reinforcement Learning

The core of our Autonomous Maneuvering System relies on Multilayer Perceptrons (MLP) trained

through RL techniques [5]. In particular, for this application, we employed the Soft Actor-Critic

algorithm [2], which represents the state-of-the-art in terms of performance and accuracy for

trainings in the control field.

The Markov Decision Process

The maneuvering problem is formalized as a state-action loop, along with a reward signal assigned

during the training phases.

The observation signal is composed starting from the Cartesian coordinates, which are transformed

intomeanKeplerian values. Those are enrichedwith data of the pre-computed traditional trajectory

reported for multiple instants, then normalized and scaled with respect to the target orbit. The

action signal is composed of three continual values, that are translated into the force vector

requested to the thrust subsystem. The value function has a ”shaped” design based on the ”guess”

trajectory, refined with scaling factors that allow faster convergence to proper behaviors.

Figure 3. Training loop schema.

The ”guess” trajectory

During training procedures, the possible exploration of state-action-reward tuples is extremely vast.

In order to limit the waste of computational and time effort, we exploit a trajectory pre-computed

through Edelbaum’s control [1] in nominal conditions. It allows defining exploration boundaries

to focus the learning process in a reasonably smaller space region, managing to converge on a

satisfactory solution.

Curriculum Learning

We employ Curriculum Learning [4] procedures in order to refine inference performance and

robustness to disturbances. In addition, the usage of already-trained MLP allows significant savings

in the training pipeline when addressing new maneuvers.
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