
[1]

[2]

[3]

[4]

[5]

Ryo Suzumoto, et al., Open-source Software Suite for Small Satellites:

C2A (Command Centric Architecture), S2E (Spacecraft Simulation

Environment), and WINGS (Web-based Interface Ground-station

Software), 36th smallsat, 2022.

Rust: https://www.rust-lang.org/

rustup: https://rustup.rs/

Cargo: https://github.com/rust-lang/cargo

bindgen: https://github.com/rust-lang/rust-bindgen

Satellite Software Development Framework with Rust

that Improves Developer Enablement
Yuta Sakamoto,  Hidekazu Kobayashi,  Ryo Suzumoto, Toshifumi Akima, 

Shumon Fujita,  Masato Hoshika,  Yoshiki Iwasa,  Kanta Yanagida
sksat@arkedgespace.com

References

SSC23-P5-24

We have been challenged to develop a variety of satellites in a short period

of time with a small team. However, our development structure based on

C2A (our C language asset) was not productive enough: there are no

common toolchain, difficulty to reuse code for similar satellites/components,

etc.

To solve these problems, we have introduced the Rust ecosystem into the

C2A development structure. Rust's high degree of interoperability with C

allows us to significantly improve productivity without throwing away

existing assets.

As a result, our developer enablement has been unified and improved

across the entire team, allowing us to develop software for multiple

satellites with a small team in a short period. Even when developing

software for our new satellites, we can get started immediately by adding a

few lines to Cargo.toml.

Conclusion

• Integrating all build tools with Cargo

• Packaging C library as Rust library (We can reuse it by writing 1-line in Cargo.toml)

• Automatically generated glue code (bindgen)

• High functionality SILS (Software In The Loop Simulation) environment

Rust ecosystem reinforces C2A

Our challenge: developing various satellites with a small team in a short period

Testing the OBC using C2A DevTools Assembling our satellite

C2A DevTools
Web-based human friendly telecommand/telemetry interface

Starting FSW development instantly
SILS runtime enables run actual FSW on your PC

C-language: not able to scale Rust ecosystem: high productivity

No standard toolchain
• Difficult to setup a reproducible environment in all environments

rustup: Rust toolchain installer
• Install every Rust toolchain with one command

• Also install standard formatter, linter, etc

No standard build-system

No common package-manager
• Almost the only way to reuse libraries is to simply copy them

Cargo: Rust package manager
• Integrated build-system

• Custom build-script (It can be share build logic as package)

No package-registry
• Downloading methods have to be provided (e.g., Git-submodule)

crates.io
• Many useful packages: serde, embedded-hal, zerocopy, etc.

Low reusability of libraries
• We are using C2A[1], as an existing FSW (flight software): written in C

• Lack of language features: prevents proper partitioning of libraries 

according to responsibilities

Many support for reuse implementation
• Some no_std crates can use in bare-metal environment

• Language features: module system, strong type-system, etc

https://www.rust-lang.org/
https://rustup.rs/
https://github.com/rust-lang/cargo
https://github.com/rust-lang/rust-bindgen

	スライド 1

