Satellite Software Development Framework with Rust SSC23-P5-24
that Improves Developer Enablement ~ ArkEdgeSpace

Yuta Sakamoto, Hidekazu Kobayashi, Ryo Suzumoto, Toshifumi Akima,
Shumon Fujita, Masato Hoshika, Yoshiki Iwasa, Kanta Yanagida

~ sksat@arkedgespace.com

Our challenge: developing various satellites with a small team in a short period

C-language: not able to scale Rust ecosystem: high productivity
No standard toolchain rustup: Rust toolchain installer
 Difficult to setup a reproducible environment in all environments Install every Rust toolchain with one command
« Also install standard formatter, linter, etc
No standard build-system Cargo: Rust package manager Lo |
No common package-manager * Integrated build-system o
- Almost the only way to reuse libraries is to simply copy them * Custom build-script (It can be share build logic as package) |
No package-registry crates.io Testing the OBC using C2A DevTools Assembling our satellite
« Downloading methods have to be provided (e.g., Git-submodule) « Many useful packages: serde, embedded-hal, zerocopy, etc. C | i
Low reusability of libraries Many support for reuse implementation onciusion
« We are using C2Al, as an existing FSW (flight software): written in C + Some no_std crates can use in bare-metal environment
« Lack of language features: prevents proper partitioning of libraries « Language features: module system, strong type-system, etc We have been challenged to develop a variety of satellites in a short period
according to responsibilities of time with a small team. However, our development structure based on

C2A (our C language asset) was not productive enough: there are no
common toolchain, difficulty to reuse code for similar satellites/components,

Rust ecosystem reinforces C2A etc.
_ _ _ To solve these problems, we have introduced the Rust ecosystem into the
* Integrating all build tools with Cargo C2A development structure. Rust's high degree of interoperability with C
- Packaging C library as Rust library (We can reuse it by writing 1-line in Cargo.toml) allows us to significantly improve productivity without throwing away
* Automatically generated glue code (bindgen) existing assets.
* High functionality SILS (Software In The Loop Simulation) environment As a result, our developer enablement has been unified and improved

across the entire team, allowing us to develop software for multiple

satellites with a small team in a short period. Even when developing
Install whole toolchain PR — m - software for our new satellites, we can get started immediately by adding a
> curl -sSf https://sh.rustup.rs | sh . feemetesRTORe K -~ o= A few lines to Cargo.toml.

Command /s PH ID

info: downloading installer -3 exec s
...(collapsed)... RT-HORC-EL_CL. ro i

SEQ_FLAG ID

C -l_ one yO ur FSW re pO S 'l_ 't 0) ry RT.MOBC.EL_TL.. SEQ_COUNT EXEC_STS

PACKET_LEN 421 ERR_CODE
RT.MOBC.GIT_R..

> git clone https://github.com/arkedge/c2a-sa "veR T

RT.MOBC.GS 1 4241 COUNTER

Run FSW o MOBC.HK TLM_ID 240 QUEUED

GLOBAL_TIME 06.000 LAST_EXEC

> cd c2a-sample; cargo run RT. HOBC. MEM DEST FLAGS T 4 o

-- C2A SAMPLE F-l.'l.ght S/W (H—ON, F—ON) -— RT.MOBC.MM opor> 1-INFO EEEEESE

TM_MODE_TIME 4141 LAST_ERR

BUILD: Jul 11 2023 20:03:57 AT T UCDE i

RT.MOBC.TF

Git rev: CORE ®X772e7ca, USER 0x4148014 RT.MOBC.TL HHOPSHODE_PREV START UP ERR_CODE

TDSP ERR_COUNTER

CYCLE: TOTAL 00000021, MODE 00000021 RT.MOBC. TLM M. TCTF, LAST RECV._ACK SUCCESS NEXTID
MODE: STAT 1 , PREV @ , CURR 1 RT.MOBC. TLH_M.. E;EEE%EEESEE&ME succesg EgEEEb?EFLAG

RT.MOBC.UART_.. GS_CMD TLC_BC

CMD: GS 0, RT 0, Ack 0, ID 0x00, Sts 0, E T LAST EXEC P QR

A \/ n I N | TIME] SOE_FLAG

ARR T A A

References

w
=

[1] Ryo Suzumoto, et al., Open-source Software Suite for Small Satellites:
C2A (Command Centric Architecture), S2E (Spacecraft Simulation
Environment), and WINGS (Web-based Interface Ground-station
Software), 36t smallsat, 2022.

Rust: https://www.rust-lang.org/

rustup: https://rustup.rs/

Cargo: https://github.com/rust-lang/cargo

bindgen: https.//github.com/rust-lang/rust-bindgen

w
(=
-N--2-N--NoW--N--J NN % - -] -R--NaN--N--J SNne

74
=

=3
=M
owm

U1 W N

Starting FSW development instantly C2A DevTools
SILS runtime enables run actual FSW on your PC Web-based human friendly telecommand/telemetry interface

https://www.rust-lang.org/
https://rustup.rs/
https://github.com/rust-lang/cargo
https://github.com/rust-lang/rust-bindgen

	スライド 1

