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CHAPTER 1 
 

INTRODUCTION 
 

In 1760, Louis Claude Cadet prepared what is considered the first organometallic 

compound synthesized. A reaction with potassium acetate and arsenic trioxide forms an oily 

liquid, [(CH3)2As]2O, also known as cacodyl oxide (Figure 1A). Cacodyl oxide was later isolated 

in 1837 by Robert Bunsen. 1 Significant organometallic advancements include William 

Christopher Zeise’s preparation of a potassium platinum salt in 1831 with the structure 

confirmed in the 1950s (Figure 1B) 2, 3, 4 and Edward Frankland’s synthesis of an organozinc 

compound in 1847. 4, 5 Frankland attempted to create an ethyl radical through a reaction with zinc 

metal and ethyl iodide, but instead made diethylzinc (Figure 1C). 

 

Figure 1. Syntheses of cacodyl oxide (A), Zeise’s salt (B) and diethylzinc (C).

H3C OK

O
As2O3 [(CH3)2As]2O+

cacodyl oxide

Pt
Cl Cl

Cl
K

Zeise’s salt

H3C I + Zn

H3C CH2X

Zn(Et)2

A)

B)

C)

K2PtCl4 + EtOH
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The applicability of organometallic reagents was explored in the 1800s. Ludwig Mond 

synthesized and isolated the first metal–carbonyl complex Ni(CO)4 (Figure 2A). 6 This discovery 

led to the development of the Mond Process which converts naturally abundant nickel oxides 

into pure nickel (Figure 2B). 7  

 

Figure 2. Structure of Ni(CO)4 (A) and the Mond Process (B). 

 One of the most popular and useful organometallic reagents are Grignard reagents 

(Figure 3A). These organomagnesium compounds were discovered in the late 1800s and  Victor 

Grignard was awarded the Nobel Prize in Chemistry for this discovery in 1912. 8 The Grignard 

reaction, discovered in 1900, utilizes Grignard reagents to create new carbon–carbon (C–C) 

bonds through a nucleophilic reaction with an aldehyde or ketone. 9 Since then, Grignard 

reagents have been incredibly useful synthetic tools for the creation of new C–C bonds in 

organic synthesis (Figure 3B). 10 

A)

Ni(CO)4

B) NiO + H2 Ni +

Ni + CO Ni(CO)4

impure
nickel

pure
nickel

CO

Ni
OC CO

CO

H2O

Ni + CONi(CO)4

synthesis of
Ni(CO)4

extraction of
pure nickel
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Figure 3. Synthesis of a Grignard reagent (A) and reactions using Grignard reagents (B). 

 The discovery of Grignard reagents led to the synthesis and isolation of “sandwich” 

complexes (Figure 4A), including ferrocene. 11, 12 Ernest Otto Fischer and Geoffrey Wilkinson 

won the Nobel Prize in Chemistry in 1973 for independently determining the “sandwich 

structure” of ferrocene, a complex with two cyclopentadienyl rings bound to an iron center 

(Figure 4B). 13, 14 The discovery and characterization of ferrocene is often considered the 

pioneering work of modern organometallic chemistry. 15  

Mg +
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X = halogen

R Mg XR X

R1 R2

OR1 H

O OHR

R1 R2

OHR

R1 H
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C NR1

R Mg X

OHR

R1 R

R OH

O

OHR

R1 R

R1 R

O

R
OH

A)
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Figure 4. First synthesis of a “sandwich” complex (A) and synthesis of ferrocene (B). 

 In the 1950s, the impressive utility of organometallic reagents was demonstrated in 

polymerization reactions. Karl Ziegler and Giulio Natta discovered the organoaluminum and 

organotitanium system for the catalyzed ethene (Figure 5A) and propene polymerization (Figure 

5B). 16, 17 In 1963, Ziegler and Natta were awarded the Nobel Prize in Chemistry for these 

discoveries. 18, 19 

 

Figure 5. Ziegler–Natta catalyzed polymerization of ethene (A) and propene (B). 

 For decades, chemists have been working to unlock the full potential of organometallic 

reagents in organic synthesis. There have been numerous advances in the development and 

applicability of transition metal organic complexes. Transition metals are elements in the largest 

block of elements found on the periodic table. These elements can be defined as metals with 

Cr
MgCl

+ CrCl2

“sandwich”
complex

Fe

MgCl
+ FeCl3

A)

B)

H2C CH2

ethene

TiCl4 / AlEt3 CH2 CH2 n
polyethylene

H2C
H
C

CH3

CH2 CH n
CH3

A)

B)

propene

TiCl4 / AlEt3

polypropylene
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partially filled d-subshells, groups 3 through 11.4 However, groups 3 and 12 are still debated. 

Group 3 elements, such as scandium, readily form stable cations and therefore do not act as true 

transition metals. 20, 21, 22  

Advancements in transition metal catalysis include cross-couplings to form new covalent 

bonds. Cross-coupling reactions are metal-catalyzed nucleophilic substitution reactions that 

became powerful synthetic tools in recent years. These reactions allow for efficient and selective 

synthesis of new C–C and carbon–halogen (C–X) bonds. 23, 24 Cross coupling reactions occur 

between an electrophilic partner and a nucleophilic partner in the presence of a catalyst, often a 

palladium catalyst. 4, 15 Some of the most notable chemists in the field include Richard Heck, Ei-

ichi Negishi, and Akira Suzuki who won the Nobel Prize in Chemistry in 2010. 25, 26, 27 

The Heck reaction, also known as the Mizoroki–Heck reaction, uses a palladium catalyst 

to activate an alkyl–halogen, aryl–halogen, or vinyl–halogen (R–X) bond of an electrophilic 

partner, and couple it with an alkene (Figure 6A). 28, 29, 30, 31 The catalytic cycle in the Heck 

reaction starts with Pd(0) which activates the R–X bond of the electrophilic partner via oxidative 

addition. The olefin coupling partner then coordinates to the oxidized palladium to form a π-

complex which can then undergo migratory insertion to create a new alkylpalladium complex. β-

hydride elimination releases the olefin product and Pd(0) is regenerated via reductive elimination 

(Figure 6B). 32 The Heck reaction has been a useful method for the synthesis of many different 

pharmaceuticals, including the asymmetric synthesis of morphine (Figure 6C). 33  
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Figure 6. Heck reaction (A) and mechanism (B). Synthesis of (-)-morphine (C). 

In contrast to the Heck reaction, Negishi and Suzuki couplings involve an electrophilic 

partner coupling with an organometallic nucleophile, instead of an alkene. Both Negishi and 

Suzuki coupling mechanisms require a Pd(0) species, have an oxidative addition step, and an 

elimination step to yield the desired product. However, the organometallic nucleophile requires 

an additional transmetallation step, in which the anionic carbon group of the organometallic 

reagent coordinates to the metal catalyst (Figure 7A). 26, 27 A Negishi coupling uses an 
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organozinc reagent and has been used for the synthesis of Pumiliotoxin B (Figure 7B). 34, 35, 36 A 

Suzuki coupling uses an organoboron reagent as the coupling partner and has been used to 

synthesize capparatriene from naturally abundant citronellal (Figure 7C). 37, 38, 39, 40 

 

Figure 7. Negishi and Suzuki mechanism (A). Synthesis of capparatriene (B) and Pumiliotoxin B 
(C).  
 

Other well-known cross-coupling reactions include Kumada coupling, which uses a 

Grignard reagent as the coupling partner, 41, 42 Stille coupling, which uses an organotin reagent, 43 
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and Hiyama coupling, which uses an organosilane reagent (Figure 8A). 44 Sonogashira coupling 

is another example of a cross-coupling reaction using Pd(0) to catalyze the coupling between a 

terminal alkyne with an aryl or vinyl halide. 45 Sonogashira coupling uses a copper co-catalyst to 

transfer an acetylide to palladium in the transmetallation step (Figure 8B). To avoid the use of 

copper, limit waste, and avoid unwanted byproducts, copper-free Sonogashira methods have 

been developed (Figure 8C). 46 

 

Figure 8. Metal coupling partners used for cross-coupling reactions (A). Sonogashira mechanism 
(B) and copper-free Sonogashira mechanism (C). 
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Although palladium is the most common transition metal used for cross-coupling 

reactions, other metals have proven to be useful. In 1966, Geoffrey Wilkinson set the stage for a 

rhodium catalyst by using, RhCl(PPh3)3, known as Wilkinson’s catalyst (Figure 9A), for the 

selective hydrogenation of olefins without reducing any other functional groups attached to the 

alkene (Figure 9B). 47  

 

Figure 9. Structure of Wilkinson’s catalyst (A) and the selective hydrogenation of olefins using 
Wilkinson’s catalyst (B). 
 

Since then, rhodium has been a useful metal for transition metal catalysis and has been a 

common catalyst used for carbon–hydrogen (C–H) bond activation. The benefit of C–H bond 

functionalization over traditional cross-coupling reactions is that there is no need for 

organohalides or organometallic coupling partners, reducing the amount of toxic byproduct 

produced. Rhodium’s high functional group tolerance and chelating properties make it an 

excellent metal for C–C bond forming reactions via C–H bond activation. 48 Both Rh(I) and 

Rh(III) mechanisms have been reported. The Kim group showed the Rh(I)-catalyzed 

regioselective alkylation of 2-phenylpyridines with olefins via C–H bond activation (Figure 

10A). 49, 50 Rh(I) catalyzed C-H bond activation has also been used for the synthesis of pyridines 

from α,β-unsaturated imines and alkynes (Figure 10B). 51 Rh(III)-catalyzed C–H bond activation 

reactions include the dehydrogenative coupling of benzoic acid with diphenylacetylene reported 

by Miura et al. (Figure 10C). 52, 53 Rh(I) and Rh(III) C–H bond activation reactions undergo 

Wilkinson’s catalyst
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different mechanisms. Rh(I) undergoes an oxidative addition pathway and then reduces the 

rhodium to regenerate Rh(I) (Figure 10D), 54 while the Rh(III) pathway uses Rh(III) as the active 

catalyst which reduces to Rh(I) upon formation of product and requires an oxidation step to 

regenerate Rh(III) (Figure 10E). 48, 55  

 

Figure 10. Rh(I)-catalyzed C–H bond activation of 2-phenylpyridines (A) and of α,β-unsaturated 
imines (B). Rh(III)-catalyzed C–H bond activation of benzoic acid (C). Mechanism of Rh(I)-
catalyzed C–H bond activation (D) and Rh(III)-catalyzed C–H bond activation (E). 
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Transition metal catalysis has many advantages. Many reactions are one pot syntheses, 

highly efficient, and give good yields with high selectivity. They have also been proved to be 

very versatile and applicable across a large range of substrates for industrial level syntheses. 

However, there are also certain disadvantages. Many palladium-catalyzed syntheses involve a 

transmetallation step before reductive elimination can yield the final desired product. 

Transmetallation occurs after oxidative addition, and involves an organometallic coupling 

partner undergoing a ligand exchange with the oxidized metal complex. 4, 15 The transmetallation 

step does not change the overall oxidation state of the metal center. After this step, the metal 

complex now bears both coupling partners that will form a new bond to form the desired 

product. This step requires a toxic or highly basic reagent, which then produces a stoichiometric 

amount of unwanted, toxic halogenated byproducts. For example, a typical Negishi reaction 

requires a stoichiometric organozinc coupling partner, a Suzuki reaction requires an organoboron 

reagent, and a Kumada reaction requires a Grignard reagent. The Heck reaction requires a 

stoichiometric amount of base for the regeneration of the palladium catalyst. 28, 30, 35, 38, 41 

Intramolecular couplings of carboxylic acids and their derivatives offer a direct method 

for the formation of new covalent bonds and circumvent the transmetallation step required in 

many known catalytic syntheses. 56 Transition metal catalyzed decarbonylative processes can 

limit the amount of toxic byproduct by generating only free carbon monoxide (C–O). The CCO–C 

bond of a carbonyl is activated via oxidative addition to the metal. CO is removed and the 

remaining metal complex forms final product with a new C–C bond and reduces the catalyst 

(Figure 11A). Before decarbonylation can occur, the carbonyl undergoes de-insertion. Since CO 

is a dative ligand, the de-insertion does not change the oxidation state of the metal. The reverse, 
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an insertion of CO, is also possible in a process called carbonylation (Figure 11B). 4, 15 Many 

cross-couplings activate aryl halides and with the right metal-ligand system, a decarbonylative 

method can also limit the activation of otherwise susceptible bonds. 

 

Figure 11. General mechanism of a transition metal-catalyzed decarbonylation (A). CO de-
insertion and insertion (B). 
 

Decarbonylation can be used to create new bonds in chemistry, with particular focus on 

C–C bond forming reactions. Carboxylic acids and their derivatives can undergo both 

intermolecular couplings and intramolecular couplings via transition metal-catalyzed 

decarbonylation to form new covalent bonds.  Intermolecular decarbonylative couplings have 

been extensively studied using aldehydes. A rhodium-catalyzed decarbonylative Heck reaction 
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was reported by Li et al. in 201057 with further improvements reported by Yang et al. in 2015 

(Figure 12A). 58  In 2010, Li et al. also reported the rhodium-catalyzed decarbonylative Heck 

cross-coupling of aldehydes and norbornenes (Figure 12B). 59 

 

Figure 12. Rhodium-catalyzed decarbonylative Heck cross-coupling of aldehydes and alkenes 
(A). Rhodium-catalyzed decarbonylative Heck cross-coupling of aldehydes and norbornenes (B). 
 

Li et al. reported the rhodium-catalyzed homo-coupling of aryl aldehydes. His studies 

illustrate the vast differences in outcomes from ligand choice. When PPh3 was used as the ligand, 

the aldehyde underwent a decarbonylative homo-coupling to form biaryls in high yields (Figure 

13A). Simply changing the ligand to dppe, the reaction no longer underwent decarbonylation, 

and afforded a biaryl ketone instead (Figure 13B). 60 
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Figure 13. Synthesis of biaryls (A) and biaryl ketones (B) via rhodium-catalyzed homo-coupling 
of aryl aldehydes. 
 

Li et al. also reported the rhodium-catalyzed decarbonylative cross-coupling of aryl 

aldehydes with 2-arylpyridines via C–H bond activation (Figure 14A). Addition of an aldehyde 

to a Rh(I) catalyst generates an oxidized Rh(III) species that can undergo CO de-insertion. The 

Rh(III) species can undergo decarbonylation and C–H bond activation of 2-arylpyridines. The 

resulting Rh(III) species can then undergo reductive elimination to form the final product and 

regenerate Rh(I) (Figure 14B). 61 

O

H
R

A)

R

R

R R

O

[(CO)2RhCl]2 (1.25 mol%)
PPh3 (6 mol%)
TBP (2.5 equiv)

benzene, 150 °C

O

H
R

B)
[(CO)2RhCl]2 (1.25 mol%)

dppe (3 mol%)
TBP (2.5 equiv)

benzene, 150 °C



 

 

15 

 

 

Figure 14. Rhodium-catalyzed decarbonylative cross-coupling of aryl aldehydes with 2-
arylpyridines via C–H bond activation (A) and proposed mechanism (B). 
 

Apart from rhodium, other metals have also been reported to catalyze decarbonylative 

cross-coupling. For example, Li et al. has demonstrated a ruthenium-catalyzed decarbonylative 

addition of aldehydes to terminal alkynes (Figure 15A). 62 A nickel-catalyzed Suzuki cross-

coupling of aldehydes and boronic esters was reported by Rueping et al. in 2019 (Figure 15B). 63 
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Figure 15.  Ruthenium-catalyzed decarbonylative cross-coupling of aldehydes with terminal 
alkynes (A). Nickel-catalyzed decarbonylative cross-coupling of aldehydes with boronic esters 
(B). 
 

The pioneering report for intramolecular decarbonylation was the synthesis of apopinene 

via a palladium-catalyzed intramolecular decarbonylation of myrtenal (Figure 16A). 64 In 1965, 

Tsuji and Ohno reported a decarbonylation of aldehydes using a palladium catalyst (Figure 16B). 

65, 66 They also reported a stoichiometric rhodium decarbonylation of aldehydes using 

Wilkinson’s catalyst. A few years later, they demonstrated decarbonylation of aldehydes using a 

sub-stoichiometric amount of Wilkinson’s catalyst, although it required very high temperatures 

(Figure 16C). 67, 68 The decarbonylation of aldehydes using palladium and rhodium have been 

further studied to expand the substrate scope. 69, 70, 71, 72 Carreira et al. reported the synthesis of 

1,1-diarylethane compounds via rhodium-catalyzed decarbonylation of aldehydes in high optical 

purity (Figure 16D). 73 Other examples of the decarbonylation of aldehydes were reported using 

nickel, 74 iridium, 75, 76 and ruthenium (Figure 16E). 77 
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Figure 16. Palladium-catalyzed synthesis of apopinene (A). Decarbonylation of aldehydes using 
palladium catalysts (B), Wilkinson’s catalyst (C). Synthesis of 1,1-diarylethane compounds (D). 
Decarbonylation of aldehydes using nickel, iridium, and ruthenium catalysts (E). 
 

Besides the decarbonylation of aldehydes, intramolecular decarbonylations have been 

scarcely reported. Without the need for a coupling partner or stoichiometric oxidants, 

intramolecular decarbonylations offer an efficient way to form new covalent bonds with minimal 

organic byproduct. This dissertation describes our work in the development of novel transition 

metal-catalyzed intramolecular decarbonylations.
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CHAPTER 2 
 

DECARBONYLATION OF AROYL CHLORIDES 

Compounds containing aryl chlorides represent a wide array of function and importance. 

Aryl chlorides play an essential role in many industries, including the agricultural and 

pharmaceutical industries. Therefore, developing diverse and efficient strategies to synthesize 

aryl chlorides is of utmost importance. Specifically, investigating various transition metal-

catalyzed methods of synthesizing aryl chlorides can lead to more economic pathways for the 

construction of these essential molecules. Within this chapter, an efficient rhodium-catalyzed 

method for synthesizing aryl chlorides is presented that offers a solution for direct access to these 

important moieties via decarbonylation. 

Aryl chlorides are prevalent moieties in pharmaceuticals78, 79, 80 and natural products. 81, 82, 

83 With over 95% of drugs involving halogenated aromatic or aliphatic carbons84, the 

development of novel methods for synthesis of aryl chlorides is always necessary. Aryl chlorides 

are key structures in drug synthesis. Many drugs on the market contain chlorinated aromatic 

rings. Aceclofenac, which is a treatment for relieving symptoms of rheumatoid arthritis, contains 

two aryl chlorides. Temazepam is a treatment for insomnia. Rupatadine is a treatment for 

allergies, and moclobemide is a treatment for depression and anxiety. Mitotane, which contains 

two chlorinated aryl groups as well as a dichloromethyl group, is used as a treatment for certain 

cancers and Cushing syndrome (Figure 17). 85
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Figure 17. Pharmaceuticals containing aryl chlorides. 

Vancomycin, an example of an aryl chloride found in nature, is an antibiotic used to treat 

many different bacterial infections (Figure 18A). 81, 83 It is often prescribed for life threatening 

situations, when bacteria are unresponsive to other antibiotics or when the patient is allergic to 

other antibiotics. The drug is commonly used to treat methicillin-resistant S. aureus (MRSA) and 

highly drug resistant Staphylococcus epidermidis. 86 In the case of vancomycin, the chlorinated 

aryl group is required for the stability and specificity of the binding site. Harris and his group 

found that upon removal of either one or both chlorines the dechlorinated vancomycin proved 

ineffective. 87 Neither the monochloro derivative of vancomycin (Figure 18B) nor the didechloro 

derivative of vancomycin (Figure 18C) showed antibiotic activity. Therefore, the chlorine atoms 

are necessary for a clinically active conformation of the drug. 
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Figure 18. Structure of Vancomycin (A) and structures of de-chlorinated derivates of 
Vancomycin (B) and (C). 
 

Aryl chlorides are also used for the development of agrochemicals. 88 They are frequently 

seen in synthetic pesticides. 89 About 40% of all pesticides belong to the organochlorine class of 

chemicals. 90 Dichlorodiphenyltrichloroethane (DDT) was a widely used pesticide developed in 
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the late 1930s. It was found to be very toxic for insects but showed low toxicity for mammals. 

The insecticide was later banned when it was found that it does not degrade quickly; the 

increased concentrations began affecting many different species. Other pesticides which contain 

aryl chlorides are chloropropylate, 1,4-dichlorobenzene, pentachlorophenol, and benzene 

hexachloride (BHC) (Figure 1). 

 

Figure 19. Pesticides containing chlorinated aromatic rings. 

In addition to being useful end products, aryl chlorides are key building blocks for 

complex molecules. The synthesis of Aldara, a topical cream to treat non-melanoma skin 

cancers, requires a chlorinated nitroquinoline which can then undergo a substitution reaction to 

form an amine and further modifications make the final drug (Figure 20). 91 
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Figure 20. Modification of an aryl chloride for the synthesis of Aldara. 

Aryl chlorides are useful starting materials for the synthesis of Grignard reagents (Figure 

21A) 9 and anilines (Figure 21B). 10, 92 They are also ideal reagents for transition metal catalyzed 

cross-coupling reactions (Figure 21C). 23, 93 The versatility of these reagents provides numerous 

options in organic synthesis. For example, Buchwald et al. reported a palladium-catalyzed 

trifluoromethylation of aryl chlorides (Figure 21D). 94 Grushin et al. developed a non-catalytic 

strategy for the same conversion using CuCF3 as the CF3 source (Figure 21E). 95 The synthesis of 

biaryls can be achieved via the Ullmann reaction, a copper-mediated homocoupling of aryl 

halides (Figure 21F), 96 or a palladium-catalyzed Ullmann-type homocoupling (Figure 21G). 97 
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Figure 21. Aryl chlorides as precursors to Grignard reagents (A) and anilines (B). Aryl chlorides 
as coupling partners in transition-metal catalyzed cross coupling reactions (C). 
Trifluoromethylation of aryl chlorides via Pd-catalysis (D) and non-catalyzed 
trifluoromethylation (E). Copper mediated Ullmann synthesis of biaryls (F) and Pd-catalyzed 
Ullmann type synthesis of biaryls (G). 
 

Two classical methods for the synthesis of aryl chlorides are direct halogenation, such as 

Friedel–Crafts type halogenation, and chlorination via diazonium salts. 10, 98 Both types of 

reactions utilize metal salts. Friedel–Crafts type halogenation uses a metal chloride to chlorinate 

aromatic rings via a substitution reaction (Figure 22A). The Sandmeyer reaction converts 

anilines to diazonium intermediates which are treated with copper halides to form aryl chlorides 

(Figure 22B). A modified version of the Sandmeyer reaction, known as the Gattermann reaction, 
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treats diazonium salts with HCl and copper metal to form the aryl chloride (Figure 22C). 99 

Although these protocols for the preparation of aryl chlorides are widely known, they often are 

subject to low functional group tolerance, stoichiometric byproducts, low regioselectivity, over 

halogenation or a requirement for shock-sensitive starting materials. 10, 100 These limitations 

result in difficult purifications, reduced yields, and delicate handling. Therefore, a more efficient 

strategy for the synthesis of aryl chlorides is desirable. 

 

Figure 22. Friedel–Crafts type halogenation (A). The conversion of anilines to aryl chlorides via 
the Sandmeyer reaction (B) and the Gattermann reaction (C). 
 

Various transition metal-catalyzed aryl–halogen bond formation reactions have been 

reported. Palladium-catalyzed oxidative C–H halogenation are commonly reported methods, 

particularly with Pd(II) catalysts. 24, 101 There have been significant advancements in ortho-

selective C–X elimination from Pd(IV) species. 102, 103, 104 Generally, Pd(II) is oxidized to Pd(IV), 

and reductive elimination from Pd(IV) forms the new C–X bond. 24 For example, Sanford et al. 

reported Pd(II) catalyzed oxidative C–H fluorination of 2-aryl pyridines (Figure 23A). 105 In 
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1970, Fahey reported the Pd(II) catalyzed ortho-chlorination of azobenzenes. 106 Pd(II) catalyzed 

ortho-bromination of azobenzenes was later reported (Figure 23B). 107, 108 Raida et al. later 

reported the Pd(II) catalyzed ortho-iodination of azobenzenes (Figure 23C). 109 There have also 

been examples of C–X bond formation via reductive elimination from a Pd(III) intermediate. 24 

The first examples of catalyzed bromination and chlorination via a Pd(III) intermediate were 

reported with benzo(h)quinoline by the Ritter group (Figure 23D). 110, 111 

 

Figure 23. Pd(II)-catalyzed fluorination of 2-aryl pyridines (A). Pd(II)-catalyzed bromination and 
chlorination (B) and iodination of azobenzenes (C). Halogenation of benzo(h)quinolines via 
Pd(III) intermediate (D). 
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Oxidative addition of aryl halides to Pd(0) is a fundamental step in many catalytic 

processes. 30, 32, 39 Typically, the oxidative addition step of aryl halides to Pd(0) is a 

thermodynamically favorable process. Therefore, compared to the reductive elimination of aryl 

halides from Pd(IV), reductive elimination from Pd(II) is disfavored. In fact, oxidative addition 

to Pd(0) is considered an irreversible step. 112, 113 The thermodynamics of oxidative addition to 

Pd(0) makes the Pd(0) catalyzed synthesis of aryl halides challenging. However, Hartwig’s 

kinetic and thermodynamic stoichiometric studies proved that reductive elimination of aryl 

halides from a Pd(II) complex is possible (Figure 24A). 114, 115, 116, 117, 118 Electron donating 

ligands such as halides are known to facilitate oxidative addition, and poor electron donating 

ligands are known to promote reductive elimination. Hartwig’s studies examined the ligand 

steric effects for promoting reductive elimination. Surprisingly, although an electron donating 

ligand is not expected to facilitate reductive elimination, the ligand’s steric effects can dominate 

over the electronic effects. 119 This discovery led to Buchwald’s groundbreaking development of 

a Pd(0) catalyzed synthesis of aryl halides via reductive elimination from Pd(II) (Figure 24B). 120  

 



 

 

27 

 

 

Figure 24. Reductive elimination of aryl halides from Pd(II) (A). Pd(0)-catalyzed conversion of 
aryl triflates to aryl fluorides (B).  
 

Rhodium catalyzed aryl halide synthesis is commonly reported through Rh(III) catalyzed 

ortho-selective C–H halogenation. 24 For example, Glorius et al. reported the first Rh(III) 

catalyzed halogenation with halosuccinimides (Figure 25A). The aryl halide is either released 

from a Rh(III) complex or formed via reductive elimination from an oxidized Rh(V) complex 

(Figure 25B). 121 Overall, rhodium-catalyzed synthesis of aryl halides have not been extensively 

studied. However, over-halogenation is a problem in palladium catalyzed halogenations, but not 

for Rh(III) catalyzed halogenation. 24 
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Figure 25. Rh(III)-catalyzed ortho-selective halogenation (A) via a Rh(III) complex or reductive 
elimination from Rh(V) complex (B).  
 

Milstein et al. conducted stoichiometric studies of reductive elimination of Me–X from 

Rh(III) complexes. Initially, he studied the steric effects on reductive elimination. Upon 

treatment with CO, a Rh(III) with a bulky bidentate phosphine ligand led to the reductive 

elimination of Me–I. A less sterically bulky bidentate phosphine ligand formed two different CO 

adducts with no reductive elimination product observed (Figure 26A). 122 Interestingly, the group 

suggests that the reductive elimination of Me–I and Me–Br undergoes a non-associative SN2 

mechanism (Figure 26B), while Me–Cl eliminates in a concerted fashion via a three-centered 

transition state (Figure 26C). Milstein also found the rate of reductive elimination of Me–X to be  

-X = I > Br > Cl. 123 Similarly, Hartwig’s studies on the reductive elimination of aryl halides 

from Pd(II) showed aryl chlorides to eliminate at the lowest rate. 124 
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Figure 26. Reductive elimination of Me–X from a rhodium complex with a bulky bidentate 
phosphine ligand and less bulky bidentate phosphine ligand (A). Reductive elimination of Me–I 
and Me–Br via a non-associative SN2 mechanism (B) and reductive elimination of Me–Cl via a 
concerted mechanism (C). 
 

Although significantly less studied, methods for transition metal catalyzed C–X bond 

formations have been reported. For example, catalyzed halogen exchanges have been reported 

with copper125, 126, 127, 128 and nickel (Figure 27A). 129, 130, 131, 132, 133  C–H halogenations have been 

reported with copper, 134, 135, 136, 137, 138, 139 cobalt, 140 ruthenium, 141, 142, 143, 144 and gold (Figure 
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27B). 145 The conversion of aryl triflates to aryl halides has also been reported with ruthenium 

(Figure 27C). 146, 147 

 

Figure 27. Transition metal-catalyzed halogen exchanges (A). Transition metal-catalyzed C–H 
halogenations (B). Ruthenium-catalyzed conversion of aryl triflates to aryl halides (C). 
 

The synthesis of C–Y (Y = atom other than carbon hydrogen) via transition metal 

catalyzed decarbonylation has been significantly developed in recent years. 148 Decarbonylative 

cross-couplings have been reported for the formation of various aryl–heteroatom bonds (Figure 

28A). These reports include synthesis of aryl–N, 149 aryl–CN, 150 aryl–S, 151 and aryl–P bonds. 152 

Decarbonylative borylation and silylation have also been reported. 153 There are also examples of 

intramolecular decarbonylation for aryl–heteroatom bond synthesis (Figure 28B). Intramolecular 

C–Y bond formation via decarbonylation has been significantly studied for R–S bond synthesis, 

which has been reported using both palladium and nickel catalysts. 151, 154, 155, 156, 157, 158, 159 
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Intramolecular C–CN, 150, 160 C–Si, 161 and C–O162 bond formation via decarbonylation have also 

been reported.  

 

Figure 28. Examples of aryl–heteroatom synthesis via intermolecular decarbonylative cross-
couplings (A) and intramolecular decarbonylations (B). 
 

The cross-coupling decarbonylation of aroyl chlorides has been reported with various 

transition metal catalysts. For example, the decarbonylative reaction of aroyl chlorides with 
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catalyzed decarbonylative Heck coupling (Figure 29B) 165 and palladium catalyzed Sonogashira 

coupling (Figure 29C) 166, 167 have been reported. 

 

Figure 29. Rh- and Ir-catalyzed decarbonylative addition of aroyl chlorides to terminal alkynes 
(A). Rh-catalyzed decarbonylative Heck coupling of aroyl chlorides (B). Pd-catalyzed 
decarbonylative Sonogashira coupling of aroyl chlorides (C). 
 

Although there are many examples of decarbonylative cross coupling of aroyl chlorides, 

intramolecular decarbonylation of aroyl chlorides for C–Cl bond synthesis has been less 

extensively studied. In 1982, Verbickey et al. reported the decarbonylation of aroyl chlorides 

using Pd/C at 360 °C (Figure 30A). 168 More recently, Sanford et al. reported a successful 

conversion of aroyl chlorides to aryl chlorides with a general procedure using a palladium 

catalyst at a much lower temperature of 130 °C (Figure 30B). 169  
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Figure 30. First Pd-catalyzed decarbonylation of aroyl chlorides (A) and conditions of Sanford’s 
improved Pd-catalyzed method (B). 
 

Rhodium catalyzed decarbonylation of aroyl chlorides has also been a subject of interest. 

However, reports of the corresponding rhodium-catalyzed process are debated in the literature. 

122 In 1966, Johanan Blum proposed the decarbonylation of aroyl chlorides using Wilkinson’s 

catalyst. 170 However, the reaction scope is rather limited and requires relatively harsh reaction 

conditions. The paper reported decarbonylation of aroyl chlorides using a stoichiometric amount 

of Wilkinson’s catalyst as well as a method using a catalytic amount of Wilkinson’s catalyst. The 

stoichiometric decarbonylation of aroyl chlorides was reported to be carried out at temperatures 

of 30–100 °C. The catalytic decarbonylation was reported to be carried out at temperatures of 

over 200 °C (Figure 31A). Blum’s paper on the decarbonylation of aroyl chlorides was later 

reevaluated in 1981 by Kampmeier’s group. 171, 172 In terms of the stoichiometric reaction, the 

group found that the aryl chloride Blum originally thought was being formed was actually just 

the aroyl chloride. It is important to note, that the aroyl chloride is not unreacted aroyl chloride, 

and it did get activated by the rhodium catalyst. They also report the catalytic reaction does 

indeed give the product; however, it was only tested for one substrate which gave yields 
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significantly lower than Blum’s original report, while still requiring harsh conditions with 

temperatures of 200 °C or higher (Figure 31B).  

 

Figure 31. Decarbonylation of aroyl chlorides using Wilkinson’s catalyst as reported by Blum 
(A). Kampmeier’s reevaluation of the reaction and their findings (B). 
 

In 1974, Stille et al. proposed a mechanism for stoichiometric and catalyzed 

decarbonylation of aroyl chlrorides with Wilkinson’s catalyst based on Blum’s report. 173, 174 The 

aroyl chloride and Wilkinson’s catalyst forms a 5-coordinate complex 1. Complex 1 undergoes 

migratory extrusion to form 6-coordinate complex 2. Stille proposes that reductive elimination 
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occurs from 2 to form the aryl chloride and a square planar complex 3, a stable complex, 175 and 

therefore, at very high temperatures, another equivalent would react with 3 and form 2 and go 

through the cycle again (Figure 32A). However, after Kampmeier’s group’s thorough 

examination of the reaction, they propose a different mechanism to explain their findings. 171, 172 

Complex 1 is formed from the aroyl chloride and catalyst. After migratory extrusion, complex 2 

releases free CO to form complex 4. The increased concentration of free CO shifts the 

equilibrium, and 1 reacts with CO to form complex 3 and the original aroyl chloride. Therefore, 

in stoichiometric conditions at low temperature, the aryl chloride is not formed. Reductive 

elimination from 4 can occur at high temperatures (Figure 32B). To the best of our knowledge, 

this work has not been significantly expanded on and there are no general methods for the 

rhodium catalyzed decarbonylation of aroyl chlorides. 
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Figure 32. Stille’s mechanistic proposal on Blum’s conditions for decarbonylation of aroyl 
chlorides (A). Kampeier’s mechanistic proposal after re-evaluation of Blum’s report (B). 
 

Our goal was to develop a method for the decarbonylation of aroyl chlorides to 

synthesize new aryl–Cl bonds using a rhodium catalyst (Figure 33). Aroyl chlorides are easily 

accessible starting materials which make them an excellent option for the synthesis of 

regioselective aryl–Cl bonds. Aroyl chlorides are cheap and easily synthesized using simple 

procedures with quantitative yields. 

RhPh3P
X

Cl
PPh3

COAr

Ar Cl

O Wilkinson’s

 catalyst

Ar Cl

O

RhPh3P
X

Ar
PPh3

CO

Cl

RhCl
Ph3P

PPh3
CO

High

 temperatures
Ar Cl

+ CO

RhCl
Ph3P

PPh3
X

Ar

RhPh3P
X

Cl
PPh3

COAr

Ar Cl

O Wilkinson’s

 catalyst RhPh3P
X

Ar
PPh3

CO

Cl

RhCl
Ph3P

PPh3
CO

Ar Cl
Ar Cl

O
>200 °C

A)

- CO+ CO

+

1 2

3

1 2

3 4

B)

- CO



 

 

37 

 

 

Figure 33. Rhodium-catalyzed decarbonylation of aroyl chlorides. 

We began our screening with Wilkinson’s catalyst and biphenyl-4-carbonyl chloride as 

our starting material (Table 1). Different phosphine ligands were screened. Our results were 

quantified via GC analysis using dodecane as the internal standard. Monodentate ligands gave 

low yields of decarbonylated product (Entries 1-2). Bidentate ligand DPPP decarbonylated the 

aroyl chloride in 5% yield (Entry 3). Other bidentate ligands such as DIPAMP and XantPhos 

slightly increased the product yield (Entries 4-5). Rac-BINAP increased the yield to 60% (Entry 

6). In accordance to Milstein’s studies on the reductive elimination of Me–Cl from Rh(III) 

complexes, we increased the steric bulk of the ligand. 122 (S)-Tol-BINAP and (S)-Xyl-BINAP 

provided an increased yield of 76% and 71% yield respectively (Entries 7-8).  

 

Entry Ligand Yield 1b (%)a 

1 P(t-Bu)3 0 
2 BrettPhos 2 
3 DPPP 5 
4 DIPAMP 6 
5 XantPhos 20 
6 rac-BINAP 60 
7 (S)-Tol-BINAP 76 
8 (S)-Xyl-BINAP 71 

                                                               a GC yields. 
Table 1. Ligand screening for rhodium-catalyzed decarbonylation of aroyl chlorides. 

Ar Cl

O
Ar Cl

Rh catalyst
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Solvent

Aroyl Chloride Aryl Chloride

Wilkinson’s catalyst (5 mol %)
ligand (10 mol %)

ClCl

O

o-xylene, 160 °C, 6 h

1a 1b
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 (S)-Tol-BINAP was then screened against different rhodium catalysts (Table 2). Rh(I) 

catalysts showed low yields of decarbonylated product (Entries 1-4). Interestingly, (S)-Tol-

BINAP with a (RhBr(PPh3)3), decreased the yield significantly to 48% (Entry 5). Rh(II) catalysts 

(Entries 6-7) also gave low yields of product. When an Rh(III) catalyst, RhCl3, was used as the 

catalyst with PPh3 as the ligand, the product was found in trace yields (Entry 8), but with (S)-

Tol-BINAP as ligand, the yield increased to 15%.  

 
 

Entry Catalyst Yield 1b (%)a 

1 [Rh(nbd)Cl]2 15 
2 [Rh(coe)2Cl]2 20 
3 Rh(nbd)2BF4 26 
4 [Rh(cod)Cl]2 31 
5 RhBr(PPh3)3 48 
6 [(CF3COO)2Rh]2 2 
7 Rh2(OAc)4 15 
8b RhCl3 <1 
9 RhCl3 15 

                                                                a GC yields. b PPh3 as ligand. 
 
Table 2. Catalyst screening of rhodium-catalyzed decarbonylation of aroyl chlorides. 

 Solvent and time screening were also conducted (Table 3). Toluene provided the product 

in 60% yield (Entry 1). Interestingly, 1,4-dioxane decarbonylated the starting material in 55% 

yield (Entry 2). THF decreased the yield significantly (Entry 3). When benzene was used with no 

ligand present in the system, similar to the conditions Blum originally reported, 170 the yield of 

product was only 3% (Entry 4). Therefore, o-xylene is the optimal solvent. Full conversion of 

Rh catalyst (5 mol %)
(S)-Tol-BINAP (10 mol %)

ClCl

O

o-xylene, 160 °C, 6 h

1a 1b
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starting material is achieved at 6 hours (Entry 6), at 3 hours, the yield is 57% with leftover 

starting material (Entry 5). If the reaction is allowed to run longer than 6 hours, the yield 

diminishes (Entries 7-9). 

 

Entry Solvent Time (h) Yield 1b (%)a 

1 Toluene 6 60 
2 1,4-dioxane 6 55 
3 THF 6 16 
4b benzene 1 3 
5 o-xylene 3 57 
6 o-xylene 6 76 
7 o-xylene 9 55 
8 o-xylene 12 49 
9 o-xylene 24 13 

                                            a GC yields. b No ligand 
 
Table 3. Solvent and time screening for rhodium-catalyzed decarbonylation of aroyl chlorides. 
 
 The optimal conditions for the decarbonylation of 1a to 1b were found to be Wilkinson’s 

catalyst (5 mol %), (S)-Tol-BINAP (10 mol %), in o-xylene at 160 °C for 6 hours (Figure 34A). 

These conditions provided full conversion of the starting material. The product was found in 

76% GC yield and a protonated byproduct, biphenyl (1c), was found in 20% GC yield (Figure 

34B). 

Wilkinson’s catalyst (5 mol %)
(S)-Tol-BINAP (10 mol %)

ClCl

O

solvent, 160 °C, time

1a 1b
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Figure 34. Optimized conditions for the rhodium catalyzed decarbonylation of aroyl chlorides 
(A). GC yield of product and byproduct after decarbonylation of aroyl chloride (B). 
 

Through a series of control reactions, we confirmed the rhodium complex is indeed 

catalyzing the reaction. Without the rhodium catalyst in the solution, we did not achieve any 

decarbonylated product, confirming there is no decarbonylation occurring exclusively through 
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heat (Figure 35A). Without the optimal ligand, our yield decreased significantly to 33% (Figure 

35B). 

 

Figure 35. Control reactions without catalyst (A) and without ligand (B). 

Most aroyl chlorides are cheap to purchase or are easily synthesized from benzoic acids. 

Using (COCl)2, we synthesized our starting materials. All starting materials were synthesized in 

excellent yields and confirmed with GCMS analysis and 1H/13C NMR (Figure 36A). Wilkinson’s 

catalyst was prepared using reported procedures with RhCl3•XH2O and PPh3 and confirmed with 

1H/13C NMR (Figure 36B). 176 
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Figure 36. Synthesized aroyl chlorides (A) and synthesis of Wilkinson’s catalyst (B). 

With the optimized reaction conditions in hand, we investigated the scope of the reaction 

(Figure 37). We confirmed our previous GC yield calculations and isolated 4-chloro-biphenyl 

(1b) in 79% yield. The product was confirmed and characterized with GCMS analysis and 

1H/13C NMR. 2b was isolated in 90% yield. Aryl chlorides with electron withdrawing groups 
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were also isolated in good yields (3b-5b). Alkyl-substituted substrates (6b-9b) were produced in 

good yields, except for 10b which is likely due to steric hindrance. Naphthalenes 11b and 12b 

were produced in 47% and 65% yield, respectively. Since oxidative addition occurs when with 

an electron deficient electrophile, it made sense to see strongly electron donating groups, such as 

the methoxy group on 14b produced in low yields. 13b, with the methoxy group on the meta-

position, gave a 76% NMR yield. 15b, which requires conversion of two aroyl chlorides, was 

produced in 51% yield. Unfortunately, there was no yield for 3-chloroquinoline (16b) or at the 

benzyl position in naphthalene (17b). 
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Figure 37. Substrate scope for the rhodium-catalyzed decarbonylation of aroyl chlorides. 

We then proceeded to examine the applicability of the conditions to halogenated 

substrates (Figure 38). Since Pd will often activate aryl halides, using a rhodium catalyst could 

avoid this by selectively activating the carbonyl position. We were delighted to see that 

conversion to dichlorobenzene gave a 95% yield (18b).  Substrates bearing halogens such as 
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iodine, fluorine, and bromine, gave GC yields of 92%, 60%, and 50% yield (19b-21b). 

Trifluoromethyl-substituted chlorobenzenes are also accessible in modest to excellent yields 

(22b-23b). 

 
Figure 38. Substrate scope for the rhodium-catalyzed decarbonylation of halogenated aroyl 
chlorides. 
 

In order to demonstrate the robustness of our conditions, we conducted experiments using 

Glorius’s method of testing new methodologies. 177 Complex pharmaceutical motifs can interfere 

with a reaction making it an unfavorable procedure, and increased impurities can hinder a 

reaction significantly. Glorius’s method tests a reaction’s tolerance to various conditions by 

introducing equivalents of various additives that can potentially inhibit reactivity in order to 

demonstrate the applicability of the reaction in those conditions. Using GC analysis, we 

quantified the yield of desired product and yield of recovered additive to see how much of it was 

consumed in any side reaction that might be hindering the synthesis of desired aryl chloride 
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product (Table 4). 5-decyne did not significantly impact the yield of decarbonylated product. 

Sulfolane increased the decarbonylated product to 92%. Cycloheptanone and (E)-stilbene 

slightly affected the reaction giving a product yield of 52% and 45% respectively. 

 
Additive GC yield 

1b (%) 

Additive 
Recovered 

(% GC yield) 
Additive GC yield 

1b (%) 

Additive 
Recovered 

(% GC yield) 

 
57 77 

 
38 94 

 

92 60  6 24 

 
52 85 

 

45 99 

 

33 14 

 

30 96 

Table 4. Robustness screening. 

We evaluated the utility of the reaction by performing it on a gram scale. Using 4-nitro-

benzoyl chloride as our starting material. Our reaction was isolated in 89% crude yield 

containing TPPO as a byproduct (Figure 39A). Removal of TPPO on a larger scale proved to be 

difficult. We used a method of removing TPPO developed by Weix et al. by adding ZnCl2 in 

ethanol to form a TPPO zinc salt adduct which is easily filtered out (Figure 39B). 178 Our pure 

product yield was isolated in 77% which is comparable to the 80% yield we achieved on a much 

smaller scale (Figure 39C). 
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Figure 39. Crude yield of gram-scale decarbonylation of 4-nitrobenzoyl chloride (A). Procedure 
for removal of TPPO (B). Final yield of gram-scale decarbonylation of 4-nitrobenzoyl chloride 
(C). 
 

A plausible catalytic cycle is illustrated in Figure 40. Based on previous computational 

studies on rhodium catalyzed decarbonylations, 175 we propose that the catalytic cycle begins 

with a coordinatively unsaturated d8 rhodium complex I.  This species subsequently undergoes 

oxidative addition to the starting material, the aroyl chloride, to form an Rh(III) intermediate II. 

II can then undergo migratory extrusion to form intermediate III. Previous reports suggest that 

the 6-coordinate complex III would reduce to form the desired aryl chloride; however, Milstein’s 

studies suggest reductive elimination of R–X from rhodium is more facile from a 5-coordinate 

complex. 123 Therefore, we propose that decarbonylation occurs prior to reductive elimination 
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and forms a 5-coordinate square pyramidal Rh(III) complex IV. Reductive elimination of this 5-

coordinate Rh(III) complex forms the final aryl chloride product and regenerates Rh(I) complex 

I. 

 

Figure 40. Proposed mechanism for the rhodium-catalyzed decarbonylation of aroyl chlorides. 

In conclusion, we describe a Rh-catalyzed decarbonylation of aroyl chlorides. By 

introducing a bulky ligand, (S)-Tol-BINAP, the reductive elimination of aryl chlorides from 

Rh(III) was achieved. The catalytic system tolerates various functional groups at a lower 

temperature than previously reported.11,12 The method allows the use of inexpensive and easily 

synthesized aroyl chlorides. This work opens the door for further investigations, particularly, into 

the mechanism which could lead to new discoveries in rhodium catalysis, decarbonylation 

reactions, as well as reductive eliminations of R–X bonds. Cis/trans effects, as well as bite angle 
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and cone angle effects of the ligand on the kinetic and thermodynamics in the reaction can also 

provide useful information for future development.  The enantioselectivity of the reaction is also 

worth exploring, for example, in the synthesis of axially chiral aryl chlorides or for the 

decarbonylation of aliphatic acid chlorides.
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SUPPLEMENTARY 
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GENERAL INFORMATION 
 
1H NMR spectra were recorded using either a Varian INOVA 500 (500 MHz spectrometer) or a 

Bruker AVANCE 500 (500 MHz) spectrometer. Chemical shifts are reported in ppm with the 

solvent resonance as the internal standard 1H NMR (CDCl3: 7.26 ppm). Data is reported in the 

following format: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), 

coupling constants (Hz), integration. 13C NMR spectra were recorded using either a Varian 

INOVA 500 (125 MHz spectrometer) or a Bruker AVANCE 500 (125 MHz) spectrometer with 

complete proton decoupling. Chemical shifts are reported in ppm with the solvent resonance as 

the internal standard 13C NMR (CDCl3: 77.16 ppm). GC analyses were performed on a Shimadzu 

GC-2010 Plus. Melting points were determined with a VWR Basic Melting Point Apparatus. 

 

All reactions were conducted in oven- or flame-dried glassware under an inert atmosphere of 

nitrogen or argon. All dry solvents (DCM, DMF, Toluene, o-xylene) were purchased from Acros 

and used without further purification. Phosphine ligands were purchased from Strem Chemicals, 

Inc. and used without further purification. All other reagents were purchased from Acros Organics, 

Alfa-Aesar, AK Scientific, Fisher, Aldrich etc. and used without further purification. 

 

SYNTHESIS OF ACID CHLORIDES 

General Procedure for the Synthesis of Aroyl Chlorides  

A round bottomed flask with a stir bar was charged with carboxylic acid (1 g, 1.0 equiv), anhydrous 

DCM (0.5 M), and oxalyl chloride (1.2 equiv) under nitrogen atmosphere at 0 °C. DMF (1 drop) 

was added to the solution. The reaction mixture was stirred overnight at room temperature. The 

solvent and unreacted oxalyl chloride were removed under reduced pressure to afford the acid 

chloride. The crude residue was filtered through a sintered funnel. The pellet was washed with 

EtOAc. The filtrate was then evaporated in vacuo. The resulting aroyl chloride was characterized 

and used without further purification.  
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4-acetylbenzoyl chloride (3a) 

Crude yield: 90%; 1H NMR (CDCl3, 500 MHz): δ 8.24 (d, J = 8.10 Hz, 2H), 

8.09 (d, J = 8.00 Hz, 2H), 2.69 (s, 3H); 13C NMR (CDCl3, 125 MHz):  δ 196.95, 

167.88, 141.76, 136.54, 131.53, 128.60, 27.00. 

 

 

4-butylbenzoyl chloride (7a): 

 Yield:  94%; Physical appearance light yellow liquid; 1H NMR (CDCl3, 

500 MHz): 8.04 (d, J= 8.35 Hz, 2H), 7.33 (d, J= 8.35 Hz, 2H), 2.72 (t, 

J= 7.7 Hz, 2H), 1.68-162 (m, 2H), 1.42- 1.35 (m, 2H), 0.96 (t, J= 7.35 

Hz, 3H)  δ ; 13C NMR (CDCl3, 125 MHz):  δ 168.13, 151.66, 131.64, 130.76, 129.05, 35.79, 33.05, 

22.30, 13.87.  

 

4-octylbenzoyl chloride (8a): 

Crude yield: 90%; 1H NMR (CDCl3, 500 MHz): δ 8.05 (d, J = 

7.65 Hz, 2H), 7.33 (d, J = 7.75 Hz, 2H), 2.71 (t, J = 7.7 Hz, 

2H), 1.69–1.63 (m, 2H), 1.35–1.29 (m, 10H), 0.91 (t, J = 6.95 

Hz, 3H); 13C NMR (CDCl3, 125 MHz):  δ 168.12, 151.17, 131.64, 130.75, 129.05, 36.10, 31.85, 

30.95, 29.39, 29.24, 29.21, 22.66, 14.10. 

 

3-methoxybenzoyl chloride (13a): 

 Yield:  98 %; Physical appearance light yellow liquid; 1H NMR (CDCl3, 500 MHz): 

δ 7.75 (d, J= 7.75 Hz, 1H), 7.61 (s, 1H), 7.44 (t, J= 6.25 Hz, 1H), 7.24 (d, J= 8.3 

Hz, 1H), 3.89 (s, 3H) ; 13C NMR (CDCl3, 126 MHz):  δ 168.29, 159.84, 134.46, 

129.88, 124.13, 121.95, 115.34, 55.61. 
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[2,2'-bipyridine]-4,4'-dicarbonyl dichloride (15a): 

 Crude yield: 89%; 1H NMR (CDCl3, 500 MHz): δ 9.11 (s, 2H), 8.99 (s, 

2H), 8.00 (s, 2H); 13C NMR (CDCl3, 125 MHz):  δ 167.87, 156.38, 150.71, 

141.65, 123.90, 121.53. 

 

 

quinoline-3-carbonyl chloride (16a): 

 Crude yield: 89%; 1H NMR (CDCl3, 500 MHz): δ 9.65 (s, 1H), 9.52 (s, 1H), 

8.96 (d, J = 8.45 Hz, 1H), 8.35 (d, J = 8.2, 1H), 8.29 (t, J = 7.55 Hz, 1H), 8.06 

(t, J = 7.55 Hz, 1H); 13C NMR (CDCl3, 125 MHz):  δ 164.17, 147.86, 143.93, 

140.55, 138.38, 131.89, 130.50, 127.85, 126.98, 123.26.  

 

1-Naphthylacetyl chloride (17a): 

Crude yield: 92%; 1H NMR (CDCl3, 500 MHz): δ 7.94–7.90 (m, 3H), 7.63–7.55 

(m, 2H), 7.52–7.46 (m, 2H), 4.61 (s, 2H); 13C NMR (CDCl3, 125 MHz):  δ 171.86, 

133.88, 131.16, 129.31, 129.02, 128.87, 127.92, 127.01, 126.20, 125.48, 123.19, 

50.88.  

 

4-iodobenzoyl chloride (19a): 

Crude yield: 95%; 1H NMR (CDCl3, 500 MHz): δ 7.91 (d, J = 8.65 Hz, 2H), 7.83 

(d, J = 8.65 Hz, 2H); 13C NMR (CDCl3, 125 MHz): δ 168.04, 138.43, 132.71, 

132.38, 104.27.  

 

4-fluorobenzoyl chloride (20a): 

 Crude yield: 92%; 1H NMR (CDCl3, 500 MHz): δ 8.19–8.16 (m, 2H), 7.23–7.20 

(m, 2H); 13C NMR (CDCl3, 125 MHz): δ 168.16, 167.00, 166.10, 134.26, 116.41. 
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4-bromobenzoyl chloride (21a): 

 Crude yield: 93%; 1H NMR (CDCl3, 500 MHz): δ 7.99 (d, J = 8.7 Hz, 2H), 

7.68 (d, J = 8.7 Hz, 2H); 13C NMR (CDCl3, 125 MHz): δ 167.55, 132.61, 

132.39, 132.07, 131.18.  

 

3,5-bis(trifluoromethyl)benzoyl chloride (22a): 

Crude yield: 98 %; 1H NMR (CDCl3, 500 MHz): δ 8.59 (s, 2H), 8.22 (s, 1H); 
13C NMR (CDCl3, 125 MHz): δ 166.31, 135.28, 133.18, 130.93, 128.43, 

125.69, 123.51, 121.34, 119.17. 

 
 
SYNTHESIS OF ARYL CHLORIDES 

General Procedure for the Synthesis of Wilkinson’s Catalyst176 

 

An oven dried 250 mL round-bottom flask with a magnetic stir-bar was charged with ethanol (100 

mL) and triphenylphosphine (3 g, 11.5 mmol), was placed in an oil bath under nitrogen 

atmosphere, and the solution was heated to just below its boiling point (78 °C). Hydrated 

rhodium(III) chloride (0.5 g, 2 mmol) was added to the solution before the solution reached reflux. 

The resulting solution was heated to reflux and allowed to react for 2 hours. While hot, the resulting 

burgundy-red crystals were collected by filtration through sintered funnel and washed with diethyl 

ether (3 x 20.0 mL). The crystals were then dried in vacuo to provide the desired catalyst.  

Optimization Studies for Rh-Catalyzed Decarbonylation  

In an argon-filled glove box, acid chloride 1a (1 equiv, 0.2 mmol) was weighed into an oven dried 

3 mL pressure vial equipped with a magnetic stir-bar. Rh catalyst, ligand, and solvent (0.5 M) were 

added. The pressure vial was sealed with a cap and removed from the glovebox. The reaction 

mixture was allowed to stir at designated temperature. The reaction mixture was cooled to room 

RhCl3•3H2O + PPh3

EtOH
reflux

RhCl(PPh3)3

Br

Cl

O

F3C
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temperature and the crude mixture was filtered through a silica plug and analyzed by GC using 

undecane or dodecane as a standard. Results are summarized in Tables 1 and 2. 

General Procedure for Rh-Catalyzed Decarbonylation of Aroyl Chlorides  
 
In an argon-filled glove box, an oven-dried 15 mL pressure vessel, equipped with a magnetic stir-

bar, was charged with Wilkinson’s catalyst (0.02 mmol, 5 mol%) and (S)-Tol-BINAP (0.04 mmol, 

10 mol%). The aroyl chloride (0.4 mmol, 1.0 equiv.) and o-xylene (0.8 mL, 0.5 M) were added 

via syringe. The pressure vessel was sealed with a polypropylene cap and removed from the glove 

box. The reaction mixture was then allowed to stir at 160 oC for 3-24 h. Upon cooling to room 

temperature, the reaction mixture was diluted with EtOAc and the resulting solution was filtered 

through a silica plug and concentrated under reduced pressure. The products were purified via 

column chromatography on silica gel (pentane) or (hexane/EtOAc). The solvent was evaporated 

in vacuo to afford the aryl chloride. 

 

4-chlorobiphenyl (1b): 

Yield: 79%; Purification by column chromatography on silica gel (pentane) 

afforded a white solid; mp 76–77 °C; 1H NMR (CDCl3, 500 MHz): δ 7.58–

7.52 (m, 4H), 7.48–7.36 (m, 5H); 13C NMR (CDCl3, 125 MHz):  δ 140.24, 

139.92, 133.62, 129.14, 129.11, 128.62, 127.81, 127.22.  

 

3-chlorobiphenyl (2b): 

Yield: 90%; Purification by column chromatography on silica gel (pentane) 

afforded a clear colorless liquid; 1H NMR (CDCl3, 500 MHz): δ 7.61–7.58 (m, 

3H), 7.50–7.45 (m, 3H), 7.41–7.35 (m, 3H); 13C NMR (CDCl3, 125 MHz): δ 

143.33, 140.06, 134.90, 130.21, 129.13, 128.09, 127.54, 127.49, 127.35, 125.53. 
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4-chloroacetophenone (3b): 

 Yield: 90%; Purification by column chromatography on silica gel (17:3 hexanes: 

EtOAc) afforded a clear colorless liquid; 1H NMR (CDCl3, 500 MHz): δ 7.89 (d, 

J = 8.6 Hz, 2H) 7.43 (d, J = 8.6 Hz, 2H), 2.59 (s, 3H); 13C NMR (CDCl3, 125 

MHz):  δ. 196.79, 139.53, 135.41, 129.71, 128.86, 26.53. 

 

1-chloro-4-nitrobenzene (4b): 

Yield: 80%; Purification by column chromatography on silica gel (19:1 hexanes: 

EtOAc) afforded a yellow solid; mp 79–80 °C; 1H NMR (CDCl3, 500 MHz): δ 

8.22–8.20 (m, 2H), 7.55–7.53 (m, 2H); 13C NMR (CDCl3, 125 MHz): δ 146.80, 

141.60, 129.80, 125.15. 

 

Method for 1 gram scale: In a glove box under an argon atmosphere, an oven-dried 48 mL 

pressure vessel, equipped with a magnetic stir-bar, was charged with Wilkinson’s catalyst (0.27 

mmol, 5 mol%) and (S)-Tol-BINAP (0.54 mmol, 10 mol%). Aroyl chloride 1d (1 g, 5.4 mmol, 1.0 

equiv.) and o-xylene (11 mL, 0.5 M) were added via syringe. The pressure vessel was sealed with 

a polypropylene cap and removed from the glove box. The reaction mixture was heated to 160 °C 

and allowed to stir for 24 h. Upon cooling to room temperature, the reaction mixture was diluted 

with EtOAc and the resulting solution was filtered through a silica plug and concentrated under 

reduced pressure. To remove triphenylphosphine oxide (TPPO) from the reaction mixture, the 

resulting products were dissolved in EtOH. ZnCl2 was added in 15 mol% and the mixture was 

allowed to stir at room temperature for 12-16 hours. The ZnCl2:TPPO salt was removed by 

filtration through a sintered funnel. 178 The filtrate was then evaporated in vacuo. The product was 

purified via column chromatography on silica gel in 19:1 (Hex/EtOAc). The solvent was 

evaporated in vacuo to afford the aryl chloride in 77% yield.  
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57 
4-chlorobenzonitrile (5b): 

Yield: 76%; Purification by column chromatography on silica gel (19:1 hexanes: 

EtOAc) afforded a white solid; mp 90–91 °C; 1H NMR (CDCl3, 500 MHz): δ 

7.63–7.59 (m, 2H), 7.50–7.47 (m, 2H); 13C NMR (CDCl3, 125 MHz): δ 139.79, 133.60, 129.92, 

118.15, 111.06. 

 

1-chloro-4-octylbenzene (8b):  

Yield: 70%; Purification by column chromatography on silica gel 

(pentane) afforded a clear colorless liquid; 1H NMR (CDCl3, 500 

MHz): δ 8.05 (d, J = 8.5, 2H), 7.32 (d, J = 8.5, 2H), 2.71 (t, J = 7.7 Hz, 2H), 1.69–1.63 (m, 2H), 

1.34–1.29 (m, 10H), 0.91 (t, J = 6.9 Hz, 3H);  13C NMR (CDCl3, 125 MHz):  δ 141.34, 131.21, 

129.73, 128.28, 35.31, 31.88, 31.41, 29.44, 29.25, 29.21, 22.67, 14.11. 

 

1-(tert-butyl)-4-chlorobenzene (9b): 

 Yield: 70%; Purification by column chromatography on silica gel (pentane) 

afforded a clear colorless liquid; 1H NMR (CDCl3, 500 MHz): δ 7.32 (d, J = 8.7 

Hz, 2H) 7.27 (d, J = 8.7 Hz, 2H), 1.32 (s, 9H); 13C NMR (CDCl3, 125 MHz):  δ 

149.60, 131.14, 128.08, 126.76, 34.48, 31.30. 

 

1-chloronaphthalene (11b): 

Yield: 47%; Purification by column chromatography on silica gel (hexanes) afforded 

a brown liquid; 1H NMR (CDCl3, 500 MHz): δ 8.30 (d, J = 8.45 Hz, 1H), 7.88 (d, J 

= 8.15 Hz, 1H), 7.78 (d, J = 8.2 Hz, 1H), 7.64–7.55 (m, 3H), 7.39 (m, 1H); 13C NMR 

(CDCl3, 125 MHz): δ 134.82, 132.19, 131.07, 128.45, 127.39, 127.27, 126.91, 126.39, 125.94, 

124.66.  
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58 
2-chloronaphthalene (12b): 

Yield: 65%; Purification by column chromatography on silica gel (hexanes) 

afforded a white solid; mp 58–59 °C; 1H NMR (CDCl3, 500 MHz): δ 7.85–7.76 

(m, 4H), 7.54–7.42 (m, 3H); 13C NMR (CDCl3, 125 MHz): δ 134.26, 131.89, 131.80, 129.71, 

128.02, 127.29, 127.13, 127.00, 126.82, 126.34.  

 

4,4'-dichloro-2,2'-bipyridine (15b): 

 Yield: 51%; Purification by column chromatography on silica gel (17:3 

hexanes: EtOAc) afforded a white solid; mp 129–130 °C; 1H NMR (CDCl3, 

500 MHz): δ 8.59 (d, J = 5.05, 2H) 8.48 (s, 2H), 7.37 (d, J = 5.15, 2 H); 13C 

NMR (CDCl3, 125 MHz):  δ 156.25, 150.01, 145.48, 124.49, 121. 85. 

 

1,4-dichlorobenzene (18b): 

Yield: 95%; Purification by column chromatography on silica gel (hexanes) 

afforded a white solid; mp 49–51 °C; 1H NMR (CDCl3, 500 MHz): δ 7.28 (s, 4H); 
13C NMR (CDCl3, 125 MHz):  δ 132.76, 130.0
Cl

Cl

Cl

N
N

Cl

Cl



 

 

59 
1H AND 13C NMR SPECTRA
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