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 ABSTRACT  

 

Every year, the national high school graduation rate is declining and impacting the 

number of students applying to colleges. Moreover, the majority of students are applying to more 

than one college. This makes a lot of colleges to be highly competitive in student recruitment for 

enrollment and thus, the necessity for institutions to anticipate uncertainties related to budgets 

expected from student enrollment has increased. Hence enrollment management has become a 

pivotal sector in higher education institutions. Data and analytics are now a crucial part of 

enhancing enrollment management. Through big data analytics-driven solutions, institutions 

expect to improve enrollment by identifying students who are most likely to enroll in college. 

Machine learning can unlock significant value for colleges by allocating resources effectively to 

improve enrollment and budgeting. Therefore, a machine learning method is a vital tool for 

analyzing a large amount of data, and predictive analytics using this method has become a high 

demand in higher education. Yet higher education is still in the early stages of utilizing machine 

learning for enrollment management. In this study, I applied four machine learning algorithms to 

seven years of data on 108,798 students, each with 50 associated features, admitted to a 4-year, 

non-profit university in Midwest urban area to predict students' college enrollment decisions. By 

treating the question of whether students offered admission will accept it as a binary 

classification problem, I implemented four machine learning algorithm classifiers and then 

evaluate the performance of these algorithms using the metrics of accuracy, sensitivity,  

specificity, precision, F-score, and area under the ROC and PR curves. The results from this 



 

xv 

study will indicate the best-performed prediction modeling of students’ college enrollment 

decisions. This research will expand the case and knowledge of utilizing machine learning 

methods in the higher education sector, focused on the U.S. College enrollment management 

field. Moreover, it will expand the knowledge of how the machine learning prediction model can 

be pragmatically used to support institutions in setting up student enrollment management 

strategies. 
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CHAPTER ONE 

 

INTRODUCTION 

 

Predicting a college’s enrollment demographic is a necessity now more than ever. This is 

because the national high school graduation rate is declining and impacting the number of stu-

dents who apply to and enroll in colleges (Western Interstate Commission of Higher Education, 

2020). Moreover, the majority of students are applying to multiple institutions of higher educa-

tion (Campbell et al., 2007). This implies that competition is growing among colleges for en-

rollment and thus the necessity for institutions to anticipate uncertainties related to budgets ex-

pected from student enrollment has increased.  

Enrollment plays a critical role in the budget and fiscal planning of universities. Accord-

ing to the Integrat-ed Postsecondary Educational Data System (2019), the published cost of at-

tending college for the 2019-20 academic year was $45,543. Even a small shortfall in enrollment, 

such as ten students, could potentially lead to a financial loss of $455,430 per year for four years, 

resulting in a total estimated loss of more than $1.83 million. Private colleges are more reliant on 

revenue generated by students than public colleges, making it crucial for them to accurately pre-

dict incoming student enrollment each year (Massa & Parker, 2007). The current study provides 

valuable insights into identifying students who are more likely to accept admission offers and 

enroll, which private colleges can use to achieve effective enrollment predictions. 

The current study's college prediction model holds substantial importance, has broad ap-

plicability, and is easily reproducible. It addresses a crucial issue that almost every institution of 
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higher education faces, namely, "Which admitted students will actually enroll?" Accurate predic-

tion of student enrollment can assist colleges in managing their enrollments effectively, which is 

a critical aspect of academic administration for many higher education institutions (Hosser & 

Bean, 1990). The enrollment model's data can be readily obtained by most institutions as part of 

the admissions process, which makes the current study widely applicable and easily replicable. 

The objective of the study is to create a model that can precisely anticipate whether a stu-

dent will enroll in college by categorizing them into one of two groups: "enrolled" or "not en-

rolled." To achieve this, the study employed supervised machine learning algorithms, with the 

student's college enrollment decision problem characterized as a binary classification (Geron, 

2017; Hastie et al., 2009). The term "model" refers to the specific algorithm that was chosen after 

implementing four different machine learning algorithms on the train/validation and test data 

(Geron, 2017; Hastie et al., 2009). 

Implementation of Machine Learning for College Enrollment Prediction Model 

The use of accurate predictions allows universities to admit students at the optimal num-

ber, preventing over- or under-enrollment (Morgan, 1997). The problem of over-enrollment af-

fects the student experience negatively because it strains institutional resources (Cornell Univer-

sity Division of Planning and Budget, 2006; Zeng et al., 2015). For instance, when a college en-

rolls too many students, its dormitories and class spaces may not be sufficient to accommodate 

the students and/or the faculty to teach required general education classes. In contrast, under-

enrollment can decrease tuition revenue, result in inefficient use of expanded resources, and re-

duce the cohort from which universities may seek future donations. Even though it may vary 

from institution to institution, losses of a few students to enroll can result in million-dollar losses. 
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It is, therefore, possible for university leaders to meet their admissions and revenue goals by ac-

cepting the ideal number of applicants based on how many acceptances will result in enrollments. 

The use of data and analytics by higher education institutions is now a crucial part of en-

hancing their admission and enrollment (Seres et al., 2018). Through big data analytics-driven 

solutions, institutions expect to improve matriculation by identifying students who are most like-

ly to enroll in college (Antons & Maltz, 2006). In fact, machine learning can unlock significant 

value for colleges by ensuring that resources are allocated in the most effective ways to improve 

enrollment and budgeting (Drake & Walz, 2018; Antons & Maltz, 2006). Machine learning 

combines statistics, mathematics, and computer science into one problem-solving pathway (Dara 

et al., 2022). This involves discovering patterns, training, and testing data to create computer 

programs that automatically recognize complex structures and make intelligent decisions 

(Michell, 1997). Moreover, machine learning algorithms can be implemented in a broader spec-

trum for compiling prediction models (Delen, 2010; Shabestari et al., 2019; Luan & Zhao, 2006). 

Hence, the machine learning method is a vital tool for analyzing a large amount of data, and pre-

dictive analytics using this method has become a high demand in the higher education sector 

(Delen, 2010; Shabestari et al., 2019; Luan & Zhao, 2006). Yet higher education is still in the 

early stages of utilizing machine learning for enrollment management (Dorn et al., 2020).  

Machine learning can be utilized to analyze applicants and predict their likelihood (i.e., 

probability) to accept admission (i.e., enrolling). The machine learning model examines trends 

among similar applicants from previous years, including multiple metrics such as demographics 

and academic achievements (e.g., high school GPA and standardized test score). Many previous 

methods for predicting students’ enrollment decisions relied on formulaic calculations, such as a 
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simple logit regression (Sternberg, 2010). Many formulaic calculations were considered viable 

since the types of attributes that influence college enrollment decisions and the number of stu-

dents who attended college were relatively small compared to the current admission pool (Stern-

berg, 2010). Today, more diverse factors influence students’ college enrollment decisions, and 

the number of students attending college has expanded significantly (Bingham & Solverson, 

2016). This has led to the volume of student admission data expanding significantly. Hence, the 

college enrollment prediction cannot be generated based on the formulaic calculations since 

those calculations cannot handle a large amount of data and adjust to reflect various factors 

(Bingham & Solverson, 2016; Shabestari et al., 2019; Luan & Zhao, 2006). Machine learning is 

therefore utilized to improve the accuracy of the predictions.   

In comparison to other approaches employed in prior studies for predicting college en-

rollment, the Machine Learning (ML) method differs in several ways. Firstly, ML can capitalize 

on large amounts of data to enhance its predictive capability (Najafabadi et al., 2015). By utiliz-

ing ML, it is possible to draw data from various institutional and public sources and combine it 

to train models that identify patterns and utilize them for making predictions (Najafabadi et al., 

2015). With the help of machine learning, an institution can predict student enrollment by inte-

grating historical data with external data, such as the unemployment rate (Ekowo & Palmer, 

2016). Because ML models can incorporate data from diverse sources and process vast amounts 

of information, they can achieve greater accuracy than previous methods. ML is different from 

conventional, formulaic computation approaches as it involves ongoing cycles of discovery and 

implementation, utilizing data to explain phenomena and make predictions (Sternberg, 2010; 

Bingham & Solverson, 2016). 



5 

 

Multiple types of ML algorithms can be utilized to tackle problems such as predicting 

college enrollment. In the current study, four ML algorithms were evaluated: support vector ma-

chine, decision tree, artificial neural networks, and logistic regression. ML algorithms are notori-

ously data-intensive (Mikolajczyk & Grochowski, 2018). Therefore, in order to make an accurate 

prediction using ML, it is beneficial to aggregate a pool of data that encompasses not only insti-

tutional but also publicly available data that could influence any of the factors related to college 

enrollment decisions. Relevant public data may include economic, education, and population sta-

tistics sourced from the US Bureau of Labor Statistics (BLS). The BLS has been accumulating 

long-term data on inflation and unemployment rates going back decades, totaling about 100 

years of data. All of this data can be employed to train machine learning algorithm models and 

enhance their predictions about the future. However, before an institution adopts machine learn-

ing, it is important to recognize that machine learning-based prediction tools should only be used 

to offer more precise data to higher education admission stakeholders, who will remain the ulti-

mate decision-makers concerning acceptance (Rodríguez-Muñiz et al., 2019). By revamping ex-

isting methods and improving data accuracy, machine learning can furnish better insights to de-

cision-makers and aid them in formulating optimal enrollment management strategies for their 

institutions.  

Proposed Analysis 

The current study focuses on seven years (2013 to 2019) of de-identified admission data 

from a particular college and deploys four different machine learning algorithms (i.e., support 

vector machine, artificial neural network, decision tree, logistic regression) for creating students’ 

enrollment prediction models. The attributes reflected in the prediction models are identified 
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based on the college choice (i.e., enrollment) conceptual model proposed by Perna (2006) and 

other relevant literature. Identified attributes that significantly impact students’ college enroll-

ment decisions are related to students’ habitus (e.g., gender, race, socioeconomic status, academ-

ic performance), high school and community context (e.g., parental education level, secondary 

school academic climate), higher education context (e.g., college proximity, institutional finan-

cial aid), and social, economic, and policy context (e.g., national unemployment rate, inflation 

rate).  

In addition to identifying influential factors on students' college choice decisions based 

on Perna’s (2006) framework, I chose four different machine learning algorithms based on perti-

nent studies. These past studies conducted comparative analyses using multiple machine learning 

algorithms for predicting U.S. college enrollment (Walczk & Sincich, 1999; DesJardins & Gon-

zales, 2002; Gerasimovic & Bugaric, 2018; Antons & Maltz, 2006; Chang, 2006; Vialardi et al., 

2011; Ragab et al., 2014; Cirelli et al., 2018; Slim et al., 2019; Lux et al., 2020). The conclusion 

of the best machine learning algorithm selected for college enrollment prediction modeling dif-

fered across all studies. However, no research has since conducted a comparative analysis re-

flecting the machine learning algorithms that were chosen to be the best by past studies. Hence, 

the four different machine learning algorithms (i.e., logistic regression, decision tree, support 

vector machine, and artificial neural network) were chosen because they were identified to be the 

best to predict U.S. college enrollment.  

To compare prediction models based on four different machine learning algorithmic 

methodologies, four main components of measuring the model fit (i.e., accuracy, sensitivity, 

specificity, precision) were calculated (Brieman et al., 1984). In addition,  score (Chicco & 
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Jurman, 2020) was calculated and compared. To assess the diagnostic performance of prediction, 

I plot the Receiver Operating Characteristic (ROC) curve and calculate the Area Under the ROC 

Curve (AUC) for each model (Fawcett, 2006). I also preprocessed the data using K-fold cross-

validation to verify that the model results are not biased. All the above-mentioned performance 

metrics were used to compare the models to find the one that is best suited for enrollment predic-

tion based on the college admission data.  

Research Questions 

 The purpose of college enrollment predictive modeling is to apply the logic of past admit-

ted students’ actions who enrolled/not enrolled to a future group of students by consistently 

comparing the same metrics in a similar college choice framework. This study aims to generate 

four different prediction models, investigate which college choice factors are most influential 

across models and determine the best prediction model in terms of statistical validity. Thus, the 

following questions are explored: 

1. Which machine learning prediction model (Logistic Regression vs. Artificial Neural 

Network vs. Decision Tree vs. Support Vector Machine) demonstrates the best prediction 

performance for testing Fall 2019 enrollment after training the historical data (from Fall 

2013 to Fall 2018)?  

2. With a machine learning prediction model chosen in Q1, what are the most significant 

factors contributing to the prediction of the enrolled students for Fall 2019?  

3. With a machine learning prediction model chosen in Q1, what applications can be fol-

lowed up and utilized to support a higher education institution's enrollment management 

strategy as a plan of action?   
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Significance of Study 

 Identifying the best college enrollment prediction model among four machine learning 

algorithms is not intended to provide a definitive answer to whether a student will enroll. There 

are too many variables to consider, and the answer will be known eventually as time goes by. 

However, the best prediction model will provide a solid method to use for deciding which stu-

dents are highly likely to enroll based on the attributes reflected in the model. Since such a model 

offers the enrollment probabilities for admitted students, those probabilities will then inform the 

admission department on how best to invest its limited recruitment resources.  

 In this era of maximizing resources, the best prediction model will allow colleges to tar-

get recruitment efforts to admitted students who are undecided, follow up with those who are 

likely to enroll and/or reconfirm their commitment and decision and create a better understand-

ing of the applicant pool, including the characteristics of students’ demand to be a good match 

for the college.  

In summary, I discussed a problem that I consider crucial in chapter one and how it has 

been built up. As a senior research & strategy analyst at the enrollment division in a higher edu-

cation institution, developing and compiling reliable college enrollment prediction model(s) is 

very important and eventually led me to write a dissertation.  
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CHAPTER TWO 

 

LITERATURE REVIEW 

 
The enrollment management process is directly involved in new student recruitment, fi-

nancial aid planning and budgeting. To maximize student enrollment, enrollment management 

administrators should frequently communicate with the admissions office and financial aid de-

partment to set up better plans on student recruitment along with allocating institutional scholar-

ships and grants. Considering the large expenditure of institutional marketing and financial aid 

awards, this research study explores different attributes that influence college choice (i.e., en-

rollment) of admitted students and implements machine-learning algorithm models for predicting 

admitted students’ enrollment decisions.  

The objectives of the current study are 1) to provide a better understanding of both stu-

dent and institution-related attribute(s) that highly influence students’ enrollment decisions and 2) 

to identify the best predictive model(s) using machine learning algorithms that institutions can 

discern admitted students who are highly likely to enroll relatively to others. This allows enroll-

ment management to support financial aid, admission, and marketing departments to assign 

budgets effectively and thus not only maximize enrollment but also save a big portion of market-

ing efforts efficiently for recruiting students. In this chapter, I discuss the factors and enrollment 

prediction models using machine learning algorithms, including a wide range of features related 

to student and institutional characteristics. 

Background of College Choice Model 
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College choice theories generally center on three major questions: 1) who goes to college, 

2) where do they enroll, and 3) why do they select that specific college? These college choice 

theories draw upon various disciplines to establish their studies on theories from a broad range of 

perspectives. While numerous college choice models have been created based on the three ques-

tions, they have more recently been classified into one of three primary subgroups: economic, 

psychological, or sociological (Bateman & Spruill, 1996; Hossler & Palmer, 2008; McDonough, 

1997; Stage & Hossler, 1989). Despite the distinct disciplinary perspectives and specific areas of 

focus within college choice theories, many of these paradigms complement each other in the 

process of selecting a college.  

College choice models that adopt an economic perspective regard selecting a college as a 

type of decision-making behavior that resembles an investment (Jackson 1978). From an eco-

nomic standpoint, a rational decision-making process is primarily based on tuition fees, available 

resources, and financial assistance (Archibald & Feldman, 2010; Bateman & Spruill, 1996; 

Hossler & Palmer, 2008; Paulsen & St. Johnson, 2002; St. John et al., 2010). These models de-

pend on the cost and availability of resources to demonstrate what factors influence a student’s 

ultimate decision. An economic approach known as the input model considers money as the ul-

timate influence and disregards any external personal or social factors that may affect the deci-

sion (Bateman & Spruill, 1996; Hossler & Palmer, 2008; Paulsen & St. Johnson, 2002). Another 

economic approach is the output model, which bases college choice decisions on the potential 

financial benefits after graduation and considers institutional prestige and disciplinary options in 

the decision-making process (Archibald & Feldman, 2010; Bateman & Spruill, 1996; Hossler & 

Palmer, 2008; Paulsen & St. Johnson, 2002; St. John et al., 2010). Within the context of choos-
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ing a college, economic perspectives encompass theories that emphasize financial factors, as well 

as sociological theories that take into account a combination of monetary benefits and social 

standing. Economic models serve as a crucial factor in the decision-making process for college 

choice across various models. 

Several other models for college choice utilize psychology as a foundation to compre-

hend the various elements that influence students’ decisions concerning college choice. The em-

phasis of psychologists lies in the psychological climate or environment of an educational insti-

tution, its effects on students, and the compatibility of students with the institution (Astin, 1965). 

These models often examine the influences of others (friends, family, and counselors) whom 

students build a relationship in their community and the academic climate that is offered by the 

pre-college institutions where they attend (Hossler & Gallagher, 1987; Hossler & Palmer, 2008) 

on student decision-making. Chapman’s (1981) approach to the college choice model was dis-

tinctive, as it anazlyed the background ahd personal traits of students with respect to the commu-

nities they are associated with. He determined the influential weight of these variables on the 

student’s college decision process (Chapman, 1981).  

A third perspective to investigate college choice is grounded in sociology. Sociologists 

perceieve the development of aspirations toward higher education as an aspect of a broader pro-

cess of achieving social status (Deil-Amen & Turley, 2007). For instance, since the 1960’s, the 

social attainment model has been a significant paradigm for studing educational and career aspi-

rations (Kao & Tienda, 1998). It demonstrated how the convergence of family background and 

resources influences a child’s upbringing and, eventually, their educational aspirations (Kao & 

Tienda, 1998). McDonough (1997) was motivated by Bourdieu’s (1986) assessment of external 
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factors that influence an individual’s decision-making process and explored how a student’s so-

cial class determines suitable option for college choice. This study also illustrated that each high 

school has a distinct set of established values and social standards that could determine which 

college choice are deemed acceptable by the student’s peer group for application and enrollment 

(McDonough, 1997). 

Gaining insights into the diverse disciplinary viewpoints, such as economics, psychology, 

and sociology, concerning college choice theories establishes a fundamental framework for com-

prehending the numerous factors that impact decision-making for college choice.  

College Choice Models 

 College choice models illustrate the various routs, phases, and significant factors that in-

fluence a student’s decision-making process for selecting and enrolling in a college. Enhancing 

the comprehension of college choice facilitates families, high school counselors, and higher edu-

cation stakeholders to gain a better understanding of the primary factors that hold the most influ-

ence in the college choice process. They also can utilize those factors to better strategize institu-

tional financial budgets and student recruitment for next academic cycle. Moreover, the college 

choice model can be expanded to make predictions on student enrollment from various perspec-

tives, which support the idea of designing the future student body.  

Kinzie et al.’s (2004) study on the history of higher education revealed the earliest mod-

els of college choice that originiated in the 1950s. According to Kinzie et al. (2004), the 1940s 

established the groundwork for increased access to higher education through the introduction of 

the Servicemen’s Readjustment Act (“GI Bill”) of 1944 and President Harry S. Truman’s initia-

tives to expand community college systems. Soon after these significant developments, the U.S. 
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Supreme Court made a decision in Brown v. Board of Education of Topeka (1954). In the after-

math of the Brown v. Board of Education ruling, endeavors were initiated to integrate public 

schools nationwide and increase the accessibility of college education for minorities. These ef-

forts augmented the college-going populace and compelled colleges to devise a more advance 

procedure where prospective students had to make enrollment decisions about which college to 

attend (Kinzie et al., 2004). 

Holland (1959) was the pioneer to publish research on college choice. Using data from 

814 elite high school students, he conducted an empirical model of college choice. In this study, 

Holland (1959) found that students’ decisions were influenced by the interplay of various charac-

teristics, including student and parental interests, attitude, educational background, gender, and 

socioeconomic status. However, he identified the complexity of the college selection process and 

demonstrated that students of various backgrounds select different kinds of institutions (Holland, 

1959). He also stated, "like many personal decisions, the choice patterns found here are probably 

not really amenable to change because they are grounded in cultural and personal development" 

(Holland, 1959, p. 26). Since then, there have been many studies exploring the college choice 

process and influential factors.  

Later scholars, including Kotler, leveraged the research of Holland (1959) in order to 

demonstrate the college choice process. The first model of college choice was developed by Ko-

tler (1976). He applied consumer decision-making process theory to see how students select col-

leges to enroll, which treats them as consumers (Kotler, 1976). This theory encompasses the 

concepts of the students’ behaviors in selecting the college before applying and three major ques-

tions which were mentioned previously: 1) who goes to college, 2) where do they enroll, and 3) 
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why do they select that specific college? Kotler (1976) distinguished seven stages of the college 

decision process: 1) making a decision to attend college, 2) seeking and receiving information 

about colleges, 3) submitting inquiries to specific colleges, 4) submitting applications, 5) obtain-

ing acceptance letters, 6) making a college choice, and 7) registering for classes. In addition to 

proposing seven stages of the college choice process, Kotler (1976) stressed the significance of 

the institution in the ulticmate college choice decisions. While Kotler’s model was widely ac-

cepted as accurate during his time, more recent research helped refine his theory. Hanson and 

Litten's (1982) model re-evaluated Kotler's (1976) model, creating a five-stage model that com-

prised 1) college aspirations, 2) search, 3) information gathering, 4) application, and 5) enroll-

ment. Following the Hanson and Litten (1982) five-stage model. Researchers continued to sim-

plify the college decision choice model further, distilling the process into a basic three-phase 

model.  

Jackson (1986) exapanded on Hanson and Litten’s (1982) model by utilizigin data gath-

ered in a longtitudial study, ultimately constructing three categories of the college choice process. 

The first category is called the preference phase. It indicated that students’ educational aspira-

tions are highly correlated with their academic achievement which are influenced by the stu-

dents’ family background and social context. The second category, called the exclusion phase, 

involves students excluding some institutions from the prospective list based on the available 

resources. Potential resources that result in exclusion are college tuition, fees, locations, and/or 

academic quality. After going through the exclusion phase, the third category is the evaluation 

phase. In this phase, students limit their college choice and finalize a list of college to choose.  
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Apart from to Jackson’s (1986) model, Hossler and Gallagher (1987) formulated another 

three-stage model. The initial stage referred to as pre-disposition, which recognizes the period 

when a student deteremines whether to attend college (Hossler & Gallagher, 1987). After stu-

dents make the decision to attend college, they progress to the second stage of decision-making 

which is the search process (Hossler & Gallagher, 1987). During the search process, students 

start gathering information about various colleges through formal and informal means, and they 

start making emotionally driven decisions regarding specific institutions of higher education 

(Hossler & Gallagher, 1987).  

The last stage is choice stage, during which students make their final decision. This col-

lege choice model also take into account various additional factors such as location, availalibity 

of financial aid, academic quality, campus visits. Furthermore, the model highlights the ways in 

which these factors play a role in shaping student’s ultimate decision regarding college choice 

(Hossler & Gallagher, 1987). Further research is needed to determine the extent of influence of 

each factors in college choice research, despite the continued use of college choice models from 

the 1980s in current counseling practices (Hossler & Palmer, 2008). In addition to a need for 

more research about each factor within the three-stage model, there also has been a push for 

more research to expand outside of the basic three-stage model (Jackson, 1986; Hossler & Gal-

lagher, 1987). 

Research on college choice continued in the last two decades with an interest in the fac-

tors impacting students' college choice decisions. These studies developed five- and three-stage 

models but also found additional new factors that appear to significantly influence on students’ 

enrollment decisions. Perna (2006) proposed a college choice conceptual design using multilevel 
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modeling which contains four layers: 1) student’s habitus, 2) school and community context, 3) 

higher education context, and 4) social economic, and policy context. Perna (2006) states that a 

multi-level model that is used here addresses the hierarchical relationship of factors that are 

grouped into four different layers. Moreover, Perna (2006) illustrated there are additional factors 

that are not covered in the three-stage model which is related to social, economic and policy con-

texts. Figure 1 shows her conceptual model on how students’ college choice decision-making is 

affected by factors in four different layers.  
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Figure 1. Perna’s (2006) Proposed Conceptual Model of Student College Choice 

 

Note: Proposed conceptual model of student college choice. Adapted from Studying 

college access and choice: A proposed conceptual model by Perna, L. (2006) in Higher 

Education: Handbook of Theory and Research. Vol. XXI, p. 117. 
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The first level of Perna’s (2006) model is the student’s habitus. The habitus reveals “an 

individual’s demographic characteristics, particularly gender, race, and socioeconomic status, as 

well as cultural and social capital” (Perna, 2006, p. 117). Perna regarded this layer as crucial in 

the decision-making process as it focuses on the individual student and their unique characteris-

tics that are ingrained and persistant over prolonged period.  

The subsequent three layers, excluding the first, are contextual and comprise external fac-

tors that affect the students. However, these are potentially influential to students’ college en-

rollment decisions. These three contextual layers include the school and community context; the 

higher education context; and the social, economic, and policy context. The specific descriptions 

for the rest three layers are stated in the following paragraphs.  

The second layer is the secondary school and community context of college choice. This 

layer centers on how schools and communities impact students’ college choice decisiosn. Perna 

(2006) suggested that schools can influence students’ college choice decisions in various ways, 

such as providing teacher encouragement, offering college preparation courses, and promoting 

high-quality extracurricular activities. In addition to secondary school, Perna (2006) claims that 

communities significantly influence students’ college choice decisions.  

 Perna’s (2006) proposed that higher education institutions influence students’ enrollment 

decisions in three ways within the third layer of her conceptual model. Firstly, colleges provide 

information to prospective students and families through activities such as college visits. Second-

ly, instituions’ attributes and characteristics, such as proximity and the availability of institution-

al financial aid, play a role. Finally, the availability of enrollment slots at the institution can also 

impact students’ college choice.  
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Finally, according to Perna (2006), the outermost layer of her conceptual modell, which 

is influenced by “social forces (e.g., demographic changes), economic conditions (e.g., unem-

ployment rate), and public policies (e.g., the establishment of a new need-based grant program)” 

(Perna, 2006, p. 119), plays a cruicial role in the decision-making process, particularly in the so-

cial, economic, and policy context of the decision.  

 Perna’s (2006) model incorporates multiple layers, which assume that the college choice 

decision-making is influenced by multiple factors. These layers propose that the decision to en-

roll in college is based on comparison of the benefits and costs of enrolling and that this assess-

ment is shaped by an individual’s habitus, as well as the family, school, and community context, 

higher educationa context, and social, economic, and policy context.   

 This study is based on Perna’s (2006) model because it provides a comprehensive 

framework that takes into account multiple layers of influence that interact to impact stduents’ 

college choice, thereby offering a complex understanding of the decision making process. Addi-

tionally, it contains layers that include not only factors involved in three-stage models but also 

involves new factors that encompass broader spectrums of social forces, economics, and policies. 

Since the current study specifically focuses on the admitted students’ enrollment decision pro-

cess, it reflects the partial phase of three-stage models. However, three-stage models present re-

lated factors as discrete by each phase. Hence, Perna’s multi-layer model, which all factors are 

nested across the enrollment decision process, is appropriate to implement as a conceptual 

framework. This study views the familiar variables of college enrollment decision-making and 

looks specifically at one of the 4-year private Jesuit universities in the mid-west urban area. The 
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study concludes that professionals at the college admissions level could benefit from the infor-

mation provided by college choice model(s).  

Influential Factors of College Choice/Enrollment 

 Within the college choice models and theories, ten significant factors of influential fac-

tors consistently arise in the current research, which are student’s 1) gender, 2) race, 3) socioeco-

nomic status (e.g., Expected Family Contribution), 4) academic performance (e.g., High School 

GPA, ACT/SAT scores), 5) parent education level, 6) secondary school academic climate, 7) 

college proximity, 8) institutional financial aid, 9) national unemployment rate, and 10) national 

inflation rate. Since this study proposes to use Perna’s college conceptual model, Table 1 shows 

how these ten factors are assigned to each of four different layers in terms of (a) students’ habi-

tus, (b) high school and community context, (c) higher education context, and (d) social econom-

ic, and policy context.  

Table 1. Influential College Choice Factors Assignment Based on Perna’s College Choice Model 

Students’ habitus High school and 

community context 

Higher education 

context 

Social, economic, 

and policy context  

* Gender 

* Socioeconomic Sta-

tus (i.e., Expected 

Family Contribution) 

* Race 

* Academic Perfor-

mance (ACT, SAT, 

High School GPA) 

* Parent Education 

Level 

* High school aca-

demic climate (i.e., 

College Board’s Sec-

ondary school segment 

rating) 

* College proximity 

* Institutional finan-

cial aid  

* National unem-

ployment rate 

* Inflation Rate (i.e., 

Customer Price In-

dex * 100)  

Note. Adapted from “Studying college access and choice: A proposed conceptual model” in 

Higher Education: Handbook of Theory and Research, Vol 21 (p. 117), by L. W. Perna, 2006, 

Springer, Netherland: Dordrecht 
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Students’ Habitus Characteristic Context Factors 

College choice models can be used to explain the decision-making process of students, as 

well as their demographic characteristics and academic achievements, all of which are important 

factors in the college choice process of high school seniors. During the application process, ap-

plicants typically provide demographic information, such as gender, race, socioeconomic status 

(e.g., Expected Family Contribution), and academic achievements (e.g., High School GPA, 

ACT/SAT scores). Enrollment managers compile the data from the applications to discover de-

mographic information and academic performance of applicant pools. Understanding the im-

portance of demographic factors is imperative for higher education instituiosn. This information 

strongly connects with a high school seniors’ college decision-making process (Kim, 2004), and 

institutions can find ways to identify and address anything in their profiles that could be appeal-

ing to a specific demographic group (Horvat et al., 2003). 

Gender differences in college enrollment decisions have been tracked and documented 

for decades (NCES, 2020; Carbonaro et al., 2011; Flashman, 2013; Kleinfeld, 2009; Reynolds & 

Burge, 2008; Turley et al., 2007; Fortin, Oreopoulos, & Phipps, 2015). In 1960, over 60% of col-

lege enrollees were men (NCES, 2020). However, the rate of women’s college enrollment in-

creased substantially over the next two decades (NCES, 2020). For the gender gap in college en-

rollment, some scholars pointed to several explanatory factors. According to Carbonaro et al 

(2011), females in high schools are more likely to have higher academic achievement and aspira-

tions than males and this may explain why females are more likely to apply and enroll in college 

by their senior year of high school. Flashman (2013) and Kleinfeld (2009) corroborated Car-

bonaro et al.'s (2011) assertion that females' superior academic performance may have contribut-
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ed to gender disparities in postsecondary participation, particularly among low-income students. 

However, male students have been found to have lower academic aspirations, are less likely to 

enroll in college prep courses (Reynolds & Burge, 2008), and apply to college during their senior 

year of high school (Carbonaro et al., 2011; Turley et al., 2007). This may be because males are 

more inclined to pursue postsecondary plans that do not involve college, such as joining the mili-

tary or attending vocational schools (Fortin et al., 2015; Reynolds & Burge, 2008). In other 

words, this suggests that males are less likely to view postsecondary education as essential for 

their future employment opportunities (Carbonaro et al., 2011; Kleinfeld, 2009). 

Since higher education is facing an increase of gender inequality, many policy makers, 

researchers, and educators are seeking ways to minimize and balance the gender gap of the stu-

dent body. For instance, some colleges’ administrators and admission officers expressed con-

cerns about providing advantages to female applicants to enroll and advocated implementing af-

firmative action for male applicants (Kao & Thompson, 2003; Greene & DeBecker, 2004).  

As mentioned earlier, another important influence on college decision-making in the stu-

dent habitus is socioeconomic status (SES), which is generally measured by parental education 

and household income (Attewell & Domina, 2008; Handwerk et al., 2008). Adelman (2006) 

found that students’ SES was significantly related to their transition to college; higher-SES stu-

dents attended college more often than those with lower SES. It is common for students to make 

admissions decisions based on their social class and the community in which they live. When 

students begin discussing college, factors based on SES are prevalent (Kablenberg, 2004; 

McDonough, 1997). For instance, those from middle-class families often receive information 

about college from relatives who have attended college (Bloom, 2007). By contrast, students 
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from low-income families tend to protect themselves from the reality of rejection and do not dis-

cuss college plans as often with their families (Bloom, 2007). McDonough (1997) asserts that 

students’ attitudes toward college enrollment decisions are influenced by the expectations of 

family members and society. Gladiuex (2004) studied the relationship between students’ SES 

levels and college enrollment decisions, including their high school academic achievement using 

standardized test scores. Gladieux (2004) explained that students from lower-SES backgrounds 

attended college in much lower numbers than students from higher-SES backgrounds, regardless 

of their academic achievement in high school. Furthermore, he observed that students in the 

highest-SES quartile range but who scored in the lowest test score quartile range were more like-

ly to attend college than those from the lowest-SES quartile range but who score in the highest-

test score quartile range. This implies that the least smart, rich kids have as good a chance of go-

ing to college than the smartest, poor kids (Gladiuex, 2004). In the current study, expected fami-

ly contribution (EFC) is used o measure the students' SES since EFC directly reflects the stu-

dents’ financial strength.  

Besides differences in gender and SES, racial groups also differ in the extent of their col-

lege enrollment decisions (Adelman, 2006; McDough, 1997). Many racial differences in educa-

tional achievement can be partially accounted for by including family background and SES 

measures (Beattie, 2002). There are significant racial gaps in grades and test scores, thus some 

racial minority high school graduates may be hindered in their attempts to attend college (Ros-

cigno, 2000). Adelman (2006) found that knowledge of and attitudes toward college often vary 

with race. He further noted that despite the increased participation of racial minority students in 

postsecondary education over the previous quarter century, the gap in college enrollment be-
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tween Whites and Asians vs. Hispanics and African Americans remained wide. According to the 

National Center for Education Statistics (NCES), there were 16,610,200 students enrolled in 

higher education institutions in fall 2018; Caucasians made up 54% of this group, while African 

Americans comprised 13.3% of the undergraduate population (NCES 2020). While more stu-

dents than ever are going to college, the disparity between races persists.  

As mentioned earlier, academic achievement measures like standardized tests (i.e., 

ACT/SAT) and high school GPA are significant predictors of college enrollment (Cho, 2007; 

Klasik, 2012). In general, submitting standardized test scores and high school GPA (HSGPA) are 

required in the admissions processes of all four-year colleges and universities. Cho (2007) exam-

ined high school GPA as a factor in college entrance patterns and found that it was a highly im-

portant determinant of attending college, in addition to standardized test scores. Allensworth and 

Clark (2020) also stated that there is a strong correlation between HSGPA and college enroll-

ment. They stated that students with higher HSGPA are more likely to enroll in college since 

they have strong educational aspirations (Allensworth & Clark, 2020). Similar to HSGPA, 

Klasik (2012) showed that taking the ACT or SAT is a major step to college enrollment among 

high school students. He found that 95% of students who enrolled in a four-year college or uni-

versity took the ACT and/or the SAT at some point between 10th and 12th grade (Klasik, 2012). 

In fact, taking standardized tests is one of the most predictive steps of later college application 

and enrollment.  

High School and Community Context Factors 

Many factors beyond demographic characteristics and academic achievement affect stu-

dents' college choice processes. When making college choice decisions, students are inundated 
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with various messages coming from persuasive sources, including families and communities (At-

tewell & Domina, 2008; Handwerk et al., 2008). The main social influences are parental educa-

tion level (Cameron & Heckman, 2001; Belzil & Hansen, 2003) and a student’s high school aca-

demic climate (Engberg & Wolniak, 2010; Nuñez & Kim, 2012). Hence, these two main sources 

are used in the present study. 

Dornbusch, et al. (1987) claimed that parental education level affects children's academic 

path, especially for their college journey. The study by Cameron and Heckman (1998) also 

showed that parents’ education level was by far the most important family background variable 

for students’ college education attainment. These two factors account for as much as 83% of the 

explained variations in the student’s college attainment outcome (Cameron & Heckman, 1998). 

Parents with a high school diploma and students who are the first in their immediate family to 

enroll in college have lower participation rates in academic programs to prepare for college en-

rollment and lower rates of applying to and enrolling in college (Horn & Bobbitt, 2000). In addi-

tion, a number of studies stated that students whose parents have gone to college are more likely 

to attend college themselves (Goyette, 2008; Bifulco et al., 2011; Choi et al., 2015). As men-

tioned earlier, students’ SES is generally measured by parental education level (Attewell & 

Domina, 2008; Handwerk et al., 2008). Students with higher SES attend college more than often 

than those with lower SES. Stange (2012) indicated that their predicted lifetime income increases 

with a higher parental education level, affecting their children’s academic aptitude, eventually 

leading to their college choice and enrollment. The study by Belzil and Hansen (2003) also 

showed a positive correlation between individual schooling attainment (e.g., college enrollment) 

and parents’ education level.  
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Secondary school is also a significant community where students are involved in. Hence, 

the secondary school academic climate has become increasingly popular in discussions of col-

lege choice influential factors (Astin et al., 2011; Cohen et al., 2009; Zulling et al., 2010). Spe-

cifically, creating “college-going cultures” in secondary schools has been the focus of efforts to 

expand postsecondary access (Knight & Marciano, 2013; Knight et al., 2019). Generally, col-

lege-going culture is highly related to students’ academic preparation (Conley, 2012; Duncheon, 

2015; Hooker & Brand, 2010). Rigorous academic preparation has been cited as a leading pre-

dictor of college success (Adelman, 2006; Perna, 2005; Porter & Polikoff, 2012). Students' aca-

demic preparation has typically been addressed through the use of test scores, course levels, and 

other standardized measures of student achievement in the college and career readiness process 

(Wearne, 2018). Therefore, high schools strive to enhance students' academic readiness, espe-

cially for college attendance, by increasing advanced coursework offerings, such as AP courses 

and dual credit classes, as well as holding students to high academic standards (Jarsky, et al., 

2009). Due to the fact that this metric is significantly influential on students’ college enrollment 

decisions, the present study includes the part of College Board database which rate all U.S. high 

schools based on 40 academic and demographic factors (see Appendix B for more detailed in-

formation).  

Higher Education Institution Context Factors 

In addition to the influence of secondary schools’ academic climate on students’ college 

choice, higher education institutions have a direct impact over certain specific factors in stu-

dents’ college choice decisions. They include the geographic proximity between students’ 

hometown and college, and institutional financial aid such as scholarships and grants. There are 
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other possible factors such as the level of students engagement with college but that is not cov-

ered since the way how engagement data are defined and classified are highly subjective.   

According to Chute (2006), one of the most critical institutional factors influencing a stu-

dent's college choice is the proximity of the institution to their hometown. The research found 

that 56% of students attend a higher education institution located within 100 miles of their 

hometown. Turley (2009) discovered that location was one of the primary reasons for selecting 

an institution, with proximity to home being the most significant influence on that decision. In 

other words, students were more likely to apply to and attend institutions that were comparative-

ly close to their homes. Disadvantaged students, in particular, viewed nearby institutions as their 

only practical option for higher education, allowing them to save money on room and board by 

living at home. On the other hand, Hoxby (2009) discovered that improvement in transportation 

had raised the probability of students feeling at ease with the idea of attending a college or uni-

versity located far away from their residence. Despite that result, advances in transportation, 

proximity remains a crucial factor for many high school seniors in their college decision-making 

process. 

Along with proximity, students’ college choices are heavily influenced by institutional fi-

nancial aid. Many forms of institutional financial aid are available, including scholarships, grants, 

and merit aid. Since college financial aid helps students cover tuition, fees, boarding, books, 

supplies, and so on, thus aid plays a vital role in students’ enrollment decisions. According to 

Farrell and Kienzl (2009), states that provided generous institutional financial aid such as merit 

awards saw the greatest increases in college enrollment. In states that offered the top quartile of 

merit aid amounts (i.e., nearly full-tuition scholarships), college participation increased by 5.5%, 
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and the enrollment rate among freshmen staying in that state for college increased by 6.6% be-

tween 2000 and 2008. However, determining how much aid an institution will offer is important 

to their budget management as well as their enrollment numbers (Hossler, 2002). According to 

Gross (2015), the financial aid department has a number of enrollment management-related goals. 

These may include: 

“maintaining or increasing class size; increasing ethnic diversity; improving academic 

profile; increasing in net tuition revenue; lowering the tuition discount rate; strengthening 

weak academic programs; maximizing the return on strong academic programs, and sup-

porting athletic or other specialized programs on campus. (p. 214)” 

 

Hence, it is obvious that institutional financial aid plays a significant role in student recruitment, 

admission, and retention, regardless of whether it is acting alone or simultaneously with other 

college departments. Based on the information available, the current study reflected institutional 

financial aid as one of the significant factors in students’ college enrollment decision-making. 

Social, Economic, and Policy Context Factors 

Finally, changes in social forces, economic conditions, and institutional/public policies 

can also influence college choice (Perna, 2006). In the current study, two economic conditions 

(e.g., unemployment rate, inflation rate) are applied in the model as there were no significant 

events or changes in social forces and institutional/public policies during the time when data was 

sourced.  

The United States experienced several recessions between 1970 and 2009, primarily due 

to changes in economic policies and government expenditures (Hetzel, 2009; Kotz, 2009). Ac-

cording to the National Bureau of Economic Research (2008), a recession is a prolonged decline 

in the economy, as indicated by real GDP, real income, employment, industrial production, and 

wholesale-retail sales. During a recession, individuals experience a decline in their personal in-
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come as well as diminished job prospects and, therefore, search for other avenues to increase 

their earnings. Enrolling in higher education is one of these options. For example, between 1980 

and 1992, the value of future earnings differentials between men who graduated high school vs. 

college increased by 116 percent (Baum, 2001). As well as dwindling labor market opportunities, 

enrollment in higher education is also heavily influenced by various other factors, such as tuition 

rates, state aid availability, unemployment rates, and opportunity costs (Betts & McFarland, 1995; 

Hossler, et al., 1997; Koshal & Koshal, 2000). Therefore, unemployment rate is found to be a 

significant factor when it comes to determining one's ability to afford higher education (Betts & 

McFarland, 1995). The decline in labor force demand also tends to reduce the perceived costs of 

getting a job, particularly for students fresh out of high school. This results in increased college 

enrollment. Moreover, students forced into postsecondary education by recessions tend to com-

plete the degree and continue their education even when the economy improves (Betts & McFar-

land, 1995). 

There is usually a significant correlation between national unemployment rates and col-

lege enrollment (Dellas & Sakellaris, 2003). These findings are consistent across countries, in-

cluding the United States, where college enrollment is not constrained by a lack of capital. In 

some countries, a lack of capital overrides rational enrollment decisions. According to Dellas and 

Sakellaris (2003), human capital theory suggests that participation in higher education should be 

countercyclical due to opportunity costs, while the ability of an individual to pay for the oppor-

tunity appears to be cyclical. Their study examined college enrollment decisions made during 

four economic downturns from 1968 to 1988. According to their analysis, the propensity to en-

roll is countercyclical; it shows that every one-percent increase in the unemployment rate, col-
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lege enrollment increased by .57%. A study conducted by Windolf (1997) also supported to Del-

las and Sakellaris (2003) findings showing that there was some modest positive effect of unem-

ployment which generated a short-term increase in college enrollment.  

In addition to the national unemployment rate, the inflation rate is also a significant factor 

impacting college enrollment. In general, inflation involves the rising prices of goods and ser-

vices and the corresponding decrease in currency value (Truman, 2003). Since inflation impacts 

college tuition, fees, financial aid, loans, and students’ living expenses, both students and colleg-

es are not immune to inflation (Bundick & Pollard, 2019). Garrett (2022) explored higher educa-

tion enrollment trends along with the inflation rate trend from 1970s to 1980s. He pointed out 

that undergraduate enrollment trend was flat for the most inflationary periods despite of acute 

inflation from 1977 to 1982, where inflation rate increased from 6% to 14% (Garrett, 2022). In a 

related data spanning from 1963 to 2004, Ewing et al. (2010) examined the influence of econom-

ic inflation on college enrollment by gender. They observed that in response to an unexpected 

and sudden increase in inflation, females exhibited an immediate increase in enrollment rates that 

persisted for two years. Males also responded to the inflation increase, but with a delay and the 

effect was not as prolonged as it was for females. This indicates that the impact on males is com-

paratively less severe than on females. Additionally, the study found that female enrollment 

growth is more enduring than males concerning the impact of inflation on college enrollment. 

Despite these differences, both males and females seek to accrue human capital through enroll-

ment. Therefore, it can be argued that people tend to mitigate the effects of inflation by accumu-

lating more human capital. 
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Overall, the high inflation and unemployment rates may persuade more students to invest 

in their education. This provides generalized insights to higher education administrators that stu-

dents consider colleges as the only places to invest during a period of economic crisis.  

Empirical and Predictive Modeling of College Enrollment  

 After the number of conceptual college choice models emerged since 1959 (Holland, 

1959; Kotler, 1976; Hanson & Litten, 1982; Jackson, 1986; Hossler & Gallagher, 1987; Vossen-

steyn, 2005; Perna, 2006), many researchers created empirical models for students' college en-

rollment decisions using influential factors on college choice (Holland & Richards, 1965; Sawir-

is, 1970; Pickett, 1972; Psacharopoulos, 1973; Kohn et al., 1974). In the late 1980s, a number of 

researchers implemented statistical regression (i.e., logistic) as a theory to design higher educa-

tion enrollment models (Bruggink & Gambhir,1996; Cabrera, 1994; Fraysier et al., 2020; St. 

John & Noell, 1989; Teachman & Polonko, 1988). They conducted empirical models to identify 

and measure the significance of elements that highly influence students’ college choice decisions. 

Eventually, studies of empirical models for college choice were expanded to the idea of conduct-

ing advanced models for predicting students’ enrollment (i.e., college choice) decisions (Fraysier 

et al., 2020). However, as the number of students attending college increased, the types of factors 

influencing students’ college choices became more diverse with abundant data. This led to a sig-

nificant increase in students’ (i.e., applicants’) information and made higher education institu-

tions build up vast databases to manage big data (LaValle et al, 2011). The information from 

these databases provided researchers with a wealth of analytical insights into students’ college 

choice decisions. This allowed educational researchers to employ various machine learning algo-

rithms in addition to LR (Sarker, 2021). Also, it was known that LR algorithm had disadvantages 
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in handling large data for classification prediction, such as leading to an overfitting situation 

(Dreiseitl & Ohno-Machado, 2002; Rahman et al., 2015). An overfitting situation happens when 

the model contains too much complexity and features (i.e., attributes) from the large data. This 

results in a low bias but high variance, which leads LR to make inaccurate predictions (Dreiseitl 

& Ohno-Machado, 2002). Hence, researchers implemented various machine learning algorithms 

to overcome the overfitting issue for making predictions, which also handle big data effectively. 

Since the early 1990s, machine learning algorithms started to appear as one of the meth-

odologies to identify the major factors that influence students’ college enrollment decisions. 

These algorithms also provided new empirical models to investigate and identify patterns in con-

temporary higher education admissions (Hossler, 1999; Joseph & Joseph, 2000; LaValle et al, 

2011; Bhardwa, 2017). In addition to identifying patterns, machine learning algorithms were im-

plemented to a broader spectrum for predicting students’ college enrollment decisions (Delen, 

2010; Herzog, 2006; Luan & Zhao, 2006). Hence, the machine learning methods became a vital 

tool to analyze a large amount of student (i.e., applicant) data, and the predictive analytics using 

this tool became high demand in the higher education sector (Delen, 2010; Herzog, 2006; Luan 

& Zhao, 2006). However, compared to other areas of U.S. higher education research (e.g., degree 

completion, academic performance, and retention), studies on the prediction of “enrollment” us-

ing machine learning algorithms are relatively scarce. The following section presents few early 

studies relevant to developing prediction models for U.S. college enrollment using machine 

learning algorithms. Since the present study proposes to use four different machine learning al-

gorithms, the next two sections explain the concept of machine learning for predictive modeling 
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in general and why the current study came up with the idea of using four machine learning algo-

rithm models.  

Concept of Machine Learning  

Machine learning combines statistics, mathematics, and computer science into one prob-

lem-solving pathway (Dara, et al., 2022). This involves discovering patterns, training, and testing 

data to create computer programs that automatically recognize complex structures and make in-

telligent decisions (Michell, 1997). There are several different types of machine learning algo-

rithm approaches – supervised learning and unsupervised learning (Sharma & Kumar, 2017).  

A supervised learning approach uses a set of labeled input data and corresponding output 

data. It trains a model to map labeled inputs to outputs so it can predict the outputs to any new 

set of input data. All supervised learning-related algorithmic methodologies take the form of ei-

ther classification or regression. Classification methodologies predict discrete responses as out-

puts, which can be classified into two different groups. Regression methodologies, on the other 

hand, predict continuous responses. In supervised learning, the goal is to predict outcomes for 

new data and these outcomes are known up front the type of results to expect. Unsupervised 

learning approach uses unlabeled datasets that do not contain explicit instruction on what to do 

with it. Hence, unlabeled datasets used here only have input data and no corresponding output 

variables. The goal of unsupervised learning is to discover hidden patterns and underlying struc-

tures/distributions of input data in order to learn more about data. For the purpose of the present 

study, I am interested in predictive modeling from a classification perspective which predicts 

output into two different groups (i.e., enrolled vs. non-enroll) using labeled data. Hence, a super-

vised learning approach is used.  
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 As mentioned earlier, machine learning models under the supervised learning approach 

can perform classification models using various algorithms (Alpaydin, 2011). However, it is cru-

cial to select the appropriate tool from the machine learning toolbox for a given data set.  

For the current study, certain machine learning algorithmic methodologies/models are chosen 

based on the following criteria. Research and experimentation that are currently taking place but 

have not been used for comparative analysis. The description of past studies using machine 

learning for U.S. College enrollment prediction is stated in the following section for ‘Implemen-

tation of Machine Learning Algorithms for College Enrollment Prediction Modeling.’ Based on 

these criteria, four primary algorithms are selected to compile machine learning models: ANN, 

SVM, DT, and LR. In addition, Python 3.10. software is used for analysis. Figure 2 shows a sim-

plified classification diagram from machine learning algorithms including LR, DT, SVM, and 

ANN. 
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Figure 2. Classification of Machine Learning Algorithms including LR, DT, SVM, and ANN 

 

Logistic Regression (LR) 

Logistic Regression (LR) is a supervised classification algorithm in machine learning that 

predicts the outcome of a categorical dependent variable by using the probabilities of achieving 

the output categories (Green & Salkind, 2014; Warner, 2013). The dependent variable in LR is 

categorical, and the algorithm uses the available data to construct a model that calculates the un-

known outcome variable, similar to linear regression (Warner, 2013). In LR, input values x are 

linearly combined through weights or coefficients to predict a real-valued output y, but unlike 

linear regression, LR estimates the probability of the dependent variable y belonging to each 

class (Warner, 2013). The general formula for this learning technique with a single independent 

variable x and a dependent output variable y is shown in Equation (1). 

 (1) 
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During training, Logistic Regression (LR) learns the bias coefficient β0 and the coeffi-

cients β1 for each independent input value x. LR uses a mathematical function called the sigmoid 

function, denoted by σ, to map the linear combination of inputs into the range of 0 to 1, which 

provides probabilities for each output category. The sigmoid function is defined by Equation (2). 

When multiple independent input variables are involved, the input values xs are represented as a 

vector x with a corresponding set of coefficients to be learned. 

   (2) 

As an illustrative example, consider the problem of identifying if a student will enroll in a col-

lege based on the amount of institutional scholarships. In this case, we can define the input inde-

pendent variable as amount of scholarships which take a numerical value and the output variable 

as student’s decision to enroll which takes values 0 (i.e., not enroll) or 1 (i.e., enroll). Then our 

LR problem will represent the probability of a student to enroll in college given amount of insti-

tutional scholarships and is shown in equation (3). In LR, a general rule is that if the probability 

is greater than 0.5, the decision is considered true (i.e., 1), otherwise, it is false (i.e., 0). Therefore, 

the LR model predicts whether the student will enroll in college by calculating the probability 

and thresholding it based on 0.5, as demonstrated in equation (3). 

 
 (3) 

Using LR models to describe research findings offers some advantages based on the LR 

algorithm theory. Compared to other ML algorithms, building LR models is less computationally 

complex and requires less time for training computation (Tu, 1996; Ayer, 2010). Also, since LR 

models are conducted based on statistical methods, the predicted probability of the outcome can 
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be easily calculated (Dreiseitl & Ohno-Machado, 2002; Mehta & Patel, 1995). Moreover, most 

statistical software packages utilized for constructing LR models provide confidence intervals, 

probability of outcome, and standard output (Dreiseitl & Ohno-Machado, 2002). Consequently, 

LR models can easily identify the most predictive variables of an outcome by examining the co-

efficients and the corresponding odd ratios (Dreiseitl & Ohno-Machado, 2002; Tu, 1996). 

Despite some advantages, LR also has some drawbacks. Constructing LR models is more 

challenging than other ML algorithms because it requires expert domain knowledge, including 

an understanding of statistical concepts such as multicollinearity (Harrell et al., 1996). Addition-

ally, LR models can only incorporate complex relationships of input variables if they are explic-

itly identified as affecting outcome variables (Ranganathan et al., 2017). This suggests that LR 

models may be susceptible to overfitting in high dimensions, as they may involve complex rela-

tionships among predictor (i.e., input) variables and outcome variables (Dreiseitl & Ohno-

Machado, 2002). 

Decision Trees (DT) 

  Decision Tree (DT) is a supervised machine learning algorithm that is useful for solving 

classification problems. It is suitable for dealing with continuous, categorical, and binary input 

and output variables (Liu et al., 2017). In situations where the output variable is categorical, de-

cision trees are also known as classification trees (Liu et al., 2017). The fundamental idea behind 

a decision tree is to employ a tree-like flowchart structure to make predictions, where each 

branch represents a choice between different attribute options in the internal nodes, which ulti-

mately leads to a final decision in the leaf node (Yang, 2019). 
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The typical method for constructing a decision tree from the training data involves parti-

tioning the entire dataset at the root node into subsets using a specific criterion, usually a deci-

sion about a feature (Wang et al., 2005). This process of splitting based on different internal node 

features continues until either a subset at a node has the same values as the target variable, or fur-

ther splitting no longer improves predictions (Yang, 2019). The primary goal of decision trees is 

to determine the optimal split for each node of the tree. However, evaluating the quality of a par-

ticular split is often a matter of subjectivity. 

When evaluating the quality of splits in DT, various metrics are used. The two primary 

metrics used to evaluate splits in decision trees are Gini Impurity and Information Gain 

(Raileanu & Stoffel, 2004). Gini Impurity measures the impurity of a partitioned dataset and de-

termines how often a randomly chosen element from the set is mislabeled based on the distribu-

tion of the labels in the subset. This metric is at its minimum (i.e., zero) when all cases in the 

node belong to a single target category. In contrast, Information Gain is used to compute the ex-

pected quantity of information required to determine whether a new instance should be classified 

as a yes or no for each node of the tree, given that the example has reached that node. The node 

with the highest Information Gain value is considered to have the best split. 

For illustration purposes, consider the DT shown in Figure 3 which describes the proba-

bilities for the student enrollment decision (Gomes & Almeida, 2017). The tree is constructed 

using Gini Impurity as the split evaluation metric. From the tree, it is possible to make the fol-

lowing inferences:  

“… if students answer option 4 or 5 (high expectation) concerning their “Expectation 

of University Conclusion”, and if they perceive “No, Little, Middle, or High” difficul-

ty related to “Leaving Home/Family”, and if they see “Little, Middle, High or Very 

High” difficulty related to “Possessing Family Support” and if they answer “No” for 
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the “Selected Course as the student’s first option” and if they answer “None or Little” 

difficulty for “Leaving Home/Family”, there is a 60% likelihood that these students 

are enrolled (p.8).” 

 

Figure 3. The Generated Tree from the Decision Tree Model: Classification of the College En-

rollment Decision (Gomes & Almeida, 2017) 

 

Note. Adapted from “Advocating the broad use of the decision tree method in education (p. 7),” 

by C.M.A., Gomes & L. S. Almeida, 2017.  

 

Utilizing the DT algorithm to present research outcomes offers some benefits. DT can 

simplify intricate relationships between input and target variables by dividing the original input 

variables into meaningful subgroups (Statnikov et al., 2008; Song et al., 2015). Additionally, DT 

is straightforward to comprehend and interpret, providing a non-parametric approach that does 

not rely on distributional assumptions (Song et al., 2015). However, the DT algorithm also has 

certain drawbacks. The primary disadvantage is that it is prone to over- and underfitting, particu-

larly when working with small datasets, which can restrict the models' generalizability and ro-
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bustness (Statnikov et al., 2008). Another potential issue is that the DT algorithm depends on the 

order of the attributes/variables, which can influence the prediction outcome. Consequently, one 

should exercise caution when interpreting DT models and their results (Jijo & Abdulazeez, 2021). 

Finally, DT necessitates a lengthy training time, which may not be suitable for efficiency when 

working with large datasets (Jadhav & Channe, 2016). 

Support Vector Machine (SVM)  

The Support Vector Machine (SVM) is a classification algorithm suitable for various ap-

plications (Parikh & Shah, 2016). SVM represents each data point, consisting of n features, as a 

point in an n-dimensional space, where each coordinate denotes the value of a specific feature. 

To classify the data, the algorithm identifies the optimal hyperplane that can segregate the two 

classes. A hyperplane is a line that divides the space of input features. For instance, in a binary 

classification task where a student's college enrollment decision depends on a single influential 

factor x, and the output variable y denotes the enrollment decision, the problem can be visualized 

in two-dimensional space, as illustrated in Figure 4. The SVM classifier locates a hyperplane that 

separates all the input points. Once obtained, the line is used to classify the data points by input-

ting their corresponding values. If the equation returns a positive value, the point is classified as 

belonging to the first class, whereas a negative value indicates that the point belongs to the sec-

ond class. Points close to the line have values close to zero and may be difficult to classify. The 

margin is the perpendicular distance between the line and the closest data points. 

 

 

 



41 

 
 

Figure 4. Example of SVM Classification for College Enrollment Decision 

 

The optimal hyperplane for class separation is determined by the largest margin between 

the two classes, with the closest points called support vectors. These vectors help define the line 

and build the classifier. The hyperplane is learned through an optimization process that maximiz-

es the margin on the training data. In real-world scenarios, data is typically noisy and cannot be 

perfectly separated by a hyperplane. In these cases, the SVM will relax the maximum-margin 

hyperplane constraint by allowing some training data points to violate the separation principle. 

The amount of violation allowed by the classifier is defined by a tuning parameter, referred to as 

the ‘C’ (i.e., Cost parameter) (Hastie et al., 2004). Generally, different C values are tried, and the 

one that best fits the data is selected. 

SVM is capable of creating a linear hyperplane between two classes with ease. However, 

when it comes to classifying non-linear data, SVM applies the kernel trick technique. The kernel 

trick involves the use of functions that convert a low-dimensional, non-separable input space into 

a higher-dimensional, separable space. The commonly employed kernels are linear, polynomial, 

and radial basis function. 
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Conducted models based on the SVM algorithms describing research findings offer some 

advantages. SVM works well on a dataset with many features (i.e., predictive variables) (Auria 

& Moro, 2008). Also, it provides a clear margin of separation, which effectively works for clas-

sification. Similar to ANN, SVM gives good classification results even if there is not enough in-

formation about the data, including unstructured data. This also implies that SVM can solve 

complex classification problems using a convenient kernel solutions function (Auria & Moro, 

2008; Fedorovici & Dragan, 2011). However, SVM also has some disadvantages. SVM requires 

a very long training time; hence, implementing large datasets is not highly recommended (Yu et 

al., 2004). Also, as mentioned earlier that SVM is good at solving complex classifications using 

kernels, but it is challenging to choose the appropriate kernel for the solution (Auria & Moro, 

2008; Fedorovici & Dragan, 2011).  

Artificial Neural Networks (ANN) 

 Artificial Neural Network (ANN) is a supervised machine learning algorithm suitable for 

both classification and regression prediction tasks (Lau et al., 2019). It is made up of nodes ar-

ranged in three layers - input, hidden, and output layers - with each layer having several neurons. 

The input layer has input nodes that represent input variables, which are predictors of the out-

come, while the output layer has output nodes that represent the predicted outcome (e.g., stu-

dents’ enrollment decision). The intermediate values calculated by the network, which do not 

have any meaning, are stored in the hidden layer's nodes. The hidden nodes enable the ANN to 

model complex relationships between the input variables and the outcome. An optimal number 

of hidden layer(s) and neuron(s) can be chosen based on common rules of thumb, such as setting 

the number of hidden layers equal to one and the number of neurons in that layer equal to the 
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mean of the neurons in the input and output layers (Thomas et al., 2017). For illustration, Figure 

5 shows the ANN with 50 input nodes (i.e., 50 influential metrics on college enrollment deci-

sions), 27 hidden nodes, and two output nodes (i.e., enrolled, non-enrolled).  

Figure 5. Example of ANN classification architecture of College Enrollment Decision 

 

 In an Artificial Neural Network (ANN), the connections between nodes in different lay-

ers are established by means of connection weights that represent the strength of the relationship 

between variables, similar to the coefficients in a logistic regression model. The ANN "learns" 

the relationship between input variables and outcome by adjusting the values of these connection 

weights based on known cases. This process of estimating the optimal weights that generate the 
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most reliable outcomes is called learning or training, which is analogous to estimating parame-

ters in logistic regression. However, an ANN is not simply an automated logistic regression 

model because they use different training algorithms for parameter estimation. There are several 

algorithms for training ANNs, including forward and backward propagation. During forward 

propagation, the ANN computes the predicted output for each instance in the data set, compares 

it with the actual output, and calculates the error between them. In contrast, backward propaga-

tion involves adjusting the connection weights associated with each input using gradient descent 

to minimize the discrepancy between actual and predicted outcomes by propagating the disparity 

from the output node to the input nodes. Overall, the backward propagation training algorithm is 

the most widely used method for training ANNs. 

According to the theory behind the ANN algorithm, implementing an ANN model has 

certain advantages. One such advantage is that building an ANN model requires less domain 

knowledge compared to other ML models like LR. This is because there are many user-friendly 

software interfaces available that can quickly build ANN models without requiring an in-depth 

understanding of the network's structure (Harrell et al., 1996). Furthermore, ANN is well-suited 

for modeling without considering multicollinearity because it does not require any prior 

knowledge about the data underlying the model. ANN can automatically detect and model any 

arbitrary relationships between input and output variables (Hansen & Sargent, 2001; Dreiseitl & 

Ohno-Machado, 2002; Bejou et al., 1996; Tu, 1996). In addition, ANN can model any implicit 

interactions among input variables. Detecting interactions among input variables is often difficult, 

but ANN can handle these complex interactions by using hidden nodes, which act as interaction 
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detectors and increase the network's capacity to learn complex relationships among the predictor 

variables (Ayer et al., 2010). 

The ANN algorithm also comes with certain drawbacks, similar to other ML algorithms. 

One of the main disadvantages is the increased risk of overfitting due to its complex structure. 

Large networks with more hidden nodes are particularly susceptible to overfitting because they 

tend to detect almost any possible interaction, making the model too specific to the training da-

taset. (Hansen & Sargent, 2001; Ranganathan et al., 2017; Ayer et al., 2010). Unlike LR, ANN 

models are not primarily designed for statistical use, which makes it difficult to generate confi-

dence intervals of the predicted probabilities. This often requires extensive computations 

(Ranganathan et al., 2017). 

Model Evaluation and Comparison 

Once each model is trained using the training dataset, I implemented the test dataset to 

these models to measure the classification prediction performance. In this process, a confusion 

matrix was generated for each ML algorithm model.  The confusion matrix was used to calculate 

the model classification accuracy, sensitivity, specificity, precision,  scores, and plot the ROC 

and PR curves for the models. Based on the ROC and PR curves, the AUC scores were calculat-

ed to verify if the model results were unbiased with respect to imbalanced data. If the cross-

validated AUC score is similar to the one which is determined from the test data, it means that 

the model is actually learning from the training data. All the above-mentioned performance met-

rics were used to compare the models to find the one that best suits for prediction of student en-

rollment decisions. Moreover, it gave a better idea of generalizing the model's prediction perfor-

mance based on the new data, which were never seen previously.   



46 

 
 

Implementation of Machine Learning Algorithms for College Enrollment Prediction Mod-

eling 

As mentioned earlier, machine learning algorithms appeared in the early 1990s in the 

realm of higher education when Song and Chissom (1993) proposed using a neural network algo-

rithm to create a U.S. college enrollment prediction model. Their research used a comparative 

analysis of the enrollment models using an artificial neural network (ANN) versus time series 

analysis. Later in that decade, Shah and Sastry (1999) developed a college enrollment prediction 

model using a decision tree (DT) algorithm. Since LR often performs poorly in classification 

problems, Shah and Sastry (1999) constructed several binary DT algorithms, as originally pro-

posed by Friedman et al. (1996). Other few studies related to college enrollment prediction mod-

eling used two machine learning algorithms (ANN, DT) along with LR for either a single-case or 

comparative analysis (Walczk & Sincich, 1999; Gonzalez & DesJardins, 2002; Antons & Maltz, 

2006; Chang (2006); Bruggink & Gambhir, 1996; Cabrera, 1994; Fraysier et al., 2020; Breiman, 

2001). However, no additional studies using new machine learning algorithms appeared through 

2010.  

In 2011, a group of scholars published a comparative analysis proposing two new ma-

chine learning algorithms (Vialardi et al., 2011). The study implemented DT, K-Nearest Neigh-

bors (KNN), and Naïve Bayes (NB) algorithms for college enrollment prediction and model 

comparison purposes. The results showed that the DT provided better classification accuracies 

than KNN and NB in terms of predicting students’ enrollment decisions. In addition to the ap-

pearance of the KNN and NB algorithms, support vector machine (SVM) and random forest (RF) 

algorithms have appeared in higher education enrollment prediction modeling research since 
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2014 (Ragab et al., 2014; Cirelli et al., 2018; Slim et al., 2019; Lux et al., 2016). Since various 

types of machine learning algorithms have been used for college enrollment prediction modeling, 

several comparative studies have used these algorithms to determine which one is the most accu-

rate in terms of classification. Table 2 presents a summary of U.S. college enrollment prediction 

studies conducting comparative analysis using different types of machine learning algorithms. 

Table 2. Summary of U.S. College Enrollment Studies Using Machine Learning Algorithms for 

Comparative Analysis 

 

College Enrollment Prediction 

Modeling 

Types of Machine Learning Algo-

rithms Used 

Best Prediction 

Model 

Walczk & Sincich (1999) 

DesJardins & Gonzales (2002) 

Gerasimovic & Bugaric (2018) 

LR vs. ANN 

 

ANN 

 

Antons & Maltz (2006) 

Chang (2006) 

LR vs. ANN vs. DT 

 

LR  

ANN 

Vialardi et al. (2011) DT vs. KNN vs. NB DT 

Ragab et al. (2014) ANN vs. DT vs. SVM vs. KNN vs. 

RF 

DT 

Lux et al. (2016) ANN vs. SVM ANN 

Cirelli et al. (2018) LR vs. ANN vs. NB vs. RF vs. SVM SVM 

Slim et al. (2019) LR vs. SVM SVM 

Basu et al. (2019) LR vs. NB vs. DT vs. SVM vs. KNN 

vs. RF vs. GB 

LR 

 

Table 2 shows that the best model for predicting college enrollment decisions varies 

across studies. Among comparative analysis studies of multiple ML algorithms of conducting 

college enrollment prediction models, some studies concluded that ANN is the better model with 

the highest accuracy rate (Walczk & Sincich, 1999; DesJardins & Gonzales, 2002; Gerasimovic 

& Bugaric, 2018; Chang, 2006; Lux et al., 2016). In addition to the high accuracy rate, ANN was 

identified to be the best algorithmic methodology since it adapts easily to related independent 

variables without the appearance of a multicollinearity problem (Gerasimovic & Bugaric, 2018). 



48 

 
 

Moreover, ANN can recognize the appearance of nonlinearity and interactions in input data in 

contrast to LR (Chang, 2006; Lux et al., 2016).  

 On the other hand, studies concluded SVM as a best algorithm stated that this model has 

the highest accuracy and easily implementable to the big data. These studies pointed out the ad-

vantage of SVM that it is usually used with data that have a large number of predictor variables 

(i.e., input variables; college enrollment decision factors) (Cirelli et al., 2018; Slim et al., 2019). 

Other studies concluded that DT (Vialardi et al., 2011; Ragab et al., 2014) or LR (Antons & 

Maltz, 2006, Basu et al., 2019) showed highest accuracy with low prediction errors. Hence those 

are the best algorithms to compile a predictive model for college enrollment.  

Overall, the preferable machine learning algorithms for college enrollment prediction are 

ANN, DT, SVM, and LR, which were chosen to be the best models in the past studies. However, 

no comparative analysis has been conducted using all four algorithms. Hence, the purpose of the 

present study is to create college enrollment prediction models using these four methods and then 

conduct a comparative analysis to see which model is the best fit for predicting college enroll-

ment decisions among students in the next academic cycle. This study presents an exploration 

and comparative study of predictive analysis using three machine learning algorithms – ANN, 

SVM, DT, and LR in the area of university student intake. The conceptual overview of four algo-

rithms is described in the methodology section of chapter three.   

Summary 

This chapter introduces and explains the background of college choice (i.e., enrollment 

decision) and related models. Among various college choice models, the present study proposes 

using the most recent college choice model created by Perna (2006). Her model is a conceptual 
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framework for segmenting the attributes that influence students’ enrollment decisions (Perna, 

2006).  

 Once the college choice model is selected, eleven selected attributes that influence stu-

dents' college enrollment decisions are reviewed based on Perna’s model. This section explains 

the historical influences of those factors on students’ college enrollment decisions. The current 

study also proposes using all eleven attributes to create the college enrollment predictive model-

ing using machine learning.  

In addition to illustrating the theoretical college choice model and related factors, the im-

plementation of the machine learning methodologies on college enrollment modeling is present-

ed. But first, it covers the concept of machine learning and how it is applied for predictive mod-

eling in general. It provides basic knowledge of machine learning, including how the four differ-

ent machine learning algorithmic methodologies are derived.  

After going over the general concept of machine learning algorithms, it covers past stud-

ies using machine learning methodologies for conducting U.S. college enrollment predictive 

models. Based on the past research, it was found that no comparative analyses were conducted 

for specific machine learning algorithms (i.e., the four algorithms) which were identified to be 

the best from other research. Hence the present study, once again, proposes to use four different 

machine learning algorithms to conduct college predictive modeling and comparative analysis to 

see which model is the best fit for prediction. The next methodology chapter covers how these 

four different machine learning methodologies are used for predictive modeling along with data 

collection and design.  
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The enrollment management process is directly involved in new student recruitment, fi-

nancial aid planning and budgeting. In order to maximize student enrollment, enrollment man-

agement administrators should frequently communicate with the admissions office and financial 

aid department to set up better plans on student recruitment along with allocating institutional 

scholarships and grants. Considering the large expenditure of institutional marketing and finan-

cial aid awards, this research study explores different attributes that influence college choice (i.e., 

enrollment) of admitted students and implements machine-learning algorithm models for predict-

ing admitted students’ enrollment decisions.  

The objectives of the current study are 1) to provide a better understanding of both stu-

dent and institution-related attribute(s) that highly influence students’ enrollment decisions and 2) 

to identify better predictive model(s) using machine learning algorithms that institutions can dis-

cern admitted students who are highly likely to enroll relative to others. This allows enrollment 

management to support financial aid, admission, and marketing departments to assign budgets 

effectively and thus not only maximize enrollment but also save a big portion of marketing ef-

forts efficiently for recruiting students. In this chapter, I discuss the factors and enrollment pre-

diction models using machine learning algorithms, including a wide range of features related to 

student and institutional characteristics.  
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CHAPTER THREE 

 

METHODOLOGY 

 
This chapter describes the data collection, data transformation, dataset split with the k-

fold cross-validation method, machine learning algorithms methods for prediction modeling, and 

comparative analysis methods of college enrollment prediction models. The research questions 

that guid the analysis of the study include:  

1. Which machine learning prediction model (Logistic Regression vs. Artificial Neural 

Network vs. Decision Tree vs. Support Vector Machine) demonstrates the best prediction 

performance for testing Fall 2019 enrollment after training the historical data (from Fall 

2013 to Fall 2018)?  

2. With a machine learning prediction model chosen in Q1, what are the most significant 

factors contributing to the prediction of the enrolled students for Fall 2019?  

3. With a machine learning prediction model chosen in Q1, what applications can be fol-

lowed up and utilized to support a higher education institution's enrollment management 

strategy as a plan of action?   

Data Description 

The data for this study was derived from two sources. One is from the institutional data-

base of one of the 4-year private Jesuit universities in the mid-west urban area. It was housed in 

the Student Data Management Warehouse called Slate. All students’ application data were col-

lected by the university and stored in Slate when they submit the application. The application 
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data include attributes of students’ habitus (i.e., gender, socioeconomic status, race, aca-

demic performance), their high school and community environment (i.e., parental education level, 

secondary school academic climate), university characteristics which students applied (i.e., prox-

imity, institutional financial aid), and social economic and policy context (i.e., national unem-

ployment and inflation rates). These data were required for students to provide in their applica-

tions. Hence there were no missing data in the dataset. In addition, rates of national unemploy-

ment and inflation data were obtained from the Bureau of Labor Statistics (BLS) database, which 

comes from another source besides Slate. The study was also submitted to the college’s Institu-

tional Review Board (IRB) and was determined to be exempt in December 2022 (see Appendix 

C).  

The de-identified students’ application data from Slate were exported into a .csv file to be 

analyzed. The data consisted of 53,189 of admitted students and 11,336 of those were identified 

as enrolled as a subset of the admitted student pool. These students' records were from six cohort 

years starting from 2013 to 2019. The data consisted of a variety of information about each stu-

dent, such as cohort year, gender, race, high school academic performances (ACT/SAT scores 

and High School GPA), Parental education level, Expected Family Contribution (EFC), High 

School academic climate, institutional financial aid amount, and proximity from their residence 

to college. Also, the study used data from the BLS for collecting the ‘Civilian Unemployment 

Rate’ and ‘Consumer Price Index (CPI)’ from 2013 to 2019. Hence, two datasets from Slate and 

BLS were merged for data preparation. Overall, a total of 12 attributes were captured for each 

student including the output variable (i.e., enrollment decision). Table 3 describes the features 

and their data types. The following sections ‘Data Transformation for Categorical Variables’ and 
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‘Data Description of Numerical Variables,’ describe the detailed steps taken to transform the da-

ta of certain attributes for conducting analysis. 
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Table 3. Description of Data Fields for Admitted Students from Slate and BLS 

Data 

Source

Attribute 

No. 

Perna's (2006) 

College Choice

Theoretical layer 

Attributes
Data 

Type
Description

1 - Cohort Year Categorical 2013, 2014, 2015, 2016, 2017, 2018, 2019

White

Hispanic or any race

Black or African-American

Asian

Other

Unknown

3 Gender Categorical Male, Female, Unknown

4 High School GPA Numerical Range from 0.00 to 4.00

5
Standardize Test 

Superscore
Numerical Range from 0 to 36

6
Expected Famliy 

Contribution
Numerical Range from $0 to $999,999

Some High School

High School Graduate

Associates Degree

Some College

Bachelors Degree

Graduate Degree

51. Public schools primarily serving traditional, blue-collar populations 

52. Private/religious schools primarily serving Puerto Rican/Caribbean/ESL populations 

53. Comprehensive public/religious schools primarily serving traditional, blue-collar communities 

54. Public schools in rural settings primarily serving African American and Hispanic populations 

55. Private/religious schools predominantly serving males from racially diverse populations 

56. Public/private schools serving racially diverse populations with a strong interest in athletics 

57. Public schools in urban settings primarily serving African American populations 

58. Public/private schools primarily serving Jewish populations 

59. Public schools in suburban settings primarily serving white, blue-collar populations 

Secondary School and 

Community Context 

(Layer 2)

2

Student's Habitus 

(Layer 1)

Race Categorical

7 Parental Education Level Categorical

High School 

Academic Climate
8

Student Data 

Management 

Warehouse 

(i.e., Slate)

Categorical
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Table 3. Description of Data Fields for Admitted Students from Slate and BLS (Continue.) 

Data 

Source

Attribute 

No. 

Perna's (2006) 

College Choice

Theoretical layer 

Attributes
Data 

Type
Description

60. Private schools primarily serving Jewish female populations 

61. Private schools in urban settings serving racially diverse populations 

62. Public schools serving Hispanic populations with traditional values 

63. Public schools in urban settings primarily serving Hispanic/ESL and African American populations 

64. Public schools primarily serving Asian/ESL populations 

65. Public schools in suburban settings serving affluent, racially diverse populations 

66. Public/private schools primarily serving women from racially diverse populations 

67. Religious/private schools primarily serving women, upper-middle-class populations 

68. Religious schools primarily serving Catholic populations 

69. Public schools primarily serving African American populations 

70. Public schools primarily serving affluent suburban populations 

71. Public/private/religious schools primarily serving Puerto Rican/Caribbean/ESL populations 

72. Homeschoolers and private/religious schools primarily serving upper-middle-class Christian populations 

73. Public schools in urban settings primarily serving Hispanic (particularly Mexican) populations 

74. Private schools primarily serving Asian/ESL populations 

75. Public schools in rural settings primarily serving middle-class populations with traditional values 

76. Private schools primarily serving affluent, racially diverse populations 

77. Private schools in urban settings serving racially diverse populations 

78. Public schools in small town and suburban settings serving vocationally diverse populations 

79. Public schools primarily serving highly educated, middle-class populations 

9 Insittuion Financial Aid Range from $0 to $76,762

10 Proximity Range from 1 mile to 9,361 miles

11 - Enrollment Decision Categorical Not Enrolled, Enrolled

12
National 

Unemployment Rate
Range from 3.6% to 7.6%

13
National 

Inflation Rate
Range from 1.8% to 2.2%

Student Data 

Management 

Warehouse 

(i.e., Slate) 

8

Secondary School and 

Community Context 

(Layer 2)

High School 

Academic Climate

Higher Education Context

(Layer 3)
Numerical

Bureau of 

Labor 

Statistics

Social economic, 

and Policty Context

(Layer 4)

Numerical

Categorical
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Data Transformation for Categorical Variables 

Data transformation involves converting raw data into a usable dataset for analysis. To 

prepare the data for input into machine learning algorithms, certain data transformation tech-

niques were applied to convert some data variables into different data types. This step is crucial 

because the dataset contains many categorical features that must be converted to numerical val-

ues before any further analysis can be performed. 

To convert the categorical data variables into a usable format for machine learning algo-

rithms, a popular technique called one-hot encoding was employed (Seger, 2018; Okada et al., 

2021; Rodriguez et al., 2015; Cerda et al., 2018). This technique is essential in improving the 

prediction and classification accuracy of a model. One-hot encoding involves creating a new bi-

nary feature for each possible category, with a value of 1 assigned to the feature of each sample 

that corresponds to its original category, and a value of 0 assigned otherwise. The dataset con-

tained six categorical metrics (Race, Sex, Parental Education Level, High School Academic Cli-

mate, and Enrollment Decision), which were one-hot encoded, resulting in 45 metrics. In the fol-

lowing subsections, each metric is described in detail, along with how it was transformed for use 

in the study. 

Race  

Student race is a categorical variable which was collected based on students’ application 

responses. This study employed 11 racial categories that conformed by the Integrated Postsec-

ondary Education Data System (IPEDS) classification system: White, Black or African-

American, Hispanic of any race, Asian, Nonresident Alien, American Indian or Alaska Native, 

Native Hawaiian or other Pacific Islander, Two or More Races, Other, Multiple Ethnicities or 
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unknown, and Race/Ethnicity Unknown. Due to the significantly small number of records classi-

fied under Nonresident Alien, American Indian or Alaska Native, Native Hawaiian or other Pa-

cific Islander, Two or More Races, Other, Multiple Ethnicities or unknown, and Race/Ethnicity 

Unknown, these categories are grouped into two different groups. In this study, I classified Non-

resident Alien, American Indian or Alaska Native, Native Hawaiian or other Pacific Islander, 

Two or More Races, Other under the name of “Other” and Multiple Ethnicities or Unknown, and 

Race/Ethnicity Unknown as “Unknown.” The other categories of White, Black or African-

American, Hispanic of any race, Nonresident Alien, Asian remained separate. Hence, the total 

number of categories of race is reduced to six. Based on the re-categorization, a series of seven 

dummy variables were then created including White, Black or African-American, Hispanic or 

any race, Asian, and Nonresident Alien, Other, and Unknown. Table 4 shows an example of how 

race is coded through a one-hot coding data transformation process.  

Table 4. One-Hot Encoded for Race 

White
Black African- 

American

Hiapnic or 

any race
Asian Other Unknown

1 0 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0  

Sex 

Similar to race, student sex was a categorical variable which was collected based on stu-

dents’ application responses, as well. There were two different categories under sex: Male and 

Female. Since sex has two different categories, label coding was considered at first as coding 

Female as 1 and male as 0. However, the label coding makes it seems that there is a ranking be-
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tween values. Hence, one-hot encoding was applied with creating a series of two dummy varia-

bles as part of data set consisting of Female and Male. Table 5 shows an example of how sex was 

coded through a one-hot coding data transformation process.  

Table 5. One-Hot Encoded for Sex 

Female Male

1 0

0 0

0 1

1 0  

Parent Education Level (PEL) 

PEL was a categorical variable which was also collected based on students’ application 

responses. There were 6 categories under PEL: Some High School, High School Graduate, Asso-

ciate Degree, Some College, Bachelor’s Degree, and Graduate Degree. Since PEL has six differ-

ent categories, a series of 6 dummy variables was created as part of data set consisting of Some 

High School, High School Graduate, Associate Degree, Some College, Bachelors Degree, and 

Graduate Degree. Table 6 shows an example of how PEL is coded through a one-hot coding data 

transformation process.  

Table 6. One-Hot Encoded for Parent Education Level 

Some 

High School

High School 

Graduate

Associatees 

Degree

Some 

Degree

Bacehlors 

Degree

Graduate 

Degree

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 1 0 0  
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High School Academic Climate (HSAC) 

As it was described in Table 8, HSAC was also a categorical variable involving 29 differ-

ent categories. HSAC data was collected based on the students’ high school information that 

were provided for application response. Once students’ high school information was collected, 

these information were sent out to the College Board to get a High School Cluster tagging ser-

vice which segments all high schools into 29 descriptive clusters (segment labeling starts from 

51 to 79). Generated clusters by the College Board represent more than 33,000 high schools in 

the U.S. They were defined by 40 academic and demographic factors and described by 51 char-

acteristics that influence students' college choice decisions. Once the College Board completed 

the High School Tagging service by matching 29 descriptive high school clusters for each stu-

dent record, this data were imported to Slate to merge with student application data. See Appen-

dix B for detailed information about each high school segmented cluster. As mentioned above, 

there were 29 different categories under HSAC. Hence, a series of 29 dummy variables was cre-

ated as part of data set consisting for all 29 categories. Table 7 shows an example of how HSAC 

was coded through a one-hot coding data transformation process.  

Table 7. One-Hot Encoded for High School Academic Climate  

HSAC_51 HSAC_52 HSAC_53 … HSAC_77 HSAC_78 HSAC_79

1 0 0 … 0 0 0

0 0 1 … 0 0 0

0 0 0 … 0 1 0

0 0 0 … 1 0 0

0 1 0 … 0 0 0

0 0 0 … 0 0 1

0 0 1 … 0 0 0  
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Enrollment Decision 

 Students’ enrollment decision data was automatically stored in Slate once students made 

their enrollment decision. In general, such data was coded and. categorized as ‘Enrolled’ vs. ‘Not 

Enrolled’. Like one-hot encoding schema, this metric was converted into numerical data using 

binary coding. For example, students who enrolled are coded as 1, whereas students who did not, 

are coded as 0. This metric was a dependent binary outcome variable for all four machine learn-

ing models (i.e., Artificial Neural Network, Decision Tree, Support Vector Machine, Logistic 

Regression). 

Data Description of Numerical Variables 

In addition to the five categorical metrics described earlier, another seven metrics have 

been identified as numerical and continuous. This section described numerical metrics and how 

those are defined and stored in the databases. 

High School GPA (HSGPA) 

 Students must submit their HSGPA to get their application evaluated for admission. 

Since the way of high school GPA calculations varies across highs schools, the institution decid-

ed to recalculate all the students’ GPAs under a 4.0 scale for consistency. Hence, range of 

HSGPA was from 0.0 to 4.0.   

Standardized Test Superscore  

 Students were also required to submit their standardized test scores such as ACT or SAT 

along with their HSGPA. These scores were usually reported directly from ACT or the College 

Board under a superscore scale. Superscores were eligible for students who have taken the stand-

ardized tests more than once. A superscore was the average of a student’s best scores from each 
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subject from multiple test attempts. Since more than 80% of students reported their standardized 

scores on ACT scale, students with SAT superscores were converted into the ACT scale based 

on the ACT and College Board’s converting table (ACT, 2018). Hence the Standardized Test 

Superscore metric ranged from 0 to 36.  

Estimated Family Contribution (EFC) 

As mentioned earlier, EFC was a continuous numerical variable. Hence EFC variable was 

not necessary to go through the one-hot coding for creating dummy variable(s). This variable 

was described under the data transformation section because EFC data were sourced from a dif-

ferent database, called Free Application for Federal Student Aid (FAFSA). For that reason, EFC 

data were fed to Slate and merged with student application data once it is sourced from the FAF-

SA database. The FAFSA application required students to provide EFC information which can 

be used to estimate their socioeconomic status. Students who did not submit FAFSA were shown 

to have no data (i.e., NULL) under this field. In this study, EFC ranged from $0 to $999,999.  

Institutional Financial Aid 

 Institutional scholarships and grants were considered as institutional financial aid. Once 

students complete and submit their applications, the institution evaluates their applications for 

admission. Then, the institution determines the total number/amount of scholarships and/or 

grants and assigned them to students. This was determined based on various metrics, such as 

studnets’ high school academic achievement, superscores, and socioeconomic status. This study 

focused on the amount of aid and examines how much it impacts students’ enrollment decisions. 

The amount of aid that was offered to students ranges from $0 to $76,762 per academic year. 
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Proximity 

 Students were required to provide their mailing/permanent addresses by the time of their 

application submission. Once their address information were stored in the student database 

warehouse, Slate automatically calculates the geographic proximity (i.e., distance) from students' 

addresses to college based on their address zip code. Based on the dataset for the current study, 

students’ proximity ranged from 1 mile to 9,361 miles.  

Unemployment Rate 

Similar to EFC, unemployment rate data were sourced from Bureau of Labor Statistics 

(BLS) database. The unemployment rate is calculated as the proportion of unemployed individu-

als in the labor force, which includes both employed and unemployed individuals. Since the data 

covers the cohort years from 2013 to 2019, the average unemployment rate trend was also cap-

tured from 2013 to 2019. The average unemployment rate range for over seven years was from 

3.7% to 7.6%.  

Inflation Rate 

 Inflation rate data was also sourced from BLS database. To monitor the official inflation 

rate, the consumer price index (CPI) was utilized to measure changes in the cost of living over a 

period of time. In other words, CPI tracked the average rate of change in U.S. inflation over time. 

Therefore, the current study reflects CPI trends which ranged from 1.8% to 2.2% over 7 years 

from 2013 to 2019.  

Data Split and k-fold Cross-Validation 

 Once the data transformation was completed, there were 50 metrics excluding the “en-

rollment decision” metric. This meant 50 independent features that acted as predictors were in-
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putted into the model to infer the value of “enrollment decision” (the output/dependent variable). 

The data was split based on the cohort year and the application, admit, and enrolled counts in 

each cohort year is shown in Table 8. 

Table 8. Application Funnel Overview from Fall 2013 to Fall 2019. 

Cohort Term Application N Admit N Enroll N

2013 20,554 13,128 2,496

2014 24,148 12,931 2,292

2015 25,478 15,356 2,194

2016 26,806 16,482 2,626

2017 27,528 16,639 2,658

2018 29,176 17,064 2,774

2019 29,807 17,198 2,636  

Data Split  

The cohort years 2013 to 2018 student records were gathered from the complete dataset 

to form the training dataset, which was utilized to train, validate and evaluate the prediction per-

formance of the models. The remaining student records from the cohort year 2019 were used to 

create a test dataset. Out of the combined train-test dataset, comprising 91,600 admitted student 

records, with 15,040 enrolled and 76,560 non-enrolled students, approximately 84% was used to 

train and validate the four machine learning algorithm models. The remaining 16%, which in-

cluded 17,198 admitted student records, with 2,636 enrolled and 14,562 non-enrolled students, 

was employed to test and assess the prediction performance of the chosen model. 

 This approach of dividing the entire input data into training and testing datasets is known 

as the "holdout" method, where the typical split rate is around 80% for training and 20% for test-

ing (Stone, 1977; Nguyen et al., 2021). However, the holdout method's disadvantage is that the 

test dataset results are greatly influenced by how the researcher classifies the initial data (Yadav 
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& Shukla, 2016). In other words, a larger percentage of the test dataset may make the model 

prone to errors as it has less training experience, while a smaller percentage of the test dataset 

could give the model an unwanted bias towards the training data, leading to underfit-

ting/overfitting of the prediction model. Therefore, data scientists have developed k-fold and 

stratified k-fold cross-validation methods. For this study, the stratified k-fold cross-validation 

method was used. 

k-fold and Stratified k-fold Cross-Validations 

The k-fold cross-validation method involves randomly dividing the training dataset into k 

subsets, with one subset used as the validation set and the remaining k-1 subsets combined to 

form a training set (Wong & Yang, 2017; Parker et al., 2007). The machine learning models are 

then trained k times, with each iteration using a different subset as the validation set and the oth-

er subsets as the training set. The error and accuracy estimates are averaged over all k trials to 

determine the overall performance of the model. This method greatly reduces prediction error by 

using most of the data for fitting and helps to remove biases by repeating the subsets of the train-

ing dataset. 

Stratified k-fold cross-validation is a modified version of k-fold cross-validation that is 

more effective when dealing with datasets that have an imbalanced response variable (Kohavi, 

1995; Zeng & Martinez, 2000). It was similar to k-fold cross-validation. But instead of splitting 

the dataset randomly to k-fold, stratified k-fold spitted the dataset in a way that each fold has the 

same class distribution at the training dataset (Zeng & Martinez, 2000; Olson & Delen, 2008). 

For example, the outcome of the dataset shown in Figure 6 is students’ enrollment decisions for 

cohorts from Fall 2013 to Fall 2018. It shows that about five times more students did not enroll 
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than enrolled in the outcome class. When the training dataset was split with a stratified k-fold, 

each fold would have similar outcome class distribution or five times more not enrolled students 

than enrolled students.  

Figure 6. Stratified k-fold Cross-Validation for Training Data (Cohorts from Fall 2013 to 2018) 
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Many researchers suggest that the typical value of k for real-world datasets is 10. In this 

approach, the data is divided into 10 subsets and during each run, 9 subsets (equivalent to 90% of 

the data) are used for training while the remaining 1 subset (i.e., 10% of the data) is used for val-

idation (Kohavi, 1995; Kuhn & Johnson, 2013; James et al., 2017). 

For illustration purposes, Figure 7 shows how the stratified k-fold cross-validation meth-

od was applied to the original data set of the current study. First, the original data was split into 

two datasets (i.e., training and testing) based on the holdout method. The training dataset in-
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volved the cohort data from Fall 2013 to Fall 2018, and the test dataset involved the cohort data 

from Fall 2019. Then, a stratified 10-fold cross-validation method was implemented in the train-

ing dataset which divided the training dataset into 10 subsets. Hence, the 82,440 students includ-

ing 68,904 non-enrolled and 13,536 enrolled students were used as a training dataset, a combined 

nine subsets. For the rest of one subset, 9,160 students were used as a validation dataset, includ-

ing 7,656 non-enrolled and 1,504 enrolled students. This was iterated ten times by capturing the 

validation dataset ten times independently.  

Selected four machine learning models (LR, SVM, DT, and ANN) were trained based on 

nine training subsets, and the remaining validation subset was rotated k times. After evaluating 

the four ML models’ prediction performances, the best prediction performance model was se-

lected based on comparative analysis. Then, the test dataset (i.e., Fall 2019) was applied to the 

chosen model and its prediction performance was evaluated and utilized. 
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Figure 7. The Data Split and 10-fold Cross-Validation Procedure of Train and Test data for Compile Machine Learning 
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Experiments in Testing Machine Learning Models 

 Once the train, validation, and test datasets were created from the original data, four ma-

chine learning models (i.e., LR, DT, ANN, and SVM) were compiled using train and validation 

data with stratified 10-fold cross-validation applied. Then, I evaluated each model’s classifica-

tion prediction performance in terms of accuracy, sensitivity, specificity, precision,  score and 

AUC values. These evaluation metrics were generated from concatenated confusion matrix and 

mean ROC and PR plots. I chose the best model(s) based on these seven-evaluation metrics and 

implemented the test data to those model(s). For compiling models, 50 pre-processed independ-

ent metrics including one-hot encoding were applied. However, one of the disadvantages of one-

hot encoding is that it may lead to a dummy variable trap, leading to a multicollinearity issue. 

Although DT and ANN are free from multicollinearity concerns (Kotsiantis, 2013; Hansen & 

Sargent, 2001; Dreiseitl & Ohno-Machado, 2002; Bejou et al., 1996; Tu, 1996), this issue is sig-

nificant for logistic regression and linear SVM models. Therefore, multicollinearity was consid-

ered and applied to both the train/validation and test dataset so that the results can be compared 

apples to apples. I used a variance inflation factor (VIF) to measure the amount of multicollinear-

ity of 46 independent variable predictors by omitting three one-hot encoded largest variables in 

each categorical field; Race, Sex, Parent Education Leve (PEL), and High School Academic 

Climate (HSAC) (Wissmann et al., 2014). In other words, ‘White,’ ‘Female,’ ‘Parent Education 

Level with Bachelors Degree,’ and ‘HSAC_79’ were omitted. These three variables became the 

references/baseline category, and the other dummy variables represent the differences between 

the remaining and reference categories. Therefore, 46 independent metrics, including dummy 

variables, were reflected in four machine-learning models.  
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In addition, I conducted feature importance and prediction probability analysis for chosen 

model(s). These analyses were conducted to show how the selected model(s) were used pragmat-

ically. Feature importance analyses were useful in identifying the most influential factors toward 

students’ enrollment decisions. Hence, this analysis showed each factor's influential magnitude 

on the outcome (i.e., student enrollment decisions). Since this is analyzed based on a non-

parsimonious setting, it could provide insights into non-influential factors but could impact de-

veloping institution’s diversity of student body. In addition to feature importance, prediction 

probability analysis was conducted to measure the probability of students' likelihood to enroll or 

not at an individual level. Since identifying the best machine learning model was the key of the 

study, the following subsections described the confusion matrix and ROC plot, along with how 

those six evaluation metrics were calculated. 

Confusion Matrix 

Confusion matrices, which include metrics such as true positives, true negatives, false 

positives, and false negatives, are commonly used in machine learning algorithms to represent 

the model's performance on a given dataset (Kohavi & Provost, 1998; Caelen, 2017). These ma-

trices are essential in classification problems as they provide a clear understanding of how often 

the model correctly predicted a true or false value (Kohl, 2012). Furthermore, the confusion ma-

trix is an effective tool for assessing model performance and can be used to compute other met-

rics (Kohl, 2012; Sammut & Webb, 2017). As shown in Figure 8, a confusion matrix is con-

structed using actual and predicted values and is composed of statistics that are calculated to 

evaluate the model's performance. 
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Figure 8. Confusion Matrix for Binary Classification of Enrollment Decision 
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When attempting to predict dichotomous outcomes such as college enrollment, each ob-

servation in a test dataset results in one of four categories: True Positive (TP), False Positive 

(FP), True Negative (TN), or False Negative (FN) (Guyon & Eliseff, 2007; Kohl, 2012). True 

positives occur when the model accurately predicts students who have enrolled in college. False 

positives arise when the model predicts that a student will enroll, but they do not. True negatives 

arise when the model accurately predicts students who did not enroll in college. False negatives 

occur when the model predicts that a student will not enroll in college, but they actually enroll. 

Figure 6 provides an example to illustrate the concepts of the confusion matrix representation. 

The matrix was generated from a total population of 231 graduate students who were admitted to 

the Master’s Business programs in Fall 2018 at a private university in the Midwest. The predic-

tions made in this example represent whether the students enrolled or not. Figure 9 displays the 

confusion matrix for a binary classification problem with two classes, namely "enrolled" and 

"not enrolled". 
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Figure 9. Example of Confusion Matrix 

 

Many advanced models included confusion matrix features. This feature allowed the 

model to automatically adjust the model weight and continue calibrating as new data which was 

collected based on the values derived from the confusion matrix (Sammut & Webb, 2017). This 

study utilized metrics to report the best-fitting model(s) during the comparison phase.  

Classification Accuracy, Sensitivity, Specificity, and Precision 

When working within supervised learning states, the four main components of measuring 

a model fit were model accuracy, sensitivity, specificity, and precision (Brieman, 1984). These 

four components were calculated using the confusion matrix values (Kohl, 2012).  

Classification accuracy is defined as the proportion of the number of correct predictions 

to all the predictions made by the model (Geron, 2017). To evaluate the model's accuracy in dis-

tinguishing between students who enrolled and those who did not, the ratio of the sum of true-
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positive (TP) and true-negative (TN) predictions to the sum of all evaluated observations (i.e., 

the total size of the predicted population) was calculated. 

  

Sensitivity refers to the probability of a prediction being true when the actual class is true. 

Simply, it describes how well the model can predict positive instances. It is also referred to as 

"True positive rate" or "Recall" and is calculated as the ratio of true positives to the actual posi-

tive cases. To estimate the model's sensitivity in predicting college enrollment (while ignoring 

correct predictions of students not enroled in college), the ratio of true positives (TP) to the sum 

of true positives or false negatives (FN) of student enrollment was calculated. 

  

Specificity refers to the probability of the model's prediction being false when the actual 

class is false. In other words, it describes how specific the model is when predicting negative in-

stances. Specificity is calculated as the ratio of true negatives to actual negative cases. To meas-

ure the model's specificity in predicting students who did not enroll in college (ignoring success-

ful predictions of students enrolling in college), the ratio of true-negative (TN) students correctly 

predicted as not enrolling in college was calculated from the sum of true-negative (TN) and 

false-positive (FP) students who did not enroll in college. 

  

In order to have a comprehensive evaluation of the model's performance, it is not suffi-

cient to focus only on the true positive rate (i.e., sensitivity) and true negative rate (i.e., specifici-

ty). The concept of precision, which measures the positive predicted value, is also important to 

consider. Precision describes the probability of the prediction being correct when the model iden-
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tifies it as positive, and it reflects how precise the model is when predicting positive instances. 

To calculate precision, we divide the number of true positives (TP) by the total number of posi-

tive predictions, which is the sum of true positives (TP) and false positives (FP). 

  

 Score 

When using classification models in machine learning, one of the common metrics that 

was also used to assess the quality of the model is  score (Chicco & Jurman, 2020). A model’s 

 score was calculated by taking a harmonic mean of its precision and sensitivity. It finds the 

most optimal balanced confidence score threshold where precision and recall give the highest  

score. If the  score is high, precision and recall are high, and vice versa. An equation for calcu-

lating  score is shown below. The range of  Score is from 0 to 1 and the closer it is to 1, it is 

determined to be the better model.  

 
Receiver Operating Characteristics (ROC) and Area Under Curve (AUC) 

 When dealing with binary classification problems, the typical practice was to utilize a 

probability threshold of 0.5 for classification predictions (Arisholm et al., 2010). However, in 

some situations, an alternate threshold may be more appropriate. The Receiver Operating Char-

acteristics (ROC) curve is the most widely used technique for displaying the performance of a 

binary classifier at various thresholds (Fawcett, 2006; Muschelli, 2020). It is created by plotting 

the True Positive Rate versus the False Positive Rate, with the latter calculated as 1-Specificity. 

The Area Under the Curve (AUC) was determined from the ROC curve, indicating the likelihood 
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that a classifier model would rank a randomly chosen positive instance higher than a randomly 

chosen negative one (Fawcett, 2006). 

 Figure 10 displays the ROC curve generated from the example data obtained from the 

confusion matrix illustrated in Figure 9. The area under the red line in the plot represents the 

AUC value of the classifier, which, in this case, was 0.759. AUC values above 0.9 are considered 

excellent, between 0.8 and 0.9 as good, 0.7 and 0.8 as fair, 0.6 and 0.7 as poor, and 0.5 and 0.6 as 

failed (Ludemann et al., 2006; Obuchowski, 2003; Khouli et al., 2009). Generally, the ROC 

curve of a model closer to the upper-left corner (i.e., a value closer to 1) is deemed to exhibit bet-

ter classification performance (Fawcett, 2006; Japkowicz, 2013). 

Figure 10. Example of Receiver Operating Characteristics Curve Plot 

 

Precision-Recall (PR) Curve and Area Under the Curve (AUC) 

 Although the Receiver Operating Characteristics (ROC) curve is a widely used and effec-

tive method to evaluate binary classification models (Fawcett, 2006; Muschelli, 2020), it can be 

unreliable when dealing with heavily imbalanced data. Davis & Goadrich (2006) have noted that 
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the ROC curve tends to overestimate the classification performance of a model in such cases. To 

address this limitation, the Precision-Recall (PR) curve has been identified as a useful alternative 

for evaluating model performance (Fu et al., 2018). The PR curve depicts the relationship be-

tween precision and recall, with precision values (TP/(TP+FN)) plotted on the y-axis and recall 

values (TP/(TP+FP)) on the x-axis. As precision is also known as positive predicted value and 

recall as true positive rate, the PR curve is particularly useful in classifying true positive cases 

rather than negative cases (Bekkar et al., 2013; Japkowicz, 2013).  

Figure 11 presents an example PR curve constructed from the confusion matrix data 

shown in Figure 9. The area under the red line in the plot represents the AUC (area under the 

curve) of the classifier, which in this case was 0.524. As previously mentioned, an AUC value 

between 0.9 and 1 is considered excellent, between 0.8 and 0.9 as good, 0.7 and 0.8 as fair, 0.6 

and 0.7 as poor, and 0.5 and 0.6 as failed (Ludemann et al., 2006; Obuchowski, 2003; Khouli et 

al., 2009). Generally, a PR curve that approaches the top-right corner (i.e., a value closer to 1) is 

indicative of better classification performance (Cavert & Khoshgoftaar, 2019; Japkowicz, 2013). 
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Figure 11. Example of Precision-Recall Curve Plot 

 

Feature Importance Analysis 

After selecting the best ML algorithm model, drop-column importance was performed to 

determine the impact of each independent variable on the model's classification performance. 

This method is straightforward as it assesses the significance of independent variables/features 

by comparing a model that includes all features with one that excludes certain features (Chen et 

al., 2020). This approach is highly accurate in measuring feature importance (Saarela & Jauhi-

ainen, 2021), but it requires a significant amount of computational time since the model needs to 

be retrained for each variant of the dataset (by removing one feature column at a time) (Chen et 

al., 2020; Saarela & Jauhiainen, 2021). 

Potential Predictve Probability Analysis 

 Apart from conducting feature importance analysis, potential predictive probability anal-

ysis was also carried out to demonstrate the practical utilization of the selected model(s) in sup-

porting the institution's enrollment management plan and strategies. This analysis involved com-
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piling the enrollment probability of individual students using the selected models, which were 

determined through comparative analysis. This process enables the institution to gain insights 

into the enrollment likelihood of each admitted student and develop personalized strategies for 

them efficiently. 

Summary 

This chapter covered various aspects of the data collection process, data pre-processing 

(including one-hot encoding and stratified k-fold cross-validation), the issue of the dummy vari-

able trap leading to multicollinearity, and a narrative summary of the methodology for compara-

tive analysis (including confusion matrix, accuracy, sensitivity, specificity, precision,  score, 

ROC-AUC, and PR-AUC). The chapter then explored four supervised machine learning models 

(Artificial Neural Network, Decision Tree, Support Vector Machine, and Logistic Regression) to 

develop a model that accurately predicts students' enrollment decisions. Additionally, feature 

importance and potential predictive probability analyses are discussed, showcasing the practical 

utilization of the selected model(s) to support enrollment management at the institution. 

The next chapter presents the results of each machine learning model and identifies the 

optimal models for predicting students' enrollment decisions. It also demonstrates how the se-

lected models were practically implemented. 
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CHAPTER FOUR 

 

RESULTS 

 

This chapter discusses the results beginning with a description of the dataset and then an-

alyzes the findings related to the three research questions mentioned in Chapters 1 and 3. This 

study applied four selected machine learning algorithms (i.e., LR, SVM, DT, and ANN) to a pre-

processed dataset containing 108,798 admits, including 17,676 enrolled and 91,122 non-enrolled 

students and prediction models were compiled. As mentioned in the methodology chapter, 46 

independent metrics were applied to the models, taking multicollinearity into account. These 

prediction models were created using the “scikit-learn” package in Python 3.10 and were fitted to 

the training data. Using stratified 10-fold cross-validation, trained models were used to predict 

the validation data. Confusion matrices related to the four algorithm models were generated from 

the predictions of the validation data. 

Descriptive Statistics 

The original dataset was split into two: train/validation and test datasets based on the co-

hort terms along with stratified 10-fold cross-validation applied. The train/validation dataset in-

cluded the admit data (i.e., enrolled and non-enrolled students) from Fall 2013 to Fall 2018 

whereas test data included the ones for Fall 2019. Hence, a total of 108,798 admits, including 

17,676 enrolled (16%) and 91,122 non-enrolled (84%) students were in the train/validation da-

taset. For the test dataset, a total of 17,198 admits, including 2,636 enrolled (15%) and 14,562 

non-enrolled (85%) students were in the test dataset. Students’ academic profiles and a break
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down by their demographic, socioeconomic, geographic, and high school academic climate at-

tributes are summarized in Tables 9 and 10. Overall, approximately three-fifths and two-thirds of 

enrolled students were white and female, respectively. At the parent educational level, more than 

70% of the enrolled students’ parents had bachelor's and/or graduate degrees. For the high school 

academic climate cluster (HSAC), the majority of enrolled students were from three of the twen-

ty-nine unique clusters:  

During seven cohort years from 2013 to 2019, 29% to 37% of enrolled students came 

from high schools coded as cluster 79 which reflected that those high schools were the ‘public 

schools primarily serving highly educated, middle-class populations. Another 19% to 24% of 

enrolled students were from high schools coded as cluster 70 which those high schools were the 

‘public schools primarily serving affluent suburban populations.’ Lastly, the other 19% to 26% 

of enrolled students were from high schools coded as cluster 68 which those high schools were 

the ‘religious schools primarily serving catholic populations.’ These trends were consistent for 

the non-enrolled student pool across terms. It showed that 25% to 37% of non-enrolled students 

were coming from high schools coded as cluster 79, 15% to 23% of non-enrolled students were 

coming from cluster 70, and 18% to 26% of non-enrolled students were coming from cluster 68. 

In addition, Table 9 shows that the averages of expected family contribution and the amount of 

institutional financial aid were higher for enrolled students than non-enrolled students across 

terms.  

Excluding the Fall 2013, 2016 and 2017 terms, the average standardized test scores for 

the enrolled student pool were slightly lower than the non-enrolled student pool (Fall 2014: 

26.88 < 27.27; Fall 2015: 26.52 < 26.74; Fall 2018: 26.70 < 26.92; Fall 2019: 26.91 < 27.19). 
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Also, excluding Fall 2013, the average high school GPAs for the enrolled student pool were 

slightly lower than the non-enrolled student pool (Fall 2014: 3.82 < 3.85; Fall 2015: 3.76 < 3.82; 

Fall 2016: 3.78 < 3.84; Fall 2017: 3.80 < 3.83; Fall 2018: 3.80 < 3.87; Fall 2019: 3.84 < 3.92). In 

Fall 2016 and 2017, the average proximity (i.e., distance from college to student’s residence) was 

slightly higher for the enrolled student pool compared to the non-enrolled student pool (Fall 2016: 

295.0 > 252.0; Fall 2017: 364.3 > 360.4). 
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Table 9. Enrolled vs. Not Enrolled Students’ Demographic Overview 

Enrolled 

(n=2,469)

Not Enrolled 

(n=10,632)

Enrolled 

(n=2,292)

Not Enrolled 

(n=10,639)

Enrolled 

(n=2,194)

Not Enrolled 

(n=13,162)

Enrolled 

(n=2,626)

Not Enrolled 

(n=13,856)

Enrolled 

(n=2,658)

Not Enrolled 

(n=13,981)

Enrolled 

(n=2,774)

Not Enrolled 

(n=14,290)

Enrolled 

(n=2,636)

Not Enrolled 

(n=14,562)

Race

White 59.9% 58.2% 58.8% 60.0% 56.8% 54.9% 60.0% 54.7% 57.6% 54.5% 56.9% 53.2% 58.8% 53.4%

Black or African American 3.1% 5.0% 4.7% 3.1% 4.7% 5.5% 5.0% 6.3% 3.9% 6.2% 4.7% 5.7% 4.7% 5.4%

Hispanic or any race 15.2% 18.1% 17.6% 14.9% 15.6% 20.3% 15.0% 21.0% 17.3% 20.9% 17.6% 22.6% 18.1% 22.4%

Asian 15.9% 11.9% 11.9% 14.4% 16.0% 13.3% 14.0% 12.4% 15.2% 12.7% 15.0% 12.6% 12.4% 13.3%

Other 5.0% 5.1% 5.6% 6.1% 5.2% 4.3% 4.8% 4.3% 5.0% 4.7% 5.0% 5.0% 5.5% 4.7%

Unknown 1.0% 1.7% 1.4% 1.6% 1.5% 1.6% 1.2% 1.3% 1.0% 1.1% 0.8% 0.9% 0.6% 0.8%

Sex

Female 66.0% 67.6% 67.9% 68.3% 67.0% 69.7% 68.7% 70.6% 68.4% 68.5% 68.0% 70.2% 67.0% 69.5%

Male 34.0% 32.4% 32.1% 31.7% 33.0% 30.3% 31.3% 29.4% 31.6% 31.5% 32.0% 29.8% 33.0% 30.5%

Parent Education Level

Some High School 3.5% 3.5% 3.2% 3.2% 3.3% 3.6% 3.0% 5.2% 4.0% 6.2% 3.2% 4.9% 2.9% 5.0%

High School Graduate 9.9% 7.9% 7.8% 8.7% 7.8% 9.4% 9.6% 17.8% 7.7% 10.1% 9.1% 9.8% 8.2% 8.9%

Associate Degree 5.7% 4.3% 4.8% 4.2% 5.0% 4.1% 4.9% 7.3% 3.5% 4.4% 4.7% 4.4% 4.4% 4.1%

Some College 10.2% 10.5% 10.9% 9.7% 12.2% 10.5% 11.4% 9.9% 9.9% 9.0% 9.6% 8.9% 8.2% 8.2%

Bachelors Degree 37.2% 38.2% 39.8% 38.2% 36.7% 36.9% 36.2% 31.4% 36.4% 36.5% 37.2% 35.6% 36.0% 36.0%

Graduate Degree 33.4% 35.6% 33.5% 36.1% 35.0% 35.4% 34.9% 28.3% 38.5% 33.8% 36.2% 36.3% 40.3% 37.8%

Standardized Test 

Superscore Mean (SD)

26.90 

(3.35)

26.71

(3.62)

26.88 

(3.35)

27.27 

(3.70)

26.52 

(3.64)

26.74 

(3.78)

26.73 

(3.65)

26.25 

(4.13)

26.85 

(3.54)

26.73 

(3.83)

26.70 

(3.72)

26.92 

(4.03)

26.91

 (3.94)

27.19 

(4.11)

High School 

GPA Mean (SD)

3.78 

(0.47)

3.76 

(0.47)

3.82 

(0.46)

3.85 

(0.45)

3.76 

(0.48)

3.82 

(0.48)

3.78 

(0.47)

3.84 

(0.51)

3.80 

(0.48)

3.83 

(0.48)

3.80 

(0.48)

3.87 

(0.47)

3.84 

(0.49)

3.92

(0.47)

Proximity Mean 326.8 517.3 334.0 363.8 330.4 365.9 295.0 252.0 364.3 360.4 309.0 379.9 355.0 422.7

Instituiona Financial

Aid Mean 
$15,071.40 $14,230.70 $15,599.63 $15,392.24 $16,315.65 $16,107.73 $19,150.94 $17,913.47 $19,670.24 $19,497.61 $20,400.44 $20,179.55 $20,831.59 $20,521.02

Expected Family 

Contribution Mean 
$22,185.72 $17,092.32 $34,182.69 $25,514.77 $36,647.57 $22,403.21 $33,450.15 $21,856.54 $35,385.96 $27,253.53 $39,336.27 $30,803.94 $46,143.25 $38,053.25

Unemployment Rate

Inflation Rate

Train/Validation Dataset Test Dataset

3.7%

2.2%2.0%2.2% 1.9%

5.4%

1.8%

4.9% 4.5% 4.0%7.6%

1.8%

6.5%

1.8%

Fall 2019Fall 2013 Fall 2014 Fall 2015 Fall 2016 Fall 2017 Fall 2018
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Table 10. Enrolled vs. Not enrolled by High School Academic Climate Overview 

Enrolled 

(n=2,469)

Not Enrolled 

(n=10,632)

Enrolled 

(n=2,292)

Not Enrolled 

(n=10,639)

Enrolled 

(n=2,194)

Not Enrolled 

(n=13,162)

Enrolled 

(n=2,626)

Not Enrolled 

(n=13,856)

Enrolled 

(n=2,658)

Not Enrolled 

(n=13,981)

Enrolled 

(n=2,774)

Not Enrolled 

(n=14,290)

Enrolled 

(n=2,636)

Not Enrolled 

(n=14,562)

51 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

52 0.2% 0.4% 0.1% 0.6% 0.1% 0.5% 0.2% 0.5% 0.4% 0.3% 0.4% 0.4% 0.2% 0.4%

53 0.2% 0.3% 0.2% 0.1% 0.2% 0.1% 0.0% 0.0% 0.2% 0.2% 0.2% 0.2% 0.1% 0.2%

54 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1%

55 0.0% 0.3% 0.1% 0.2% 0.2% 0.1% 0.2% 0.0% 0.2% 0.1% 0.1% 0.2% 0.3% 0.3%

56 0.0% 0.1% ` 0.1% 0.2% 0.1% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.2% 0.0%

57 0.4% 1.0% 0.8% 1.3% 0.9% 1.0% 0.8% 1.6% 1.1% 2.1% 0.8% 1.9% 1.0% 1.5%

58 0.1% 0.0% 0.1% 0.2% 0.2% 0.1% 0.1% 0.0% 0.2% 0.2% 0.1% 0.1% 0.3% 0.1%

59 1.0% 1.1% 0.9% 1.3% 1.0% 0.9% 0.6% 0.5% 1.2% 1.2% 0.7% 1.1% 0.9% 0.9%

60 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.2% 0.1% 0.1% 0.0%

61 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%

62 0.9% 1.1% 0.7% 0.9% 0.9% 1.2% 0.4% 1.6% 0.5% 0.8% 0.6% 0.8% 1.1% 1.1%

63 0.1% 0.3% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.2% 0.3% 0.1% 0.3% 0.1% 0.2%

64 0.4% 0.7% 0.4% 0.4% 0.4% 0.5% 0.4% 0.0% 0.3% 0.5% 0.5% 0.6% 0.3% 0.5%

65 6.4% 7.9% 7.0% 7.4% 6.3% 7.0% 6.9% 8.9% 7.3% 7.9% 7.6% 8.5% 7.7% 8.3%

66 0.5% 0.0% 0.3% 0.5% 0.5% 0.6% 0.5% 0.0% 0.5% 0.8% 0.5% 0.9% 0.5% 0.5%

67 6.9% 7.7% 6.9% 7.2% 8.4% 7.9% 8.4% 8.4% 6.7% 8.8% 7.6% 8.8% 6.3% 6.9%

68 22.0% 26.4% 21.7% 22.4% 24.0% 22.6% 19.5% 17.8% 19.7% 20.6% 20.4% 18.6% 19.2% 20.2%

69 0.1% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.5% 0.1% 0.1% 0.0% 0.1% 0.0% 0.1%

70 18.9% 18.0% 20.3% 20.6% 19.7% 22.8% 24.4% 14.7% 24.6% 21.0% 24.5% 23.3% 25.9% 23.2%

71 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

72 0.6% 0.8% 0.6% 0.4% 0.6% 0.7% 0.6% 0.0% 0.7% 0.6% 1.2% 0.5% 1.2% 0.7%

73 1.1% 2.0% 1.6% 2.5% 1.6% 3.4% 1.8% 4.7% 2.3% 4.0% 1.0% 3.3% 1.1% 3.3%

74 0.2% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.3% 0.2%

75 2.4% 2.5% 2.6% 3.4% 4.0% 3.8% 2.2% 3.7% 4.5% 4.3% 4.1% 4.3% 3.4% 3.6%

76 0.7% 1.3% 0.2% 0.3% 0.3% 0.2% 0.2% 0.0% 0.2% 0.3% 0.5% 0.4% 0.4% 0.3%

77 0.1% 0.1% 0.2% 0.0% 0.0% 0.0% 0.0% 0.5% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%

78 0.2% 0.7% 0.3% 0.2% 0.1% 0.2% 0.2% 0.0% 0.0% 0.3% 0.3% 0.2% 0.2% 0.1%

79 36.7% 27.1% 35.0% 29.7% 30.2% 26.0% 32.0% 36.6% 28.8% 25.5% 28.8% 25.2% 29.8% 27.2%

Train / Validation Dataset Test Dataset

High School 

Academic Climate 

Fall 2017 Fall 2018 Fall 2019Fall 2013 Fall 2014 Fall 2015 Fall 2016
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Comparative Analysis 

Once the data were ready after applying the pre-processing steps, I wrote python code us-

ing the sklearn package to compile four machine learning models (see Appendix C) – Logistic 

Regression, Decision Trees, Support Vector Machine, and Artificial Neural Network, and im-

plemented train and validation data along with stratified 10-fold cross-validation. As mentioned 

in the methodology chapter, 46 independent variables were implemented in four models. Three 

dummy variables were excluded from each three categories representing Race, Sex, Parent Edu-

cation Leve (PEL), and High School Academic Climate (HSAC) to avoid the dummy variable 

trap which leads to multicollinearity issue. In short, one-hot coded variables for ‘Race_White’, 

‘Sex_Female’, ‘PEL_Bachelors Degree’, and ‘HSAC_79’, with the largest number of data were 

omitted and used as the references/baseline category for other one-hot encoded dummy variables 

(Wissmann et al., 2014). To test and confirm for multicollinearity among independent variable 

predictors, I used a variance inflation factor (VIF) to measure the amount of multicollinearity of 

46 independent variable predictors. Table 11 shows that 46 variables did not introduce multicol-

linearity concerns, with showing VIF values less than 2.5 (Senaviratna & Cooray, 2019). Once 

the models were compiled, comparative analyses were conducted based on seven calculated met-

rics; accuracy, sensitivity, specificity, precision,  score, and AUC. The outcomes of each mod-

el regarding training and validation data are presented in the next subsections.  
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Table 11. Multicollinearity Assessment using Variance Inflation Factor (VIF) 

Predictors VIF Predictors VIF Predictors VIF

SAT_ACT_SuperScore 1.583146 HSCluster_54 1.002414 HSCluster_70 1.90962

Race_Black_AA 1.240530 HSCluster_55 1.010819 HSCluster_71 1.000021

Race_Hispanic 1.665556 HSCluster_56 1.003763 HSCluster_72 1.024889

Race_Asian 1.256161 HSCluster_57 1.146465 HSCluster_73 1.257415

Race_Other 1.170193 HSCluster_58 1.006437 HSCluster_74 1.004035

Race_Unknown 1.016480 HSCluster_59 1.042653 HSCluster_75 1.155458

Sex_Male 1.578803 HSCluster_60 1.002164 HSCluster_76 1.054432

HSGPA 1.579285 HSCluster_61 1.000880 HSCluster_77 1.003094

PEL_Some_High_School 1.297855 HSCluster_62 1.090798 HSCluster_78 1.020286

PEL_High_School_Graduate 1.375282 HSCluster_63 1.014389 Distance_from_Campus 1.322892

PEL_Associates_Degree 1.140821 HSCluster_64 1.124949 Unemployment_Rate 2.140668

PEL_Some_College 1.317706 HSCluster_65 1.332619 Inflation_Rate 2.018814

PEL_Graduate_Degree 2.023563 HSCluster_66 1.025642 Fed_Efc 1.063255

HSCluster_51 1.000292 HSCluster_67 1.340699 Inst_Fin_Aid 1.665885

HSCluster_52 1.083763 HSCluster_68 1.933881

HSCluster_53 1.008446 HSCluster_69 1.004773  

Logistic Regression (LR) 

I used LogisticRegression() function to compile the LR model using training and valida-

tion data. Since a stratified 10-fold cross-validation method was applied, concatenated confusion 

matrix was generated. To be specific, ten different confusion matrices were generated based on 

the ten independent validation datasets. Each validation dataset was paired with the rest of the 

nine pieces of the training dataset and applied to the model. These ten confusion matrices were 

concatenated to evaluate the classification performance of the training/validation data as a whole. 

Hence, the values of five indices; accuracy, sensitivity, specificity, precision, and  score were 

calculated based on the concatenated confusion matrix. The concatenated confusion matrix of the 

LR model based on training and validated data is shown in Figure 12.  
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Figure 12. Concatenated Confusion Matrix of LR Model on Train/Validation Data 

 

Figure 12 shows that the predicted number of enrolled students who actually enrolled (i.e., 

true positives) was 10,135, whereas the predicted number of enrolled students who actually did 

not enrolled was 7,850 (i.e., false positives). Also, the predicted number of non-enrolled students 

who actually not enrolled was 68,710 (i.e., true negatives) and who actually enrolled was 4,905 

(i.e., false negatives). The color bar on the right displays a range of colors that correspond to dif-

ferent values in the confusion matrix. Hence, darker colors represent higher values, while lighter 

colors represent lower values. Based these outcomes, five evaluation indices of accuracy, sensi-

tivity, specificity, precision, and  score were calculated below.  
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The overall calculations show that the classification accuracy, sensitivity, specificity, 

precision,  score of the LR model were 0.861, 0.674, 0.897, 0.564, and 0.614, respectively. 

The accuracy value of 0.861 implies that the accuracy of the classification performance of LR 

model is 86.1%. In other words, the LR model’s classification performance accuracy for predict-

ing students' enrollment decisions (i.e., enroll and non-enroll) is 86.1%. The sensitivity value of 

0.674 implies that the LR model's probability of predicting the students as enrolled when they 

actually enrolled is 67.4%. Similar to sensitivity, a specificity value of 0.897 shows that the 

model to predict students as non-enrolled when they actually did not enroll is 89.7%. The preci-

sion value of 0.564 implies the ratio of the actual number of enrolled students over the predicted 

number of enrolled students in the model. This means that 56.4% of students were actually en-

rolled in the predicted enrolled pool which the model predicted and classified students as en-

rolled. As mentioned earlier,  score shows the harmonic mean between precision and recall 

and it is an effective evaluation index for the model’s performance on imbalanced data. It ranges 

between 0 and 1. Although there is no specific threshold for  score to determine whether its 
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classification performance is bad, fair, or good, the model is evaluated to show better perfor-

mance when  score is closer to 1. The LR model's  score value is 0.614. This is relatively 

lower than the accuracy (0.861) and specificity (0.897), which gives a hint that the LR model is 

less effective in showing predictive classification performance for imbalanced data. However, 

there is no specific threshold of  score to determine the model’s classification performance ef-

ficiency. Hence, PR-AUC was generated as a salient index to evaluate the model’s classification 

performance toward imbalanced data. This is presented after showing the ROC-AUC value and 

its evaluation. 

After compiling five comparable metrics based on a concatenated confusion matrix, a 

mean ROC curve plot was created to determine the Area Under the Curve (AUC) value. As men-

tioned in the methodology chapter, AUC of ROC curve showed how well the model performs in 

compiling classification predictions. Since stratified 10-fold cross-validation was applied, the 

mean of ten ROC curve plots were created and shown in Figure 13. It shows that the average 

value of AUC is 0.767. As mentioned earlier in the methodology chapter, the model with AUC 

value between 0.7 and 0.8 were considered to have a fair classification performance. However, 

this gives an optimistic evaluation with disregarding the data imbalance.   
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Figure 13. Mean ROC Curve for LR Model on Train/Validation Data with Stratified 10-fold 

Cross-Validation 

 

 Although the ROC curve plot and its AUC provided an insight that the LR model’s clas-

sification performance is good, Precision-Recall (PR) curve plot and related AUC are also com-

piled for more rigorous evaluation toward classification performance for imbalanced data, espe-

cially focused on classifying true positive cases. As mentioned earlier, PR-AUC is an optimal 

metric to evaluate the model’s classification performance when dealing with highly imbalanced 

data, particularly when the true positive cases are extremely small. Similar to how the ROC 

curve was generated, the mean PR curve was generated and shown in Figure 14. It shows that the 

value of AUC for the mean PR curve of the LR model is 0.639. Since AUC falls between 0.6 and 

0.7, the PR model shows poor classification performance on imbalanced data, specifically classi-

fying the true positive cases. Similar to how  score was evaluated, PR-AUC gave a more spe-
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cific hint that the LR model is not efficient for making classification predictions on students as 

enrolled who were actually enrolled.  

Figure 14. Mean PR Curve for LR Model on Train/Validation Data with Stratified 10-fold Cross-

Validation 

 

Decision Tree (DT) 

For compiling the DT model, I used the DecisionTreeClassifier() function which includes 

default conditions such as following the gini impurity criterion with no limitation on the numbers 

of depths, splits, and leaf nodes. Like generating the LR model, the DT model was compiled us-

ing the train and validation data with stratified 10-cross validation applied. Figure 15 shows the 

concatenated confusion matrix of the DT model based on training and validated data.  
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Figure 15. Concatenated Confusion Matrix of DT Model on Train/Validation Data 

 

Figure 15 shows that the predicted number of enrolled students who actually enrolled (i.e., 

true positives) was 10,091, whereas the predicted number of enrolled students who actually did 

not enroll was 5,697 (i.e., false positives). Also, the predicted number of non-enrolled students 

who actually did not enroll was 70,863 (i.e., true negatives) and who actually enrolled was 4,949 

(i.e., false negatives). Based on these outcomes, five evaluation indices of accuracy, sensitivity, 

specificity, precision, and  score were calculated as below.   
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Overall, the calculations show that the classification accuracy, sensitivity, specificity, 

precision,  score of LR model are 0.884, 0.671, 0.926, 0.639, and 0.655, respectively. The ac-

curacy value of 0.884 implies that the accuracy of the classification performance of DT model is 

88.4%. In other words, the DT model’s classification accuracy for predicting students' enroll-

ment decisions (i.e., enroll and non-enroll) is 88.4%. The sensitivity value of 0.671 implies that 

the probability of DT model to predict the students as enrolled when they actually enrolled is 

67.1%. Similar to sensitivity, a specificity value of 0.926 shows that the model to predict stu-

dents as non-enrolled when they actually did not enroll is 92.6%. The precision value of 0.639 

implies the ratio of the actual number of enrolled students over the predicted number of enrolled 

students in the model. This means that 63.9% of students were actually enrolled in the predicted 

enrolled pool which the model predicted and classified students as enrolled. In addition to those 

four calculated values, the DT model's  score value is 0.655. This is relatively lower than the 

accuracy (0.884) and specificity (0.926), which gives a hint that the DT model is less effective 

on showing predictive classification performance for imbalanced data. However, as mentioned 

earlier, there is no specific  score threshold to determine the model’s classification perfor-

mance efficiency. Therefore, mean PR-AUC was generated as an additional pertinent index to 
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evaluate the model’s classification performance toward imbalanced data. This is presented after 

showing the mean ROC-AUC value and its evaluation.  

After compiling five comparable metrics based on a concatenated confusion matrix, a 

mean ROC curve plot was created in Figure 16 to determine the AUC value. It shows that the 

average value of AUC is 0.759. After cross-matching the value with the AUC threshold for mod-

el performance evaluation, it falls between 0.7 and 0.8, giving insight that the DT model shows 

fair classification performance. However, this is an optimistic evaluation that disregards the data 

imbalance.   

Figure 16. Mean ROC Curve for DT Model on Train/Validation Data with Stratified 10-fold 

Cross-Validation 

 
 

Although the mean ROC curve plot and its AUC showed that the SVM model’s classifi-

cation performance is good, Precision-Recall (PR) curve plot and related AUC were also com-

piled for a more rigorous evaluation of classification performance for imbalanced data. The mean 

PR curve for the SVM model was generated and shown in Figure 17. It shows that the value of 
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AUC for the mean PR curve of the DT model is 0.678. Since PR-AUC falls between 0.6 and 0.7 

of the AUC threshold of the model’s classification performance evaluation, the DT model seems 

to show poor classification performance on imbalanced data, specifically classifying the true 

positive cases. This gives a hint that the DT model is not efficient for making classification pre-

dictions on students as enrolled who were actually enrolled. Similar to how  score was evalu-

ated, PR-AUC gave a more detailed hint that the DT model was not efficient for making classifi-

cation predictions on students as enrolled who actually enrolled.  

Figure 17. Mean PR Curve for DT Model on Train/Validation Data with Stratified 10-fold 

Cross-Validation 

 
Support Vector Machine (SVM) 

As mentioned in the methodology chapter, the SVM model has three different types of 

kernels: linear, polynomial, and radial basis function. Since most of the college enrollment mod-

eling starts based on a linear regression model (Solis, 2017; Perna & Titus, 2005; Klaauw, 2002), 

the current study compiled the SVM model using a linear kernel. To construct SVM with a linear 

kernel, determining the best cost parameter (‘C’) was needed to compile the SVM model with a 
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linear kernel. However, there was no rule of thumb for choosing an optimistic value for C. Hence, 

the only option was to try a different value of C on the train and validation data to choose one 

that gives the lowest misclassification rate (Tay & Cao, 2002). According to Tay & Cao (2002), 

the general values used for a testing parameter for C range between 0.1 and 100. Hence, I applied 

the values of C with 0.1, 1, 10, and 100 to the SVM model with the computation of stratified 10-

fold cross-validation. Therefore, 40 cases (4 10) of the SVM models were applied to the test 

and validation data for comparison. I used an svm() function to compile the SVM model and 

chose the one with the lowest misclassification rate (i.e., the highest accuracy rate). After testing 

multiple values of C, I decided to use an SVM model with C=10, which showed the highest av-

erage rates of sensitivity, precision and  score on both the test and validation data.  

Based on the selected SVM model with parameters of C=10, I created the concatenated 

confusion matrix and calculated the average values of five metrics; accuracy, sensitivity, speci-

ficity, precision, and  score. The concatenated confusion matrix of the SVM model based on 

train and validation data is shown in Figure 18.  
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Figure 18. Concatenated Confusion Matrix of SVM Model on Train/Validation Data  

 

Figure 18 shows that the predicted number of enrolled students who actually enrolled (i.e., 

true positives) was 12,130, whereas the predicted number of enrolled students who actually did 

not enroll was 6,519 (i.e., false positives). Also, the predicted number of non-enrolled students 

who actually did not enroll was 70,041 (i.e., true negatives) and who actually enrolled was 2,910 

(i.e., false negatives). Based on these outcomes, five evaluation indices of accuracy, sensitivity, 

specificity, precision, and  score were calculated as below.  
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The overall calculations show that the classification accuracy, sensitivity, specificity, 

precision,  score of the SVM model are 0.897, 0.807, 0.915, 0.650, and 0.720, respectively. 

The accuracy value of 0.897 implies that the accuracy of the classification performance of the 

SVM model is 89.7%. In other words, the SVM model’s classification accuracy for predicting 

students' enrollment decisions (i.e., enroll and non-enroll) is 89.7%. The sensitivity value of 

0.807 implies that the probability of the SVM model to predict the students as enrolled when 

they actually enrolled is 80.7%. Similar to sensitivity, a specificity value of 0.915 shows that the 

model to predict students as non-enrolled when they actually did not enroll is 91.5%. The preci-

sion value of 0.650 implies the ratio of the actual number of enrolled students over the predicted 

number of enrolled students in the model. This means that 65.0% of students were actually en-

rolled in the predicted enrolled pool which the model predicted and classified students as en-

rolled. In addition to those four calculated values, the  score value of the SVM model is 0.720. 

This is relatively lower than the accuracy (0.897) and specificity (0.915), which gives a hint that 

the SVM model may be less effective in showing predictive classification performance for im-

balanced data. However, as mentioned earlier, there is no specific threshold of  score to deter-

mine the model’s classification performance. Hence, PR-AUC was generated as a salient index 

to evaluate the model’s classification performance toward imbalanced data. This is presented af-

ter showing the ROC-AUC value and its evaluation.  
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After compiling five comparable metrics based on a concatenated confusion matrix, a 

mean ROC curve plot was created in Figure 19 to determine the Area Under the Curve (AUC) 

value.  It shows that the average value of AUC is 0.861, which falls between the AUC threshold 

of 0.8 and 0.9. Hence, based on the AUC value and its threshold, SVM was considered to have 

good classification performance. However, this is an optimistic evaluation that disregards the 

data imbalance.   

Figure 19. Mean ROC Curve for SVM Model on Train/Validation Data with Stratified 10-fold 

Cross-Validation  

 

Although ROC curve plot and its AUC provided an optimistic evaluation of SVM mod-

el’s classification performance as good, Precision-Recall (PR) curve plot and related AUC was 

compiled for a more rigorous evaluation toward classification performance considering imbal-

anced data. The mean PR curve was generated and shown in Figure 20 showing that the value of 

AUC is 0.754. Since AUC falls between 0.7 and 0.8, SVM model seems to show fair classifica-
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tion performance on imbalanced data, specifically classifying the true positive cases. This gave a 

hint that SVM model was fairly efficient for making classification predictions on students as en-

rolled who were actually enrolled. Hence PR-AUC gave more detailed and sufficient insight than 

 score which give indefinite insight that SVM model’s classification is not effective in imbal-

anced data. 

Figure 20. Mean PR Curve for SVM Model on Train/Validation Data with Stratified 10-fold 

Cross-Validation 

 
Artificial Neural Network (ANN) 

To compile the ANN model, it is important to determine the optimal numbers of the hid-

den layer(s) and node(s). As mentioned in the methodology chapter, the most common rules of 

thumb for choosing an optimal number of the hidden layer(s) and neuron(s) for ANN’s decent 

performance are the following: 1) the number of hidden layers equals one, and 2) the number of 

neurons in that layer is the mean of the neurons in the input and output layers (Thomas et al., 

2017).  Hence on a hidden layer and 24 hidden nodes (i.e., (46 input nodes + 2 output nodes) / 2) 
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were set up to run a model. Based on these settings, MLPClassifier() package was used to com-

pile the ANN model and create concatenated confusion matrix. Based on the concatenated con-

fusion matrix, I calculated the average values of five metrics of accuracy, sensitivity, specificity, 

precision, and  score. Of course, the stratified 10-fold cross-validation method was applied, as 

well. The concatenated confusion matrix of the ANN model based on training and validated data 

is shown in Figure 21.  

Figure 21. Concatenated Confusion Matrix of ANN Model on Train/Validation Data  

 

Figure 21 shows that the predicted number of enrolled students who actually enrolled (i.e., 

true positives) was 11,510, whereas the predicted number of enrolled students who actually were 

non-enrolled was 6,291 (i.e., false positives). Also, the predicted number of non-enrolled stu-

dents who actually not enrolled was 70,269 (i.e., true negatives) and who actually enrolled was 
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3,530 (i.e., false negatives). Based these outcomes, five evaluation indices of accuracy, sensitivi-

ty, specificity, precision, and  score were calculated below.  

 
 

 
 

 
 

 
 

 

Overall calculations show that the classification accuracy, sensitivity, specificity, preci-

sion,  score of the ANN model are 0.893, 0.765, 0.918, 0.647, and 0.701, respectively. The ac-

curacy value of 0.893 implies that the accuracy of the classification performance of the ANN 

model is 89.3%. In other words, the ANN model’s classification accuracy for predicting students' 

enrollment decisions (i.e., enroll vs. non-enroll) is 89.3%. The sensitivity value of 0.765 implies 

that the ANN model's probability of predicting the students as enrolled when they actually en-

rolled is 76.5%. Similar to sensitivity, a specificity value of 0.918 shows that the model to pre-

dict students as non-enrolled when they actually not enrolled is 91.8%. The precision value of 

0.647 implies the ratio of the actual number of enrolled students over the predicted number of 

enrolled students of the model. This means that 64.7% of students were actually enrolled in the 

predicted enrolled pool which the model predicted and classified students as enrolled. In addition 

to those four calculated values, the ANN model's  score value is 0.701. This is relatively lower 
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than the accuracy (0.884) and specificity (0.926), which gives a hint that the ANN model is less 

effective in showing predictive classification performance for imbalanced data. However, there 

is no specific  score threshold to determine the model’s classification performance efficiency. 

Therefore, PR-AUC was generated as an additional pertinent index to evaluate the model’s clas-

sification performance toward imbalanced data. This is presented after showing the ROC-AUC 

value and its evaluation.  

After compiling five comparable metrics based on a concatenated confusion matrix, a 

mean ROC curve plot was created to determine the Area Under the Curve (AUC) value. As men-

tioned in the methodology chapter, the AUC of ROC curve gave an idea of how well the model 

performs in compiling classification prediction. Since stratified 10-fold cross validation was ap-

plied, the mean of ten ROC curve plots were created and shown in Figure 22. It shows that the 

average value of AUC is 0.849. As mentioned earlier in the methodology chapter, the model with 

an AUC value between 0.8 and 0.9 were considered to have good classification performance. 

However, this is an optimistic evaluation that disregards the data imbalance.   
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Figure 22. Mean ROC Curve for ANN Model on Train/Validation Data with Stratified 10-fold 

Cross Validation       

 

Although the ROC curve plot and its AUC evaluated that the ANN model shows a good 

classification performance, Precision-Recall (PR) curve plot and related AUC are also compiled 

for a more rigorous evaluation of classification performance for imbalanced data. Similar to how 

the ROC curve was generated, the mean PR curve was generated and shown in Figure 23. It 

shows that the value of AUC for the mean PR curve of the ANN model is 0.718. Since AUC 

falls between 0.7 and 0.8, the ANN model shows fair classification performance on imbalanced 

data, specifically classifying the true positive cases. This gave a detailed hint that the ANN mod-

el was fairly efficient for making classification predictions on students as enrolled who actually 

enrolled. Hence PR-AUC gave more detailed and sufficient insight than  score, which gives 

indefinite insight that the ANN model’s classification is ineffective in imbalanced data. 
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Figure 23. Mean PR Curve for ANN Model on Train/Validation Data with Stratified 10-fold 

Cross-Validation 

 
Comparison of the Models 

 In this study, four models were trained to make predictions using a stratified 10-fold 

cross-validation method based on the validation data. Seven metrics were calculated to explain 

the performance of the models in making predictions based on validation data. As mentioned 

earlier, this study is more focused on identifying the students who will enroll in the next fall se-

mester (i.e., class ‘1’ of the ‘Enrollment Decision’ variable), which was the true positive case of 

the models’ prediction. However, that does not imply that non-enrolled students are completely 

disregarded. As mentioned earlier, the study is also expected to provide insights into non-

enrolled students for setting up complementary strategies for predicted non-enrolled students to 

enroll. Therefore, metrics (i.e., accuracy, specificity) that reflect true negative, false negative, 

and false positive cases were calculated and considered in addition to other metrics focused on 

true positive cases (i.e., sensitivity, precision). 
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 Table 11 summarizes the four models’ classification performance evaluation based on 

five metrics – accuracy, sensitivity, specificity, precision,  score. It also summarized the mod-

els’ classification performance evaluations that were made based on the ROC-AUC and PR-

AUC values based on the AUC threshold. All four models showed a high classification rate in 

classifying non-enrolled students as non-enrolled (i.e., specificity; considering true negatives). 

This is natural since the data is highly imbalanced which the number of non-enrolled students is 

significantly greater than the number of enrolled students, with more cases to classify and predict. 

Moreover, the data imbalance also resulted in the models’ high accuracy rates since the accuracy 

metric measured the models’ overall classification performance in both true positive and true 

negative cases but was impacted by a significant amount of true negative cases (i.e., non-

enrolled). Hence, for this study, these two metrics of specificity and accuracy reflected the classi-

fication performance of the data affiliated with the higher population (i.e., class ‘0’ of the ‘En-

rollment Decision’ variable). In other words, this study was generally expected to result in high 

classification accuracies and specificities because the model will predict a larger number of not 

enrolled students correctly compared to the enrolled students. 

 Considering the models’ performance for enrolled students, metrics reflecting true posi-

tive cases are considered, which were sensitivity (i.e., recall), precision, and  score. As men-

tioned earlier, the dataset is highly imbalanced, with a significantly small number of enrolled 

students relative to non-enrolled. Hence, it is highly likely that the models’ sensitivity and preci-

sion rates will be lower than their accuracy and specificity rates. Comparing the sensitivity and 

precision and  score, the SVM model turns out to show the best classification prediction per-

formance on enrolled students (sensitivity = 0.806; precision = 0.650;  score = 0.720) and the 
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ANN model turns out to be the second best (sensitivity = 0.765; precision = 0.645;  

score=0.701).   

 In addition to accuracy, sensitivity, specificity, precision, and  score, ROC-AUC and 

PR-AUC values were considered for comparing the models’ classification performance. As men-

tioned earlier, the ROC-AUC value is a general and robust indicator to evaluate the models’ clas-

sification performance. Hence this metric was used to compare the classification performance 

across the models and SVM and ANN turned out to show good classification performance, 

whereas LR and DT showed fair classification performance. However, since ROC-AUC tends to 

give optimistic evaluation toward highly imbalanced data, PR-AUC was conducted to assess 

each model’s classification performance toward imbalanced data, especially focused on classify-

ing true positive cases (i.e., predicting students as enrolled who actually enrolled). This metric is 

also considered to be a more salient index than  score, which gives indefinite insight into mod-

els’ classification performance toward imbalanced datasets. Based on PR-AUC values, it turns 

out that SVM and ANN models showed fair predictive performance on classifying true positive 

cases, whereas LN and DT models were identified to show poor performance.  

 Overall, the SVM model had the highest accuracy (0.897), sensitivity (0.806), precision 

(0.650),  score (0.720), ROC-AUC (0.861), and PR-AUC (0.754). Although it had the third 

lowest specificity (0.915) among the models, the SVM model still has a fairly high true negative 

rate. Hence, the SVM model is considered the best model showing good and fair classification 

performance for non-enrolled and enrolled students. Similar to SVM, the ANN model had the 

second-highest accuracy (0.893), sensitivity (0.765), precision (0.647),  score (0.701), ROC-

AUC (0.849), and PR-AUC (0.716). Although it had the second lowest specificity (0.918) across 
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the models, the ANN model still has a fairly high true negative rate, like SVM. Hence, the ANN 

model is considered the second-best model showing good and fair classification performance for 

non-enrolled and enrolled students. Based on the above observations, the SVM and ANN were 

identified as the best algorithms to implement for compiling college enrollment prediction mod-

els for the test dataset.   
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Table 12. Comparison of Metrics from Different Models on the Train/Validation Data 

 Accuracy Sensitivity Specificity Precision  Score ROC-AUC 
ROC-AUC 

Evaluation 
PR-AUC 

PR-AUC  

Evaluation 

LR Model 0.861 0.674 0.897 0.564 0.614 0.767 Fair 0.639 Poor 

DT Model 0.884 0.671 0.926 0.639 0.655 0.759 Fair 0.661 Poor 

SVM Model 0.897 0.807 0.915 0.650 0.720 0.861 Good 0.754 Fair 

ANN Model 0.893 0.765 0.918 0.647 0.701 0.849 Good 0.716 Fair 
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Selected Models Application on Test Data 

Based on the compiled four machine learning models using train and validation data and 

its comparison, SVM and ANN algorithm models were chosen because of their high values of 

accuracy, sensitivity, precision,  score, ROC-AUC, and PR-AUC metrics. These two models 

were applied using test data, which reflected the students’ admission data for Fall 2019. For the 

test dataset, a total of 17,198 admits, including 2,636 enrolled (15%) and 14,562 not enrolled 

(85%) students, were included. Stratified 10-fold cross-validation was not applied since it was 

already used for training/validation data to reduce the probability of over/underfitting and bi-

asedness.  

Applying Support Vector Machine Model  

As mentioned earlier, the SVM model with C=10 with gamma=1 was implemented to the 

test data and the confusion matrix was compiled. Figure 20 shows the confusion matrix for test 

data of the Fall 2019 cohort.  

 

 

 

 

 

 

 

 

 



109 

 

Figure 24. Confusion Matrix of SVM Model on Test Data  

 

Figure 24 shows that the predicted number of enrolled students who actually enrolled (i.e., 

true positives) was 2,140 whereas the predicted number of enrolled students who actually were 

non-enrolled was 1,211 (i.e., false positives). Also, the predicted number of non-enrolled stu-

dents who actually did not enrolled was 13,351 (i.e., true negatives) and who actually enrolled 

was 496 (i.e., false negatives). Based these outcomes, five evaluation indices of accuracy, sensi-

tivity, specificity, precision, and  score were calculated below.  
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Overall calculations show that the classification accuracy, sensitivity, specificity, preci-

sion,  score of the SVM model are 0.901, 0.812, 0.917, 0.639, and 0.715, respectively. The ac-

curacy value of 0.888 implies that the accuracy of the classification performance of the ANN 

model is 90.1%. In other words, the SVM model’s classification accuracy for predicting students' 

enrollment decisions (i.e., enroll vs. non-enroll) is 90.1%. The sensitivity value of 0.812 implies 

that the probability of the SVM model to predict the students as enrolled when they actually en-

rolled is 81.2%. Similar to sensitivity, a specificity value of 0.917 shows that the model to pre-

dict students as non-enrolled when they actually not enrolled is 91.7%. In addition to those four 

calculated values, the SVM model's  score value is 0.715. This is relatively lower than the ac-

curacy (0.901) and specificity (0.917), which gives a hint that the SVM model is less effective on 

showing predictive classification performance for imbalanced data. However, since there is no 

specific  score threshold to determine the model’s classification performance efficiency, PR-

AUC was generated as an additional pertinent index to evaluate the model’s classification per-

formance toward imbalanced data. This is presented after showing the ROC-AUC value and its 

evaluation.  
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After compiling five comparable metrics based on a confusion matrix, a ROC curve plot 

was created to determine the Area Under the Curve (AUC) value. As mentioned in the method-

ology chapter, the AUC of ROC curve is a general index of determining how well the model per-

forms in compiling classification prediction. Hence, the ROC curve plots were created and 

shown in Figure 25. It shows that the AUC value of the SVM model is 0.843. Since this value 

falls between 0.8 and 0.9 of the AUC threshold, the SVM model was considered to have good 

classification performance. However, ROC-AUC tends to provide an optimistic evaluation of the 

model even though the data is highly imbalanced. Therefore, the PR-AUC metric was also gen-

erated to evaluate the model’s classification performance more rigorously.  

Figure 25. ROC Curve for SVM Model on Test Data 

 

Although the ROC curve plot and its AUC evaluated SVM model as an efficient classifi-

er, Precision-Recall (PR) curve plot and related AUC were also compiled for more rigorous 
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evaluation of classification performance for imbalanced data. Similar to how the ROC curve was 

generated, the mean PR curve was generated and shown in Figure 26. It shows that the value of 

AUC for mean PR curve of the SVM model is 0.719. Since the AUC value falls between 0.7 and 

0.8 AUC threshold, the SVM model seems to show fair classification performance on imbal-

anced data, specifically classifying the true positive cases. This gave a hint that the SVM model 

was efficient for making classification predictions on students as enrolled who were actually en-

rolled for test data.  

Figure 26. PR Curve for SVM Model on Test Data 

 

Overall, the SVM model’s performance on test data shows that all seven-evaluation met-

rics are close enough to the one I achieved on train/validation data. Hence, this gives an insight 

that the model is actually learning from the training/validation data and can generalize as long as 

the new incoming data is applied with the identical data structure. Moreover, it provides another 
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insight into the reliability and uniformity of the model predictions on the combined cohort year 

data and individual level. Based on the above observations, I reconfirm and conclude that the 

SVM is a good prediction model for the dataset. 

Applying Artificial Neural Network Model  

As mentioned earlier, the ANN model with one hidden layer and 25 hidden nodes were 

compiled for test data application. Based on these settings, I created a confusion matrix to calcu-

late the average values of five metrics of accuracy, sensitivity, specificity, precision, and  score. 

The confusion matrix of the ANN model based on test data is shown in Figure 26.  

Figure 27. Confusion Matrix of ANN Model on Test Data 

 

Figure 27 shows that the predicted number of enrolled students who actually enrolled (i.e., 

true positives) was 2,110 whereas the predicted number of enrolled students who actually were 
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non-enrolled was 1,261 (i.e., false positives). Also, the predicted number of non-enrolled stu-

dents who were actually not enrolled was 13,301 (i.e., true negatives) and who actually enrolled 

was 526 (i.e., false negatives). Based on these outcomes, five evaluation indices of accuracy, 

sensitivity, specificity, precision, and  score were calculated below.  

 
 

 
 

 
 

 
 

 

Overall calculations show that the classification accuracy, sensitivity, specificity, preci-

sion,  score of the SVM model are 0.896, 0.800, 0.913, 0.626, and 0.702, respectively. The ac-

curacy value of 0.896 implies that the accuracy of the classification performance of the ANN 

model is 89.6%. In other words, the ANN model’s classification accuracy for predicting students' 

enrollment decisions (i.e., enroll vs. non-enroll) is 89.6%. The sensitivity value of 0.800 implies 

that the ANN model's probability of predicting the students as enrolled when they actually en-

rolled is 80.0%. Similar to sensitivity, a specificity value of 0.913 shows that the model to pre-

dict students as non-enrolled when they are actually not enrolled is 91.3%. The precision value 

of 0.626 implies the ratio of the actual number of enrolled students over the predicted number of 

enrolled students of the model. This means that 62.6% of students were actually enrolled in the 

predicted enrolled pool which the model predicted and classified students as enrolled. In addition 
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to those four calculated values, the ANN model's  score value is 0.702. This is relatively lower 

than the accuracy (0.895) and specificity (0.913), which gives a hint that the ANN model is less 

effective on showing predictive classification performance for imbalanced data. Since there is no 

specific  score threshold to determine the model’s classification performance efficiency, PR-

AUC was generated as an additional pertinent index to evaluate the model’s classification per-

formance toward imbalanced data. This is presented after showing the ROC-AUC value and its 

evaluation.  

After compiling five comparable metrics based on a confusion matrix, a ROC curve plot 

was created in Figure 28 to determine the Area Under the Curve (AUC) value. It shows that the 

value of AUC is 0.826, which indicates that the ANN model is showing a good classification 

prediction performance because it falls between 0.8 and 0.9 of the AUC value threshold. Howev-

er, the ROC-AUC value may provide an optimistic evaluation while disregarding the data imbal-

ance.   
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Figure 28. ROC Curve for ANN Model on Test Data 

 

Since the ROC curve plot and its AUC provide an optimistic evaluation of highly imbal-

anced data, the Precision-Recall (PR) curve plot and related AUC were compiled for a more rig-

orous assessment of classification performance for imbalanced data. Similar to how the ROC 

curve was generated, the PR curve was generated and shown in Figure 29. It shows that the value 

of AUC for mean PR curve of the ANN model is 0.702. Since AUC falls between 0.7 and 0.8, 

the ANN model shows fair classification performance on imbalanced data, specifically classify-

ing the true positive cases. This gave a hint that the ANN model was fairly efficient for making 

classification predictions on students as enrolled who were actually enrolled.  

 

 

 



117 

 

Figure 29. PR Curve for ANN Model on Test Data 

 

Overall, the ANN model’s performance on test data shows that all seven evaluation met-

rics are close enough to the one I achieved on train/validation data. Hence, this also gives the 

same insight as the SVM model that the ANN model is actually learning from the train-

ing/validation data and can generalize as long as the new incoming data is applied with the iden-

tical data structure. Moreover, it gives another insight into the reliability and uniformity of the 

model predictions on the combined cohort year data and individual level. Based on the above 

observations, I reconfirm and conclude that the ANN is a good prediction algorithm model for 

the dataset along with the SVM algorithm model.  

 

 

 



118 

 

 Feature Importance on Selected Models 

 After comparing the models and identifying the SVM and the ANN models as the best 

models in classification performance, these models were used to determine the most significant 

factors that contributed to predicting the student’s enrollment decisions, particularly as “en-

rolled.”  Based on the insights of the reliability and uniformity of the model predictions on the 

combined cohort year data, these two models were applied to train/validation and test data com-

bined and calculated the significant factors. The SVM and ANN algorithm models were generat-

ed by compiling the drop-column importance method to see how much each independent varia-

ble affects the model's classification performance.  

The lists of 46 factors of SVM and ANN are shown in Tables 13 and 14. Those are or-

dered from the most important to the least important. These feature importances are normalized 

and add up to 1. By normalizing the data, the features have the same order of magnitude and 

scatter, making it easier to find which is more relevant.  Based on the feature importance findings 

of two models, SVM and ANN, the magnitude of each factor influencing outcomes differ across 

the models. However, the top five factors that were identified as most important were the same; 

Distance from Campus (i.e., proximity), High School GPA, Expected Family Contribution, Un-

employment Rate, and Institutional Financial Aid Total amount. This gives a hint that these top 

five factors are the ones that impact students' enrollment decisions significantly relative to other 

rest of the 41 factors. On the other hand, the factors with low importance values have less impact 

on the model’s performance (i.e., enrollment decisions). 
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Table 13. List of Factors by Feature Importance using SVM Model 

Rank Attributes Feature Importance Rank Attributes Feature Importance

1 Distance_from_Campus 0.289942 24 HSCluster_72 0.011787

2 Unemployment_Rate 0.185686 25 Race_Unknown 0.011599

3 HSGPA 0.035956 26 HSCluster_59 0.011549

4 Fed_Efc 0.025896 27 HSCluster_57 0.011400

5 Inst_Fin_Aid_Total 0.023618 28 HSCluster_62 0.010904

6 SAT_ACT_SuperScore 0.023113 29 HSCluster_66 0.010889

7 Inflation_Rate 0.021373 30 HSCluster_76 0.010813

8 PEL_Graduate_Degree 0.021133 31 HSCluster_64 0.010572

9 HSCluster_70 0.018799 32 HSCluster_78 0.010533

10 Sex_M 0.016743 33 HSCluster_58 0.007757

11 HSCluster_68 0.016156 34 HSCluster_55 0.007663

12 PEL_Some_College 0.016112 35 HSCluster_52 0.007592

13 Race_Asian 0.016073 36 HSCluster_53 0.006557

14 PEL_High_School_Graduate 0.015902 37 HSCluster_74 0.005500

15 HSCluster_65 0.015134 38 HSCluster_63 0.005168

16 HSCluster_67 0.014869 39 HSCluster_56 0.005162

17 Race_Hispanic 0.014524 40 HSCluster_60 0.003882

18 Race_Other 0.014268 41 HSCluster_77 0.002876

19 PEL_Associates_Degree 0.013683 42 HSCluster_69 0.000000

20 HSCluster_75 0.012576 43 HSCluster_54 0.000000

21 Race_Black_AA 0.012116 44 HSCluster_61 0.000000

22 PEL_Some_High_School 0.012076 45 HSCluster_51 0.000000

23 HSCluster_73 0.012049 46 HSCluster_71 0.000000  

Table 14. List of Factors by Feature Importance using ANN Model 

Rank Attributes Feature Importance Rank Attributes Feature Importance

1 Distance_from_Campus 0.162213 24 HSCluster_73 0.002293

2 HSGPA 0.158321 25 HSCluster_59 0.001956

3 Fed_Efc 0.140134 26 Race_Unknown 0.001692

4 Unemployment_Rate 0.103597 27 HSCluster_62 0.001535

5 Inst_Fin_Aid_Total 0.100865 28 HSCluster_66 0.001214

6 Inflation_Rate 0.096071 29 HSCluster_76 0.001138

7 SAT_ACT_SuperScore 0.075527 30 HSCluster_64 0.001123

8 HSCluster_70 0.017555 31 HSCluster_57 0.000667

9 HSCluster_68 0.016027 32 HSCluster_58 0.000653

10 PEL_Graduate_Degree 0.015676 33 HSCluster_78 0.000623

11 Sex_M 0.012766 34 HSCluster_53 0.000604

12 Race_Asian 0.011323 35 HSCluster_60 0.000601

13 Race_Hispanic 0.010383 36 HSCluster_74 0.000486

14 PEL_High_School_Graduate 0.009212 37 HSCluster_63 0.000379

15 PEL_Some_College 0.008333 38 HSCluster_56 0.000367

16 Race_Other 0.007823 39 HSCluster_52 0.000337

17 HSCluster_65 0.007343 40 HSCluster_55 0.000234

18 HSCluster_67 0.007154 41 HSCluster_69 0.000078

19 PEL_Associates_Degree 0.005710 42 HSCluster_71 0.000077

20 Race_Black_AA 0.005520 43 HSCluster_77 0.000000

21 HSCluster_75 0.005165 44 HSCluster_61 0.000000

22 PEL_Some_High_School 0.004421 45 HSCluster_54 0.000000

23 HSCluster_72 0.002806 46 HSCluster_51 0.000000  
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Potential Predictive Probability for Students to Enroll 

In addition to the feature importance analysis, the predictive probability of students to en-

roll or not was calculated at an individual level for both models, SVM and ANN. In general, ma-

chine learning classifiers don’t just give binary predictions but provide numerical values between 

0 and 1 for their predictions. These numbers are sometimes called the model score or confidence 

regarding each binary decision (i.e., enroll vs. not enroll). It is a way for the model to express its 

certainty about what class the input data belongs to. In most applications, the exact score is ig-

nored and use a threshold to round the score to a binary answer as enroll or not enroll. Calibra-

tion transforms these scores into probabilities and is used more effectively in decision-making. 

The SVM's methodology focuses on finding the best linear classifier(s) that can classify 

two different outcomes. It also identifies the most impactful features (i.e., independent variables) 

on the outcomes (i.e., dependent variable). However, this method does not compute the probabil-

ity of affiliation to each group, which is one of the relative weaknesses of SVM compared with 

LR and ANN. To overcome this issue, many researchers have proposed transforming SVM to 

calculate the estimated probability (Platt et al., 2000; Sollich, 2002). Hence, in this study,  the 

SVM model was transformed slightly based on a proposal by Platt et al. (2000). This method 

calculates the conditional posterior probability by measuring the distance between the data and 

the classifier. Table 15 shows the output of the top ten student records with the highest probabil-

ity of being classified into the enrolled group. Because the original data is sourced as de-

identified, only each student’s influential enrollment factors were listed along with the probabil-

ity.  
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For the ANN model, input variables are received by the input layer, and then the hidden 

layer performs predicted probability computations based on these input variables. As previously 

mentioned, this study used a single hidden layer in the ANN model, and a sigmoid function was 

used as the activation function in the output layer. Since the sigmoid function's output was be-

tween 0 and 1, the ANN model generated values between 0 and 1. The numbers between 0 and 1 

imply the probability of students’ decision to enroll. Hence, a higher probability value indicated 

that the students were more likely to enroll. The records of students with the top 10 highest en-

rollment probabilities are shown in Table 16. 
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Table 15. Top 10 Student Records with the Highest Probabilities of Making Enrollment Decisions as “Enrolled” using SVM Model 

 
SAT_ACT_

SuperScore

Race_

Black_AA

Race_

Hispanic …

Distance_from_

Campus (Miles)

Unemployment_

Rate (%) …

Inst_Fin_

Aid_Total ($)

Enroll_

Decision

Predicted 

Probabilitty Enroll

Predicted 

Probabilitty Not Enroll

31 0 0 28.8 4.9 10500 1 0.998730 0.001270

19 1 0 353.5 4.9 43186 1 0.998671 0.001329

32 0 0 … 245.5 4.9 … 8000 1 0.998556 0.001444

30 0 0 259.7 4.9 8000 1 0.998339 0.001661

29 0 0 35.0 4.9 9500 1 0.997907 0.002093

33 0 0 353.3 4.9 41000 1 0.997877 0.002123

31 0 0 … 332.4 4.9 … 10500 1 0.997720 0.002280

24 1 0 26.7 4.9 51286 1 0.997581 0.002419

33 1 0 27.7 4.9 40700 1 0.997484 0.002516

25 0 0 4.9 7.6 6246 1 0.997221 0.002779  

 

Table 16. Top 10 Student Records with the Highest Probabilities of Making Enrollment Decisions as “Enrolled” using ANN Model 

SAT_ACT_

SuperScore

Race_

Black_AA

Race_

Hispanic …

Distance_from_

Campus (Miles)

Unemployment_

Rate (%) …

Inst_Fin_

Aid_Total ($)

Enroll_

Decision

Predicted 

Probabilitty Enroll

Predicted 

Probabilitty Not Enroll

24 0 0 12.6 4.0 76762 1 0.986383 0.013617

32 0 0 422.4 4.0 63653 1 0.974848 0.025152

25 0 1 … 923.4 4.0 … 60753 1 0.973759 0.026241

23 1 0 960.7 4.5 59018 1 0.971441 0.028559

23 0 0 6.5 4.0 62910 0 0.971155 0.028845

30 0 0 2.4 4.9 62231 1 0.970045 0.029955

30 0 0 … 433.2 4.5 … 60258 1 0.969829 0.030171

22 0 1 910.0 3.7 57358 1 0.968384 0.031616

29 0 0 170.1 4.0 60408 1 0.968196 0.031804

25 0 0 2.4 5.4 61095 0 0.968144 0.031856  
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CHAPTER FIVE 

 

DISCUSSIONS 

 

The primary objective of this study was to conduct a comparative analysis of four ma-

chine learning models on students’ college enrollment decision predictions and identify the algo-

rithm model, showing the best classification performance. Moreover, another objective was to 

show how the selected models were implemented for conducting feature importance and predic-

tive probability analyses, so the institutions could get insights on how to apply these models to 

the data for pragmatic use. The research design, data collection, and analysis of this study is 

well-tied with Perna’s (2006) conceptual framework, which provided a comprehensive set of 

concepts and ideas to understand and explain college enrollment decisions. Specifically, this 

framework informed the selection and examination of the key variables, which brough the prac-

tical perspective when investigating the statistical methodology. In other words, by utilizing Per-

na’s framework, the study ensured its research methodology was relevant, rigorous, and focused, 

thereby contributing to an existing body of knowledge on higher education enrollment manage-

ment.  

The following sections discuss the major topics in detail, including the proposed three re-

search questions outcomes, data imbalance, limitations, implementations, and future studies.  

Comparative Analysis of Four Machine Learning Algorithms on Train/Validation Data  

 As mentioned in the literature review chapter, a few studies conducted U.S. college en-

rollment prediction modeling for students likely to enroll using machine learning algorithms. 



    124 

 

These studies conducted comparative analysis determining which machine learning algorithms 

showed the best prediction in performance. These comparative analyses of machine learning al-

gorithm applications were broadly classified into the following categories.  

 ANN vs. SVM (Walczk & Sincich, 1999; DesJardins & Gonzales, 2002; Gerasimovic & 

Bugaric, 2018) 

 LR vs. ANN vs. DT (Antons & Maltz, 2006; Chang, 2006) 

 DT vs. KNN vs. NB (Vialardi et al., 2011) 

 ANN vs. DT vs. SVM vs. KNN vs. RF (Ragab et al., 2014) 

 ANN vs. SVM (Lux et al., 2016) 

 LR vs. NN vs. BN vs. RF vs. SVM (Cirelli et al., 2018) 

 LR vs. SVM (Slim et al., 2019) 

 LR vs. NB vs. DT vs. SVM vs. KNN vs. RF vs. GB (Basu et al., 2019) 

The best prediction models selected by previous studies were LR, ANN, DT, and SVM. 

However, no research conducted a comparative analysis using those four machine learning algo-

rithms that were identified as the best. This study presented the comparative analysis for those 

four machine learning models regarding college enrollment prediction performance primarily 

focused on students likely to enroll. Hence, this is one of the contexts in which my study differs 

from the above research. The following subsection discusses each algorithm in detail. 

Logistic Regression (LR) Algorithm Implementation 

LR model has been a general classification algorithm for compiling a college enrollment 

prediction model. As presented in the result chapter, it turns out that the logistic regression has 

higher accuracy (0.861), specificity (0.897), and ROC-AUC (0.767) rates relative to sensitivity 
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(0.674), precision (0.564),   score (0.614), and PR-AUC (0.639). This implies that the model is 

more prone to classify and predict non-enrolled students as non-enrolled than predicting enrolled 

students as enrolled. In other words, the accuracy and specificity rates are significantly higher 

because the size of the non-enrolled students' pool is significantly greater than the enrolled pool 

in which the data are more likely to capture the non-enrolled students and predict as non-enrolled 

than capturing enrolled students and predict them as enrolled.  

As mentioned in the literature review, the LR model has been the most popular empirical 

model for college enrollment since the 1980s. Since there were fewer college admission data 

with less number of influential factors to consider that impact students’ enrollment decisions, the 

LR model was an appropriate model to apply. However, today, the size of the college admission 

data is large and abundant, with various influential factors on college enrollment. Hence, many 

higher education institutions are confronting implementing efficient methodologies for handling 

big and high-dimensional data. However, the LR model is prone to overfitting in high dimen-

sional data because those data may involve complex relationships across predictor (i.e., input) 

variables and outcome variables (Dreiseitl & Ohno-Machado, 2002). Also, LR can be more sen-

sitive to outliers, leading to a decision boundary that does not generalize well to new data (Hos-

mer, 2013). Therefore, the LR’s classification prediction performance was relatively ineffective 

compared to DT, SVM and ANN. That is because DT, SVM and ANN are more robust to outli-

ers than LR (Sakr et al., 2017). Since DT can handle outliers by splitting the data into subsets 

based on the input features, it can help avoid overfitting outliers (Herzog, 2006; Gomex & Al-

meida, 2017). In addition, SVM seeks to maximize the margin between the decision boundary 

and the closest data points, which can help to avoid overfitting to outliers (Hastie et al., 2004; 
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Platt, 2000; Hansen & Sargent, 2001). In addition, SVM and ANN models are more flexible and 

better at adjusting to the data with a more dynamic approach for handling high-dimensional data 

(Hastie et al., 2004; Hansen & Sargent, 2001; Dreiseitl & Ohno-Machado, 2002). For example, 

the best SVM model is compiled by attempting to apply multiple cost parameters, C, and choose 

the optimal one among them, tuning its’ model to show the best classification prediction perfor-

mance. Therefore, it is less prone to overfitting than LR. Like SVM, the ANN model is compiled 

by selecting the optimal number of hidden layers and nodes, making its model the best classifica-

tion prediction performance. Although there is a basic rule of thumb to determine the number of 

hidden layers and nodes, multiple numbers of hidden layers and nodes can be attempted to make 

the best choice of those values, making the ANN model perform better on classification predic-

tion compared to LR.  

Decision Tree (DT) Algorithm Implementation 

DT model has been a general classification algorithm for compiling a college enrollment 

prediction model. However, this model was more computationally expensive compared to LR. In 

other words, compiling a model to program in Python took longer than LR.  

Similar to LR, DT had higher accuracy (0.884), specificity (0.926), and ROC-AUC 

(0.759) rates relative to sensitivity (0.671), precision (0.639),  score (0.655), and PR-AUC 

(0.661). This implies that the DT model is also more prone to classify and predict non-enrolled 

students as non-enrolled than predicting enrolled students as enrolled. In other words, the accu-

racy and specificity rates are higher because the size of the non-enrolled students' pool is greater 

than the enrolled pool, in which the data are more likely to capture the non-enrolled students and 

predict as non-enrolled compared to capturing enrolled students and predict them as enrolled.  
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Although DT is also considered a popular model to apply with providing easier interpre-

tations, the current study showed that it’s classification prediction performance was ineffective 

compared to SVM and ANN. That is because DT algorithms are more unstable to apply to high-

dimensional data relative to SVM and ANN, which may easily result in the under/overfitting of 

the data. Also, as mentioned earlier,  SVM and ANN models are more flexible and better than 

DT at adjusting to the data with a more dynamic approach for handling high-dimensional data 

(Hastie et al., 2004; Hansen & Sargent, 2001; Dreiseitl & Ohno-Machado, 2002). Moreover, the 

SVM and ANN models are more robust to noise data than DT because linear SVM seeks to find 

a decision boundary that maximizes the margin between different classes (Hastie et al., 2004; 

Platt, 2000; Hansen & Sargent, 2001). In contrast, DT can be relatively sensitive to noise and 

outliers, which can lead to overfitting or inaccurate predictions (Herzog, 2006; Gomex & Al-

meida, 2017). Also, DT can create complex decision boundaries that overfit the training data, 

whereas ANN can learn to generalize from noisy data, which can lead to better performance on 

unseen data (Herzog, 2006).  

Support Vector Machine (SVM) Algorithm Implementation 

As mentioned in the results chapter, a linear SVM with a cost parameter value of 10 was 

implemented in the train/validation dataset. The results showed that the SVM had high accuracy 

(0.897), specificity (0.915), and ROC-AUC (0.861) rates relative to sensitivity (0.807), precision 

(0.650),  score (0.720), and PR-AUC (0.754). This may be reflected as having similar results 

to LR, DT, and ANN. However, it turns out that the SVM model is classifying imbalanced data 

fairly well, which has the highest sensitivity, precision,  score and PR-AUC values compared 
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to other models. In other words, the SVM model shows a better classification prediction perfor-

mance for enrolled students as enrolled. 

As mentioned earlier, one of the advantages of the SVM algorithm is that it is more ro-

bust than LR and DT in handling multiple feature spaces (Auria & Moro, 2008). In other words, 

SVM was more prone to handling complex, high-dimensional, and imbalanced data by applying 

an optimal cost parameter value. Hence, it had less risk of overfitting on the validation and test 

dataset. Moreover, the SVM model is less sensitive to noisy data, such as including outliers (Sakr 

et al., 2017). Hence it is relatively well suited to making good predictions compared to LR and 

DT (Pochet & Suykens, 2006). Also, linear SVM seeks to maximize the margin between differ-

ent classes, which can lead to a decision boundary that generalize well to new data. In contrast, 

ANN can be more prone to overfitting due to their flexibility and the potential for the model to 

memorize noise in the training data (Hastie et al., 2004; Platt, 2000; Hansen & Sargent, 2001). 

However, compiling the SVM model for the current study required the longest time to program 

in Python. This was already mentioned in other studies (Yu et al., 2004; Auria & Moro, 2008; 

Fedorovici & Dragan, 2011) as a disadvantage that the SVM algorithm is the most expensive al-

gorithm to compile computationally.  

In addition to the longest computation time to compile SVM, there is another considera-

ble limitation of SVM. Since the current study chose a “linear” kernel for compiling the SVM 

model, it was possible to implement the model to conduct practical analyses such as feature im-

portance and predictive probability calculations at an individual level of data. However, as the 

data gets more complex and abundant, the SVM model may likely need to deal with non-

parametric data which needs to apply non-parametric related kernels such as RBF. So far, there 
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is no methodology to conduct feature importance and predictive probabilities for individual lev-

els of the data when such non-parametric SVMs are applied. Therefore, it may derive limitations 

on using an SVM model pragmatically when a non-parametric kernel is applied.  

Artificial Neural Network (ANN) Algorithm Implementation 

As mentioned in the results chapter, the ANN model was compiled with 50 input nodes, 

21 hidden nodes with one hidden layer, and two output nodes. The ANN model was the second-

best algorithm in addition to SVM to compile college enrollment prediction modeling. The re-

sults showed that the ANN had high accuracy (0.893), specificity (0.918), and ROC-AUC 

(0.849) rates relative to sensitivity (0.765), precision (0.647),  score (0.701), and PR-AUC 

(0.716). This may be reflected as having similar results to LR, DT, and SVM.  However, it turns 

out that the ANN model is classifying imbalanced data fairly well, which has the second highest 

sensitivity (0.765), precision (0.647),  score (0.701), and PR-AUC (0.716) values than LR and 

DT. In other words, the ANN model shows a better classification prediction performance for en-

rolled students as enrolled than LR and DT.  

Like SVM, the ANN algorithm is highly prone to handle complex, high-dimensional, and 

imbalanced data. Similar to SVM, which requires determining the cost parameter value, choos-

ing optional numbers of the hidden layer(s) and node(s) is necessary for ANN before applying it 

to the dataset. This implies that the ANN model is more flexible in adjusting to the data relative 

to LR and DT. As long as an optimal number of the hidden layer(s) and node(s) are applied, it is 

possible to anticipate that the model will perform an efficient prediction on classifying binary 

outcomes. It also required more computational time to compile the modeling than LR and DT but 

less than SVM in the python environment.  
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SVM and ANN Application on Test Data  

This section discusses the study's primary findings, mainly focused on the two best ma-

chine learning models. As mentioned earlier, SVM and ANN were the two machine learning 

models that showed the best classification performance of college enrollment prediction. Both 

have significantly higher sensitivity, precision,  score and AUC values than LR and DT models. 

This implied that both models are performing well in classifying and predicting students who 

enrolled as enrolled. Although the current study chose both data as the best models, there is 

enough space to think about determining the best of best model between SVM vs. ANN. Lux et 

al. (2016) compared SVM vs. ANN for college enrollment prediction and chose ANN as a better 

model, only based on the values derived from the confusion matrix. In other words, the study did 

not describe why ANN was better than SVM from a methodological viewpoint, not reflecting the 

advantages and disadvantages of the algorithm to one’s data. In fact, there are many variations 

and controversies on which machine learning model is better for compiling college enrollment 

modeling. Moreover, it is more focused on comparing the models based on the accuracies, speci-

ficity, sensitivity, precision, and ROC-AUC without considering data cross-validation and its 

imbalance.  

Since the data are structured differently across institutions, I approached this with a 

broader theme regarding classification performance using highly imbalanced data. Some studies 

compared the classification performance between SVM vs. ANN with respect to imbalanced data 

classification. Ren (2012) compared the SVM vs. ANN performance based on his empirical 

study, which used imbalanced data from mammogram imaging. He concluded that ANN per-

forms better on imbalanced data than SVM, showing higher accuracy, sensitivity, and precision, 
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and ROC-AUC rates. However, other empirical studies conducted by Morares et al. (2013), Aro-

ra et al. (2010), and Ustuner (2016) stated that SVM performs better than ANN. Morares et 

al.(2013) and Arora et al. (2010) conducted an empirical study regarding text classification using 

imbalanced data and compared the performances of SVM vs. ANN. Both studies concluded that 

SVM is better at showing more stability with less noise on train and test data. In addition, Ustun-

er et al. (2016) conducted an empirical study regarding rapid-eye imaging imbalanced data and 

compared its performances for ANN and SVM. The study concluded that SVM was a robust, 

consistent, and effective classifier for imbalanced data relative to ANN.  

Overall, SVM is often considered better than ANN for classification prediction on highly 

imbalanced data because it has a built-in mechanism for handling class imbalance, known as 

class weighting (Tang et al., 2002). Class weighting adjusts the relative importance of the differ-

ent classes in the training process to mitigate the impact of the imbalanced distribution (Tang et 

al., 2002). In highly imbalanced data, the minority class typically has fewer samples than the ma-

jority class, which can lead to a biased model that predicts the majority class more frequently. 

This can be problematic in classification tasks where the minority class is of particular interest, 

such as college enrollment decisions, fraud detection, or disease diagnosis. In contrast, linear 

SVM with class weighting assigns higher weights to the minority class samples during training, 

effectively making their contribution to the optimization problem more significant. This can help 

to balance the influence of the different classes and improve the models’ ability to identify the 

minority class correctly. On the other hand, ANN may struggle with highly imbalanced data if 

not appropriately addressed during training ANN relies on minimizing the overall prediction er-

ror, which may lead to overfitting o the majority class, causing poor performance on the minority 
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class. It can be challenging to balance the contribution of different classes in ANN without addi-

tional techniques, such as adjusting the loss function.  

Generally, SVM is a robust and effective ML algorithm for classification prediction on 

highly imbalanced data due to its ability to handle class imbalance with class weighting. Howev-

er, determining which machine learning model is better for classification performance on imbal-

anced data is still controversial because other combining techniques, such as data resampling and 

cost-sensitive learning, can also be used to improve the performance of ML algorithm models on 

imbalanced data. Moreover, college enrollment data is highly imbalanced in general, and the 

type of data structure differs across institutions. Hence constant empirical studies for compiling 

predictive college enrollment modeling using various machine learning algorithms are necessary 

to increase the number of quantitative case studies.  

Feature Importance and Predictive Probability Analyses based on SVM and ANN 

The context that differs from the previous studies is that this study presented how ma-

chine learning prediction models can be used pragmatically. All past studies presented their best 

machine-learning models for predicting college enrollment based on the confusion matrix, de-

rived values, and ROC-AUC. However, they did not provide any additional follow-up methods 

to implement how these machine learning algorithms models can be applied for practical use. 

Hence, I presented how to formulate the prediction probabilities using the best-selected machine 

learning models (i.e., SVM and ANN) and provided the probability of each student’s likelihood 

to enroll. This delivers significant insights to higher education administration stakeholders for 

setting up efficient enrollment management strategies that are highly correlated with its financial 

budgeting plans for its fiscal year.  
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Data Imbalance  

 It is common that college admission data involves two highly imbalanced groups (i.e., 

enrolled vs. non-enrolled). In general, the subset size of non-enrolled students is bigger than 

those who enrolled. Since the sizes of the two groups are highly imbalanced, it is important to 

consider how to implement these imbalanced data into the model to reduce the over/underfitting 

and its biases. However, most research conducted predictive modeling without considering such 

data imbalance traits (Antons & Maltz, 2006; Chang, 2006; Vialardi et al., 2011; Regab et al., 

2014; Lux et al., 2016; Cirelli et al., 2018; Slim et al., 2019; Basu et al., 2019) and just used plain 

k-fold cross-validation method. The disadvantage of the plain k-fold cross-validation method is 

that the train data is randomly sampled k times without considering the imbalance between two 

groups (i.e., enrolled vs. non-enrolled). Therefore, it is highly likely that each sample has a dif-

ferent ratio of enrolled vs. non-enrolled records, resulting inaccurate classification prediction 

performance of the models. On the other hand, stratified k-fold cross-validation is sampling the 

original dataset k times and each sample has a similar data distribution to the original. This im-

plies that the models can be trained and validated using each fold and be sure that the data distri-

bution involving two groups (enrolled vs. non-enrolled) stays consistent. Hence, one primary 

context that differentiates the current study from the past studies is the stratified k-fold cross-

validation implementation.  

Limitations  

For this section, I discuss the limitation of the study in terms of generalization, influential 

factors applied in the model, the timeframe of collected data, and the approach of using machine 

learning algorithms and their implementation. As mentioned in the methodology chapter, the da-
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ta were collected from a 4-year non-profit private university in Midwest urban area. Hence the 

outcomes and findings of the current study may not be generalized to other institutions. Accord-

ing to Fung and Adams (2017), there are differences in students’ perceptions toward types of col-

leges (i.e., public vs. private, 2-year vs. 4-year), locations (i.e., rural vs. urban) and this supports 

the claim that the current study’s scope of inference is limited.  

The current study reflected the ten influential factors on students’ college enrollment de-

cisions based on Perna’s (2006) college choice theoretical framework. Ten factors involved stu-

dents' demographics (i.e., gender, race, socioeconomic status, academic performance), high 

school/community context (i.e., parent education level, high school academic climate), higher 

education context (i.e., college proximity, institutional financial aid), and social, economic, and 

policy context (i.e., national unemployment and inflation rates). Since study outcomes and find-

ings are generated based on ten factors, identified predictive models are limited to apply to other 

datasets involving other factors such as student engagement and major of interest, etc.  

In addition to other factors influencing students’ college enrollment decisions, the current 

study has another limitation related to the data collection timeframe. Since the data cover the co-

hort years from 2013 to 2019, these data reflect the events before the Covid-19 pandemic. Hence, 

the college enrollment prediction models generated based on the pre-pandemic period data have 

limitations to apply to the new data for 2020 and after. Since the test-optional policy was imple-

mented widely across institutions during the pandemic, most institutions started to put less 

weight on the applicant’s standardized test scores (Fair Test, 2022). In addition, the number of 

students who submitted their standardized test scores decreased significantly. Hence new admis-
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sion policy (i.e., test-optional policy) must be considered and reflected in the model for compil-

ing new college enrollment prediction model(s).  

Another limitation of the study is related to the approach of using machine learning algo-

rithms and their implementation. Although machine learning algorithms are prone to deal with 

big and high-dimensional data with less conservative implementing data, they require a long pe-

riod for training and validation. Moreover, to minimize the over/underfitting, more data is the 

better strategy to make the model less prone to errors. Therefore, the machine learning models 

are generally time-expensive methodologies to generalize. However, they are easy to implement 

and expect highly reliable predictions once the compiling and validation stages are finalized.  

Implications 

 Currently, we are in an environment where huge amounts of data are explosively pro-

duced in a short period, and the power of big data is growing. Hence, accurate analysis of big 

data that can establish a clear competitive strategy is more than anything else. Many companies 

use big data to analyze people’s behavior and trends to develop their business strategies. And 

these actions are directly related to the company’s performance and economic feasibility. From 

this point of view, the influence of decision-making by data is extensive and vital. Moreover, the 

higher education sector is also in the inevitable stage of dealing with big data, especially enroll-

ment management. As mentioned in the introduction chapter, the high school graduation rate has 

decreased and students are applying to multiple colleges (Western Interstate Commission of 

Higher Education, 2020; Campbell et al., 2007). This resulted in competition growing among 

colleges for enrollment, and thus, institutions need to anticipate uncertainties related to budgets 

expected from student enrollment. In addition, the type of considerable factors influencing stu-
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dents' behavior related to enrollment decisions become diverse and led institutional data to grow 

abundant. In other words, institutions have to face managing and analyzing big data. Therefore, 

implementing machine learning algorithms and generating classification models for college en-

rollment prediction becomes crucial.  

The current study identified SVM and ANN as the best models to implement for college 

enrollment prediction by training, validation, and testing seven years of cohort data. Moreover, 

the study conducted feature analysis based on these two models and identified the most im-

portant factors that impact students’ enrollment decisions; Distance from Campus (i.e., proximi-

ty), High School GPA, Expected Family Contribution, Unemployment Rate, and Institutional 

Financial Aid Total amount. Future studies and adapt and implement these findings to support 

the admission, marketing, and financial aid department in setting up strategies for student re-

cruitment. For example, student recruitment strategies can be set up in various ways to target 

students living closer to campus to those living further. These strategies can be combined with 

other strategies related to students’ high school GPAs, their expected family contribution, and 

institutional financial aid, such as providing more discount rates (i.e., a high amount of institu-

tional financial aid) to students who are living further with low expected family contribution but 

with outstanding high school GPA.  

In addition to conducting feature importance analysis, the predictive probability was for-

mulated using SVM and ANN models. This methodology provided the probability of students’ 

likelihood to enroll based on the 46 one-hot encoded factors. Since SVM and ANN models are 

identified to be the best prediction models for classifying enrolled and not enrolled students, they 

can be applied to the incoming students' data and determine who is likely to enroll and who is 
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not. Based on these predictive probability calculations, an institution can individually apply mar-

keting strategies to students based on 50 factors. These can also effectively improve the diversity 

of institutions’ student bodies by targeting students in minor communities with small populations. 

Future Study 

Despite limitations, the current study can be expanded to some future studies. As afore-

mentioned, there are considerable and additional factors, such as student engagement. Student 

engagement is an essential factor in predicting students’ college enrollment decisions (Fraysier et 

al., 2020). Such engagement is defined as any form of interaction that prospective students create 

between higher education institutions (Cole et al., 2009). This includes campus visits, attending 

college fairs, meeting with the admission counselors, and submitting a request for information 

form, etc. Hence past studies have shown that students with a significant amount of engagement 

and making certain types of engagement are highly likely to enroll (Fraysier et al., 2020; Peruta 

& Shields, 2018; Kowalik, 2011). However, this data field is immensely treated as large categor-

ical data. Hence, conducting appropriate data-preprocessing steps is crucial before implementing 

it into the model. Once the data-preprocessing for student engagement data is completed, it can 

be implemented into compiling machine learning algorithm models for predicting students’ col-

lege enrollment decisions.   

In addition to the ‘student engagement’ factor, it is necessary to implement the ‘test-

optional policy’ factor, which became significant after the Covid-19 pandemic. Since an institu-

tion in this study implemented the test-optional policy starting from Fall 2021 cohort, this factor 

must be reflected to compile the new form of college enrollment prediction model. However, 

since the test-optional policy-related data has been collected for only three years, it might not be 
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sufficient to train the model(s) and apply it to test data as an upcoming new dataset. However, 

the new predictive college enrollment model(s) is inevitable to compile, including test-optional 

related factors, no later than two years from now.  

Along with implementing additional factors to the prediction model(s), interactions 

among independent variables (i.e., influential factors on college enrollment decisions) need to be 

considered. Interaction refers to the effect of the combination of two or more predictor variables 

on the outcome variable, where the effect of one predictor variable on the outcome depends on 

the level of the other predictor variable(s) (Zhang, 2016). In other words, the effect of one varia-

ble on the outcome is not constant across all levels of the other variables. This is sometimes re-

ferred to as a synergistic effect, where the combined effect of two variables is greater (or less) 

than the sum of their individual effects (Zhang, 2016). Since the current study did not consider 

interactions, compiling interactions across predictor variables will be necessary for developing 

better classification prediction model(s). Based on the literature review chapter, there is domain 

knowledge in the current study regarding influential factors and their relationships to students’ 

college enrollment decisions. In other words, prior knowledge and theory suggest that certain 

independent variables may interact with each other to influence the dependent variable (Zhang, 

2016). Therefore, it could be necessary to analyze interactions for the compiled prediction model 

as an in-depth analysis. Because, in some cases, analyzing interactions may help to capture non-

linear relationships and incorporate domain knowledge as the number of factors get abundant 

and various.  

Aside from considering interactions across variables, there are additional methodologies 

to apply in the future analysis regarding multicollinearity assessment. While this study utilized 
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the variance inflation factor (VIF) to detect multicollinearity, VIF measures the degree of multi-

collinearity between a predictor variable and all other predictor variables but does not capture the 

partial correlations between individual predictor variables (Kim, 2019). Therefore, VIF may not 

detect cases where two or more predictor variables are highly correlated with each other but not 

with the response variable. Nevertheless, VIF is still a useful tool for detecting multicollinearity, 

and it is often used in conjunction with other methods to check for multicollinearity. Hence, sup-

plementary methods such as examining regression coefficients and computing eigenvalues of the 

correlation matrix can also be employed to check for multicollinearity.   

Lastly, it is predictable that the student's enrollment decision behaviors and factors will 

get more complex and varied. Hence, this is predictable that linear modeling may not be suffi-

cient to apply. Therefore, studies on implementing advanced model(s) are needed. I recommend 

applying the SVM model with the RBF kernel. This model is highly adjustable to linear and pol-

ynomial data structures in high-dimensional settings. However, the SVM model using the RBF 

kernel requires determining the optimal gamma parameter value and a cost parameter. The gam-

ma parameter is a value that tunes the equation. Similar to cost parameter determination, there is 

no rule of thumb to decide the optimal gamma value. Therefore, testing multiple values of gam-

ma and cost parameters as pairs is required, which takes longer to compile the final SVM model. 

Thus, compiling an SVM model with an RBF kernel is computationally very expensive than 

compiling a linear SVM model. However, it can be one of the models that give highly reliable 

predictions of classification performance by adding new variables (e.g., test-optional policy, en-

gagements) to the model.  
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DATA VARIABLES 
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Variable Meaure Type Definition 

Sex_F Binary Dummary Code, 1=Yes, 0=No

Sex_M Binary Dummary Code, 1=Yes, 0=No

Race_Asian Binary Dummary Code, 1=Yes, 0=No

Race_Black_AA Binary Dummary Code, 1=Yes, 0=No

Race_Hispanic Binary Dummary Code, 1=Yes, 0=No

Race_Other Binary Dummary Code, 1=Yes, 0=No

Race_Unknown Binary Dummary Code, 1=Yes, 0=No

Race_White Binary Dummary Code, 1=Yes, 0=No

PEL_Associates_Degree Binary Dummary Code, 1=Yes, 0=No

PEL_Bachelors_Degree Binary Dummary Code, 1=Yes, 0=No

PEL_Graduate_Degree Binary Dummary Code, 1=Yes, 0=No

PEL_High_School_Graduate Binary Dummary Code, 1=Yes, 0=No

PEL_Some_College Binary Dummary Code, 1=Yes, 0=No

PEL_Some_High_School Binary Dummary Code, 1=Yes, 0=No

SAT_ACT_SuperScore Conintuous Higest standardized test score, Range from 1 to 36

HSGPA Conintuous Raw High School GPA Scores

Inst_Fin_Aid_Total Conintuous Total Institutional Financial Aid Amount

Fed_Efc Conintuous Federal Expected Family Contribution

Distance_from_Campus Conintuous Proximity

Unemployment_Rate Conintuous National Unemployment Rate by month, Year

Inflation_Rate Conintuous Inflation Rate by Month, Year

Enroll_Decision Binary Dummary Code, 1=Yes, 0=No

HSCluster_51 Binary Dummary Code, 1=Yes, 0=No

HSCluster_52 Binary Dummary Code, 1=Yes, 0=No

HSCluster_53 Binary Dummary Code, 1=Yes, 0=No

HSCluster_54 Binary Dummary Code, 1=Yes, 0=No

HSCluster_55 Binary Dummary Code, 1=Yes, 0=No

HSCluster_56 Binary Dummary Code, 1=Yes, 0=No

HSCluster_57 Binary Dummary Code, 1=Yes, 0=No

HSCluster_58 Binary Dummary Code, 1=Yes, 0=No

HSCluster_59 Binary Dummary Code, 1=Yes, 0=No

HSCluster_60 Binary Dummary Code, 1=Yes, 0=No

HSCluster_61 Binary Dummary Code, 1=Yes, 0=No

HSCluster_62 Binary Dummary Code, 1=Yes, 0=No

HSCluster_63 Binary Dummary Code, 1=Yes, 0=No

HSCluster_64 Binary Dummary Code, 1=Yes, 0=No

HSCluster_65 Binary Dummary Code, 1=Yes, 0=No

HSCluster_66 Binary Dummary Code, 1=Yes, 0=No

HSCluster_67 Binary Dummary Code, 1=Yes, 0=No

HSCluster_68 Binary Dummary Code, 1=Yes, 0=No

HSCluster_69 Binary Dummary Code, 1=Yes, 0=No

HSCluster_70 Binary Dummary Code, 1=Yes, 0=No

HSCluster_71 Binary Dummary Code, 1=Yes, 0=No

HSCluster_72 Binary Dummary Code, 1=Yes, 0=No

HSCluster_73 Binary Dummary Code, 1=Yes, 0=No

HSCluster_74 Binary Dummary Code, 1=Yes, 0=No

HSCluster_75 Binary Dummary Code, 1=Yes, 0=No

HSCluster_76 Binary Dummary Code, 1=Yes, 0=No

HSCluster_77 Binary Dummary Code, 1=Yes, 0=No

HSCluster_78 Binary Dummary Code, 1=Yes, 0=No

HSCluster_79 Binary Dummary Code, 1=Yes, 0=No  
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APPENDIX B 

 

DESCRIPTIONS OF HIGH SCHOOL ACADEMIC CLIMATE CLUSTERS 
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APPENDIX C 

 

PYTHON CODE OPEN SOURCE 
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import pandas as pd 

import numpy as np 

import seaborn as sns 

from statsmodels.stats.outliers_influence import variance_inflation_factor 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import StratifiedKFold 

from matplotlib import pyplot as plt 

from sklearn.preprocessing import LabelEncoder 

from sklearn.metrics import confusion_matrix, roc_auc_score ,roc_curve, auc 

from sklearn.metrics import precision_recall_curve 

from sklearn.linear_model import LogisticRegression 

from sklearn import tree 

from sklearn import svm 

from sklearn.neural_network import MLPClassifier 

 

###Train/Validation Dataset Application### 

#Train/Validation Dataset Launch# 

data = pd.read_csv("/Users/Final Data/TrainValidation.csv") 

X = data.drop(['Term', 'STRM', 'Race_White', 'Sex_Female', 

'PEL_Bachelors_Degree','HSCluster_79','Enroll_Decision'], axis=1) 

y = data['Enroll_Decision'] 

 

#Multicollinearity Assessment using VIF# 

vif_data = pd.DataFrame() 

vif_data["feature"] = X.columns 

vif_data["VIF"] = [variance_inflation_factor(X.values, i) 

                          for i in range(len(X.columns))] 

print(vif_data) 

 

# Compile LR model with Stratified 10-Fold Cross-Validation for Test/Validation Data# 

kf = StratifiedKFold(n_splits=10, shuffle=True) 

#due to the train_test_split function, validation dataset is treated as a test data# 

pred_test_full =0 

cv_score =[] 

i=1 

for train_index,test_index in kf.split(X,y): 

    print('{} of KFold {}'.format(i,kf.n_splits)) 

    xtr,xvl = X.loc[train_index],X.loc[test_index] 

    ytr,yvl = y.loc[train_index],y.loc[test_index] 

lr = LogisticRegression() 

lr.fit(xtr,ytr) 
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#testing ROC AUC values to see whether stratified 10-fold CV works properly# 

score = roc_auc_score(yvl,lr.predict(xvl)) 

print('ROC AUC score:',score) 

cv_score.append(score)     

pred_test = lr.predict_proba(x_test)[:,1] 

pred_test_full +=pred_test 

i+=1 

 

#Concatenated Confusion Matrix of LR# 

print('Concatenated Confusion matrix\n',confusion_matrix(yvl,lr.predict(xvl))) 

LRConcatCM= confusion_matrix(yvl,lr.predict(xvl)) 

sns.heatmap(LRConcatCM, annot=True, fmt=".0F", cmap=colormap) 

plt.xlabel('Predicted Label') 

plt.ylabel('True Label') 

plt.title(‘Concatenated Confusion Matrix for Logistic Regression’) 

plt.show() 

 

#Mean ROC-AUC for LR# 

proba = lr.predict_proba(xvl)[:,1] 

fpr,tpr, threshold = roc_curve(yvl,proba) 

roc_auc_ = auc(fpr,tpr) 

plt.figure(figsize=(12, 7)) 

plt.title(‘Mean ROC Curve for Logistic Regression', size=20) 

plt.plot(fpr, tpr, ‘r’, label = 'AUC (LR)= %0.3f' % roc_auc_) 

plt.xlabel('False Positive Rate', size=14) 

plt.ylabel('True Positive Rate', size=14) 

plt.legend(); 

 

# Mean PR-AUC for LR# 

precision_lr, recall_lr, _ = precision_recall_curve(yvl,proba) 

auc_lr = auc(recall_lr, precision_lr) 

plt.figure(figsize=(12, 7)) 

plt.plot(recall_lr, precision_lr, label=f'AUC (LR) = {auc_lr:.3f}',color='red') 

plt.title('Mean Precision-Recall Curve for Logistic Regression’, size=20) 

plt.xlabel('Recall', size=14) 

plt.ylabel('Precision', size=14) 

plt.legend(); 

plt.show() 

 

# Compile DT model with Stratified 10-Fold Cross-Validation for Test/Validation Data# 

kf = StratifiedKFold(n_splits=10, shuffle=True) 

pred_test_full =0 

cv_score =[] 

i=1 
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for train_index,test_index in kf.split(X,y): 

    print('{} of KFold {}'.format(i,kf.n_splits)) 

    xtr,xvl = X.loc[train_index],X.loc[test_index] 

    ytr,yvl = y.loc[train_index],y.loc[test_index] 

 

     dt = tree.DecisionTreeClassifier() 

     dt.fit(xtr,ytr) 

     score = roc_auc_score(yvl,lr.predict(xvl)) 

     print('ROC AUC score:',score) 

     cv_score.append(score)     

     pred_test = dt.predict_proba(x_test)[:,1] 

     pred_test_full +=pred_test 

     i+=1 

 

#Concatenated Confusion Matrix of LR# 

DTConcatCM= confusion_matrix(yvl,dt.predict(xvl)) 

sns.heatmap(DTConcatCM, annot=True, fmt=".0F", cmap=colormap) 

plt.xlabel('Predicted Label') 

plt.ylabel('True Label') 

plt.title(‘Concatenated Confusion Matrix for Decision Tree’) 

plt.show() 

 

#ROC-AUC for DT# 

proba = dt.predict_proba(xvl)[:,1] 

fpr,tpr, threshold = roc_curve(yvl,proba) 

roc_auc_ = auc(fpr,tpr) 

plt.figure(figsize=(12, 7)) 

plt.title('Mean ROC Curve for Decision Tree', size=20) 

plt.plot(fpr, tpr, ‘r’, label = 'AUC (DT)= %0.3f' % roc_auc_) 

plt.xlabel('False Positive Rate', size=14) 

plt.ylabel('True Positive Rate', size=14) 

plt.legend(); 

 

#For DT Model – Compile Mean PR-AUC# 

precision_dt, recall_dt, _ = precision_recall_curve(yvl,proba) 

auc_dt = auc(recall_dt, precision_dt) 

plt.figure(figsize=(12, 7)) 

plt.plot(recall_dt, precision_dt, label=f'AUC (DT) = {auc_dt:.3f}',color='red') 

plt.title('Mean Precision-Recall Curve for Decision Tree', size=20) 

plt.xlabel('Recall', size=14) 

plt.ylabel('Precision', size=14) 

plt.legend(); 

plt.show() 
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# Compile SVM model with Stratified 10-Fold Cross-Validation for Test/Validation Data# 

kf = StratifiedKFold(n_splits=10, shuffle=True) 

pred_test_full =0 

cv_score =[] 

i=1 

for train_index,test_index in kf.split(X,y): 

    print('{} of KFold {}'.format(i,kf.n_splits)) 

    xtr,xvl = X.loc[train_index],X.loc[test_index] 

    ytr,yvl = y.loc[train_index],y.loc[test_index] 

 

     svm = svm.SVC(kernel=’linear’, C=10.0) 

 

svm.fit(xtr,ytr) 

score = roc_auc_score(yvl,lr.predict(xvl)) 

print('ROC AUC score:',score) 

cv_score.append(score)     

pred_test = svm.predict_proba(x_test)[:,1] 

pred_test_full +=pred_test 

i+=1 

 

#Concatenated Confusion Matrix of SVM# 

SVMConcatCM= confusion_matrix(yvl,svm.predict(xvl)) 

sns.heatmap(SVMConcatCM, annot=True, fmt=".0F",cmap=colormap) 

plt.xlabel('Predicted Label') 

plt.ylabel('True Label') 

plt.title('Concatenated Confusion Matrix for Support Vector Machine') 

plt.show() 

 

#Mean ROC-AUC for SVM# 

proba = svm.predict_proba(xvl)[:,1] 

fpr,tpr, threshold = roc_curve(yvl,proba) 

roc_auc_ = auc(fpr,tpr) 

plt.figure(figsize=(12, 7)) 

plt.title('Mean ROC Curve for Support Vector Machine', size=20) 

plt.plot(fpr, tpr, ‘r’, label = 'AUC (SVM)= %0.3f' % roc_auc_) 

plt.xlabel('False Positive Rate', size=14) 

plt.ylabel('True Positive Rate', size=14) 

plt.legend(); 

plt.show() 

 

#For SVM Model – Compile Mean PR-AUC# 

precision_svm, recall_svm, _ = precision_recall_curve(yvl,proba) 

auc_svm = auc(recall_svm, precision_svm) 

plt.figure(figsize=(12, 7)) 
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plt.plot(recall_svm, precision_svm, label=f'AUC (SVM) = {auc_svm:.3f}',color='red') 

plt.title('Mean Precision-Recall Curve for Support Vector Machine', size=20) 

plt.xlabel('Recall', size=14) 

plt.ylabel('Precision', size=14) 

plt.legend(); 

plt.show() 

 

# Compile ANN model with Stratified 10-Fold Cross-Validation for Test/Validation Data# 

kf = StratifiedKFold(n_splits=10, shuffle=True) 

pred_test_full =0 

cv_score =[] 

i=1 

for train_index,test_index in kf.split(X,y): 

    print('{} of KFold {}'.format(i,kf.n_splits)) 

    xtr,xvl = X.loc[train_index],X.loc[test_index] 

    ytr,yvl = y.loc[train_index],y.loc[test_index] 

 

     ann = MLPClassifier(solver=’lbfgs’, hidden_layer_sizes=(27,)) 

ann.fit(xtr,ytr) 

score = roc_auc_score(yvl,ann.predict(xvl)) 

print('ROC AUC score:',score) 

cv_score.append(score)     

pred_test = ann.predict_proba(x_test)[:,1] 

pred_test_full +=pred_test 

i+=1 

 

#Concatenated Confusion Matrix of ANN# 

ANNConcatCM= confusion_matrix(yvl,ann.predict(xvl)) 

sns.heatmap(ANNConcatCM, annot=True, fmt=".0F",cmap=colormap) 

plt.xlabel('Predicted Label') 

plt.ylabel('True Label') 

plt.title(‘Concatenated Confusion Matrix for Artificial Neural Network’) 

plt.show() 

 

#Mean ROC-AUC for ANN# 

proba = ann.predict_proba(xvl)[:,1] 

fpr,tpr, threshold = roc_curve(yvl,proba) 

roc_auc_ = auc(fpr,tpr) 

plt.figure(figsize=(12, 7)) 

plt.title(‘Mean ROC Curve for Artificial Neural Network’, size=20) 

plt.plot(fpr, tpr, ‘r’, label = 'AUC (ANN)= %0.3f' % roc_auc_) 

plt.xlabel('False Positive Rate', size=14) 

plt.ylabel('True Positive Rate', size=14) 

plt.legend(); 
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plt.show() 

 

#For ANN Model – Compile Mean PR-AUC# 

precision_ann, recall_ann, _ = precision_recall_curve(yvl,proba) 

auc_ann = auc(recall_ann, precision_ann) 

plt.figure(figsize=(12, 7)) 

plt.plot(recall_ann, precision_ann, label=f'AUC (ANN) = {auc_lr:.3f}',color='red') 

plt.title('Mean Precision-Recall Curve for Artificial Neural Network’, size=20) 

plt.xlabel('Recall', size=14) 

plt.ylabel('Precision', size=14) 

plt.legend(); 

plt.show() 

 

###Test Dataset Application### 

#Test Dataset Launch# 

data = pd.read_csv("/Users/Final Data/Test.csv") 

X = data.drop(['Term', 'STRM', 'Race_White', 'Sex_Female', 

'PEL_Bachelors_Degree','HSCluster_79','Enroll_Decision'], axis=1) 

y = data['Enroll_Decision'] 

 

#Compile Support Vector Machine (SVM) Model# 

svm = svm.SVC(kernel=’linear’, C=10.0) 

svm.fit(X,y) 

 

#Confusion Matrix of SVM# 

SVMCM= confusion_matrix(y,svm.predict(X)) 

sns.heatmap(SVMCM, annot=True,fmt=".0F",cmap=colormap) 

plt.xlabel('Predicted Label') 

plt.ylabel('True Label') 

plt.title('Confusion Matrix for Support Vector Machine for Test Data') 

plt.show() 

 

#ROC-AUC for SVM# 

proba = svm.predict_proba(X)[:,1] 

fpr,tpr, threshold = roc_curve(y,proba) 

roc_auc_ = auc(fpr,tpr) 

plt.figure(figsize=(12, 7)) 

plt.title('ROC Curve for Support Vector Machine on Test Data', size=20) 

plt.plot(fpr, tpr, ‘r’, label = 'AUC (SVM)= %0.3f' % roc_auc_) 

plt.xlabel('False Positive Rate', size=14) 

plt.ylabel('True Positive Rate', size=14) 

plt.legend(); 

plt.show() 
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#For SVM Model – Compile PR-AUC# 

precision_svm, recall_svm, _ = precision_recall_curve(y,proba) 

auc_svm = auc(recall_svm, precision_svm) 

plt.figure(figsize=(12, 7)) 

plt.plot(recall_svm, precision_svm, label=f'AUC (SVM) = {auc_svm:.3f}',color='red') 

plt.title('Precision-Recall Curve for Support Vector Machine on Test Data', size=20) 

plt.xlabel('Recall', size=14) 

plt.ylabel('Precision', size=14) 

plt.legend(); 

plt.show() 

 

# Compile ANN Model on Test Data# 

ann = MLPClassifier(solver=’lbfgs’, hidden_layer_sizes=(27,)) 

ann.fit(X,y) 

 

#Concatenated Confusion Matrix of ANN# 

ANNCM= confusion_matrix(y,ann.predict(X)) 

sns.heatmap(ANNCM, annot=True, fmt=".0F", cmap=colormap) 

plt.xlabel('Predicted Label') 

plt.ylabel('True Label') 

plt.title(‘Concatenated Confusion Matrix for Artificial Neural Network’) 

plt.show() 

 

#ROC-AUC for ANN# 

proba = ann.predict_proba(X)[:,1] 

fpr,tpr, threshold = roc_curve(y,proba) 

roc_auc_ = auc(fpr,tpr) 

plt.figure(figsize=(12, 7)) 

plt.title('ROC Curve for Artificial Neural Network on Test Data', size=20) 

plt.plot(fpr, tpr, ‘r’, label = 'AUC (ANN)= %0.3f' % roc_auc_) 

plt.xlabel('False Positive Rate', size=14) 

plt.ylabel('True Positive Rate', size=14) 

plt.legend(); 

plt.show() 

 

#For ANN Model – Compile Mean PR-AUC# 

precision_ann, recall_ann, _ = precision_recall_curve(y,proba) 

auc_ann = auc(recall_ann, precision_ann) 

plt.figure(figsize=(12, 7)) 

plt.plot(recall_ann, precision_ann, label=f'AUC (ANN) = {auc_ann:.3f}',color='red') 

plt.title('Precision-Recall Curve for Artificial Neural Network on Test Data’, size=20) 

plt.xlabel('Recall', size=14) 

plt.ylabel('Precision', size=14) 

plt.legend(); 
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plt.show() 

 

###Feature Importance Application using SVM - Drop down column### 

data = pd.read_csv("/Users/Final Data/TrainValidationTest.csv") 

X = data.drop(['Term', 'STRM', 'Race_White', 'Sex_Female', 

'PEL_Bachelors_Degree','HSCluster_79','Enroll_Decision'], axis=1) 

y = data['Enroll_Decision'] 

 

kf = StratifiedKFold(n_splits=10, shuffle=True) 

pred_valid_full =0 

cv_score =[] 

i=1 

for train_index,test_index in kf.split(X,y): 

    print('{} of KFold {}'.format(i,kf.n_splits)) 

    xtr,xvl = X.loc[train_index],X.loc[test_index] 

    ytr,yvl = y.loc[train_index],y.loc[test_index] 

    svm = svm.SVC(kernel=’linear’, C=10.0) 

def dropcol_importances(svm, xtr, ytr, kf) 

    svm_ = clone(svm) 

    baseline = cross_val_score(svm_, xtr, ytr, scoring='accuracy', kf=kf) 

    imp = [] 

    for col in xtr.columns: 

            X = xtr.drop(col, axis=1) 

            svm_ = clone(svm) 

            oob = cross_val_score(svm_, xtr, ytr, scoring='accuracy', kf=kf) 

            imp.append(baseline - oob) 

        imp = np.array(imp) 

        importance = pd.DataFrame( 

                imp, index = xtr.columns) 

        importnce.columns = ["kf_{}".format(i) for i in range(kf)] 

drop_col_impt = dropcol_importances(svm, xtr, ytr, kf)  

drop_col_importance = pd.DataFrame({'features': xtr.columns.tolist(), 

                                    "drop_col_importance": 

drop_col_imp.mean(axis=1).values}).sort_values('drop_col_importance', ascending=False) 

drop_col_importance 

 

###Feature Importance Application using ANN - Drop down column### 

data = pd.read_csv("/Users/Final Data/TrainValidationTest.csv") 

X = data.drop(['Term', 'STRM', 'Race_White', 'Sex_Female', 

'PEL_Bachelors_Degree','HSCluster_79','Enroll_Decision'], axis=1) 

y = data['Enroll_Decision'] 

 

kf = StratifiedKFold(n_splits=10, shuffle=True) 

pred_valid_full =0 
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cv_score =[] 

i=1 

for train_index,test_index in kf.split(X,y): 

    print('{} of KFold {}'.format(i,kf.n_splits)) 

    xtr,xvl = X.loc[train_index],X.loc[test_index] 

    ytr,yvl = y.loc[train_index],y.loc[test_index] 

    ann = MLPClassifier(solver=’lbfgs’, hidden_layer_sizes=(27,)) 

def dropcol_importances(ann, xtr, ytr, kf) 

    svm_ = clone(ann) 

    baseline = cross_val_score(svm_, X, ytr, scoring='accuracy', kf=kf) 

    imp = [] 

    for col in xtr.columns: 

            X = xtr.drop(col, axis=1) 

            svm_ = clone(svm) 

            oob = cross_val_score(ann_, X, ytr, scoring='accuracy', kf=kf) 

            imp.append(baseline - oob) 

        imp = np.array(imp) 

        importance = pd.DataFrame( 

                imp, index = xtr.columns) 

        importnce.columns = ["kf_{}".format(i) for i in range(kf)] 

 

drop_col_impt = dropcol_importances(ann, xtr, ytr, kf)  

drop_col_importance = pd.DataFrame({'features': xtr.columns.tolist(), 

                                    "drop_col_importance": 

drop_col_imp.mean(axis=1).values}).sort_values('drop_col_importance', ascending=False) 

drop_col_importance 

 

###Predictive Probability Application### 

data = pd.read_csv("/Users/Final Data/TrainValidationTest.csv") 

X = data.drop(['Term', 'STRM', 'Race_White', 'Sex_Female', 

'PEL_Bachelors_Degree','HSCluster_79','Enroll_Decision'], axis=1) 

y = data['Enroll_Decision'] 

 

#Preditive probability compile using SVM#  

svm = svm.SVC(kernel=’linear’, C=10.0) 

clf=CalibratedClassifierCV(svm) 

svm_clf=clf.fit(X,y) 

y_proba=clf.predict_proba(X) 

print(clf.predict_proba(X)) 

predicted=clf.predict_proba(X) 

csv=pd.DataFrame(predicted, columns=['Enrolled','NotErnolled']) 

csv.to_csv("/Users/predictiveprobability_svm.csv",index=False) 
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#Predictive probability compile using ANN# 

ann = MLPClassifier(solver=’lbfgs’, hidden_layer_sizes=(27,)) 

ann_clf=ann.fit(X,y) 

print(ann_clf.predict_proba(X)) 

predicted=ann_clf.predict_proba(X) 

csv=pd.DataFrame(predicted, columns=['Enrolled','NotEnrolled']) 

csv.to_csv("/Users/predictiveprobability_ann.csv",index=False) 
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