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Abstract: High-throughput sequencing of microbial communities has uncovered a large, diverse
population of phages. Frequently, phages found are integrated into their bacterial host genome.
Distinguishing between phages in their integrated (lysogenic) and unintegrated (lytic) stage can
provide insight into how phages shape bacterial communities. Here we present the Prophage
Induction Estimator (PIE) to identify induced phages in genomic and metagenomic sequences. PIE
takes raw sequencing reads and phage sequence predictions, performs read quality control, read
assembly, and calculation of phage and non-phage sequence abundance and completeness. The
distribution of abundances for non-phage sequences is used to predict induced phages with statistical
confidence. In silico tests were conducted to benchmark this tool finding that PIE can detect induction
events as well as phages with a relatively small burst size (10×). We then examined isolate genome
sequencing data as well as a mock community and urinary metagenome data sets and found instances
of induced phages in all three data sets. The flexibility of this software enables users to easily include
phage predictions from their preferred tool of choice or phage sequences of interest. Thus, genomic
and metagenomic sequencing now not only provides a means for discovering and identifying phage
sequences but also the detection of induced prophages.

Keywords: prophage; induction; temperate phages; metagenomics; genomics

1. Introduction

Phages are the most abundant biological entities on Earth [1]. Recent investigations
into the human microbiota have found that, here too, phages outnumber both cellular
organisms and eukaryotic viruses (see review [2]). High-throughput sequencing of the
human virome has uncovered phages that have yet to be characterized, a.k.a. the ‘dark
matter’ [3,4]. Phages colonize all anatomical sites of the human body (see review [5]). The
human virome has been cataloged most extensively in the gut [6], and to a lesser extent in
other anatomical sites, e.g., oral cavity [7], urinary tract [8], skin [9].

Typically, phages persist in these communities through one of two life cycles: lysogeny
and lysis. In the lysogenic life cycle, the phages integrate into the bacterial host genome (or
persist as an extrachromosomal plasmid) and replicate with the bacterial cell. Integrated
phage genomes (prophages) can be a substantial proportion of bacterial genomic content
(see review [10]). Most bacteria in the human microbiota are lysogens, harboring one or
more prophages [11–16]. In contrast, during the lytic life cycle, phages replicate within the
bacterial host cell, producing mature phages that lyse (kill) the host cell, thus dispersing
mature phages into the surrounding environment. Temperate phages are capable of persist-
ing through both of these life cycles, “induced” from the lysogenic life cycle into the lytic
life cycle often via an external cue or spontaneously (see review [17]). This switch in life
cycles has captured the interest of microbiologists for decades; several different methods
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have been developed and explored in the laboratory to induce temperate phages [18–27].
Furthermore, models describing the dynamics of temperate phages have been proposed
and contested (see review [28]). These temperate phages can have a profound effect on a
microbial community’s diversity, and within the human microbiome this can be related to
symptoms/disease, e.g., Crohn’s disease [29].

Identifying and characterizing temperate phages at the bench necessitates a susceptible
host for propagation. Phages are often noted as having narrow host ranges, capable of
lysing a single species or even specific strains [30]. As such, identifying a host susceptible to
the reproduction of a temperate phage through the lytic life cycle is far from trivial. In lieu of
plaque assays, phage and prophage sequences have been identified from metagenomic and
genomic data using bioinformatic tools, e.g., VirSorter2 [31], PHASTER [32], VIBRANT [33],
and Cenote-Taker 2 [34]. These tools, however, are not capable of ascertaining the lifecycle
of the phage.

The concept of phage-to-host (PtoH) aims at discerning between phages in the lytic
and lysogenic life cycles [35]. Briefly, in high-throughput sequencing data sets, the lysogenic
phage (prophage) copy number should be equivalent to the bacterial genome copy number
(ratio ≈ 1) as it is integrated into the bacterial genome and should be replicated at the
same rate. In contrast, lytic phages should have a ratio >1. When a phage reproduces via
the lytic cycle, a few to hundreds of phage progeny are produced [36]. Thus, we would
expect to see a higher copy number of induced lytic phages than that of the bacteria and
an integrated phage, causing a shift in the PtoH ratio. Furthermore, phages can degrade
their host’s DNA [37], further shifting the PtoH ratio. Recently, this concept has been
explored more broadly to predict phages that are in the lytic cycle from genomic and/or
metagenomic data sets [38,39]. The ability to predict inducible prophages using PtoH ratios
has been proven experimentally on several species of bacteria, including Salmonella enterica,
as well as on fecal samples from mice [40]. Additionally, induced prophages have been
identified in metagenomes of human and murine gut samples as well as peatland soil
metagenomes [35,39].

Here we present the Prophage Induction Estimator (PIE). Similar to these recently
released tools, PIE uses the prophage genome copy number and bacterial genome copy
number to detect induced prophages. Confidence in these predictions comes from boot-
strapping the copy number (coverage) of individual bacterial contigs and estimating a
distribution of such coverage values. In silico tests were performed to benchmark this new
tool. Additionally, we examined single genome raw data to identify an induced phage. We
also conducted sequencing for a mock community of seven bacterial strains and examined
it as well as a urinary metagenome in an effort to identify induction events in communities.
From sequence data alone, induced prophages can be detected, circumventing the need of
a naïve host to ascertain a prophage’s ability to enter the lytic cycle.

2. Materials and Methods
2.1. Bacterial Strains, Genome Sequencing, and Genome Assembly

Seven bacterial isolates were selected for this study; all seven were previously isolated
using the expanded quantitative urine culture method (EQUC) [41] from a single urine sam-
ple (Loyola University Chicago, Maywood, IL, USA, IRB # 206469) [41], and obtained from
Dr. Alan J. Wolfe (Loyola University Chicago, Maywood, IL, USA). These isolates include
Escherichia coli UMB1284, Actinomyces neuii UMB1295, Staphylococcus hominus UMB1296-1T,
Lactobacillus jensenii UMB1303, Enterococcus faecalis UMB1309, Proteus mirabilis UMB1310,
and Corynebacterium amycolatum UMB1310-1E.

Bacteria from freezer stocks were streaked onto CNA Blood agar plates and incubated
at 35 ◦C and 5% CO2 for 18–36 h. A single colony from each plate was grown in 1 mL
of the bacterium’s respective medium (Table 1) for 18–36 h at 35 ◦C and 5% CO2. DNA
extraction and sequencing of some of these strains has been previously described: E. coli
UMB1284 [42], A. neuii UMB1295 [43], L. jensenii UMB1303 [44], E. faecalis UMB1309 [45],
and P. mirabilis UMB1310 [46]. For E. coli UMB1284, DNA was extracted using the Qiagen
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DNeasy UltraClean Microbial Kit following the manufacturer’s protocol, and libraries
were constructed using the Nextera XT DNA Library preparation kit and sequenced on
the Illumina MiSeq platform (MiSeq Reagent Kit v2 (500-cycles)) at Loyola University
Chicago’s Genomics Facility (Maywood, IL, USA) [42]. For the remaining strains, including
the two strains sequenced as part of this study (S. hominus UMB1296-1T and C. amycolatum
UMB1310-1E), bacterial cultures were extracted using a modified version of the Qiagen
Blood and Tissue Kit Protocol. (For details regarding modifications, see [43,45,46].) DNA
concentrations were quantified using a Qubit fluorometer following the manufacturer’s
protocol. Samples were then shipped to MIGS (Pittsburgh, PA, USA). There, sequencing
libraries were prepared using the Illumina Nextera Kit and samples were sequenced
using the Illumina NextSeq 550 platform. Raw reads from the Illumina sequencing were
trimmed via Sickle (https://github.com/najoshi/sickle) and assembled using SPAdes
v.3.14.1 [47]. Genome coverage was computed using BBmap (https://jgi.doe.gov/data-
and-tools/bbtools/). Raw sequencing reads and assembled genomes are available in
NCBI’s SRA and Assembly databases, respectively (Table 1). This includes the depositing
of the sequencing reads and assemblies for S. hominus UMB1296-1T and C. amycolatum
UMB1310-1E, sequenced as part of this study.

Table 1. Strains included in this study.

Strain SRA Accession No. GenBank Assembly
Accession No. Culture Media

E. coli UMB1284 SRR7534266 GCA_003892355.1 LB
A. neuii UMB1295 SRR11441016 GCA_012030015.1 Actinomyces Broth

S. hominus UMB1296-1T SRR14752304 GCA_018919365.1 TSB
L. jensenii UMB1303 SRR9695709 GCA_007786145.1 MRS + 5% Tween80
E. faecalis UMB1309 SRR11441014 GCA_012030535.1 BHI

P. mirabilis UMB1310 SRR11441013 GCA_012030515.1 LB
C. amycolatum
UMB1310-1E SRR14752303 GCA_018919345.1 LB

2.2. Prophage Sequence Prediction

Prophage sequences were predicted using PHASTER [32] via the webserver. PHASTER
predicts phage sequences as Intact, Questionable, and Incomplete. Sequences from all three
PHASTER phage prediction categories were included in our analyses.

2.3. Culturing Bacteria for Spontaneous Induction and Sequencing

A community of all bacterial strains was created as follows. Each bacterial strain was
grown in 13 mL of their respective media (Table 1) for ~18 h, except for Corynebacterium
amycolatum UMB1310-1E, which was grown for ~36 h. All cultures were grown at 35 ◦C
and 5% CO2. A total of 1 mL of the overnight culture was added to 1 mL of fresh media
and 2 mL of nuclease free water and grown overnight, ~18 h, at 35 ◦C, and in 5% CO2.
All seven cultures were pooled into a centrifuge tube and filtered using vacuum filtration
with a sterile 0.22 um cellulose acetate membrane screw-top filter (Corning Life Sciences,
Corning, NY USA). A Macrosep tube (Pall, Port Washington, NY, USA; Omega Membrane
100K) was used to concentrate the filtrate. The Macrosep tube was prepared using 70%
ethanol followed by 5% Tween 20 (Sigma-Aldrich, St. Louis, MO, USA) washes. Samples
were processed using the Macrosep tube as follows: (1) Add up to 10 mL of sample to the
Macrosep tube, (2) spin at 4000× g until ~300 uL of sample flowed through the filter and
discard flow through, (3) repeat steps 1 and 2 until all of the sample is loaded into the tube
and only 300 uL remains, and (4) gently scrape filter with a pipet tip and pipet concentrate
to a clean microcentrifuge tube.

Concentrated filtrate was next DNased following the OPTIZYME DNase I Fisher
Bioreagent’s protocol. DNA was extracted from the concentrated filtrate using the Zymo
Research Quick-DNA Viral DNA Kit following the manufacturer’s protocol. DNA was
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amplified for sequencing using the Sigma GenomePlex Single Cell Whole Genome Am-
plification kit following the manufacturer’s protocol and then cleaned for sequencing
using the Omega Bio-tek E.Z.N.A Cycle Pure Kit, again following the manufacturer’s
protocol. Samples were sequenced using the Illumina NextSeq 550 platform at MIGS as
previously described. Sequencing reads are available in NCBI’s SRA database, accession
No. SRR18907418.

2.4. Mock Community Construction

For each of the seven genomes, the raw reads were subsampled to generate four data
sets representative of four different genome coverages: 0.01×, 0.1×, 1×, and 10×. The size
of the assembled genome and the read length was used to calculate the number of read
pairs sampled. The PHASTER phage sequence predictions were used to generate read data
at 10× and 100× coverages. ART (v.MountRainier-2016-06-05) was used to generate these
Illumina read data sets (150 bp paired-end reads) (full parameter list: -ss HS25 -p -l 150 -f 10
[or 100] -m 1000 -s 200) [48]. Three simulated phage read data sets for each coverage were
made. The first phage data set (“one_prophage”) includes just a single phage sequence
predicted from E. coli UMB1284. The second phage data set (“some_prophage”) includes
10 phage sequences, randomly selected from the predicted phage sequences for the seven
genomes. This data set includes the same phage included in the first set as well as another
phage sequence from UMB1284, one predicted phage sequence from UMB1296-T, two
predicted phage sequences from UMB1295, two predicted phage sequences from UMB1309,
two predicted phage sequences from UMB1310, and one predicted phage sequence from
UMB1310-1E. In the last phage data set (“all_prophage”), all 34 PHASTER predicted phage
sequences for the seven bacterial assemblies were included. Then, to mimic possible PtoH
ratios that could be found in high-throughput sequencing data, bacterial and phage reads
were combined at varying ratios to produce sets of paired-end reads. For each of the three
phage data sets, “one_prophage”, “some_prophage”, and “all_prophages”, five sets of
paired-end reads were fabricated from the bacterial reads and the phage reads to represent
a PtoH ratio of 10,000:1, 1000:1, 100:1, 10:1, and 1:1.

2.5. Identification of Positive Control Induced Phage

A strain of Pseudomonas aeruginosa, UMB2738, is known to contain a prophage
that spontaneously induces in laboratory settings. Previously, the bacterial culture of
UMB2738 and the isolated induced phage, Dobby, were both sequenced for analysis
and characterization of the phage [49,50]. The genome of Dobby (GenBank Accession
No. NC_048109.1) was used as the phage reference file necessary as input for PIE. The raw
reads of UMB2738 (SRA Accession No. SRR9992785) also were input to PIE for analysis
and prediction of induced phages.

2.6. Identification of Induced Phage in a Metagenome Data Set

The raw sequencing reads of a urinary metagenome sample was retrieved from
GenBank (SRA Accession No. SRR19149281). This data represents DNA sequencing of a
urine sample (sample ID 6162). In other words, both bacterial and viral constituents of
the urinary microbiota are expected to be present. Details regarding the sample collection,
DNA extraction, and sequencing was previously reported [51]. Briefly, a urine sample was
obtained via transurethral catheterization of a female without lower urinary tract symptoms
as part of a prior IRB-approved study (Loyola University Chicago, Maywood, IL, USA, IRB #
207102). A total of 10% by volume of AssayAssure® was added to 2 mL of the collected urine
and stored at −80 ◦C. DNA was extracted from the thawed urine sample using the Norgen
Urine DNA according to the manufacturer’s protocol with one exception: a starting volume
of 500 uL was used and the binding solution was adjusted accordingly. The DNA sequenced
at MIGS (Pittsburgh, PA, USA) using the Illumina DNA Prep kit and IDT 10 bp UDI indices
on an Illumina NextSeq 2000 (paired-end reads, 2 × 151 bp). This raw data set includes
human reads; the urine was not processed prior to DNA extraction to remove human cells
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(if present). We thus removed human reads from further analysis using Bowtie 2 v.2.4.5
and the application’s publicly available human genome index (GRCh38) [52]. Only reads
that did not map to the human genome were considered further. This included 1,403,038
read pairs, 56.90% of the raw data. These filtered sequencing reads were assembled using
metaSPAdes v.3.15.4 [53] with default parameters. Assembled contigs were then evaluated
by VirSorter2 to identify putative viral sequences [31], the results of which were queried
against the NCBI nr/nt nucleotide database via megaBLAST (using default parameters) to
identify the most similar sequence record. The filtered reads and predicted viral sequences
were next analyzed using PIE. Viral sequences exceeding the 99% threshold in PIE were
queried against the NCBI nr/nt nucleotide database via BLAST in an effort to identify
their putative taxonomy and annotated via the Bacteriophage “annotation recipe” on
BV-BRC v.3.28.9 [54].

2.7. Prophage Induction Estimator (PIE)

In addition to the functionality developed in Python (v3.9) and R, PIE integrates
existing tools, including BBTools v.38.94 (https://jgi.doe.gov/data-and-tools/bbtools/),
SPAdes v.3.15.3 (using SPAdes’ metaspades.py script) [47], and NCBI BLAST+ (https:
//ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/). A Docker container was
created for PIE. Source code and the Docker container can be obtained from https://
github.com/putonti/PIE. Test data are also available through the Github Repository. PIE
is also available through Docker Hub at: https://hub.docker.com/repository/docker/
genevievej16/pie. The GitHub Repository provides information on installation, either via
cloning the project from GitHub or via Docker Hub, as well as use and interpretation of
results. Furthermore, test data, including the data used in our in silico study, are available
through the GitHub Repository.

3. Results
3.1. Computational Method for Detecting Induced Prophages

Our method, Prophage Induction Estimator (PIE), distinguishes induced prophages
from integrated prophages through differential read coverage. This approach assumes that
an induced phage has a greater copy number (and thus read coverage) than its integrated
form. In a culture of a single bacterial strain containing an inducible prophage, phage DNA
is expected to be more abundant than its bacterial host’s DNA if: (1) induction leads to
full (or near full) lysis of its bacterial host and/or (2) the culture contains bacterial hosts
susceptible to the induced phage to replicate efficiently through the lytic life cycle. If
neither of these two conditions occurs, distinguishing between phages in their induced and
integrated form cannot easily be performed with confidence. PIE was designed to facilitate
induced phage detection even when bacterial DNA is abundant. Furthermore, it can be
applied to sequencing data generated from a single genome as well as simple or complex
microbial communities.

Figure 1 summarizes the process for discriminating between induced prophages and
integrated prophages.

Step 1: Preprocessing: Raw sequencing reads (either paired-end or single-end reads)
and prophage sequences are supplied by the user. The raw reads are first trimmed using
BBTools’ bbduk script and then assembled using metaSPAdes. Assembled contigs are
trimmed, removing reads shorter than a given threshold. Prophage sequences can be
known phage sequences or sequences from prophage prediction tools. The prophage
sequences supplied by the user are used to make a BLAST database.

Step 2: Categorizing Contigs: Assembled contigs from Step 1 are compared with the
BLAST database created in Step 1 and identified as either bacterial sequences (green) if
there is no similarity to the database or contigs matching the prophage sequences supplied
by the user (peach) if there is high similarity to the database. In the event that the contig
contained a prophage sequence, the contig was split into two, excluding the prophage

https://jgi.doe.gov/data-and-tools/bbtools/
https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
https://github.com/putonti/PIE
https://github.com/putonti/PIE
https://hub.docker.com/repository/docker/genevievej16/pie
https://hub.docker.com/repository/docker/genevievej16/pie
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sequence. Categorization is repeated on this new set of contigs until no contigs contain
both bacterial and prophage sequences.
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Figure 1. Schematic of PIE software. Required input files include raw sequencing reads (paired-end
or single-end) and prophage sequence predictions (FASTA format file). Raw reads are trimmed and
assembled (¶) and categorized via BLAST as prophage or bacterial in origin (·). After categorization,
sequence coverage is computed for both the prophage sequences (¸) and bacterial sequences (¹). For
the prophage sequences, an additional metric is computed: evenness. Prophage sequences that do
not have an evenness ≥90% are not considered further (red stop light). Prophage sequences meeting
the evenness threshold (green stop light) are compared with the threshold for the distribution of
bacterial contig coverage values (shown as 99% in the figure). Prophage sequences with a coverage
exceeding the threshold are called as induced phages (“

√
” in green box); prophage sequences that

do not meet this threshold are not called as induced phages (“X” in red circle).

Step 3: Calculating contig coverage and the evenness of coverage for prophage sequences:
The raw reads are mapped back to each prophage contig (peach) using BBTools’ bbmap
script. It is important to note that the entire read set is mapped to each prophage contig
independently. The average coverage is computed for each contig. For the prophage
contigs, an evenness of coverage, or the percentage of the prophage sequence for which
reads were mapped, is also computed. A threshold for the evenness of coverage is applied;
by default, this threshold is equivalent to 90% of the prophage sequence length. If prophage
sequences meet this threshold they are considered further (green traffic light); if not, they
are not considered further (red traffic light). This threshold removes contigs for which a
small region, e.g., a single gene was detected.

Step 4: Calculating contig coverage for bacterial sequences: The raw reads are mapped
back to the bacterial contigs (green) using BBTools’ bbmap script. The average coverage is
computed for each contig.

Step 5: Identify prophage sequences with relative abundances greater than bacterial
“background”: The coverage values for the bacterial contigs are used to create a bootstrap
sample of size 10,000. We use this bootstrap sample to create a distribution and find the
99th percentile of distribution of bacterial contig coverage values. We thus expect most
of the data, e.g., bacterial contigs and integrated prophages, to be below this threshold.
Prophage contigs with an average coverage greater than or equal to this threshold, i.e.,
sequenced at a depth greater than or equal to sequencing of non-prophage regions of the
bacterial genome, are predicted to be induced. The default value for this threshold is set to
0.99; the user can change this threshold by passing in a different parameter value when
running the application. Note that a lower value of the threshold is less conservative and
therefore lowers the confidence of prediction. If there are not five or more bacterial contigs,
the bootstrap sample is not produced; all prophage sequences that passed the criteria of
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Step 4 are predicted to be induced. This threshold is equivalent to the minimum required
sample size for density estimation of unidimensional data [55].

3.2. Assessing PIE’s Ability to Detect Induced Prophages on In Silico Data

We selected seven bacterial strains (Table 1) isolated from a single urine sample and
thus members of a single community, for our in silico tests. Five of these strains were
sequenced as part of our prior work [42–46], and two strains were sequenced as part of this
study. Prophage sequences were predicted for the seven genomes using PHASTER. For
each bacterium, we created four read sets representative of different genome coverages (see
Methods): 0.01×, 0.1×, 1×, and 10×. Likewise, for our prophage sequences we created
two synthetic read sets at 10× and 100×. For our first test, we evaluated PIE’s ability to
detect an induced prophage from a single bacterium, E. coli UMB1284. This was simulated
through the addition of prophage reads at 100× coverage to the 0.01×, 0.1×, 1×, and 10×
bacterial read sets as well as the addition of prophage reads at 10× coverage to the 10×
bacterial read set. These five read sets represent a PtoH of 10,000:1, 1000:1, 100:1, 10:1, and
1:1, respectively. As shown in Figure 2A, the one prophage was detected and met the 99%
threshold when the bacterial genome coverage was significantly less than the prophage
coverage. When the PtoH ratio was 10:1 and 1:1, the prophage sequence was identified but
did not exceed the 99% threshold. Thus, PIE is efficient at detecting prophages with high
confidence when the prophage coverage is greater than 10× the bacterial coverage.
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Figure 2. Induced prophages identified for a single bacterium (A) and mock communities (B–D). In
the first test (A), a single prophage sequence with 100× genome coverage was added to bacterial
reads producing a PtoH ratio of 10,000:1, 1000:1, 100:1, 10:1, and 1:1. (B) The same prophage sequence
used in our prior test, again represented by reads at a 100× genome coverage, were added to reads
from seven bacterial strains; each strain independently was sampled to produce the 5 different PtoH
ratios tested. (C) A total of 10 prophage sequences and the seven bacterial genomes were examined at
five different PtoH ratios. (D) 34 prophage sequences and the seven bacterial genomes were examined
at five different PtoH ratios. For all charts, if the prophage(s) were identified and met/exceeded
the 99% threshold, they are shown in orange. If they did not meet/exceed the threshold, they are
represented by green.

Next, we considered communities of bacteria, including the read sets for the seven
bacterial strains isolated from the same clinical sample. First, we assessed the ability to
detect a single prophage, the same prophage used in our single bacterium test. As Figure 2B
shows, the prophage was identified for all five data sets evaluated, but only exceeded the
99% threshold when the prophage coverage was greater than 10× the bacterial coverage.
Next, we considered the bacterial community in the presence of multiple prophages. Ten
different prophage sequences were added to the bacterial community read sets. All 10 of
these prophages were detected, and with the exception of the PtoH of 1:1, all 10 of them
exceeded the 99% threshold (Figure 2C). In our final test, all 34 prophages predicted for
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the seven bacterial strains were added to the bacterial community read sets (Sequences
available). All 34 were identified and exceeded the 99% threshold for PtoH 10,000:1,
1000:1, 100:1, and 10:1. For PtoH 1:1, five of the 34 prophages exceeded the 99% threshold,
while the remaining 29 did not (Figure 2D). When the threshold was reduced to 95%,
24 additional prophages (29 total) of the prophages exceeded this threshold. Sequences
for both the 10 prophages and the 34 prophages can be found in the GitHub Repository’s
“testFiles” directory.

3.3. Proof-of-Concept: Detecting Induced Phages

To assess the ability of PIE to detect induced phages in a single bacterial culture,
we tested it on a previously studied strain of P. aeruginosa, UMB2738 [49]. P. aeruginosa
UMB2738 is known to harbor a temperate phage, Dobby, that has been previously sponta-
neously induced, sequenced, and fully characterized [50]. We believed that because Dobby
can spontaneously induce, it would be possible that the phage was also induced when the
bacteria, UMB2738, was sequenced. The publicly available genome of Dobby was used as
the phage reference file and the raw reads of UMB2738 were input to PIE (see Methods).
Dobby was located in the UMB2738 reads by the tool and exceeded the 99% threshold. The
average coverage for the Dobby sequence was 113.63×. This exceeded the bacterial contig
average coverage, which was 43.56× (minimum 28.25×, maximum 90.23×).

We next evaluated PIE’s ability to identify induced phages in mixed bacterial cultures;
the seven bacterial strains used in our in silico analysis were grown in isolation. The
cultures were pooled, filtered, DNA-extracted, amplified, and sequenced (see Methods).
The resulting sequencing reads and the 34 PHASTER prophage sequence predictions for
these seven bacterial strains were then processed using PIE. Sixty bacterial contigs (the
largest 91 Kbp) and eight phage contigs were identified. Only two of the phages exceeded
the 99% threshold, and in fact had coverage values exceeding all bacterial contig coverages,
thus suggesting that they were induced in culture. These two phages include one from
E. coli UMB1284 and one from E. faecalis UMB1309 (Figure 3A). PHASTER predicted the
coliphage with a genome size of 24,504 bp as “Incomplete” and the E. faecalis phage with
a genome size of 49,683 bp as “Intact” (File S1). The coliphage induced from UMB1284
exhibited the greatest sequence similarity to the metagenome-assembled genome (MAG)
Myoviridae sp. Isolate ctYIP2 (GenBank Accession No. BK044152.1), with 67% query
coverage and 93.97% sequence identity. The phage induced from E. faecalis UMB1309
most closely resembled the MAG Siphoviridae sp. Isolate ct4io3 (GenBank Accession No.
BK02996.1; query coverage = 51% and sequence identity = 96.56%). Both of these MAGs
were produced from human metagenomes [56]. Neither of the induced phage sequences
exhibited sequence similarity with >1% query coverage to a GenBank record from an
isolated phage.

In a final proof-of-concept, we evaluated PIE’s ability to identify putative induced
phages from a real metagenome sample. As described in detail within the Methods, this
metagenome was derived from a urine sample; as such, both bacterial and viral species
present in the sample are expected to be represented in the DNA sequencing reads. A total
of 88 putative viral sequences were predicted by VirSorter2 from this metagenome (average
length 3273 bp) (File S2). Four of the VirSorter2 predicted sequences passed the 99%
threshold for PIE (File S3). Figure 3B shows the density distribution of this analysis. Most
of the bacterial contigs and VirSorter2 predicted sequences in this sample had low coverage
values <100×. However, a few bacterial contigs had high coverage values, hence the narrow
“spike” in the density distribution. We next queried the four sequences exceeding the 99%
threshold against the NCBI nr/nt database to predict their taxonomy (Table 2).
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Table 2. Urinary microbiome VirSorter2 predictions exceeding the 99% threshold.

Contig ID Length Coverage
BLAST Best Hit

Description Query Cov %ID Accession No.

NODE_65 9541 536.29 JC polyomavirus 100 97.33 LT615220.1

NODE_24 37847 215.32 TPA: Siphoviridae sp.
ctX581 100 99.36 BK014883.1

NODE_1047 1563 115.85 L. gasseri plasmid
pHL20_1 92 99.72 CP072179.1

NODE_15 61268 109.23 Lactobacillus iners KY 1 86 99.06 CP048798.1
1 Gene features included in this alignment includes only one predicted phage protein product.

4. Discussion

While lysogeny is prevalent within the human microbiome, the frequency of induction
is unknown, and only a handful of mechanisms for induction within these communities
have been identified [57,58]. Metagenomic sequencing led to the discovery of novel phages
that have yet to be isolated in the laboratory [59–64]. Beyond identifying phages, the raw
sequencing data can be used to shed light on induction events. Assuming induced phages
outnumber their integrated copies, the PtoH ratio provides a means of distinguishing
between phages in the lytic and lysogenic life cycle. As the in silico tests show, PIE
identifies induced phages with high confidence (statistically significant) when there are
>10× more phage genomes than bacterial genomes (Figure 2A,B). These two tests included
just a single phage. When more phages were considered, high confidence predictions were
made at the 10:1 (phage-to-host) ratio (Figure 2C) and some were even predicted at the 1:1
(phage-to-host) ratio (Figure 2D).

It is important to note that the in silico tests performed here used real sequencing reads
for the bacterial isolates in this mock data set, instead of generating synthetic reads from
their assembled genomes. As it is well-established that genome sequencing technologies
do not produce uniform distributions of reads [65], sampling sequences from real read sets
generates test data that are inherently biased. Our approach for identifying induced phages
with confidence takes these biases into consideration. Non-phage sequence coverage values
are sampled to generate a distribution of coverage values that reflect the variations in
coverage depth along bacterial genomes. This contrasts the approaches of hafeZ [38] and
PropagAtE [39], which also use PtoH ratios to identify induced phages. hafeZ uses the
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median coverage score while PropagAte uses the average coverage score to find regions
with higher-than-expected coverage.

While both hafeZ and PropagAtE require raw reads and assembled genomes (in the
case of both tools) or metagenome assemblies (in the case of PropagAtE) for analysis, PIE
only requires raw reads as it performs read trimming and assembly as part of its pipeline;
an assembly, however, can be provided to PIE if the user prefers. hafeZ also necessitates
access to the Prokaryotic Virus Orthologous Groups (pVOGs) database [66]. hafeZ identifies
regions with higher-than-expected coverage (as described above), performs gene calling,
and compares gene calls to the pVOGs database; if a region contains genes homologous
to pVOGs, it is predicted to be an induced prophage. As part of its pipeline, PropagAtE
either performs phage sequence prediction using the tool VIBRANT [33], which uses the
VOG database as well as KoFam and Pfam (along with other software dependencies), or
users supply genome assembly coordinates for phage sequences. In contrast, PIE does not
include database searches, rather users supply phage sequences. In doing so, the user can
use any tool(s) for prophage prediction, e.g., VirSorter2 [31], PHASTER [32], VIBRANT [33],
and Cenote-Taker 2 [34]. In the proof-of-concept test with the synthetic data sets and the
mixed bacterial cultures, PHASTER was used to predict phages while VirSorter2 was used
for the urinary metagenome data set, thus showing the versatility of phage prediction tools
that can be used. Because users supply the phage sequences, users can provide a file with
sequences to specifically mine for: (1) phages of interest that may or may not be present
in their sample or (2) phage sequences that are known to be missed by most prophage
prediction tools, e.g., inoviruses [60]. An advantage of PIE is its availability in Docker Hub;
thus, users do not need to install software included in the pipeline nor have extensive
knowledge of working within UNIX-based systems.

Our test on the reads generated for a single bacterium as well as a mixed community,
which harbor multiple putative prophages, provides insight into PIE’s ability to detect
prophage induction single genomes and small communities. In the investigation of P. aerug-
inosa UMB1738, we were able to detect the induced phage Dobby, which was previously
characterized after spontaneous induction and plaquing on a naïve host [50]. When con-
sidering the mixed community, the same members as our in silico tests, the 34 prophage
sequences predicted often showed little resemblance to isolated, sequenced phages. This
mixed community included bacterial taxa for which very few phages have been charac-
terized (if any). Many of these taxa have very specific culture conditions prohibiting us to
culture them together and thus requiring them to be grown in isolation and then pooled
together for processing. Furthermore, we were uncertain if any of these phages were
inducible; it is for these reasons that we removed most bacterial cells and amplified DNA
prior to sequencing. The two induced phages that exceeded the 99% threshold (Figure 3A),
exhibited no significant sequence similarity to characterized phages. This is most significant
given that one of these phages is a coliphage, probably the best characterized group of
phages to date.

In our last proof-of-concept test, we applied PIE to a urinary metagenome data set.
There was no pretreatment of the sample to select for viral constituents (e.g., via filtration,
CsCl density gradient fractionation, amplification). Therefore, bacterial DNA is expected to
be abundant within the sample. Four sequences, predicted by VirSorter2, were identified
as exceeding the 99% threshold (Figure 3B). While one of these putative viral sequences
(NODE_24) was representative of a phage, one was most similar to the eukaryotic virus JC
polyomavirus (NODE_65), and one was most similar to a plasmid sequence (NODE_1047).
It is important to note that all sequences were predicted by VirSorter2 to be viral. VirSorter2
was designed to identify eukaryotic viruses; thus, this proof-of-concept suggests that PIE
can be used to identify high copy number eukaryotic viruses in a mixed community as
well as phages. Nonetheless, PIE was able to identify a phage with an average coverage
>215×. The GenBank record that is nearly identical to the phage sequence identified here,
TPA: Siphoviridae sp. ctX581 (Table 2), was assembled from publicly available human
metagenome read data [56], the same study that produced the sequences resembling
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the phages identified in our mixed bacterial cultures (Figure 3A). The last sequence that
exceeded the 99% threshold, NODE_15, does not BLAST to a phage or viral sequence
(Table 2). Because the annotation of this sequence predicted only 1 out of the 81 predicted
coding regions as a phage gene, we do not believe that this is a phage. The results of
this proof-of-concept highlight that using PtoH ratios can also be applied to identifying
high-copy number plasmids or eukaryotic viruses, depending upon the input sequences
provided by the user.

It is important to note that unlike the mixed bacterial community (Figure 3A), some
of the bacterial contigs from the urinary metagenome had coverage values greater than
the “viral” sequences meeting the 99% threshold. The statistical approach employed here
enables PIE to identify putative induced or high copy number lytic phages, even in the
presence of significant bacterial DNA, as shown in Figure 3B with a real data set. This
confirms the sensitivity observed through our in silico tests.

While PIE enables users to specify a threshold other than the default of 99%, man-
ual curation can be used to investigate phages at lower thresholds. While several other
phages in the mixed community are sequenced at a coverage greater than most bacterial
contigs observed, they do not exceed the 99% threshold imposed (Figure 3A). They may
be representative of prophages spontaneously inducing at low levels within the culture
or sequences that are inherently biased to be over-sequenced by short-read technologies.
The user can further investigate these “borderline” phages by referring to the PIE output
files. In particular, one of the output files lists both phage and bacterial contig coverage
values, which also may lend itself to discovery of novel phages or viruses in a metagenome.
Furthermore, investigation of this file may provide insight into Intact phages that were
predicted as Incomplete (in the case of PHASTER) or low confidence (in the case of VirSorter
and VirSorter2) because they were not assembled on a single contig; similar coverage values
may indicate a single phage sequence. Thus, the PIE output has further utility in refining
predicted prophage sequences. The 88 VirSorter2 predicted sequences from the urinary
metagenome were queried against the nr/nt database, revealing several phage sequences
that did not meet the 99% threshold (File S4). However, their low coverage suggests that
they represent a prophage sequence.

Discerning between the life cycle in which a phage persists in a community is critical
in furthering our understanding of their role in the community. Phage predation can drive
bacterial evolution [67] and population structure (see review [68]). Temperate phages
can also contribute to microbial evolution via horizontal gene transfer [69], including
conferring fitness advantages to their host (see review [70]). Using tools such as PIE,
metagenomic studies can extend their analysis beyond simply what phages are present
and what these phages encode to now predict the life cycle of these phages. This additional
information may provide insight into the role that a particular phage plays in microbial
community dynamics.

5. Conclusions

Overall, the PIE software provides a lightweight, rapid means of identifying induced
prophages or even high copy number lytic phages in a single isolate or community. The
sensitivity observed through our in silico tests suggests that PIE can detect widespread
induction events as well as phages with a relatively small burst size (10×). The flexibility of
this software enables users to easily include phage predictions from their preferred tool of
choice. Furthermore, users can include predictions from multiple tools or phage sequences
of interest. The method employed for detecting induced prophages takes into consideration
the inherent biases in modern sequencing, providing high confidence predictions. Thus,
metagenomic sequencing now not only provides a means for discovering and identifying
phage sequences but also the detection of induced prophages.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v15020420/s1, File S1: Detected induced phage sequences from
mock community; File S2: Multi-FASTA format file with the 88 sequences predicted by VirSorter2
for urinary metagenome sample 6162; File S3: Multi-FASTA format file with the four sequences
exceeding PIE’s 99% threshold; File S4: Taxonomy of the best BLAST hit for the sequences of the
88 VirSorter predictions.
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