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1. Introduction
Planetary features have long been parameterized to simplify them for cataloging and analysis. Parameterization 
necessarily removes information about the feature in order to summarize it, trying to reduce the feature to its most 
important components. The study of polygonal impact craters (PICs) has a diverse—if small—literature set with 
different researchers discussing PICs across various planetary bodies, from Mercury through the asteroid belt, 
giant planet satellites, and out to Charon. This type of crater is investigated because it can lead to information 
about otherwise hidden subsurface fracturing or porosity that are significant enough to control the expanding 
shock that emanates from impact (see discussions in Öhman,  2009, and Beddingfield et  al.,  2016, for more 
detailed implications). A key, long-standing method to study these features is to parameterize them by classifying 
the number of sides, the bearing or azimuth of those sides, and angles they make when next to each other. These 
data are most often used to make various conclusions about PIC formation, usually based on observed or inferred 
faults.

Unfortunately, there is no objective standard for what is considered to be an edge, how to measure the angle of 
that edge, nor what counts as a joint (where edges meet), and hence there is an uncomfortable amount of subjec-
tivity in existing studies that can make them hard to independently replicate or test. Indeed, to the eye, some basic 
results are repeatable, such that there might be broad agreement that an impact structure has approximately six 

Abstract Impact craters are used for a wide array of investigations of planetary surfaces. A crater form 
that is somewhat rare, forming only ∼10% of impact craters, is the polygonal impact crater (or PIC). These 
craters have been visually, manually identified as having at least two rim segments that are best represented as 
straight lines. Such straight lines or edges are most often used to infer details about the subsurface crust where 
faults control the structure of the crater cavity as it formed. The PIC literature is scant, but almost exclusively 
these craters are identified manually, and the potentially straight edges are classified and measured manually. 
The reliance on human subjectivity in both the identification and measurement motivated us to design a more 
objective algorithm to fit the crater rim shape, measure any straight edges, and measure joint angles between 
straight edges. The developed code uses a Monte Carlo approach from a user-input number of edges to first 
find a reasonable shape from purely random possible shapes; it then uses an iterative Monte Carlo approach to 
improve the shape until a minimum difference between the shape and rim trace is found. It returns the result 
in a concise, parameterized form. This code is presented as a first step because, while we experimented with 
several different metrics, we could not find one that could consistently, objectively return an answer that stated 
which shape for a given crater was the best; this objective metric is an area for future improvement.

Plain Language Summary Features on planetary bodies are often parameterized in databases, 
meaning that they are concisely represented in some way. This conciseness requires finding some method to 
summarize the information about the features. For impact craters, this is most often done by reducing a crater to 
three simple numbers: The latitude of the center, longitude of the center, and diameter of the crater. However, 
information about the shape of the crater's rim is lost when one assumes it is a simple circle. Some research 
applications investigate crater rims as polygons with two or more straight sides. Measurement of those sides 
is often subjective and almost always done manually. In this work, we have written an objective computer 
algorithm to try to determine how many sides represent the crater rim. This code can include straight and 
curved sides, and it can return the answer in a compact way for input into a database. This code is presented as a 
first step toward making these measurements objectively because it presently has no method to objectively state 
if one shape is better than another, instead still relying on the human analyst.
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straight edges. However, this is usually limited to strong or “obvious” cases, which raises the concern about what 
makes something “obvious:” Something “obvious” to one researcher might not be “obvious” to the next, much 
like a professor describing how it is obvious that e iπ = −1 while confused students sit quietly taking notes. Even 
if the number of straight edges might be widely agreed upon, the direction of those edges have no exact defini-
tion, and when features are no longer plainly obvious, interpretation can vary significantly. This propagates to 
uncertainty in any type of conclusion that might be made about the features, including their origin, modification 
history, and existence of underlying structure beneath a planetary body's surface that might have guided their 
formation. While some authors have incorporated more objective and quantitative definitions and tests, they are 
not implemented beyond those authors (see the next section for further discussion).

This work presents effort toward the development of a new, objective method to determine the polygonality 
of impact craters based on a Monte Carlo approach of testing different shapes and calculating how well they 
approximate the crater rim. The primary goal of this algorithm is to take the human subjectivity out of the 
parameterization process so that objectivity—and hence replicability—can exist. In Section 2 of this work, past 
studies on PICs are summarized. Section 3 describes how the algorithm works, and Section 4 has numerous type 
examples from the inner solar system. The discussion in Section 5 focuses on implications and potential future 
code or method improvements. The code is written in Python and is freely available on two platforms (see Data 
Availability Statement), and it includes a user manual as a PDF document on both platforms.

2. Past Studies on Polygonal Impact Craters
Published literature exists that identify PICs from Mercury through Charon, and while PICs have been observed 
for over a century, relatively little literature about them exists. There was a push in the second half of the twentieth 
century based on new spacecraft data of planetary surfaces throughout the solar system, while modern work in 
the last ∼15 years has been limited to just a few researchers presenting mostly in conference abstract form. This 
small resurgence might be due in part to the much better data of Saturn's satellites returned by Cassini starting 
in 2004; the MESSENGER spacecraft returning the first new Mercury images in decades starting in 2008; and 
the orbital insertion of Dawn at Vesta in 2011, and its subsequent orbital insertion at Ceres in 2015. Saturn's 
moons, Ceres, Mars, and to a lesser extent Vesta provide the vast majority of visually obvious, convincing PICs. 
The review presented in this section is meant to paint a picture of the relatively little attention to PICs that has 
been made in the modern literature—especially the peer-reviewed literature—and that the majority of work uses 
PICs to explore potential underlying faults and fractures that are not visible. For a much more complete review of 
pre-2010 work, see the doctoral dissertation by Öhman (2009).

Working out from the Sun, Weihs et  al.  (2015) is the only modern peer-reviewed work to examine PICs on 
Mercury, though a few earlier works exist that describe them (Dzurisin, 1978; Melosh & Dzurisin, 1978). Weihs 
et al. (2015) examined 291 named craters with diameters D > 12 km, globally, finding that 33 were polygonal, 
which was within the 10%–15% expected range from other bodies based on summaries by Öhman (2009). For 
their work, the definition of “polygonal” was “at least two straight rim segments.” However, what that means in 
practice is not clear given that any rim is straight if examined over a small enough length scale, or it is straight 
given a large enough tolerance for any deviations; they did not define how polygonality was measured beyond the 
above statement. One example PIC they describe is the crater Mahler, which is discussed further in this work's 
Section 4.1.

Moving outwards from the Sun to Venus, Herrick  (1997) database includes 4 craters classified as polygonal, 
while conference abstracts by Öhman et  al.  (2007) and Aittola et  al.  (2008), and the peer-reviewed paper by 
Aittola et  al.  (2007) describe some Venusian PICs; their example of Behn is discussed in Section  4.2. They 
visually examined craters D  >  12  km for any apparent straight rim segments and identified 131 craters that 
“clearly display at least two straight rim segments and a clearly discernible angle between them.” Using that 
qualitatively defined quantitative definition, they found that 13% of Venus' craters are PICs. Again, no further 
definition of polygonality nor method of measuring sides and angles was described, nor was there a description 
of how the extreme emission angle of left- or right-looking radar might affect the appearance of straightness or 
curvilinearity.

The type example on Earth is Meteor Crater in Arizona, USA; this is discussed further in Section 4.3. Earth's 
moon has received little PIC attention in the modern literature, despite the plethora of data for that body, which 
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we interpret as it having fairly little consensus or identification of a sizable PIC population. The only instance 
we could find was in a general review paper (Öhman et al., 2010) based on a dissertation (Öhman, 2009), which 
compared the population of lunar PICs to those on other bodies, and other than that discussed pre-modern (Apol-
lo-era and earlier) studies. In their work, the definition of “polygonal” was: “based on careful visual inspection 
of the imagery, the crater was required to have two adjacent straight rim segments to be classified as polygonal.” 
Again, no further explanation was given, which we infer to mean that these were subjectively measured as in 
most studies.

Mars has received more attention, primarily from Öhman and colleagues (e.g., Öhman,  2009; Öhman 
et al., 2005, 2008). Their work looked at PICs within the megameter-sized Hellas and Argyre craters and used 
those PICs to infer tectonic stress patterns. They reported 10%–20% of impact craters were polygonal. Conference 
abstracts by Watters and Zuber (2007, 2009) also looked at small PICs (generally sub-kilometer) and described 
their approach almost as much as their results: They used “machine vision technologies” to automate some of the 
measurements, removing a significant amount of human subjectivity. Öhman et al. (2010) note that this was the 
only study to-date that had such objectivity, except for Eppler et al. (1977, 1983) who used Fourier shape analysis 
methods (something we, also, examined; see Section 5).

With Dawn at Ceres in 2015, several different authors published conference abstracts examining Cere's plen-
tiful PIC population: Otto et al. (2015, 2016) looked at latitudinal distribution and numbers of sides; Neidhart 
et al. (2017) looked at Ceres in context of other bodies; Zeilnhofer and Barlow (2018) discussed joint angles, 
sides, and relationship with fractures. Peer-reviewed work by Gou et al. (2018) included 276 PICs in their data-
base, and Krohn et al. (2019) included a PIC discussion in a report about Cerean asymmetric craters that focused 
on broader implications about global fractures. None of the preceding referenced works described any metric 
for determining polygonality. The Zeilnhofer & Barlow work formed part of Zeilhnofer's doctoral dissertation 
(Zeilnhofer, 2020) and two papers the next year (Zeilnhofer & Barlow, 2021a, 2021b). Out of all these published 
works, only Zeilnhofer and Barlow  (2021b) described how polygons were measured: sides were defined as 
whether an angle is measurable to join them; if so, then lengths and sides were drawn by hand, and azimuths and 
joint angles then measured in computer software.

In the outer solar system, the literature is similarly sparse, though PICs on outer solar system surfaces appear to 
be more prevalent or at least less ambiguous. The Galilean satellites all have PICs, while the Saturnian satellites, 
due almost certainly to the larger data volume, have better studied PICs. The very recent conference abstract 
by Baby et al. (2023) addresses PICs on Ganymede, describing PICs as having 1–9 sides (as opposed to ≥2 by 
most work) and that they appear on all terrain types, but no description of objective measurement was presented. 
The conference abstract of Neidhart et al. (2017) discusses a diameter comparison and number of straight rim 
segments comparison among several bodies, including Rhea, Dione, and Tethys. Beddingfield et al. (2016) is the 
only modern (Cassini-era) peer-reviewed paper that investigated PIC in the Saturnian system. Their work looked 
at PIC populations and rim segment azimuths in Dione's wispy and non-wispy terrains, and they used those PICs 
to infer subtle (unseen) fractures that were consistent with satellite despinning and volume expansion.

Beddingfield and Cartwright (2020) moved further out by examining Uranus' moon Miranda, analyzing 14 PICs, 
the trending directions of their sides, and used them to infer information about hidden tectonism below Miranda's 
surface. In conference abstract form, Beddingfield et al. (2020) reported on preliminary work identifying PICs 
on Charon, again with implications about the tectonic field in Charon's crust. Beddingfield's various papers and 
conference abstracts on the subject are the most objective that we could find in the modern literature, wherein 
they perform several different statistical tests on crater rim traces that the craters must pass before concluding 
they are a PIC. With that in mind, we found practically no discussion about projection effects, and how measuring 
geodetics on different map projections without properly accounting for those projections can affect the angles 
measured. This is something our code addresses.

3. An Approach to Objectively Parameterizing Polygonal Impact Craters
3.1. Setup of the Problem

The first goal in developing this objective computer algorithm was to take what the human eye and brain do 
naturally and objectively codify it by asking the question: What is the best, simple shape that can represent this 
crater? In this context, a “simple shape” could mean a circle, ellipse, or some sort of irregular polygon that may 
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or may not incorporate some components that are curved. When examining an impact crater, the brain tends to 
“know” when it sees straight sides or angles in the edges; hence, “we know it when we see it” is a phrase that 
comes to mind. However, in-between cases are subjective, and what is “obviously” a PIC to one person might not 
be to another. Similarly, for real planetary features that are not perfect polygons, the brain must make decisions 
about what to include in an edge, not include in an edge (i.e., where to place the joint), and how to accurately 
draw that edge.

After parameterizing a feature, the second goal in developing this code was to represent the feature in as compact 
a form as possible such that one can resurrect the pertinent information accurately and easily. For example, for the 
vast majority of impact crater studies, craters are reduced to three parameters: latitude, longitude, and diameter 
(or sometimes radius). For polygonal craters, the interest is in the edges, where those edges meet, whether any 
edge is an arc, and then what the radius and end points of that arc are, so the problem is not as compact. For a 
given N-sided polygon that has N vertices, the problem can be reduced to 3 · N+3 parameters: for each ni vertex, 
the latitude and longitude must be included, and a flag for whether it is linked to the next vertex with a straight 
line or an arc; additionally, two parameters for the central latitude and longitude of all arcs and their shared radius 
are needed. All bearings and joint angles can be computed post facto from that information.

3.2. Data Required for the Algorithm

We have written the algorithm to accept a simple list of latitude-longitude pairs in decimal degrees that represent 
a crater rim trace. How those were measured is completely up to the user's discretion, but as with most impact 
crater studies, there are some components that must be kept in mind.

One component is the resolution of the impact crater—how many pixels across it must be to reasonably resolve 
its shape and to trace it for input to this algorithm. Mathematically, there must be at least as many points in a 
rim trace as parameters to be fit (e.g., a circle must have at least three points to define it, and an ellipse must 
have at least five). Realistically, the crater should be at least >10 pixels across to reliably measure it (Robbins 
et al., 2014), and if that minimum size, it is recommended that the user trace the rim with 1 vertex per pixel fidel-
ity to provide as detailed a rim trace as possible. Beyond that, we can only recommend that the more pixels one 
has, the better resolved the feature is, and so the more likely the code's output is to represent reality. Similarly, 
we also recommend that this only be done with reasonably well preserved craters, even though in our example 
section we include one highly degraded crater. If a crater is not well preserved, the rim can be poorly defined, 
leading to significantly more uncertainty which cannot be easily quantified.

Similarly, the data set one uses to identify the crater could potentially affect results. Topography, while more rare 
in our planetary data archives, tends to be better for identifying impact crater shapes because one can recognize 
the rim crest independent of sun angles. With images instead of topography, rims tend to disappear when parallel 
to the incident sun, which means that when one traces that region of the rim, one could artificially straighten the 
rim in those locations. It is difficult to get past this, but typically those regions are relatively small components 
of the overall crater rim. It is also preferable for any data set used to be close to nadir; foreshortening caused by 
non-zero emission angles, such as side-scan radar, can affect angles and create or enhance an apparent straight-
ness of an edge.

Finally, the code assumes a rim trace is complete, that it does not have any significant gaps. It will treat gaps as 
straight edges, which one could remove in post-processing.

3.3. Description of the Algorithm

The algorithm begins by processing the data into a form that can be accurately analyzed from a geodetic perspec-
tive. This work is based on code developed for fitting circles and ellipses (Robbins, 2019; Robbins & Hynek, 2012) 
that begins by reading an ASCII file of a crater rim trace in units of decimal degrees. The code converts the 
rim  trace into kilometers from the rim's centroid using Great Circles distances and bearings that assume a biaxial 
ellipsoid body (Vincenty, 1975). For self-similarity and boundary consistency across different-sized craters for 
this polygonal analysis, a linear scaling is applied to normalize the crater to fit inside of a box with an area ≈1, 
centered at the origin (0, 0). It applies the scaling and projection in reverse to all final parameters.

The code then attempts to fit a closed shape. It will fit a circle for reference, and after that it will fit an n-gon 
where n ≥ 3. There is no restriction for the polygon to be regular (meaning that it is not required for all sides and 
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angles to be equal), and it can also allow one or more sides to be arcs. The shape must be closed, since crater rims 
are closed. The fundamental shape optimization behind the code is that it seeks to minimize the area difference 
between the rim trace and the fitted polygon. For example, one might have a perfect square as a rim trace, and the 
code initially guesses a square that is offset to the left. The shape enclosed by the rim trace is subtracted from the 
shape enclosed by the polygon fit, and the area of the remainder is calculated. If the code shifts the fit to the left, 
the area subtracted increases, so the code would know that is not a better fit and throw it out. If the code shifts 
the fit to the right, the area subtracted decreases, so it would know that is an improvement and the shift should 
be retained.

Using that concept, the code uses a Monte Carlo approach in two stages. The code can test N-dimensional poly-
gons with the possibility of ≤⌊N ÷ 2⌋ of the sides being an arc (e.g., if N = 3, then 0 or 1 side could be an arc). 
This means that the next two paragraphs are repeated as many times as different-n-gons are tested. It also has the 
ability to perform the fits multiple times with random seeds to test for repeatability (described later). Reasonable 
limits need to be placed on N to avoid ad infinitum compute time and over-fitting, also discussed later.

The first Monte Carlo stage is to randomly guess where the N vertex points will be. Random draws from the 
rim trace, plus some random noise, are taken, with three constraints. In versions where ≥1 side can be an arc, 
the side(s) to be an arc is/are chosen randomly. However, once one is set, any additional side(s) that is/are arcs 
must be separated by a straight side; otherwise, the fit would effectively be an N–1 shape. A second, empirical 
requirement is placed where the angle connecting any two adjacent vertices with the shape's center must be 
≥(360° ÷ N)÷3 to avoid seeding cases of two nearly adjacent vertex points. The third constraint is that the test 
shape must be convex, meaning no joint can be ≥180° measured inside the shape. This stage is run m1 times, and 
the polygon that minimizes the area difference is saved. m1 ∼ 500 is often enough for well-defined shapes, but 
inclusion of arcs instead of all straight edges makes the problem more computationally difficult. The more arcs 
and sides included, the more subtle differences are possible, so m1 = 1,000 · N by default (additionally, the more 
arcs and sides included, the more circular the fit becomes, raising the issue of over-fitting; see Section 5).

The second Monte Carlo stage takes the best polygon from the first stage and jitters the points with Gaussian 
noise, determining if there is an improvement. If there is, that new shape is saved as the best, and the next iteration 
proceeds from it. After a certain number of iterations, the Gaussian noise is decreased (commonly referred to as 
a “simmer”), so smaller changes are made as the algorithm settles on a solution. A purely random walk Monte 
Carlo approach is primarily employed, though it has been slightly optimized with a naïve Metropolis-Hastings 
implementation of a Markov chain Monte Carlo (Hastings, 1970), which takes the previous improvement (if the 
previous iteration was an improvement) and uses that as a slight offset in the next iteration's random walk. Using 
the perfect square example from before, the code would recognize that a slight shift to the right improved the fit, 
so instead of the next iteration having purely random noise applied, it is random noise with another slight offset 
toward the right. The randomness is also constrained in that the solution must be concave (no interior angles 
≥180°), so if the jitter would make the shape convex, it is rejected. The angle separation of vertices is not enforced 
at this stage. This second stage is run m2 times, and m2 ∼ 10,000 converges well, though tests in the next sections 
were run to 15,000 iterations to check for convergence.

We explored several different methods to return an objective measure for which of the minimized final polygons 
are best, for example, if the best pentagon is a better fit than the best octagon with one side as an arc. Such a metric 
must return a result that takes into account that the more free parameters (sides) one adds, the better the fit will 
be; in other words, the metric must penalize the goodness of the fit based on the number of degrees-of-freedom 
(DOF). As a very simple thought experiment, while a 100-sided polygon might fit a crater rim very well, a circle 
might fit it almost as well; a circle has 3 parameters, while a 100-sided polygon has >200, so the circle would be 
the preferred fit. We unfortunately were unsuccessful in finding or developing an objective metric that worked 
well in all cases. Until such a metric can be found, this code should be treated as a more probabilistic approach 
where the researcher can use it to inform their own decision (demonstrated in Section 4).

From the code's output parameters, it is relatively trivial to reconstruct azimuths of any sides that are straight 
lines (as opposed to any that are arcs). While the simplest method to calculate azimuth would be basic Cartesian 
trigonometry (e.g., α = tan −1 ((φi–1 – φi)÷(λi–1 – λi)), where φ is latitude and λ is longitude), it is recommended 
that one uses the formulae that factor in proper geometry on an ellipsoid (Vincenty, 1975), which this code does.

Finally, this code does not output any uncertainty metric. It does output the normalized area difference between 
the shape fit and the rim trace which can be used as some metric of residual uncertainties, but we think that the 
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various versions of the final shape returned—along with the parameters for each from the previous paragraph—
represent a good way to understand the uncertainty in the fit.

4. Examples
4.1. Example: Mercury's Mahler—An Ice Cream Cone Shape

Mercury's Mahler crater (Figure 1) is an example of a crater proposed to have a single joint at the apex of two straight 
lines which are then connected by an arc. Mahler is the type example PIC in Weihs et al. (2015). We traced Mahler 
using 556 rim vertex points on the 166 m/pix Mercury Dual Imaging System (MDIS) mosaic and constrained 
our code to find three sides where one was an arc. The Mahler experiment also set our angle requirement on how 
close the randomly selected points could be: Initially, it was (360° ÷ N)÷2, but the approximate vertices in Weihs 
et al. (2015) are ∼42° from each other, meaning we prevented the code from finding them as a possible solution.

For this and other type examples throughout this section, the code was run 100 times for each discussed geometry 
and results analyzed in two ways. The first method, shown in several figures, is a visual examination of the vari-
ous minimized rim geometries with significant transparency applied, which allows common solutions to appear 
more obvious due to overlapping opacity (e.g., Figure 1c). The second method is to look at the convergence area 
differences between the minimized shape and the crater rim, also shown in several figures (e.g., Figure 1d).

In relatively few solutions did the code lock onto the shape proposed by Weihs et  al.  (2015). In general, the 
code randomly locked onto different areas of relatively straight rim segments, slightly preferring the northwest 
and southwest. When forced to arrive at their solution, it was a true minimum in the area difference, but only 
extremely slightly (0.0344 vs. other minima that were as low as 0.0345). This is in comparison to a circle that 
has an area difference of 0.0434. Those values, coupled with examination of Figure 1a–1c, indicate that Mahler 
really is probably better modeled as a circle. It is possible that the East-West lighting geometry, coupled with 
their vertex at the south point, could be why the brain interprets this as a more polygonal crater than it actually is.

For a sanity check, and since this is the first example discussed, a triangle with no arcs was also fit (not shown). 
The area difference was 0.2443, though the fit converged 100% of the time to the exact same triangle. Therefore, 
just because it converges the same way every time, that does not mean it is a good model for the crater shape.

Finally, for the sake of comparison, when the code is forced to converge to the Weihs et al. solution via very 
precisely seeding it with that shape, the optimized joint at the southern point of the crater is 133.1°, close to the 
125° published by Weihs et al. (2015), and practically identical given that most authors construct rose diagrams of 
joints and side bearings in intervals of 10° or 15°. Also, our calculation incorporates Great Circle bearings, which 
will lead to slightly different results even with Mahler's relatively equatorial latitude of ≈ – 20°.

4.2. Example: Venus' Behn—A Pentagon With an Arc

Behn (Figure 2) is a named type example of a PIC described in Öhman et al. (2007) and Aitolla et al. (2007, 2008). 
The former described it as having at least two straight sides, while the latter drew four segments that were joined 

Figure 1. In these plots, the panel with the satellite data is in a local projection system, while all plots with rim fits are in equirectangular and so may show latitude 
compression effects. (a) Mahler crater (Mercury) example with rim trace (on the 166 m/pix MDIS mosaic). (b) Best fit from this code to Weihs et al. (2015) shape, 
along with a best-fit circle for comparison and the rim trace overlaid. (c) Example 100 runs of that shape (a triangle with one side as an arc) with reduced opacity, so 
more common solutions are darker. The shape is black (or gray) while the vertex points are shown in blue. (d) Area minimization of the 100 runs showing that the same 
minimum was not always obtained.
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by approximately the angles of a regular hexagon, and they left the southwest portion of the crater unsketched. 
They listed the trending directions of the different rim segments as 34° (northwest segment), 96° (north segment), 
153° (northeast segment), and 28° (southeast segment), and estimated a ±7.5° uncertainty (they considered any 
angles within 15° to have parallel sides).

We traced the rim using 340 vertex points on the 75 m/pix left-looking Magellan radar mosaics. It should be 
noted that these data are not orthorectified, as evidenced by the extreme enhancement of the western crater wall 
but complete masking of the eastern; this could affect polygonality due to foreshortening, and it could affect any 
angles calculated. The code was able to find the above-reported shape, and the bearings found were 37°, 97°, 
158°, and 206° (or, 26° modulo 180°). These are within the estimated Aitolla et al. (2007) ±7.5° uncertainty. 
However, other runs found different versions of a polygon made of five sides with one side being an arc, and 
the area difference between the fit and the polygon indicated these were only slightly worse. Figure 2 shows that 
while there is a small preference for the segments identified by Aitolla et al. (2007), they are again not strong 
minima in various incarnations of the pentagonal fit with one arc, as in they are not strong drivers for an opti-
mized shape.

The area difference between a circle and Behn's rim is 0.0756, while the optimized pentagon with one arc is 
0.0423. This is a substantial improvement, but at the cost of significantly more fit parameters, and with a large 
asterisk about the oblique imaging.

4.3. Example: Earth's Meteor Crater—A Quadrilateral, or Octagon With Four Arcs

Meteor Crater is Earth's best-preserved kilometer-scale impact crater, near Winslow, AZ, USA. The structure 
has long been recognized to have four approximately straight edges, which are known to be controlled by nearby 
faults, so we can see how the code handled the structure. The focus of this test was to look at how the code 
discriminated between a circle fit, a four-sided polygon fit, and an eight-sided polygon with four curved edges. 
For tracing, we used a 50M-point topography cloud that had roughly 1 m spacing.

The results are shown in Figure 3. Based on area differences, a circle fit is a better fit than a quadrilateral, though 
the quadrilateral is able to capture the sides (bearings approximately 74.7°, 163.9°, 251.3°, and 342.3°). The best 
fit, however, is the octagon with alternating arcs (with straight sides of bearings 77.9°, 166.7°, 256.0°, 345.2°). 
The sides and their bearings are slightly different between the quadrilateral and octagon. The reason is that the 
code's sole method of determining a good fit is to minimize the area difference between the fit and the rim trace. 
Because the quadrilateral has sharp corners, the code must shift the quadrilateral's corners to minimize that differ-
ence between the quadrilateral shape both outside and inside the rim trace. Adjusting one corner shifts two edges, 
so that tradeoff affects the bearing/azimuth of the sides away from what one might think to be a better solution.

Figure 3 also demonstrates that the code was not always able to lock onto the most optimized octagonal shape. 
This is because there are so many free parameters that, despite the octagon with four arcs being the best solution, 
it is still not always simple for the code to find it. This is an area for code improvement and why we recommend 
running the code multiple times with the same N sides to see if it converges to the same (or very similar) shape 
each time.

Figure 2. Example of Behn crater (Venus; 75 m/pix left-looking Magellan radar) following the same panel layout as in Figure 1. Panel (d) shows that, with a large arc 
and several vertex points, the fit will often converge before the maximum number of runs, though it does not always converge to an absolute minimum.
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4.4. Example: Moon's Copernicus—A Polygonal Crater?

Copernicus has sometimes been identified as a polygonal crater (e.g., Öhman et al., 2005). However, subjectively 
looking at the impact, one might find it difficult to decide whether there are straight edges or simply concave 
ripples due to the scalloped nature of the rim, which is common for complex craters (D ≳ 15 km on the Moon; 
Pike,  1980). We traced the rim with 2,952 vertex points using the 100 m/pix Lunar Reconnaissance Orbiter 
Camera Wide-Angle Camera (LROC-WAC) mosaic, and a large suite of 19 possible shapes (N = 4–8, with 0–
⌊(N ÷ 2)⌋ arcs) were run, 100 times each, in addition to a circle fit. The matrix of results is shown in Figure 4.

Interestingly, most solutions that included arcs converged on there being an arc across the northern rim, which 
is in contrast with past work that indicated the northern rim was the most distinct polygonal side (keying in on 
the cusp near the 11:00 position). Most higher-order solutions tended to converge to lower-order versions (two 
or more vertices almost on top of each other), and most N ≥ 6 with ≥2 arcs converged almost to a circle (mini-
mizing the lengths of the straight sides). Also, most higher-order solutions were non-unique: Running multiple 
times converged upon completely different solutions. The opacity of the straight lines along the southeast and 
south-southeast rim is more than elsewhere, including the arcs over those areas, indicating a small preference for 
straight edges in those regions.

There is also the curious case of the hexagon fit. Unlike Mahler or Meteor Crater where the triangle and quad-
rilateral fits converged to the same result each time, respectively—despite neither being optimal shapes—the 
quadrilateral, pentagon, heptagon, and octagon fits to Copernicus failed to have any strong convergence to a 
single fit. The hexagon is a slight outlier, where the northern ∼⅔ of the crater converged well to four distinct rim 
segments with relatively little difference between the runs, while the southern part had a large suite of possible 
locations and therefore angles for the southern vertex. Further, the two most common southern edges are different 
from the two mentioned above for when arcs were allowed and two strong southern straight segments emerged.

The issue then arises of how one should interpret these seemingly contradictory results. If one desired, one could 
certainly point to the above paragraph and state that there are four reasonably consistent sides in a hexagonal fit, 
there could be underlying lunar stress patterns that parallel them, and look for further evidence of them from 
other craters or geologic features. The same goes for the two possible southeastern edges noted two paragraphs 
earlier: In and of themselves, they are not strong evidence for underlying control of Copernicus' shape, but they 
are suggestive that further searches could be made. An alternative interpretation, and one that we cannot rule 
out in the absence of a good criterion that penalizes over-fitting to quantitatively suggest a best shape, is that the 
dizzying array of different solutions is indicative of a null hypothesis that Copernicus is best modeled as a circle, 
and the appearance of straight rim segments is an illusion.

4.5. Example: Ceres' Fejokoo—A Hexagon

Fejokoo crater (Figure 5) is one of the primary type examples of polygonal craters on Ceres—and at this point, 
probably in the Solar System. It is commonly reported as a hexagonal crater, and indeed, to the eye, it does appear 
to be hexagonal. However, one can see that the south and east components of the rim might pose problems to a 
computer algorithm. Specifically, the eastern rim appears to have two distinct edges, but the joint between them 

Figure 3. Example of Meteor Crater (Earth; image is from satellite data via Digital Globe) following the same panel layout as Figure 1, but convergence data are inside 
of the final fitted shapes. Panel (b) is a quadrilateral fit, while (c) is an octagon where four sides are arcs.
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is smaller and more gradual than some of the variation seen within a single edge elsewhere on the crater rim. The 
southern component of the rim could be interpreted by eye as having one long edge with significant variation 
within it, or up to three straighter segments, each again with relatively small-angle joints. This analysis is inde-
pendent of geologic context, where the shape of the south rim might be influenced by the superposed crater near 
it, and the geology of the eastern rim is likely heavily influenced by collapse. Regardless of geology, the code was 
applied to determine the optimum shape and see if it reproduced a hexagon or something else.

The crater is D ≈ 68 km and is centered near 132°E, +29°N, and we traced its rim using 1,036 points on the 
140 m/pix Dawn mosaic. The same suite of shapes as for Copernicus was run. In contrast with Mahler, Behn, 
and Copernicus, extremely consistent (and reassuring) results were obtained with Fejokoo. For shapes with no 

Figure 4. Example of Copernicus (Moon; 100 m/pix LROC-WAC mosaic), with a large parameter space of 100 runs each. The plots follow panels (c) with (d) inset 
from the Mahler and Behn examples, while the crater is in the upper-right for reference without the rim trace overlaid.
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arcs, the quadrilateral converged every time to a single shape, the pentagon to a suite of mainly two shapes, and 
hexagon to the same shape each time. Interestingly, the heptagon and octagon also converged, effectively, to 
the hexagon, where the extra one or two vertex points formed only slight deviations from the hexagon or they 
collapsed to be effectively on top of one of the hexagon vertices. This behavior is what one would hope for in a 
very well-defined shape.

Similarly reassuring, when adding arcs, the hexagon emerges as a very strong shape, evidenced by those hexagon 
rim segments being much darker than any of the arcs over any location. Additionally, for all N tested, when N 
was even and the number of arcs was N ÷ 2, the strongest, most common solution converged to two straight lines 
roughly along the north and south rims, and arcs along the eastern and western sides. This also emerged for when 
N was even and the number of arcs was ⌊N ÷ 2⌋, but it was not as strong.

The difference in the area between the fitted shape and the rim trace was also an absolute minimum for the 
hexagon with zero arcs: Adding more sides or any arcs increased that area difference. Such a finding is a strong 
indicator that six sides that are straight is not only a good solution, but the best solution.

Figure 5. Same as Figure 4, except showing Fejokoo crater (Ceres; 140 m/pix Dawn mosaic).
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4.6. Example: Ceres' Kerwan—A Pentagon? Hexagon? Heptagon? Dodecagon?

Kerwan, the largest identified Cerean impact crater, is commonly identified as a hexagon, like Fejokoo, though 
Zeilnhofer and Barlow (2021b) identified it as a dodecagon. The southeastern sides, clockwise through the north-
west, appear to mimic a regular hexagon's angles, and the sides appear reasonably straight. Unfortunately, as 
a large, degraded crater, it is significantly overprinted to the northeast, making the rim uncertain. Despite this 
uncertainty, we attempted to accurately trace it with the assistance of topography, using 1,711 vertex points on 
the 140 m/pix Dawn mosaic supplemented with the mean spheroid topography. The same suite of shapes as in 
the previous two examples were tested. We did not test up to 12 straight sides because, by eight sides, there was 
extremely little convergence onto a best shape.

Figure 6 shows that the southern sides are strongly linear, while the northern half of the crater is much less 
consistent. As with Fejokoo, when the number of arcs was ⌊N ÷ 2⌋, the shapes mostly converged to straight rim 
segments along the northwest and south rims, and mostly arcs along the eastern and western sides. While Kerwan 
and Fejokoo are only a sample size of two, this linearity along the north and south does beg the question about 
whether sun angle might play a role at emphasizing east and west rim variation, leading to tracing them as more 
straight than they actually are. Alternatively, it is possible that this preference is real and demonstrates body-wide 
similar stress patterns. That, however, is not part of this study, and this point is instead used to emphasize that the 
code works best when it has an accurate rim trace as input.

Regarding the true shape of Kerwan, Figure 6 indicates in the all-straight-edged octagon fits that the rim from 
the roughly 1:00 through 8:00 position tends to converge to five distinct segments. The consistency of those five 
edges indicates that Kerwan is likely best represented as a pentagon with those five edges and the western to 
northern rim represented by an arc of some sort, just not one within our constraints.

5. Discussion
In these six examples, we have shown that some are probably better fit by simple circles rather than by polygons. 
That does not mean a polygon cannot fit them well, though one must also be cognizant of potential biases when 
tracing crater rims and how lighting geometry might affect one's trace. As in the case of Copernicus, visually, an 
octagon fits quite well, minimizing the difference in area to a value similar to a hexagonal fit to Fejokoo. There-
fore, these craters can be fit by these polygonal shapes, so they could be considered polygonal, and this code can 
be constrained to specifically find those desired solutions and objectively report their bearings and joint angles.

At issue is what was briefly addressed in the previous sections: In mathematics, one can always add terms to 
a fit function and converge closer to exactly representing the data. Picture, for example, 20 points in a scatter 
plot that very roughly form a line. They can be fit by two free parameters: a slope and y-intercept. However, 
they could also be fit by three free parameters in the form of a second-order polynomial (constant, x coefficient, 
and x 2 coefficient). One could also fit with 20 free parameters and perfectly reproduce the data. However, that 
high-order polynomial, in all likelihood, is not the actual function from which those data were drawn, despite 
perfectly representing the data. Therefore, it is considered to be “over-fit,” and the lower-order fits are more likely 
to represent reality.

There are various ways of trying to quantify what fit is really better, and it usually is based on some combination 
of the residuals fit (χ 2) versus the number of free parameters (DOF). We explored two common information crite-
ria (IC) in our search to quantify the best fit. Primarily, we focused on the Aikake Information Criterion (AIC; 
Akaike, 1974), which states that the better fit has the lower AIC value (which can be negative). AIC penalizes fits 
based on the number of free parameters, so it should be a reasonable way to determine if a nine-sided polygon 
really is a better fit because it is significantly better than a six-sided polygon, or if it is just a better fit because it 
has more free sides. In the above example, the line has DOF = 2, while the high-order polynomial has DOF = 20. 
The AIC's penalization of 20 versus 2, in contrast with the residuals from each solution, would indicate that the 
line is a better fit to the model, or more likely to represent reality.

Another common IC, the Bayesian Information Criterion (BIC; Schwarz, 1978), is identical to AIC except it 
penalizes differently based on DOF. Each has their adherents, and several comparisons have been published (e.g., 
Vrieze, 2012), but either is generally only slightly better or worse for different problems.

The purpose, then, of the IC is to provide an objective method and metric to use for model selection, assessing 
the quality of each model based on how good it is versus penalizing based on the number of fit parameters. So, 
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while Copernicus can be fit quite well by an octagon, that octagon has 16 DOF (2 N, the latitude and longitude of 
each joint), while a circle only has three DOF. Therefore, while the octagon has an area difference in the normal-
ization of 0.025, and a circle has 0.035, the AIC for the octagon is ≈35, while for a circle it is ≈13. That lower 
value indicates that a circle is a better model. The same formulation strongly indicated Meteor Crater is best fit 
by an octagon where four sides are arcs. However, while we found that the AIC does sometimes indicate what 
the community would agree is the “correct” answer (e.g., the above two examples), it would similarly sometimes 
return picks that the community would agree are wrong. For example, no matter how many permutations of the 
AIC or BIC we tried, it always indicated that Fejokoo was best fit by either an octagon or a circle (depending on 
what version of the IC); never did it select the hexagon. Therefore, we do not include with this code a functioning 
version of an objective selector.

Figure 6. Same as Figure 4, except showing Kerwan crater (Ceres; 140 m/pix Dawn mosaic, and mean spheroid topography overlaid). Kerwan's topography is overlaid 
(red/brown high, purple/white low) for assistance in identifying its eroded rim; the ellipsoid has not been removed from the topography.
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However, that does not mean an objective selector does not exist. There are additional potential methods in 
statistics to penalize fits based on the number of parameters, or there are potentially other likelihood functions 
we could use in quantifying how good the fitted shape is relative to the rim trace. For example, we are currently 
using a simple area difference. A different method for the likelihood could be to calculate the sum of the distances 
between each vertex point in the rim trace and the shape that is being tested, or their square for a more common 
sum-of-squares.

One could also look to completely different methods to calculate the best shape. Spectral parameters, deter-
mined by a Fourier analysis, would present an entirely different method to represent a best-fit to the rim, and 
such algorithms for performing the elliptical Fourier fits have been described over the last several decades 
(Crampton, 1995; Giardina & Kuhl, 1977; Kuhl & Giardina, 1982; Rohlf & Archie, 1984). The goal would be 
to add Fourier coefficients until the rim reproduced by the Fourier series captures >99% of the total cumulative 
power of the Fourier spectrum (or, some other defined >x%). Capturing a certain amount of the power could be 
one way to provide an IC to discriminate between different fits—it is effectively baked into the method itself. 
The above-described sum-of-squares metric could also be calculated from the output of this fitting method which 
could also be used to help quantify how good the fit is, though not necessarily help discriminate between different 
shapes and over-fitting. The issue in implementing this for our purposes is that it is not straightforward to work 
backwards from the best fit to understand that fit's straight versus curved rim segments and their bearings and 
angles, instead it could only be used to understand a minimum number of sides, which could also indicate a circle 
is best (“infinite” sides). Fourier analysis for understanding shapes of planetary features has been used before, 
such as in examining Titan's lakes (Dhingra et al., 2019).

While further explorations of these metrics will be undertaken, we think that this work alone—a code that can 
return the best-fit shape (once one has defined what that polygon shape is)—is still an important contribution to 
the field, for it is the first to attempt to objectively, algorithmically define PICs.

6. Conclusions
In this work, we have presented the output from the first attempt to objectively classify impact craters as polyg-
onal or not, and if polygonal, what the best representation of that shape is in terms of sides and arcs. We have 
designed code that uses a Monte Carlo approach to this problem and we make it available to the community. We 
demonstrated this code on several examples of unambiguous features that “everyone” would agree are “obvi-
ously” polygonal (with caveats on the subjectivity of human classification), and we demonstrated this code on 
some more ambiguous examples that some literature has identified as polygonal. These different use cases are 
described in the online guide to using and interpreting the code, found in the code repository archives on Zenodo 
and GitHub.

In using this code in its present state, we recommend running it for a given crater several times to examine how 
frequently the same solution is found for any given n-gon shape (e.g., four-sides with one side being an arc). If the 
same solution is found the majority of the time, that is a strong indicator it is the true minimization for that shape. 
If, however, there are numerous solutions and none is strongly preferred over the others, that is a strong indicator 
that the crater is poorly fit by that shape, and a different one—including a circle—might be a better fit. That, in 
turn, would further suggest that underlying tectonics or non-uniform porosity may not exist, or if they do, have 
little control over that final crater shape.
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