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The commentary by Schneider1 in this issue of Environmental
Health Perspectives provides a thoughtful perspective that requires
the attention of those responsible for advocating and advancing
children’s health and public health at large. The first tenet of the
environmental health sciences is to prevent exposure to harmful
chemicals, that is, primary prevention.When prevention is not pos-
sible, or it is ineffective, evidence-based interventions can change
outcomes and improve quality of life. Yet this principle of public
health has not been fully effective in one of the worst cases of envi-
ronmentally induced neurological disease known to humanity:
childhood lead intoxication.

A large body of epidemiological studies over many decades
provides indisputable evidence that childhood lead exposure, at
progressively lower levels, impairs cognitive domains involved
in school performance.2–4 These lead-induced effects are associ-
ated with downward economic and social mobility5 and the
emergence of psychopathologies in adolescence and in young
adults.6–12 Limited effort and resources are being dedicated for
discovering interventions that can effectively improve the lives of
millions of children globally who have been, and continue to be,
exposed to lead. The lack of a sustained effort to find effective
interventions for the millions of children who have already been
exposed and exhibit learning and behavioral problems is most
likely based on the dogma that the problem is insurmountable or
that the toxic effects of lead on the brain are permanent or irre-
versible. In his commentary, Schneider posits the potential bene-
fits of enriching experiences in stimulating brain function and
provides evidence of a strategy that needs further exploration.1

In the 1970s, successful implementation of public health policy
to remove lead from consumer products resulted in a progressive
decrease in blood lead levels in the U.S. general population.13–15
However, despite this significant achievement, childhood lead
intoxication remains a major public health problem around the
world owing to the millions of tons of lead deposited in the envi-
ronment from anthropogenic sources. Besides the historically rec-
ognized sources of lead exposure from paint, gasoline, service
pipes in water distribution systems, contaminated air, and soil pol-
luted by decades of lead dispersion in the environment,16 new and
unexpected sources continue to be discovered, providing further
evidence of the insidious problem. The most recent example in the
news is the finding of old telephone cables that are degrading and
leaching lead into the surrounding environment.17 In low- and
middle-income countries, increasing sources of lead exposure arise

from repositories of electronic waste or used automobile and
motorbike batteries, which are recycled to remove lead and other
toxic, but valuable, metals.16

The magnitude of this silent, and often forgotten, toxic reality
is best summarized in the 2020 UNICEF report “The Toxic Truth:
Children’s Exposure to Lead Pollution Undermines a Generation
of Future Potential.”16 This report presents estimates of the
number of children ≤19 years of age who have blood lead levels
>5 mg=dL. In the United States, the number is estimated at
0.8–2.0 million; globally, it is at >800million,16 or ∼ 40% of this
age range. The standard of care for highly lead-intoxicated children
is succimer chelation, developed in the 1970s to reduce the lead
body burden.18,19 However, multicenter chelation trials with large
numbers of lead-exposed children have revealed that, although
succimer effectively lowers blood lead levels, it does not reverse
the effects on cognitive function or neuropsychological perform-
ance.20,21 Therefore, it is imperative that effective, safe, scalable,
and low-cost approaches to mitigate the negative effects of child-
hood lead intoxication on brain health be developed, tested, and
implemented.

Schneider also notes that studies in children of low socioeco-
nomic status who receive supportive psychosocial interventions are
largely resilient to the negative effects of poverty on brain develop-
ment and function. He correctly points out that these same inter-
ventions should be tested in lead-intoxicated children. Although
psychosocial and educational interventions that support brain
health should be an important part of community-based programs,
the current author argues that other adjunct nutritional therapies
should also be considered. For example, preclinical studies on the
benefits of these types of enriching interventions on reversing
lead-induced learning deficits have uncovered neurobiological
mechanism(s) by which they benefit the lead-exposed brain.22,23

A primary target of early life lead exposure on the developing
brain is disruption of the N-methyl-D-aspartate subtype of excita-
tory amino acid receptor24–27 and downstream brain-derived neu-
rotrophic factor (BDNF) signaling.28,29 BDNF plays a critical
role in synapse formation and neuronal development and sur-
vival, regulates neuronal plasticity, and is essential for learning
and memory.30,31 Studies have shown that the exogenous addi-
tion of BDNF to hippocampal neuronal cultures exposed to lead
in vitro during synapse formation is able to reverse lead-induced
deficits in synaptic function by normalizing levels of vesicular
proteins and vesicular neurotransmitter release.28 From an in vivo
therapeutic perspective, BDNF has limited clinical utility for
brain disorders because it has a short half-life and it does not
cross the blood–brain barrier.

However, intensive research efforts have discovered BDNF-
mimetic molecules, such as 7,8-dihydroxyflavone (7,8-DHF), that
cross the blood–brain barrier and are inexpensive and safe for
human use.32–34 7,8-DHF is a nutrient in the flavonoid family that
is abundant in fruits and vegetables in the human diet. 7,8-DHF, as
a biological analog of BDNF, has been tested in an animal model
of lead neurotoxicity and shown to reverse the vesicular release
deficit in the hippocampus of animals that were continuously
exposed to lead during brain development into adulthood.35
Furthermore, 7,8-DHF has proven to be effective in a variety of
animal models of brain disorders36–44 and improved cognitive
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function in humans in a randomized, controlled, double-blind clini-
cal trial.45 The environmental enrichment and subsequent studies
in animalmodels provide evidence that targeting the BDNF system
with BDNF-mimetic nutraceuticals has the potential to substan-
tially mitigate the toxic effects of lead on the brain. This nutritional
approach—combined with community-based efforts to enhance
the quality of the home environment, increase parental involve-
ment, and provide sustained cognitive training in child care and
school settings—may be a multipronged approach to mitigating
the detrimental effects of early life lead exposure on children’s cog-
nitive and behavioral domains. In fact, in a 2018 study, applying a
combination of these interventions to children with proven lead
intoxication was associated with improvement in multiple educa-
tional and behavioral outcomes.46

As Schneider points out, the time has come to evaluate such
approaches in children who are suffering from the devastating
effects of lead intoxication using carefully designed clinical inter-
vention trials. A small investment of resources today can have a
profound effect on the future of the millions of lead-intoxicated
children who otherwise may not achieve their full potential and
contribute positively to society.
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