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Abstract: Background: Evidence on the genetics of functional seizures is scarce, and the purpose of
the current scoping systematic review is to examine the existing evidence and propose how to advance
the field. Methods: Web of science and MEDLINE were searched, from their initiation until May 2023.
The following key words were used: functional neurological disorder(s), psychogenic neurologi-
cal disorder(s), functional movement disorder(s), psychogenic movement disorder(s), functional
seizures(s), psychogenic seizure(s), nonepileptic seizure(s), dissociative seizure(s), or psychogenic
nonepileptic seizure(s), AND, gene, genetic(s), polymorphism, genome, epigenetics, copy number
variant, copy number variation(s), whole exome sequencing, or next-generation sequencing. Results:
We identified three original studies. In one study, the authors observed that six (5.9%) patients with
functional seizures carried pathogenic/likely pathogenic variants. In another study, the authors
observed that, in functional seizures, there was a significant correlation with genes that are over-
represented in adrenergic, serotonergic, oxytocin, opioid, and GABA receptor signaling pathways. In
the third study, the authors observed that patients with functional seizures, as well as patients with de-
pression, had significantly different genotypes in FKBP5 single nucleotide polymorphisms compared
with controls. Conclusion: Future genetic investigations of patients with functional seizures would
increase our understanding of the pathophysiological and neurobiological problems underlying this
common neuropsychological stress-associated condition.

Keywords: gene; dissociative; polymorphism; psychogenic; seizure

1. Introduction

Functional neurological disorders (FND) reflect impairments in brain networks, lead-
ing to motor, sensory, or cognitive signs and symptoms; they are common in neurology
clinics. The four variants of FND, i.e., functional seizures (FS), functional movement dis-
orders (FMD), persistent perceptual postural dizziness (PPPD), and functional cognitive
disorder, show similarities in etiology and pathophysiology [1]. The pathophysiology of
FND includes over-activity of the limbic system and dysfunction of the brain networks that
are involved in cognitive and movement processes [1]. In particular, abnormal functional
connectivity between emotion processing areas of the brain with regions associated with
executive control and cognitive processes, as well as the functional connections of the
anterior cingulate cortex, may be important in the neurobiology and pathophysiology of
functional seizures [2–4]. Furthermore, a few recent studies have provided evidence for
altered structural brain connectivity in patients with functional seizures [2]. Similarly, in
FMD, brain connectivity studies suggest aberrant connections between the amygdala and
motor areas, temporo-parietal junction, and insula [5].

In spite of the above statements, currently, we do not know the precise neurobio-
logical underpinnings and pathophysiological mechanisms of functional seizures; as a
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result, it is very hard to design targeted clinical trials to develop effective methods of
treatment for patients with functional seizures [2]. A previous meta-analysis that used data
from 13 manuscripts on 228 patients with functional seizures showed that 47% of patients
achieved seizure control after completion of a psychological therapeutic intervention [6].
However, a study of the natural history of 69 patients with functional seizures, who had
never received proper psychological treatment, showed that 52% of the patients were
seizure-free at their last follow-up visit [7]. Furthermore, a study of 368 patients with
functional seizures (CODES trial) showed that psychotherapy (i.e., cognitive behavioral
therapy) in addition to routine care had no statistically significant benefit compared with
routine care alone for the reduction of the frequency of functional seizures [8]. The scientific
community should invest more time into providing a clear understanding of the patho-
physiology and neurobiology of functional seizures, to develop more effective methods of
treatment for these patients [2].

Having said that, converging evidence shows that brain connectivity is under genetic
influence [9]. Considering the evidence on functional and structural brain connectivity
differences in patients with FND, including those with functional seizures (compared with
healthy controls), it is plausible to assume that various FND, and functional seizures in
particular, are under genetic influence, at least to some extent. It seems that anatomical brain
connectivity is under a more powerful genetic influence than functional brain connectivity,
and these genetic influences are not consistently distributed over the brain [9]. Therefore, it
is reasonable to hypothesize that phenotypic variations in certain regions and connections
are under stronger genetic control than others, and it is plausible to assume that various
FND (e.g., FMD vs. functional seizures) are under certain different genetic influences, as
well as certain common influences.

Evidence on the genetics of FND in general, and functional seizures in particular, is
scarce, and the purpose of the current endeavor was to examine the existing evidence and
propose how to advance the field in a productive way. Scoping reviews are a useful tool in
evidence-synthesis approaches. Scoping reviews may be preferable over systematic reviews
where the purpose is to identify knowledge gaps and how research is conducted on a certain
topic, among other indications [10]. The focus of this endeavor is on functional seizures.

Functional (psychogenic) seizures are typically characterized by sudden and parox-
ysmal clinical events that semiologically may resemble epileptic seizures but that are not
due to underlying epileptic activity; ictal electroencephalography (EEG) does not show
any abnormal discharges [11,12]. “Functional seizures” are commonly encountered in
neurology and epilepsy clinics around the world. A systematic review and an analytical
study estimated that the incidence of functional seizures was 3.1 (95% Confidence Interval
CI: 1.1–5.1) per 100,000 population per year, and the prevalence rate of functional seizures
in 2019 was 108.5 (95% CI: 39.2–177.8) per 100,000 population, in the USA [13]. Patients
with functional seizures are at higher risk of having psychiatric comorbidities compared
with the general population; this is comparable with patients with epilepsy [11]. In addi-
tion, functional seizures often have crippling effects on patients’ lives. Furthermore, the
evidence suggests that patients with functional seizures have an increased rate of mortality
compared to those in the general population; this increased rate of mortality is comparable
to that among patients with epilepsy [11].

2. Materials and Methods

MEDLINE (accessed from PubMed) and Web of science, from their initiation until
May 2023, were systematically searched for published articles about the topic of interest.
In these two electronic databases, the following search strategy was executed and the
following key words were used (in title): functional neurological disorder(s), psychogenic
neurological disorder(s), functional movement disorder(s), psychogenic movement disor-
der(s), functional seizures(s), psychogenic seizure(s), nonepileptic seizure(s), dissociative
seizure(s), or psychogenic nonepileptic seizure(s), AND, gene, genetic(s), polymorphism,
genome, epigenetics, copy number variant, copy number variation(s), whole exome se-
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quencing, or next-generation sequencing. The inclusion criteria were all human studies
on the genetics of functional seizures (i.e., retrospective, cross sectional, case-control, case
series, etc.) and articles written in English. The exclusion criteria were non-original studies
(i.e., reviews, corresponding letters, etc.).

Two authors (NM and KF) scanned the reference lists of the obtained studies and
previous reviews to add any relevant publications. The authors gained access to the full
reports for all the manuscripts that met the inclusion and exclusion criteria or where there
was any uncertainty. They resolved any disagreements through discussions with the first
author. The following data were extracted from the included publications: the first author,
country and year of the publication, study methodology, main results, and main limitations.
This was a qualitative (descriptive) study and there was no statistical analysis. The level
of evidence of the included studies was determined following https://onlinelibrary.wiley.
com/pb-assets/assets/23788038/Levels_of_Evidence-1519834967260.pdf (accessed on 17
December 2022) [14].

3. Results

We identified three original studies on the genetics of functional seizures (Figure 1
and Table 1) [15–17]. All three studies provided a low level of evidence. However, con-
sidering the significance of these three studies, we have summarized their findings and
conclusions below:

(a) The first study, which was conducted by Costin Leu and colleagues, investigated
the neurological disorder-associated genetic variants in patients with functional
seizures [15]. The authors generated whole-exome sequencing and whole-genome
genotyping data to identify rare pathogenic (P) or likely pathogenic (LP) variants in
102 patients with functional seizures and 448 patients with epilepsy. Variants were
classified for all patients based on the recommendations of the American College
of Medical Genetics and Genomics and the Association for Molecular Pathology
guidelines [18]. The authors considered genes that are associated with neurological
or psychiatric disorders as candidate genes for functional seizures (a limitation of
this study). They observed that six (5.9%) patients with functional seizures (with-
out comorbid epilepsy) carried pathogenic/likely pathogenic variants (deletions at
10q11.22-q11.23, 10q23.1-q23.2, distal 16p11.2, and 17p13.3, and nonsynonymous
variants in NSD1 and GABRA5) [15]. However, the burden of P/LP variants among
patients with functional seizures was alike to the burden found in patients with
epilepsy. The four identified deletions in patients with functional seizures in their
study had previously been reported in epilepsy and other neurological disorders (with
high phenotypic variability and incomplete penetrance) [15]. The NSD1 gene product
(enzyme) controls the activity of genes that are involved in normal growth and de-
velopment [19]. GABRA5 (γ-Aminobutyric Acid Type A Receptor Subunit Alpha5)
influences inhibitory activity; so far, diseases that have been associated with this
gene include epileptic encephalopathies [20]. Costin Leu and colleagues concluded
that it is likely that these genetic aberrations impair neurodevelopmental processes
in a nonspecific way and, therefore, contribute to the genetic variance of a broad
spectrum of brain disorders. The specific disease phenotype (e.g., functional seizures)
is probably further specified by the interplay with genetic background effects and
environmental factors [15].

(b) The second study, which was performed by Johannes Jungilligens and colleagues,
investigated spatial similarities between imaging-derived phenotypes and Allen hu-
man brain atlas (AHBA) gene expression profiles, with an interest in identifying
genetic pathways that are dually suggested in association of volumetric gray matter
variations with symptom severity and trauma burden (in 20 adult patients with func-
tional seizures) [16]. They used self-report questionnaires (Somatoform Dissociation
Questionnaire-20 and Traumatic Experiences Checklist). They also used voxel-based
morphometry preprocessing of magnetic resonance imaging (MRI). Finally, to explore

https://onlinelibrary.wiley.com/pb-assets/assets/23788038/Levels_of_Evidence-1519834967260.pdf
https://onlinelibrary.wiley.com/pb-assets/assets/23788038/Levels_of_Evidence-1519834967260.pdf
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potential relationships between gray matter and gene expression profiles, they used a
data-driven approach, utilizing spatial similarity metrics between gray matter statisti-
cal maps and regional gene expression patterns (AHBA) [16]. They observed that, in
patients with functional seizures at the intersection of SDQ-20 (symptom severity) and
sexual trauma imaging-derived phenotypes, there was significant spatial correlation
with genes that are over-represented in adrenergic, serotonergic, oxytocin, opioid,
and GABA receptor signaling pathways [10]. The authors concluded that adverse
life experiences and symptom severity were associated with gray matter volumes
in cingulo-insular and amygdala areas, spatially overlapping with the expression
patterns of genes that are involved in stress-related signaling and neurodevelopment
processes [16]. However, they postulated that it is not likely that these gene varia-
tions are functional seizure-specific; these may represent genetic susceptibilities that,
combined with adverse life events, may lead to functional seizures or other FND
phenotypes [16].

(c) The third study was conducted by our team [17]. FKBP5 is a co-chaperone of hsp90
that regulates glucocorticoid receptor sensitivity [21]. FKBP5 single-nucleotide poly-
morphisms (SNPs) have been associated with an increased risk of different psychiatric
disorders (e.g., depression and post-traumatic stress disorder (PTSD)) in previous
studies [22–26]. Furthermore, interactions between the FKBP5 gene and early-life
traumatic experiences (e.g., childhood sexual trauma) may increase the likelihood
of stress-related disorders later in the life [25]. In this research, the authors investi-
gated whether there were associations between two common FKBP5 polymorphisms
(rs9470080 and rs1360780) and functional seizures in a case-control study. Seventy
patients with functional seizures, 140 with major depressive disorder (MDD), and
140 healthy controls (HC) were studied. They observed that patients with functional
seizures and those with depression had significantly different genotypes in both SNPs
compared with those in the HC group. However, the authors could not exclude
the potential confounding effects of depression [17]. They concluded that “Further
genetic investigations of patients with functional seizures may increase our under-
standing of the neurobiological underpinnings of this condition, but such studies
should be large enough and very well-designed; they should include a comparison
group with depression (and probably, PTSD or anxiety) in addition to a healthy control
group” [17].

Table 1. Original studies on the genetics of functional seizures.

Author/Year/
Country Methods Main Results Level of

Evidence Limitations

Leu, C./2020/USA

Whole-exome sequencing and
whole-genome genotyping to

identify rare, pathogenic (P) or likely
pathogenic (LP) variants in

102 patients with functional seizures
and 448 individuals with epilepsy.

Six (5.9%) patients with functional
seizures (only) had P/LP variants.
The burden of P/LP types among

people with functional seizures was
similar to the burden observed in

people with epilepsy.

3b (Individual
case-control

study)

Psychiatric
comorbidities

Jungilligens,
J./2022/Netherlands

Questionnaires, structural MRIs, and
Allen human brain atlas gene

expression information were used to
probe the intersection of symptom
severity, adverse life experiences

burden, and gray matter volumes in
20 patients with functional seizures.

Adverse life experiences and
symptom severity were associated

with gray matter volumes in
cingulo-insular and amygdala areas,

spatially overlapping with
expression patterns of genes

involved in stress-related signaling
and neurodevelopment.

4 (Case series
without

comparison)

Small sample size,
psychiatric

comorbidities
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Table 1. Cont.

Author/Year/
Country Methods Main Results Level of

Evidence Limitations

Asadi-Pooya,
AA/2023/Iran

Seventy patients with functional
seizures, 140 with depression (MDD),

and 140 healthy controls were
studied. Their DNAs were analyzed
for the rs1360780 in the 3′ region and

rs9470080 in the 5′ region of
the FKBP5.

Patients with functional seizures and
those with MDD had less GG and

more AA genotypes in both
rs9470080 and rs1360780 SNPs

compared with those in healthy
controls. There were no significant

differences between functional
seizures and MDD groups in terms

of genotype frequencies for
both SNPs.

3b (Individual
case-control

study)

Tested only two
SNPs within

FKBP5
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4. Discussion

We have provided a brief summary of the results from three studies that investi-
gated the genetic underpinnings of functional seizures. The sample sizes/methodologies
of the existing publications are such that these studies are largely hypothesis generat-
ing/exploratory. Furthermore, the results of the studies have not been validated elsewhere,
and robust evidence on the genetic etiology of functional seizures is so far lacking in the
literature. However, the hypothesis of such an etiology for functional seizures is very
plausible based on the emerging evidence on the modified functional and structural brain
connectivity patterns in patients with functional seizures [2]. In addition, there is plenty of
evidence in the literature on the genetic basis of other stress-associated neuropsychological
disorders and some evidence for the genetic basis of other FND. A systematic review
provided strong evidence of interactions between FKBP5 genotypes and early-life stress,
which could pose a significant risk for stress-associated neuropsychological disorders
(e.g., depression and PTSD) [25]. Previous studies have also implicated a strong genetic
architecture for anxiety disorders [27]. One study suggested that hypermethylation of
a discrete region located within the SLC6A4 promoter region in women could underlie
differential serotonin transporter (SERT) expression in women compared with in men; this
could be one of the underlying pathological underpinnings through which women show
increased prevalence of somatization [28]. Another study of 69 patients with FMD showed
that the tryptophan hydroxylase 2 (TPH2) gene polymorphism may modulate functional
movement disorders, both directly and interactively with childhood trauma [29]. TPH2 has
its most significant impact in the serotonin pathway. The study of somatization in other
conditions often also points to serotonin [30–32]. A study showed increased methylation
of the oxytocin receptor gene in 15 patients with motor functional neurological disorder
compared with healthy controls [33]. Finally, a neuroimaging-gene expression study of
30 patients with motor FND implicated the role of genes [34], as shown in Table 2. Table 2
shows the original studies on the genetics of FND that were identified in the current study
(while this was not the focus of the current endeavor) [29,33,34].

Functional seizures, FMD, and other stress-associated disorders share a common
core of manifestations and clinical characteristics; therefore, it is reasonable to investigate
whether variants in stress-related genes (e.g., glucocorticoid and serotonin receptor signal-
ing pathways) also contribute to the development of various FNDs, including functional
seizures. However, it is not likely that any of these gene variations are specific to functional
seizures or other FNDs; they may represent genetic susceptibilities that, combined with
life stressors and other biological and environmental factors, may lead to individual FND
phenotypes (e.g., through epigenetics). While a candidate gene approach limits the likeli-
hood of a discovery, a well-selected gene panel (that included glucocorticoid, serotonin,
and oxytocin receptor signaling pathways for the purpose of this study) can investigate
pathological processes in modestly sized cohorts, by focusing on a limited number of
pathways with greater neurobiological relevance [29]. In addition to the recommendation
to continue studying candidate genes related to stress/mood/attachment-based systems, it
would be informative if future consideration was also given to candidate genes in other
domains of motor and sensory/awareness processing, to continue pushing the field’s
conceptualization of functional seizures. All of the studies conducted so far have been
small, but there are hints in several of them that there may well be genetic underlying
pathomechanisms for various stress-associated neuropsychological conditions, including
functional seizures. Future genetic investigations of patients with functional seizures may
advance our understanding of the underlying pathomechanisms and the neurobiologi-
cal underpinnings of this common neuropsychological stress-associated condition, but
such studies should be large and well-designed and include a comparison group with
depression, in addition to a healthy control group.
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Table 2. Original studies on the genetics of functional neurological disorders (FND).

Author/Year/Country Methods Main Results Level of
Evidence Limitations

Apazoglou,
K./2018/Switzerland

Epigenetic changes in the
promoter of the oxytocin

receptor gene (OXTR) between
15 patients with motor FND and

16 HC were explored.

Significantly higher levels of
methylation of the OXTR

gene was found in patients
compared with that in controls

(68.1 ± 4.3 vs. 62.5 ± 6.8,
p = 0.01).

4 (Case series
with

comparison)

Small sample
size,

psychiatric
comorbidities

Spagnolo,
P./2020/USA

A total 69 patients with FMD
were genotyped for 18 SNPs

from 14 candidate genes.
Resting-state functional

connectivity data were obtained
in a subgroup of 38 patients with

FMD and 38 HC.

A tryptophan hydroxylase 2
(TPH2) gene polymorphism-

G703T-significantly predicted
clinical and neurocircuitry

manifestations of FMD. The
TPH2 genotype showed a
significant interaction with

childhood trauma in predicting
worse symptom severity.

3b (Individual
case-control

study)

Small sample
size, not a

genome-wide
approach

Diez, I./2021/USA

A neuroimaging-gene
expression study.

Effects of early-life maltreatment
on resting-state functional
connectivity architecture in
30 patients with motor FND

were assayed.
Then, they compared trauma
endophenotypes in FND with

regional-differences in
transcriptional gene expression

as measured by the AHBA.

Physical abuse correlated
connectivity maps overlapped

with the AHBA spatial
expression of three gene-clusters:
(i) neuronal morphogenesis and
synaptic transmission genes in

limbic and paralimbic areas;
(ii) locomotory behavior and
neuronal generation genes in
left-lateralized structures; and

(iii) nervous system
development and cell motility

genes in right-lateralized
structures.

4 (Case series
with

comparison)

Small sample
size,

psychiatric
comorbidities,

and
phenotypic

heterogeneity

FMD: functional motor disorder; AHBA: Allen human brain atlas; HC: healthy control; SNP: single nucleotide
polymorphism; FND: Functional neurological disorders.
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