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Variant Characterization of a Representative Large Pedigree 
Suggests “Variant Risk Clusters” Convey Varying  
Predisposition of Risk to Lynch Syndrome 

Supplementary Materials 

S1. Data Processing and Whole-Genome Mapping 
Raw sequence data in FASTQ format was aligned to the Human Reference Genome 

(NCBI Build 37) using the Burrows–Wheeler Aligner (BWA) v0.7.17 [1] The alignment 
files, initially in SAM format, were subsequently converted to BAM format with samtools 
v1.9 [2]. PCR and optical duplicated reads were identified using the MarkDuplicates sub-
routine in Picard v2.18.9 (http://broadinstitute.github.io/picard/). Further refinement of 
the raw alignements was performed using the Genome Analysis Toolkit (GATK) v.3.8.1 
[3]. This process involved realignment of reads (GATK’s RealignerTargetCreator and In-
delRealigner) and recalibration of base quality scores (GATK’s BaseRecalibrator and 
PrintReads). An average alignment rate of 99.65% per sample was achieved, providing an 
approximation of 30-fold average genomic coverage. 

S2. Variant Calling and Annotation 
S2.1. SNPs and Indels 

Single nucleotide polymorphisms (SNPs) and insertions and deletions (Indels) were 
called using GATK HaplotyperCaller, generating individual GVCF files for each respec-
tive sample. Subsequently, these GVCF files underwent joint genotyping by GATK Gen-
otypeGVCFs, producing a single VCF file including all samples. A quality control proce-
dure for this multi-sample VCF file was conducted via variant quality score recalibration 
(VQSR), utilizing GATK’s VariantRecalibrator and ApplyRecalibration; a tranche sensi-
tivity cutoff of 99.5% for SNPs and 99% for Indels were applied for downstream analysis. 
To evaluate their functional impact, variants were annotated using ANNOVAR [4] and 
the databases it integrates, including 1000 Genomes [5], dbSNP [6], and ExAC [7]. 

S2.2. Structural Variants 
The smoove pipeline was employed to detect structural variants (SVs), including 

copy number variations (CNVs), by utilizing Lumpy [8]for calling and Svtyper [9] for gen-
otyping SVs. Deletions and duplications were annotated with depth information using 
Duphold [10]. Retention of SVs was based on the criteria of a duphold flank fold-change 
(DHFFC) below 0.7 for deletions and a duphold bin fold-change (DHBFC) above 1.3 for 
duplications [11]. All deletions and duplications that met these criteria, as well as all in-
versions and breakends detected by smoove, were then annotated using AnnotSV [12]. 

S2.3. Segregation in Pedigrees 
Subjects were segregated into three groups based on familial colorectal cancer (CRC) 

status:  
Group 1: High risk to LS, (HRLS, Fig 1, red ovals) included CRC-affected subjects 

with one CRC-affected parent of the pedigree; Group 2: Intermediate Risk to LS (IRLS, Fig 
1, green ovals) includes CRC-free subjects that have at least one affected parent, and 
Group 3: Low Risk to LS (LRLS, Fig 1, blue ovals) are those who with no affected in the 
subject’s immediate triplet (subject and both parents). 
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S3. Variant Filtering 
S3.1. SNPs and Indels 

A filtration process was applied to the variants to isolate those with the highest po-
tential for functional impact. Initially, variants with a Minor Allele Frequency (MAF) >= 
1% were eliminated, as per the 1000 Genomes [5] and ExAC non-TCGA database [7]. Sub-
sequently, the CADD database was utilized to rank the variants, with those having a 
PHRED scaled score of > 10 and falling within the top 10% of probable functional variants 
deemed as deleterious [13]. The deleterious nature of the missense coding variants was 
then assessed using MutationTaster [14], PolyPhen V2 [15], Provean [16], and SIFT [17], 
with the data sourced from dbNSFP [18]. Variants predicted as deleterious by a minimum 
of three of these tools underwent further analysis. The deleterious nature of non-coding 
variants was predicted using HaploReg V4 [19] and Regulome DB [20], primarily based 
on ENCODE data [21]. 

S3.2. Structural Variants 
A filtration process was similarly applied to the SVs to isolate those with the highest 

potential for functional impact. Variants with a Minor Allele Frequency (MAF) >= 1% were 
initially excluded, in accordance with the 1000 Genomes and Genome Aggregation Data-
base (gnomAD) [22] The AnnotSV ranking, guided by the American College of Medical 
Genetics and Genomics guidelines [23], was then employed to classify the variants. Vari-
ants achieving a rank of 4 (likely pathogenic) or 5 (pathogenic) were subjected to further 
analysis. 

4. Filtered Variants According to Cancer Relationship 
S4.1. SNPs and Indels 

SNPs and Indels with functional impact, as identified by the described analytical 
workflow, underwent analysis via SNPnexus [24] to ascertain phenotype and disease as-
sociations, as well as biological clinical interpretations. The evaluation of variants took 
into account their association with cancer to predict their potential role in various cancers, 
including CRC. The Cancer Genome Interpreter database was utilized to assess these var-
iants for oncogenic classification and tumor driver status [25]. Subsequently, the Genetic 
Association of Complex Diseases and Disorders database was employed to predict the 
association of these noted variants with cancer, based on the variant's annotation with the 
disease class of cancer [26]. 

S4.2. Structural Variants 
Pathogenic or likely pathogenic Structural Variants (SVs), per the analytical work-

flow, were examined based on their overlapping gene. The genes identified were cross-
referenced with the "Cancer Genes" list from the Precision Oncology Knowledge Base 
(OncoKB) [27] to determine their association with cancer. The genes that matched were 
further evaluated using OncoKB and My Cancer Genome [28] for their association with 
various cancers, including CRC. 
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