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A B S T R A C T   

Peatlands have been degrading globally, which is increasing pressure on restoration measures and 
monitoring. New monitoring methods are needed because traditional methods are time- 
consuming, typically lack a spatial aspect, and are sometimes even impossible to execute in 
practice. Remote sensing has been implemented to monitor hydrological patterns and restoration 
impacts, but there is a lack of studies that combine multi-sensor ultra-high-resolution data to 
assess the spatial patterns of hydrology in peatlands. We combine optical, thermal, and topo
graphic unmanned aerial vehicle data to spatially model the water table level (WTL) in unditched 
open peatlands in northern Finland suffering from adjacent drainage. We predict the WTL with a 
linear regression model with a moderate fit and accuracy (R2 

= 0.69, RMSE = 3.85 cm) and 
construct maps to assess the spatial success of restoration. We demonstrate that thermal-optical 
trapezoid-based wetness models and optical bands are strongly correlated with the WTL, but 
topography-based wetness indices do not. We suggest that the developed method could be used 
for quantitative restoration assessment, but before-after restoration imagery is required to verify 
our findings.   

1. Introduction 

Peatlands cover 2.8% of the earth’s surface (Xu et al., 2018), with 80% of the global peatland area located in boreal regions (Leifeld 
and Menichetti, 2018; Xu et al., 2018). Approximately 11% of the global peatland area has degraded because of human impacts 
(Leifeld and Menichetti, 2018). 

In the boreal zone, drainage, e.g. for forestry, is one of the main reasons for the deteriorated state of peatlands (Minkkinen et al., 
2008). Artificial drainage lowers the water table, as the ditch network surrounding the peatland prevents surface and near-surface 
groundwater flow to the peatland area (Holden et al., 2006). The reduced water supply slows and even stops peat accumulation 
(Stivrins et al., 2017), causes peat degradation (Whittington and Price, 2006; Itoh et al., 2017; Ikkala et al., 2021), and on 
forestry-drained sites, makes the conditions more suitable for forest vegetation (Laine et al., 2006). Additionally, drainage and the 
resulting decomposition of peat increase the concentrations of nitrogen and phosphorus in surface waters (Nieminen et al., 2017; 
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Marttila et al., 2018) and produce greenhouse gas (GHG) emissions (Leifeld and Menichetti, 2018; Wilkinson et al., 2023). Peatland 
drainage also has catchment-scale impacts on hydrological responses such as baseflow conditions (Meriö et al., 2019). 

The deteriorated state of peatlands has created pressure for their restoration. Traditionally, restoration has been done, for example, 
by damming and infilling ditches and drainage channels (Andersen et al., 2017). Recently, restoration has also been conducted by 
excavating ditches to direct waterflow routes to unditched peatland areas (Autio et al., 2018; Kareksela et al., 2021) suffering from 
adjacent upslope drainage (Sallinen et al., 2019). However, there is a need to develop methods to assess the success of water-directing 
ditches, as the restoration method has become more systematic only recently, and there is a lack of scientific knowledge regarding its 
efficiency. 

Previously, the success of restoration has been assessed with field monitoring such as field visits and automated data loggers, which 
measure the water table level (WTL). The WTL has been used as an indicator for changes in hydrology because on drained sites, the aim 
is a higher wetness level, and the WTL is typically closer to its pristine-like counterpart after restoration (Jauhiainen et al., 2002; 
Armstrong et al., 2010; Haapalehto et al., 2011, 2014; Menberu et al., 2016). Additionally, the WTL is an important indicator because 
it has been estimated that for specific sites, a rise in the WTL could reduce the annual net warming impact of GHG emissions (Evans 
et al., 2021). However, point-based field monitoring measures hydrological changes only at the measurement point, and the spatial 
variability of the changes is usually unknown. Importantly, changes in the WTL are not necessarily similar across a larger peatland 
area, and spatial variability has been reported on some restored sites (Haapalehto et al., 2014). Finally, some peatlands are difficult to 
reach, making traditional monitoring impossible. 

To upscale field inventories, remote sensing (RS) techniques have proved useful when monitoring hydrology in boreal peatlands 
(Ikkala, 2023). Recent advances and the widespread use of unmanned aerial vehicles (UAV) offer new opportunities to peatland 
studies. They provide ultra-high-resolution data that can be used to monitor and model onsite changes in boreal peatlands with high 
spatial heterogeneity (Rahman et al., 2017; Räsänen and Virtanen, 2019; Ikkala et al., 2022; Steenvoorden et al., 2023). UAVs enable 
the collection of multi-sensor data, including multispectral, thermal, and topographic datasets, and they can even be collected if the 
target area is unreachable on foot. 

Optical and thermal data have been used in soil moisture monitoring, as the reflectance and land surface temperature (LST) are 
correlated with soil moisture content (Gao et al., 2013; Babaeian et al., 2019; Wigmore et al., 2019). Individual spectral bands seem to 
be related to hydrological patterns in peatland studies, and most success has been found in shortwave infrared (SWIR) and visible light 
(Kolari et al., 2022; Räsänen et al., 2022). Additionally, various spectral indices related to moisture or wetness have been used as a 
proxy for onsite wetness (Kalacska et al., 2018; Šimanauskienė et al., 2019; Räsänen et al., 2022). Moreover, some vegetation spectral 
indices such as the normalised difference vegetation index (NDVI; Tucker, 1979) have been correlated with the WTL in some studies 
(Zhang et al., 2014; Šimanauskienė et al., 2019), but the link between them is probably indirect, as they are sensitive to vegetation 
greenness and composition (McPartland et al., 2019). The most recent advances are trapezoid-based RS models such as the OPtical 
TRApezoid Model (OPTRAM; Sadeghi et al., 2017) and the Temperature Vegetation Drought Index (TVDI; Sandholt et al., 2002), 
which seem to have a strong relationship with the WTL and soil moisture in boreal peatlands (Holidi et al., 2019; Burdun et al., 2020a, 
2020b; Räsänen et al., 2022). These models are based on the interpretation of the pixel distribution between a vegetation index and 
thermal data (TVDI) or SWIR (OPTRAM). 

Topography has also been used to assess changes in hydrology in peatlands. Traditionally, topographic data have been produced 
with light detection and ranging (LiDAR), but the Structure from Motion (SfM) process has recently emerged as a good alternative for 
constructing topographic models in open areas (Mlambo et al., 2017). Soil moisture patterns have been determined with e.g. the 
topographic wetness index (TWI; Beven and Kirkby, 1979), which have been found to be positively correlated with onsite wetness 
(Kemppinen et al., 2018; Riihimäki et al., 2021; Ikkala et al., 2022). The index also has potential for peatland moisture, and e.g. Ikkala 
et al. (2022) implemented the TWI to before-after peatland restoration UAV SfM Digital Terrain Models (DTMs), finding differences in 
overall wetness caused by altered flow routes. 

Overall, numerous RS approaches have been implemented to monitor hydrological patterns and restoration impacts on peatlands. 
However, there is a lack of studies that combine multi-sensor ultra-high-resolution data with multivariate statistical modelling. There 
is also a scientific gap in the impact of water-directing ditches as a restoration measure. We therefore constructed a regression model in 
which field-measured WTL was the dependent variable, and UAV-based multispectral, thermal, and topographical variables were 
independent variables. We ask the following research questions: (1) How accurately can the spatial patterns of boreal peatland WTL be 
detected with UAV data? (2) Which UAV variables have the strongest relationships with the WTL? (3) Can the functionality of the 
water-directing ditches be assessed with the regression model? 

2. Methods 

2.1. Study sites and field data 

We studied three different drained but relatively wet minerotrophic aapa mires (Makkarasuo, Kurkineva, Vihtaneva) in North 
Ostrobothnia, Finland (Fig. 1). In Makkarasuo, there were four separate study sites, while the other two mires included one study site 
each. The average annual precipitation was 625, 612, and 624 mm, and the annual mean temperature was 2.1, 2.9, and 3.0 ◦C between 
1991 and 2020 for Makkarasuo, Kurkineva, and Vihtaneva respectively, based on Finland’s gridded daily climatology data (Aalto 
et al., 2016; Finnish Meteorological Institute, 2023). 

The studied sites are surrounded by drainage ditches excavated between the 1960s and 1990s. Additionally, the sites have been 
restored with water-directing ditches with the aim of bringing water from ditched to unditched areas (Fig. 1). In Makkarasuo, some 
ditches directing water to the open peatland area were excavated during drainage in the 1980s and 1990s, but only some take water to 
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Fig. 1. The locations of the study sites and field measurements. Makkarasuo has four study sites, Kurkineva and Vihtaneva each have one. The old water-directing 
ditches were dug in the 1980s and 1990s, and the new water-directing ditches were dug in 2021. Vihtaneva’s middle water-directing ditch is an enlargement of the old 
overgrown drainage ditch to which more water was directed in 2021. The aerial photos are open data from the National Land Survey of Finland. 

A. Isoaho et al.                                                                                                                                                                                                         



Remote Sensing Applications: Society and Environment 32 (2023) 101059

4

the mire. Kurkineva and Vihtaneva were restored in the autumn of 2021 with new water-directing ditches. Moreover, in Makkarasuo2, 
a new water-directing ditch was excavated in the autumn of 2021, but it was left shorter than originally planned because the peatland 
surface did not support the excavator. 

The studied sites have clear microtopographic patterns with alternating wet flarks and drier strings in elevated positions. Only a few 
Scots pines (Pinus sylvestris) and Norway spruce (Picea abies) grow close to the drained peatland margins, where the WTL is lower. The 
ground vegetation is characterised by abundant Sphagnum and wet brown moss cover. In the field layer, flarks are dominated by 
graminoids and some forbs, while there are also shrubs in the strings. According to the prevailing vegetation, Makkarasuo is more 
nutrient-rich than the other two studied peatlands and has more abundant herbaceous vegetation. Conversely, both Kurkineva and 
Vihtaneva have Eriophorum vaginatum coverage, which is largely absent in Makkarasuo. 

The WTL was manually measured from perforated plastic standpipe wells drilled into the peatlands. The WTL was calculated 
relative to the peatland surface, so the level below was considered negative, and the level above positive. Twelve permanent standpipes 
were placed on each site in 2021 before the restoration measures, and their locations were measured with Real-time kinematic (RTK) 
positioning. They were placed in a fanlike shape, starting from the end of the planned or existing water-directing ditch. The mea
surement points were placed 25 m, 50 m, 100 m, 200 m, and 300 m away, with 1–3 pipes at each distance (Fig. 1). Because Mak
karasuo3 and 4 were spatially very close, they were treated as one study site. One standpipe well in Makkarasuo2 was lost during the 
fieldwork, so the total number of WTL measurements was 71 (Table 1). The fieldwork was conducted on August 18, 2022 (Makkar
asuo) and August 19, 2022 (Kurkineva and Vihtaneva). 

2.2. UAV mapping and data pre-processing 

We used a Matrice 300 RTK UAV with a MicaSence Altum-PT sensor to collect multispectral and thermal imagery. Altum-PT was 
radiometrically calibrated with reflectance panels and empirical line calibration. We also conducted RGB mapping with DJI Zenmuse 

Table 1 
The minimum, median, and maximum value of the measured water table level per study site and as a total dataset.  

Measured water table level (cm) Makkarasuo1 Makkarasuo2 Makkarasuo34 Kurkineva Vihtaneva Total 

Minimum 4 0 − 7 − 7 − 4 − 7 
Median 10 9 7.5 − 4.5 − 1 4 
Maximum 14 12 17 4 7 17 
Number of measurements 12 11 24 12 12 71  

Table 2 
Used remote sensing variables, abbreviations, equations, pixel sizes in imagery, data extraction methods, and number of pixels in extraction.  

Type Variable (and used bands/ 
indices) 

Abbreviation Equationa Pixel size 
(m) 

Data 
extraction 
method 

Number of 
pixels 

Optical Blue reflectance BLUE  0.051–0.056 0.25 m buffer 61–76 
Green reflectance GREEN  
Red reflectance RED  
Red edge reflectance RedEdge  
Near-infrared reflectance NIR  
Normalised Difference 
Vegetation Index (RED, NIR) 

NDVI NIR − RED
NIR + RED 

Normalised Difference 
Vegetation Index (GREEN, NIR) 

NDWI GREEN − NIR
GREEN + NIR 

Normalised Difference Red Edge 
Index (RedEdge, NIR) 

NDRE NIR − RedEdge
NIR + RedEdge 

Perpendicular Drought Index 
(RED, NIR) 

PDI 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
M2 + 1

√ (RED + M × NIR)

Modified Perpendicular Drought 
Index (RED, NIR, NDVI) 

MPDI RED + M × NIR − fv(REDv + M × NIRv)

(1 − fv)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
M2 + 1

√

Optical/ 
thermal 

Temperature Vegetation Dryness 
Index (Land Surface 
Temperature, NDVI) 

TVDI Ts − Tsmin

a + bNDVI − Tsmin 

0.316–0.343 1 m buffer 23–33 

Topographic SAGA Wetness Index SWI 
ln
(ASM

tan β

)
1 point 1 

Depth to Water DTW [∑ dzi

dxi
a
]

xc 

Topographic Position Index TPI z0 − z
a M is the soil line slope value; fv is the vegetation fraction in a given pixel; REDv and NIRv are vegetation reflectance thresholds; Ts is the observed temperature in a 

given pixel; Tsmin is the minimum surface temperature in a triangle (wet edge); a and b are the parameters defining the dry edge; ASM is the modified catchment area; β is 
the slope angle; dzi/dxi is the slope of cell i along the least-cost path; a is 1 or 2◦ .5 when the path crosses the cell parallel to or diagonally across the grid; xc is the grid cell 
size (m); z0 is the elevation in the grid cell; z is the average elevation within a predetermined area.  
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P1 and calculated point clouds with SfM processing in Agisoft Metahape (version 1.8.4) to obtain topographical RS data. The flights 
were carried out on August 15, 2022 (Kurkineva and Vihtaneva) and August 16, 2022 (Makkarasuo) in relatively cloudless and sunny 
weather. 

To generate DTMs, we first removed duplicates from the SfM point clouds and then applied Statistical Outlier Removal (Rusu and 
Cousins, 2011) and Cloth Simulation Filter (Zhang et al., 2016) algorithms with parameter settings from Ikkala et al. (2022). We 
rasterised the filtered point clouds with the triangular irregular network (TIN) method with a resolution output of 1 m. UAV data 
pre-processing was done in R (version 4.2.1) with the lidR (Roussel et al., 2020) and RCSF (Roussel and Qi, 2020) packages. 

2.3. Processing spectral and topographical data 

Altum-PT collects information about the following spectral bands: blue; green; red; red edge; near-infrared (NIR); panchromatic; 
and long-wave infrared (LWIR). The digital numbers of the multispectral imagery were UInt-16 datatype. As the data were calibrated 
radiometrically, the land surface temperature (LST) from LWIR could be extracted with the formula presented on the MicaSense 
website (MicaSense, 2022). 

We calculated the normalised difference water index (NDWI; McFeeters, 1996), NDVI, and the normalised difference red edge 
index (NDRE; Barnes et al., 2000) from the multispectral bands (Table 2). Moreover, we calculated three different pixel distribution 
models from the imagery: the TVDI; the perpendicular drought index (PDI); and the modified perpendicular drought index (MPDI) 
(Table 2). The PDI is based on pixel distribution between NIR and red reflection (Ghulam et al., 2007b), and the MPDI is a modified PDI 
which takes vegetation into account with the vegetation fraction parameter (Ghulam et al., 2007a). Both indices have been shown to be 
strongly correlated with soil moisture close to the surface outside peatlands (Zhang et al., 2015; Nie et al., 2020). 

We parameterised the pixel distribution models visually because it has been suggested that visually inspected pixel distribution for 
triangle-based parametrisation is better than using mathematical solutions (Carlson, 2013; Sadeghi et al., 2017; Burdun et al., 2020b). 
The TVDI was calculated with unique wet and dry edge parameters for each site. In the PDI and MPDI, the relationship between red and 
NIR reflections behaved very similarly between the study sites, and we used the same soil line slope value universally. The vegetation 
fraction of the MPDI was calculated following the methodology of Baret et al. (1995) with the NDVI. We empirically determined the 
minimum (0.2) and maximum (1.0) values for the vegetation fraction based on the NDVI values in the bare soil and heavily vegetated 
areas of the study sites. The vegetation reflectance threshold values have been determined to be 0.05 and 0.5 for red reflection and NIR 
respectively in some previous studies (Ghulam et al., 2007a; Zhang et al., 2015). However, Gao et al. (2013) proposed that vegetation 
thresholds should be assessed based on the study area’s reflections. Based on their methodology, we determined 0.03 and 0.4 for red 
reflection and NIR respectively, as these proved more effective in our initial tests. 

We also produced three indices from SfM-based DTMs (Table 2). We calculated the SAGA Wetness Index (SWI; Böhner and Selige, 
2006) which predicts relative wetness in flat areas more realistically than the original TWI (Western et al., 1999; Mattivi et al., 2019). 
The SWIs were constructed following the methodology of Ikkala et al. (2022), with the exception that the whole upper catchments 
were not included in the calculations, and 3 × 3 cell median filters were applied to the outputs to remove noise. In addition, we 
calculated the depth to water (DTW; Murphy et al., 2007) from the stream networks produced by the SAGA flow algorithm, with a 
threshold of 1000 m2 and the topographic position index (TPI; Guisan et al., 1999; Weiss, 2001), with a 5 × 5 m rectangular area. 

Fig. 2. Methodological flow chart. LWIR refers to long-wave infrared, LST refers to land surface temperature, DTM refers to digital terrain model, and SfM refers to 
Structure from Motion. The other abbreviations are explained in Table 2. 
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We tabulated data from spectral and topographical raster layers within the RTK-measured location of the field measurement points. 
To remove noise in multispectral variables, we applied a 0.25 m radius buffer around each field point and calculated the mean value 
from multispectral bands and indices within the buffered area. For the TVDI, we applied a 1 m buffer because of the larger pixel size of 
the LWIR band. For the topographical variables, we delivered raster values from specific pixels on the measurement points because of 
the large, 1 m, pixel size. 

2.4. Statistical analyses 

We used a linear mixed model (LME) to model the WTL and its spatial variation (Fig. 2) with RS variables and included the study 
site as a random effect factor. Highly cross-correlated explanatory variables (Spearman correlation coefficient |r| > 0.7) were excluded 
before the model was fitted. We also conducted a Spearman correlation analysis to check which variables had the strongest re
lationships with the WTL. 

For the fitted model, we applied a backward and forward stepwise procedure by minimising Akaike’s information criteria (AIC) 
value. To double-check the lack of multicollinearity, we calculated Variance Inflation Factor (VIF) values for the final model. 

To assess the model’s performance, we calculated the coefficient of the determination (R2) and root mean square error (RMSE) and 
separately validated the model with 10-fold cross-validation. We also calculated standardised beta coefficients for the created model to 
assess the relative importance of selected variables. We conducted the analyses in R with the packages nlme (Pinheiro and Bates, 2000), 
MuMIn (Burnham and Anderson, 2004), caret (Kuhn, 2008), MASS (Venables et al., 2002), and QuantPsyc (Fletcher, 2022). 

We predicted the WTL spatially with the constructed model and visually interpreted the model’s performance based on empirical 
field experiences and orthophotos. In the spatial prediction, we resampled the explanatory variables to a resolution of 1 m with a 
bilinear interpolation method and delimited processing boundaries to an open peatland area. 

3. Results 

3.1. Regression model performance and spatial patterns of the WTL 

The final model (Fig. 3) explained 69% of the WTL variance and had an RMSE of 3.85 cm. 10-fold cross-validation produced R2 and 
RMSE that were almost equal to the full model (Table 3). The final model included the following variables: TVDI, RED, and NDWI. 
Based on standardised beta coefficients, the TVDI had the strongest effect, followed by RED, whereas the NDWI had the weakest effect 
(Table 3). The study site had no effect on the model performance, as marginal R2 and conditional R2 were the same. 

Fig. 3. Scatterplot between predicted and observed water table levels. The black line is the regression line between predictions and observations; the grey area is the 
95% confidence interval for the regression. WTL refers to water table level. 

Table 3 
Results of the model’s statistical analyses.  

Analysed model  R2 RMSE (cm) 

Final model  0.69 3.85 
10-fold cross-validation  0.72 3.94 

Statistic of the final model TVDI RED NDWI 

Coefficient − 18.9225 − 0.00818 25.129674 
Standardised beta coefficient − 0.479 − 0.403 0.141 
Variance inflation factor 2.04 1.95 1.13  
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The spatial patterns of the predicted WTL were mostly plausible (Fig. 4). In Makkarasuo, the WTL was predicted to be mostly 
positive, which concurs with field observations, and the dense vegetation above the water did not hamper the model’s performance. At 
Kurkineva and Vihtaneva, the model seemed to slightly underestimate the WTL in flarks and overestimate the dryness in the driest 

Fig. 4. Predicted water table level in Makkarasuo1 (MAK1), Makkarasuo2 (MAK2), Makkarasuo34 (MAK34), Kurkineva (KUR), and Vihtaneva (VIH). Below, the insets 
show the surroundings of the water-directing ditches, with the letters referring to North (N), East (E), and South (S). The coloured arrows indicate ditch functionality, 
with blue effective, yellow uncertain, and red not effective. The background orthophotos are RGB presentations of multispectral images taken in UAV campaigns with 
MicaSense Altum-PT. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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parts (Fig. 4). 

3.2. Relationships between UAV variables and the WTL 

Based on the correlation analysis, the highest correlation (r = − 0.77) with the WTL was found for the TVDI (Fig. 5). Multispectral 
bands were moderately correlated with the WTL, with RED having the strongest correlation (r = − 0.76). From the multispectral 
indices, the PDI and the MPDI had the strongest correlations (r = − 0.69, − 0.63) while the NDVI, the NDWI, and the NDRE had weak 
correlations (|r| < 0.3). For the topographical indices, the SWI was moderately correlated, and DTW was weakly correlated with the 
WTL, while the TPI had almost no correlation with any other variable. Because the SWI and DTW were correlated against expectations, 
and the TPI had almost no correlation, topographical indices were not included in the final model building. 

3.3. Functionality of water-directing ditches 

The functionality of the water-directing ditches, i.e. if they increased the WTL near the ditch endpoints, concurred with field 
observations (Fig. 4). In Makkarasuo34, the WTL was higher in the areas near the endpoint of the old northern ditch, while the eastern 
ditch did not affect the WTL. In Makkarasuo2, a new ditch from 2021 brought some water to the peatland, while the older ditches in the 
south appeared not to function properly (Fig. 4). In Kurkineva, the northern ditch seemed to work (Fig. 4), but the southern ditches 
were not supplying water, which also applied to the ditches on the Vihtaneva site (Fig. 4). 

4. Discussion 

4.1. Modelling the spatial patterns of the water table level 

We showed that the spatial patterns of the WTL could be predicted with thermal-multispectral UAV data and a simple linear 
regression with moderate accuracy (Table 3, Fig. 3). This indicates that complex models with multiple explanatory variables are not 
mandatory in WTL prediction in boreal peatlands. This result is in line with e.g. Harris and Bryant (2009) and Burdun et al. (2020b), as 
they also found that utilising only a few RS variables could produce a well fitted model. However, Räsänen et al. (2022) highlighted the 
peatland type and site specificity of the functioning RS variables, as in their research, depending on the site, different bands and indices 
were the most important for predicting the WTL in a machine learning approach. 

Maps for predicted hydrological variables have previously been made with RS approaches (Wigmore et al., 2019; Lendzioch et al., 
2021), but to our knowledge, we have produced one of the first high-resolution peatland WTL maps with reasonable modelling ac
curacy. Alternatively, WTL and wetness patterns can also be visually and qualitatively interpreted straight from thermal imagery data, 
but our approach enables the quantitative spatial assessment of the WTL. 

Fig. 5. Spearman’s rank correlation coefficients between studied variables. WTL refers to water table level. The other abbreviations are explained in Table 2.  
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Our model seemed to underestimate high WTL in flarks (Fig. 3). The lack of field-measured extreme values probably decreased the 
model performance and increased the uncertainty in extreme value predictions. We did not conduct field measurements in the middle 
of the flarks, as they were inaccessible. 

The optical RS bands had multicollinearity (Fig. 5), which has been reported multiple times (Nichol and Sarker, 2011; Chen et al., 
2013; Li et al., 2014). We utilised only the best correlated variables in the model. In this process, some spectral information was lost. 
Principal component analysis could be utilised in these situations, as the derived components preserve a large proportion of spectral 
information from all bands. It could therefore improve prediction performance and be used as a solution for multicollinearity (Lafi and 
Kaneene, 1992; Zhao et al., 2020). 

4.2. The usability of different UAV-based variables 

Our results reinforce previous findings that the TVDI functions well in peatland soil moisture monitoring (Klinke et al., 2018; 
Wigmore et al., 2019). As the TVDI rescales the original thermal data and makes it more comparable with different sites and LSTs, it 
can be potentially used universally with different sites. It has also been reported that trapezoid models are not sensitive to para
metrisation (Sadeghi et al., 2017), which eases the calculation of the index, as visual parametrisation functions well. However, the 
index is not necessarily an all-encompassing solution. There may be problems with imagery taken at different times of the growing 
season, as it has been suggested that northern latitude energy limitation violates the index assumption that lower soil moisture leads to 
an increase in the LST (Burdun et al., 2020a). Our study took place just after the peak of the thermic summer, in which it is assumed the 
assumption is met. 

Red reflection has previously been observed to be strongly correlated with the wet flark area extent (Kolari et al., 2022), and our 
findings support this idea. Red outperformed all other spectral bands and multispectral indices. Moreover, in line with Kolari et al. 
(2022), spectral bands had a stronger correlation than most of the calculated spectral indices (Fig. 5). Only pixel distribution models 
outperformed all bands other than red. Based on previous studies (Ghulam et al., 2007a; Nie et al., 2020), the MPDI should perform 
better than the PDI in vegetated areas because the latter does not take the effect of vegetation into account, but this is not the case in 
our study. Previously, both indices have been calculated for coarser resolution satellite imagery, in which pixels cover very hetero
geneous areas (Ghulam et al., 2007a; Nie et al., 2020), and as our UAV imagery pixels covered an area of a few centimetres, this could 
cause problems for parameterisation and the functionality of the indices. Additionally, our imagery was taken in very similar weather 
conditions which made the spectral bands from different sites very comparable. In more varying conditions, the pixel distribution 
indices could perform better than reflection bands. 

Contrary to expectations, the SWI was negatively correlated with the WTL, contrary to what has been suggested in previous studies 
modelling soil moisture (Kemppinen et al., 2018; Riihimäki et al., 2021; Ikkala et al., 2022). As soil moisture is typically very strongly 
correlated with the WTL in peatlands (Lafleur et al., 2005; Strack and Price, 2009; Irfan et al., 2020), the measured variable is probably 
not the reason for the result. There are several possible reasons for the negative correlation. First, the SWI can be very sensitive to small 
changes in microtopography, and it is very difficult to estimate relative topographic wetness in small and flat peatland areas. Ikkala 
et al. (2022) also showed that most changes in the SWIs of pristine peatlands occurred in flat areas, where the index was most sensitive 
to small errors in the DTMs. Second, a large proportion of the peatland waterflow happens below the surface (Morris et al., 2022), and 
part of the vertical moisture transfer occurs in capillary form, which cannot be modelled with DTMs. Third, unlike Ikkala et al. (2022), 
we did not include the whole upper catchment in the calculations, which may have caused a bias in the spatial patterns of local SWIs. 
We lacked SfM-based DTMs for the whole catchments, and merging the data with existing LiDAR-based DTMs did not function properly 
due to the spatially irregular 10–20 cm height difference between the datasets. However, based on our tests with LiDAR-based coarser 
DTMs, the bias was probably minor, as neither of the LiDAR-based DTMs functioned in WTL modelling. Fourth, the SfM-based DTM 
may not represent topography in areas with dense field-layer vegetation, even if it has been filtered with different algorithms. This 
rationale also applies to the DTWs, as they were calculated from the same stream networks as the SWIs. 

4.3. Assessing the functionality of water-directing ditches 

The produced maps can be used in a quantitative peatland restoration impact assessment. In this study, the spatial impact of the 
water-directing ditches could be assessed. Based on a visual interpretation of the result of the WTL maps, ditches that brought water 
directly to wet flark areas increased the WTL in larger areas beyond the flarks. This was especially visible in an old northern ditch in 
Makkarasuo34 (Fig. 4). However, it was difficult to assess whether the new ditches ending in drier areas in Kurkineva and Vihtaneva 
worked, as there were no notable spatial differences in WTL patterns near the endpoints of the ditches. They may have been directing 
water more deeply into the peat layer, and this may have been impossible to observe with thermal-multispectral UAV data. Addi
tionally, some individual tree shadow pixels were predicted with a positive WTL, even though they were in a dry area near Kurkineva’s 
southern ditches (Fig. 4). It is therefore difficult to judge if the developed method can be utilised in drier areas with a denser tree 
canopy. Similar results have been reported by Burdun et al. (2020b) and Räsänen et al. (2022). 

4.4. Future work 

We showed that our methodology has potential in spatial assessments of the peatland state and the success of restoration, but the 
study left multiple possible research areas for further development. Our study areas were relatively wet and treeless peatlands; the 
method should therefore be tested on other sites, including drier and treed sites. The developed method should be further tested in 
restoration impact assessment, in which the restoration has been conducted with traditional methods, and in which the before-after 
imagery is available. Additionally, satellite imagery could be utilised, as successful ditches affected larger areas, and changes might 
also be visible with coarser spatial resolutions. 
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As the UAV data did not include SWIR wavelengths, we did not study many previous successfully used SWIR-based RS indices 
(Harris and Bryant, 2009; Kalacska et al., 2018; Räsänen et al., 2022). We suggest that UAV-SWIR may have potential in WTL 
modelling in spatially heterogeneous boreal peatlands. Some UAV-SWIR implementations have already been used successfully with 
various scientific topics, including peatland wetness (Honkavaara et al., 2016; Arroyo-Mora et al., 2017; Jenal et al., 2019, 2020). In 
utilising topographic data, the beginning of the growing season may be more suitable because the vegetation is less dense. Addi
tionally, UAV LiDAR could also be utilised for topographical analysis because laser pulses can partly bypass the vegetation canopy, 
which facilitates the construction of DTMs (Mlambo et al., 2017; Liao et al., 2021). 

5. Conclusion 

We tested the functionality of thermal, optical, and topographic UAV data in the spatial modelling of the WTL in open peatlands. 
We showed that a linear regression model with explanatory variables calculated from multispectral and thermal imagery had a 
moderate explanatory capacity. The spatial patterns of the WTL were predicted plausibly, yet the errors were relatively largest in the 
areas with extreme values. The most important RS variables for the WTL included the TVDI and red reflectance, followed by other 
optical variables, while topographic variables did not function in WTL estimation. Based on a visual interpretation, our result’s WTL 
maps indicate whether a water-directing ditch (i.e. a restoration measure) increases the peatland WTL locally. We suggest that the 
developed method could be used for restoration impact assessments, but before-after imagery is still needed for impact quantification. 
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