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Abstract 

New product innovation in fields like drug discovery and material science can be 

characterized as combinatorial search over a vast range of possibilities. Modeling 

innovation as a costly multi-stage search process, we explore how improvements in 

Artificial Intelligence (AI) could affect the productivity of the discovery pipeline in 

allowing improved prioritization of innovations that flow through that pipeline. We 

show how AI-aided prediction can increase the expected value of innovation and can 

increase or decrease the demand for downstream testing, depending on the type of 

innovation, and examine how AI can reduce costs associated with well-defined 

bottlenecks in the discovery pipeline. Finally, we discuss the critical role that policy 

can play to mitigate potential market failures associated with access to and provision 

of data as well as the provision of training necessary to more closely approach the 

socially optimal level of productivity enhancing innovations enabled by this 

technology.  
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1. Introduction  

In November 2020, Google DeepMind’s AlphaFold won the 14th round of the CASP1 protein 

folding competition. They used a type of AI, machine learning using deep neural networks, to help 

predict the 3D structure of target proteins based on their amino acids sequences. The “protein 

folding problem” is challenging due to the vast number of potential shapes that a protein could 

take for a particular amino acid sequence. Knowing the shape of proteins is, among other uses, 

critical for identifying targets for drugs to bind to in order to produce therapeutic effects.  

“This will change medicine. It will change research. It will change 

bioengineering. It will change everything,” says Andrei Lupas, an 

evolutionary biologist at the Max Planck Institute for Developmental 

Biology in Tübingen, Germany, who assessed the performance of different 

teams in CASP. AlphaFold has already helped him find the structure of a 

protein [in half an hour] that has vexed his lab for a decade, and he expects 

it will alter how he works and the questions he tackles… (from Nature, 

November 2020)2 

This is just one example of the use of AI in scientific discovery and innovation. Machine-

learning-based AI tools are being increasingly applied where innovators must search over large 

and complex search spaces, promising to improve the productivity of the innovation process in 

various domains that have proved challenging for researchers, such as materials science, 

proteomics, genomics, and drug discovery.  

Although there is extensive debate over the prospects for artificial general intelligence 

(AGI), the AI we consider in this paper is narrow, helping the innovator on the specific task of 

predicting which innovations are most likely to succeed. On this narrow task the AI can be 

superhuman in the sense of surpassing human-level performance. Notwithstanding this 

superhuman capacity at specific tasks, we do not assume that the AI replaces the human scientist, 

but rather explore how the combination of the AI and scientists can increase discovery through 

improved prioritization.  

 
1	Community	Wide	Experiment	on	the	Critical	Assessment	of	Techniques	for	Protein	Structure	Prediction	(CASP).	
2 https://www.nature.com/articles/d41586-020-03348-4	
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We develop a model of innovation that includes two stages: prediction and testing.3 

Prediction by human scientists is characterized as formulating hypotheses based on theory and 

prior empirical evidence. Prediction by AIs is characterized as pattern recognition based on prior 

experimental data. In our setting, testing remains fully in the domain of human scientists and 

involves running experiments to test the predictions from the first stage. In other words, AIs only 

impact the first stage: prediction. 

 The model is motivated by five main ideas. First, innovation can be viewed as search over 

a (potentially vast) combinatorial search space. Second, innovation results from a costly multi-

stage process. Third, the uncertainty innovators face as to the location of valuable combinations in 

this space can be partly reduced by having a prediction model – or map – of the underlying search 

landscape. Fourth, the output of the prediction model can usefully be summarized in the form of a 

ranking function that allows prioritization in the context of the costly multi-stage search process. 

And fifth, breakthroughs in AI are a potential source of improvement in the performance of these 

maps.   

 The main contribution of this paper is to develop a framework for linking an AI-based 

improvement in prediction technology to the economic effects on innovation in combinatorial-type 

discovery problems. Using the device of the ranking function, we show the effects of the improved 

technology on the expected marginal values and costs of potential innovations. However, the 

model also shows how the impact on innovation depends in subtle ways on features of the 

innovation search process such as whether the search is parallel or sequential, whether the potential 

innovations are independent or are substitutes, and the extent of bottlenecks in the discovery 

pipeline.  

Scholars have long modeled innovation as a process of combining existing knowledge to 

produce new knowledge (Usher, 1929; Schumpeter, 1939; Nelson and Winter, 1982; Weitzman, 

1998; Fleming and Sorenson, 2004; Arthur, 2009). The idea of new knowledge as new 

combinations has received particular attention where the mapping from existing knowledge inputs 

to new knowledge is highly complex. Examples of such domains of discovery include 

biotechnology, molecular and materials science, and particle physics. Recent advances in machine 

 
3 We	later	extend	this	to	multiple	stages	by	including	intermediate	screening	stages	between	prediction	and	testing.	
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learning – and in particular advances in artificial neural networks such as deep learning – have led 

to optimism that these advances provide a new general purpose technology (GPT) for discovery 

(Agrawal et al., 2019a; Cockburn et al., 2019). These tools are already altering innovation practice 

in fields such as genomics, proteomics, small molecule drug discovery, and materials science, even 

if there is skepticism about their ultimate impact on R&D productivity.   

To help understand how AI might affect innovation we build on the classic innovation 

function approach to economic growth to develop a model of AI-aided innovation. This approach 

models innovation as a function of research effort and existing knowledge stocks (Romer, 1990; 

Grossman and Helpman, 1991; Aghion and Howitt, 1992; Jones, 1995). In our model, the 

innovator must search over a vast space of potential combinations. Innovators use knowledge in 

the form of data on past successes and failures to develop a prediction model for the “fitness 

landscape” that maps combinations to the probability of success of those combinations. In essence, 

the model of the fitness landscape aids their search in the context of a multi-stage search process 

by helping to predict which combinations out of possibly billions have the greatest likelihood of 

success. We thus treat a key part of the discovery process as a prediction problem that can benefit 

from recent advances in AI.   

A summary measure of the output of the prediction model is a logistic ranking function 

that shows how the probability of success declines as we move from better- to worse-ranked 

combinations. This function plays a key role in the prioritization process for a multi-stage 

discovery pipeline where the later stages – screening and testing – are costly, and access to 

improved technologies for prediction can better prioritize the use of costly R&D resources. In the 

context of a multi-stage discovery pipeline with potentially multiple intermediate screens between 

initial prediction and final (determinative) testing, we examine how bottlenecks in the pipeline in 

the form of high costs and ineffective screens can reduce the number of potential innovations that 

enter the pipeline. We also explore how such bottlenecks can reduce the return to the adoption of 

AI-based prediction and the possibilities for AI improving – or even substituting for – later costly 

stages of the pipeline. 

The challenge for policy makers is to ensure that the AI-driven technological gains felt 

across numerous scientific domains – in particular the biological and information sciences – 

translates into aggregate productivity growth. While the advances have been large, future 
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improvements will be stymied by market failures with respect to 1) a lack of access to data due to 

private sector competition, poor incentives to publish failed experiments, and privacy regulation, 

2) a lack of experiments in areas of the search space that are sparsely populated and thus have a 

lower chance of generating successful innovation but provide high social value by contributing 

data to the sparsely populated parts of the search space, and 3) an under-provision of training for 

multi-disciplinary skills that combine AI and domain specific expertise in areas such as chemistry 

and biology. A central role – and challenge – of policy makers will be to ensure that these 

bottlenecks do not arise so that the full benefits of AI as a GPT are able to be realized. 

This paper is related to a number of literatures. First, our paper is inspired by growing 

literature describing the use of machine learning in scientific discovery and innovation. Rapid 

advances in hardware, software, and data availability have driven this growth, with applications of 

deep neural networks showing notably rapid growth across a number of domains. For a sampling 

of reviews see Chen et al. (2018) and Vamathevan et al. (2019) [drug discovery], Angermueller et 

al. (2016) and Tang et al. (2019) [computational biology], Wainberg et al. (2018) and Zou et al. 

(2019) [genomics], Goh et al. (2017) and Nature Communications (2020) [computational 

chemistry], and Butler et al. (2018) and Keith et al. (2021) [materials science]. The apparent 

success of deep learning in providing predictive models of highly complex combinatorial spaces 

explains the rising interest in it as a GPT for discovery. This potential – together with the power 

of viewing innovation as a prediction-model-aided combinatorial search process – motivates the 

paper. 

Second, we draw on and extend the innovation production function that has been at the 

core of developments in endogenous growth theory (see, e.g., Jones 2005; Trammell and Korinek, 

2021). As already noted, central to the innovation production function approach is the idea that 

existing knowledge is an input into the production of new knowledge – the “standing on the 

shoulders of giants” or spillover effect. Typically, papers in this literature do not explicitly adopt 

a combinatorial view of the process through which existing knowledge is turned into new 

knowledge (although see Romer, 2003, Weitzman, 1998, and Jones (2021) for important 

exceptions). In an elegant recent paper, Jones (2021) combines the insights of Kortum (1997) and 

Weitzman (1998) to explore the links between combinatorial growth in the size of search and 

exponential economic growth. The driver of economic growth is that the innovator makes draws 
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from a known distribution and growth results from an increase in the best alternative drawn. Jones 

shows how exponential growth results for certain distributions with thin tails when there is 

combinatorial growth in the number of draws. A key difference between his model and the one in 

this paper is that we assume that search (i.e, testing) is costly. This forces the innovator to prioritize 

instead of exhaustively searching the known landscape. Another important difference is the 

information available to our innovator is in the form of a fitness function over the search landscape, 

which contrasts with knowledge of the distribution in Jones’ model. We introduce AI as a means 

to improve the model of the landscape and thus improve prioritization. We also highlight an 

important source of spillovers: data on past successes and failures. These data are used to develop 

improved prediction models and thus can be a source of growth-sustaining productivity 

improvement in the innovation search process.   

Third, our paper draws on literature in economics that applies the ideas of fitness 

landscapes to the study of innovation.4 As used in economics and management science, this work 

is typically situated in evolutionary economics and builds on the work of Nelson and Winter 

(1982). Important contributions include Levinthal (1997), Goretti and Levinthal (2000), Kauffman 

et al. (2000), Rivkin (2000), Fleming (2001), and Fleming and Sorenson (2004). Fleming and 

Sorenson (2004) introduced the idea of science as a map to aid technological search, an idea that 

is central to our approach.5 In our model, innovators use (imperfect) knowledge of the fitness 

landscape (the prediction model) to identify a promising subset of potential combinations followed 

by screening/testing of that subset.   

Fourth, we draw on the literature on optimal search where information is imperfect and 

search is costly. This literature originated with Stigler (1961) with influential developments in 

McCall (1975). We draw in particular on a special case of the “Pandora’s box” model developed 

in Weitzman (1979).  The sequential search problem examined by Weitzman involves boxes that 

 
4 Sewall	Wright	(1932)	first	introduced	the	fitness	landscape	concept	in	evolutionary	biology,	and	Stuart	
Kauffman	(see	Kauffman,	1993)	extensively	developed	it. 
5 Drawing	on	the	evolutionary	approach,	these	papers	model	innovation	(or	imitation)	as	a	“walk”	or	“hill	
climb”	towards	a	local	optimum	on	the	fitness	landscape.	Innovators	typically	search	one-mutant	neighbors	
and	adopt	fitter	variants	until	a	local	optimum	is	reached,	although	“long-jumps,”	in	which	innovators	jump	
longer	distances	across	the	landscape,	are	also	studied	as	a	process	of	exploratory	search.	The	evolutionary	
approach	has	proved	extremely	fruitful	and	provides	rich	dynamics	for	the	search	process.	However,	to	better	
connect	with	the	innovation	function	approach	that	has	been	standard	in	the	endogenous	growth	literature,	
we	do	not	use	an	evolutionary	approach	in	this	paper. 
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vary in the distribution of potential outcomes, search costs, and the time that elapses before the 

value of the box is revealed. He shows that a “reservation price” can be attached to each box. 

Ranking the boxes in descending order of reservation prices, the optimal search rule – “Pandora’s 

rule” – is to continue down the ranking until the maximum value obtained is greater than the 

reservation prices of all remaining unopened boxes.   

We utilise a special case of the Weitzman model where there are just two outcomes that 

can be revealed in the test of a given combination – success or failure – and there is an unbiased 

estimate of the probability of success available to a risk-neutral innovator from the prediction 

model. We also assume that costs are the same for all tests and that there is no time discounting. 

This allows the innovator to prioritize solely based on the ranking of combinations given by the 

prediction model, and we make a strong assumption about the functional form of the ranking 

function that is the output of the prediction stage of the discovery process.  

Using this tractable search set up, we examine two cases of parallel (or simultaneous) 

search where (1) the innovator seeks to discover all combinations with an expected net value 

greater than or equal to zero and (2) the innovator seeks a single success but must choose in 

advance which combinations are to go for testing;6 we also explore the case of a Weitzman 

sequential search process with single innovation target. Drawing on the real options literature, we 

extend our two-stage search process to a more general multi-stage search process where there is 

an option to abandon an advancing combination at the end of each screening stage (Roberts and 

Weitzman, 1981; Dixit and Pindyck, 1994) and the probability of success is sequentially revised 

using Bayesian updating. 

Finally, our paper draws on contributions to the emerging literature on the economics of 

artificial intelligence. A key breakthrough in AI has followed from the shift from rules-based 

systems to a statistical approach that emphasizes prediction (see, e.g., Athey, 2017; Mullainathan 

and Spiess, 2017; Agrawal et al., 2018; and Taddy, 2019). As emphasized by Arrow (1962), 

uncertainty is a pervasive feature of the innovation process and hence the value of prediction 

 
6 Chade	and	Smith	(2006)	provide	a	more	general	treatment	of	the	simultaneous	search	problem. 
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technologies that help reduce it. We can view AI – and machine learning in particular – as a GPT 

for prediction and make extensive use of this idea in our paper.7  

We organize the remainder of the paper as follows. Section 2 briefly illustrates how AI is 

altering the discovery process in genomics, proteomics, drug discovery, and materials science. 

Section 3 sets out the basic conceptual building blocks of search-based innovation model over a 

vast combinatorial space and introduces the idea of a ranking function. Section 4 then develops a 

simple two-stage example of “search with a map” in which the first stage is the development of a 

prediction model (the output of which is captured by a logistic ranking function) combined with 

identification of a probability threshold for determinative testing, and the second stage is costly 

testing of all combinations with a probability of success at or above the threshold. Section 5 

extends the model to a multi-stage setting to allow for a sequential refinement by Bayesian 

updating of predictions through possibly multiple intermediate screening stages and where there 

is an option to abandon at the end of each stage. Section 6 examines the interaction between an 

AI-based improvement in the prediction model and bottlenecks in terms of the ultimate impact of 

the improved prediction technology on the productivity of innovation. Section 7 reflects on AI as 

a method of generating improved prediction models (or maps) of the fitness landscape that has 

undergone rapid recent development. Section 8 discusses possible policy and managerial 

implications. Section 9 concludes with a recap of the main ideas and possible directions for future 

research.  

2. Innovation as search over complex spaces: Some motivating examples 

To help motivate our modeling approach, we first provide some illustrations of discovery 

challenges that involve search of complex combinatorial spaces, challenges for which machine 

learning-based prediction models appear to be fruitful. The common structure of such challenges 

is that an innovation involves a combination (e.g., a set of gene interactions or a chemical 

 
7 Another	important	strand	of	the	economics	of	AI	literature	has	focused	on	the	effects	of	AI	on	the	demands	
for	different	types	of	skill.		Researchers	in	this	area	have	used	the	idea	of	a	task-based	production	function	to	
allow	for	the	possibility	that	the	introduction	of	AI	(and	other	new	technologies	such	as	robotics)	could	lower	
the	employment	and	wages	of	certain	types	of	workers	depending	on	the	tasks	they	perform	(Acemoglu	and	
Autor,	2011;	Autor,	2015;	Acemoglu	and	Respeto,	2016,	2017	and	2019b).		Such	labor	demand	effects	could	
take	place	for	knowledge	production	tasks	as	well	(Aghion	et	al.,	2019).			
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molecule) that has relevant properties or activities (e.g., a relationship to an intermediating cell 

variable or a ligand-protein binding affinity). The discovery processes we consider are typically 

multi-staged (e.g., predictive screening, synthesis, testing, etc.). We are especially interested in 

how researchers use machine learning to screen candidate combinations and thereby allow a 

ranking of combinations for further exploration along the discovery pipeline.   

Our first example is from genomic medicine. A genome is a hugely complex set of 

instructions for building an organism. This building process can be viewed as a combinatorial 

problem: genes interact in complex ways including the interaction between protein coding and 

regulatory regions within the genome. Genomic medicine exploits the relationship between DNA 

sequences and the risk of various diseases.   

A central idea is that of gene expression, the process by which the information in the gene 

is first transcribed to make messenger RNA (mRNA) and then the mRNA is translated to make a 

protein (Leung et al., 2016). Researchers can utilize predictive models for various stages of this 

process. An encompassing approach is to model the relationship between DNA sequences and 

disease outcomes.8  

Our second example is proteomics – the study of the structure and function of proteins. 

Understanding proteins is a complex task given their vast number (far exceeding the number of 

genes) and interactions with cell and environmental variables. Part of biochemical process of gene 

expression is the translation via the ribosome of mRNA into the amino acid sequences that 

comprise the protein. As noted in the introduction, one of the challenges of proteomics is the 

prediction of the tertiary (or 3D) structure of a protein given its amino acid sequence. Substantial 

progress is being made this problem with the help of AI tools such as deep learning (Calloway, 

2020; Senior et al. (2020). An improved ability to predict protein structure is providing new targets 

for therapeutic medicine. The most recent dramatic example of the use of AI for therapeutic 

medicine is in the context of vaccine discovery for COVID-19. AI was used, for example, to 

 
8 However,	given	 the	complexity	of	 the	process,	 researchers	are	making	significant	progress	by	developing	
predictive	models	 of	 the	 relationship	 between	 DNA	 sequences	 and	 various	 intermediating	 “cell	 variables”	
(Leung	 et	 al,	 2016).	 These	 cell	 variables	 can	 provide	 potential	 targets	 for	 therapeutic	 interventions.	 	 New	
measurement	methods	 can	 give	 high-throughput	 data	 on	 various	 cell	 variables,	 and	 advances	 in	machine	
learning	are	allowing	researchers	to	take	advantage	of	these	abundant	data	to	develop	predictive	models	of	
their	functioning.	The	combination	of	breakthrough	gene	editing	technologies	(notably	CRISPR-Cas9)	and	a	
better	understanding	of	the	complex	links	between	genes	and	disease	could	underpin	major	medical	advances.	
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predict which of the tens of thousands of different pieces of the virus the immune system was most 

likely to recognize, enabling immunologists to focus their vaccine designs on a more manageable 

number of potential targets (Waltz, 2020). In the case of Moderna, a biotechnology company, AI 

was used to predict the optimal mRNA sequence to provide the information needed to make a 

protein to attack the virus. Moderna accomplished this by January 13, 2020, only two days after 

the Chinese authorities posted the genome sequence of the virus online (Iansiti et al, 2021).  

Our third example is small molecule drugs – a mainstay of therapeutic medicine. Scholars 

have estimated the space of potential small organic molecules to contain more than 10!" possible 

structures (Virshup et al., 2013).9 Taking the target (or “lock”) as given, the challenge is then to 

identify a ligand (or “key”) that binds effectively and leads to the desired therapeutic effect. This 

screening challenge can be aided by machine learning models of binding efficacy (see, e.g., Chen 

et al., 2018).  Some recent approaches take advantage of knowledge of the three-dimensional 

structures of both the target proteins and the small molecule ligands. Machine learning models 

such as convolutional neural networks (CNNs) – initially applied in tasks such as image 

recognition – are being successfully applied to utilize this information to improve predictions of 

bioactivity for drug discovery applications (see, e.g., Wallach et al., 2015 and Gomes et al., 2017).   

Our final example comes from materials science. As with drug discovery, the space of 

potential molecules is vast.  Researchers have used computational chemistry to virtually screen for 

the properties of molecules, including methods such as quantum chemistry and molecular 

mechanics. However, the computational costs of such simulation methods can be prohibitive, 

leading to increasing interest in statistical approaches such as machine learning to prioritize 

molecules for simulation- or experiment-based characterization (see, e.g., Pyzer-Knapp et al., 

2015). For example, input data on molecular descriptors and output data on molecular properties 

could be used to develop a machine-learning-based predictive model of a large chemical space that 

would otherwise be prohibitively costly through computational and experimental methods.   

 
9 These	chemical	combinations	(or	 ligands)	 interact	with	 targets	(e.g.,	 a	protein)	 that	 regulate	biochemical	
processes	within	the	body.	Disease	can	occur	when	these	targets	malfunction.		By	binding	to	a	malfunctioning	
target	protein,	the	ligand	may	be	able	to	alter	its	adverse	bioactivity.	As	combinations	of	chemical	elements,	
these	small	molecules	can	take	a	vast	number	of	forms	leading	to	a	massive	combinatorial	search	space	even	
for	a	single	protein	target.   
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Materials discovery – for instance, new materials for clean energy technologies or medical 

devices – fits well with the multi-stage search over a combinatorial search space characterization 

of the innovation process. The tasks involved in the discovery of new materials include the 

predictive screening of potential molecules, the making (or synthesis) of those molecules, the 

testing of the molecules using high-throughput methods and the characterization of their 

properties. Among the innovation challenges to which machine learning is being applied are the 

development of new catalysts to convert earth-abundant molecules (such as CO2, H2O and N2) into 

fuels and chemicals, new photovoltaic and thermoelectric materials, and new forms of batteries 

for energy storage (Tabor et al., 2018). However, researchers are concerned that bottlenecks in the 

discovery process severely slow the flow of new discoveries.   

3.  Conceptual Building Blocks of a Combinatorial Model of Innovation 

Our examples of the growing use of machine learning in scientific discovery and innovation reveal 

a wide range of types of input data, output data, and algorithms to produce prediction models.  In 

this section, we put these details aside and set out the conceptual building blocks of a highly 

stylized model of the innovation process as search over a vast combinatorial search space.   

3.1 The search space 

The starting point is to conceptualize innovation as the combination of more basic elements such 

as genes or molecules (Romer, 1993, Weitzman, 1996, and Arthur, 2009). We represent a 

combination as a string with 𝐴 elements. In the simplest case, the string reflects whether an element 

is present or not in the combination, with a 1 indicating presence and a 0 absence. More generally, 

each of the elements in a string can have multiple states, with the set of M states denoted as its 

alphabet. We can then represent the string underlying a given combination by the particular states 

of the elements that comprise that combination.  

For a given innovator, the available elements determine their combinatorial search space 

– that is, the set of all possible combinations that can be formed. In the binary case (M = 2), for an 

innovator with 𝐴 available elements the number of all possible combinations that can be formed 

from these elements is 2#.10  We henceforth assume that the binary case holds.  

 
10 More	generally,	if	each	idea	can	take	any	one	of	M	states,	the	total	number	of	possible	combinations	is	𝑀!. 
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Innovation output can now be thought of as a function of the potential combinations: 𝐼 =

𝐹(2#). More precisely, we think of innovation as resulting from search over the set of potential 

combinations.  In conceptualizing this search space we make use of the idea of a fitness landscape 

(see, e.g., Kauffman, 1993). For a given fitness landscape, we associate each potential combination 

with a scalar that reflects its (fitness) value according to some particular property of interest.11   

Central to the fitness landscape is a measure of distance. The distance between any two 

strings (or combinations) is the number of states that differ between those strings (or Hamming 

distance).  For a given string, the 1-neighbor strings are all those strings that differ by just one 

state.  The d-neighbor strings are all those strings that differ in exactly d of the states. The 

correlation structure of the landscape determines how correlated the values of the combinations 

are across different distances. Low correlations between the values of combinations outside close 

neighborhoods are associated with more “rugged” fitness landscapes.   

The mapping from a combination to its scalar value can be viewed as an index function. 

For a combination to be successful – i.e., lead to an innovation – we assume its index value must 

be equal to or greater than some threshold. We can thus recast our landscape in a simplified form 

so that combinations with a value at or above that threshold have a value of 1 and combinations 

with a value below the threshold have a value of 0.   

3.2 The ranking function 

Our search process over the combinatorial search space follows a special case of the general 

(“Pandora’s box”) search model developed in Weitzman (1979). The decision maker searches by 

deciding on the order to open boxes (which corresponds to a combination advancing along the 

discovery pipeline in our application) and when to stop the search. In the general model, the 

decision maker knows ex ante the probability distribution of outcomes, faces boxes with different 

opening costs and different time lengths before the contents of any opened box is revealed.  In the 

context of sequential search, Weitzman shows that each box can be assigned a “reservation price” 

that depends on the unique characteristics of that box. He derives “Pandora’s rule” as the optimal 

search strategy: continue to open boxes in descending order of the reservation price until the value 

 
11 Value	may	be	multidimensional,	so	there	can	be	multiple	landscapes,	each	one	associated	with	a	particular	
property	 of	 interest.	 	 However,	 we	 will	 typically	 assume	 a	 single	 dimension	 of	 technological	 fitness	 for	
convenience.		 
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of the best outcome achieved is greater than the reservation prices of all remaining unopened 

boxes.   

Weitzman considers a special case that matches our basic setup: the outcome for a given 

box is either a success or a failure with a given probability of success for each box; the cost of 

opening a box is the same for all boxes; and the length of time before the outcome is revealed is 

irrelevant as there is no time discounting. In this special case, it is optimal to open all boxes with 

an expected net value greater than or equal to zero in descending order of the probability of success 

and to stop the search when a success is achieved (see Appendix 1). In addition to examining 

sequential versions of the search process, we also examine cases of parallel search, where the 

innovator must choose all the combinations to be advanced (or boxes to be opened) before any 

testing can take place (i.e., the actual opening of the boxes).    

We now introduce a second resource available to the innovator: data. In addition to the 

available elements – the stock of which determines the combinatorial search space – the innovator 

has knowledge of previous successes (i.e., combinations with a value of 1) and previous failures 

(i.e., combinations with a value of 0). The total number of labelled successes and failures is 𝐷. 

These data can be used by innovator to develop a model (or map) of fitness landscape in the form 

of prediction model that outputs the probability of success of any given potential combination.   

Our innovator is faced with the task of searching over a potentially vast combinatorial 

search landscape of 2# − 𝐷 potential combinations, which for notational simplicity we denote as 

𝑁. A higher value of 𝐷 reduces the number of combinations available to be discovered but also 

provides “training data” for developing a prediction model for new successful combinations.   

This innovation search is therefore characterized by great uncertainty over the location of 

the valuable undiscovered combinations on the landscape, which are assumed to be small in 

number relative to the size of the search space. However, our innovator also has access to the 

prediction model to help detect the location of the undiscovered successes. As discussed further in 

in Section 7, this prediction model could be provided by theory, simulation, parametric statistical 

data modelling, machine learning, or even educated guesses – although all methods will likely rely 

to some degree on observations of prior successes and failures. 
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Combinations are ultimately either successes (1) or failures (0), but without conducting the 

determinative test the innovator is uncertain as to which and must form an expectation of the 

probability of success prior to testing. If a successful innovation is brought to market after 

completion of the necessary screening and testing, it results in a payoff to the innovator of 𝜋, which 

we normalize to 1 without loss of generality. We seek a decision rule at Stage 0 to determine which 

combinations to advance in the pipeline. In determining this decision rule, we assume that the 

innovator is risk neutral and has the objective to maximise expected total value (net of the cost of 

conducting later screens and tests) of innovation.   

There is a “ground truth” – here the truth as revealed by a test – only imperfectly known to 

the innovator as to the location of undiscovered successes on the landscape. There are 𝐺 successes 

in total so that successes as a share of potential combinations is 𝐺 𝑁⁄ , where 𝐺 is a natural measure 

of the fecundity of search space. A useful graphical representation of this ground truth is the unit 

step function shown in Figure 1. Denoting the known probability of success of the 𝑟$% ranked 

potential combination as 𝑝"&, the unit step function is: 

 

(1)				𝑝"& = 1          for 𝑟 ≤ 𝐺 

																	= 0          for	𝑟 > 𝐺. 

 

Figure 1 shows the both case where there is perfect ability to discriminate between successes and 

failures (where the internal rankings within the subsets of both successes and failure is arbitrary) 

and also the case where there is no ability to discriminate between successes and failures. In the 

latter case, the probability of success is simply the probability of finding a success as a result of a 

random draw from the search space, i.e.,	𝐺 𝑁⁄ . 

 We seek a functional form for the ranking function such that the probability of discovering 

a success is equal to 𝐺 𝑁⁄  when the prediction model has zero discriminating power and 

approaches the ground truth as the model approaches perfect discrimination.  The following 

logistic decay function has the property that the ground truth is approached as 𝛽 → ∞:  
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(2)					𝑝"& =
1

1 + 𝐾𝑒'(&)*)+)
, 

 

where 𝛽 ≥ 0.  The value of 𝐾 can be chosen so that the probability of success is equal to 𝐺 𝑁⁄  

when the prediction model has zero discriminating power (i.e.,	𝛽 = 0):  

(3)				𝑝"& =
1

1 + 𝐾 =
𝐺
𝑁, 

 

															=> 					𝐾 =
𝑁 − 𝐺
𝐺 . 

We thus chose this (appropriately restricted) logistic function as an analytically convenient 

representation of the ranking function. Furthermore, we assume that 𝛽 monotonically increases 

with the performance of the prediction model. As shown in Figure 2, the shape of ranking function 

curve varies from a horizontal line at 𝐺 𝑁⁄  when 𝛽 = 0, and converges to the ground truth unit 

step function as 𝛽 → ∞. Thus the performance of the prediction model is controlled by a single 

parameter. Increases in 𝛽 cause the ranking function curve to rotate in a clockwise direction around 

the point (𝐺 + 1, 𝐺 𝑁⁄ ).12 

 
12 Numerous	measures	of	performance	exist	for	binary	dependent	variable	models.	Ideally,	the	measures	of	
performance	would	be	applied	to	a	held	back	test	sample	given	the	risk	of	overfitting,	especially	for	models	that	
allow	 for	 highly	 flexible	 functional	 forms.	 One	 particularly	 intuitive	 measure	 for	 evaluating	 predictive	
performance	 both	 in	 and	 out	 of	 estimation	 sample	 is	 the	 Tjur	 Coefficient	 of	 Discrimination	 (Tjur,	 2009):		
E[p(success)]|success)	 –	 E[p(success]|failure.	 	 This	 coefficient	 varies	 from	 0	 to	 1,	 with	 a	 coefficient	 of	 1	
indicating	a	perfectly	discriminating	model	with	the	mean	probability	of	success	given	the	combination	is	an	
actual	success	equal	to	1	and	the	mean	probability	of	success	given	the	combination	is	an	actual	failure	equal	
to	0.	When	the	mean	probability	of	success	estimated	by	the	model	is	the	same	for	actual	successes	and	actual	
failures	the	coefficient	has	a	value	of	zero.	The	area	under	the	receiver	operating	characteristic	curve	(AUC)	is	
also	a	widely	used	measure	of	 the	performance	of	 a	binary	dependent	variable	model	 that	 can	be	usefully	
related	to	the	accuracy	of	the	probability	of	success	rankings:	the	AUC	can	be	interpreted	as	the	probability	that	
a	randomly	chosen	actual	success	is	ranked	better	(a	lower	number	given	our	model)	than	a	randomly	chosen	
actual	failure.	In	general,	there	is	of	course	no	reason	that	the	probability	rankings	produced	by	a	prediction	
model	will	follow	a	logistic	curve.	However,	it	is	intuitive	that	a	better	performing	model	will	tend	to	increase	
the	 estimated	 probabilities	 associated	 with	 better	 ranked	 combinations	 and	 decrease	 the	 estimated	
probabilities	associated	with	poorly	ranked	combinations.	In	our	model,	an	increase	in	the	parameter	𝛽	brings	
about	the	required	clockwise	rotation	 in	the	ranking	function	curve.	This	 fact	combined	with	the	analytical	
convenience	of	 the	 logistic	 form	 leads	us	 to	 treat	𝛽	 as	useful	parameter	 to	 control	 the	performance	of	 the	
prediction	model. 
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Although an increase in 𝛽 causes the probability of success to increase at any given rank 

from 1 to 𝐺, there is no presumption that the identity of the combinations at any given rank remains 

the same. Thus, for example, with the move to an improved prediction model we assume that the 

probability of success of the top-ranked combination will increase; however, the identity of the 

top-ranked combination could change, and indeed it is possible the probability of the previously 

top-ranked combination will fall.  

A desirable feature of a ranking function is that the expected total number of successes 

equals 𝐺 when aggregated over the entire space of 𝑁	potential combinations. This is clearly the 

case when 𝛽 = 0 (random search) and is approximately true as 𝛽 goes to infinity (perfect 

discrimination). However, it is not generally true for intermediate values of 𝛽. We thus consider 

an augmented ranking function where a normalizing constant, 𝜃(𝛽), is added to equation (2), 

where the value of the necessary constant will depend on 𝛽 (for given values of 𝐺, 𝐴	and	𝐷) such 

that the sum of the probabilities of success equals 𝐺. 

(4)					AB
1

1 + 𝑁 − 𝐺𝐺 𝑒'(&)-)+)
+ 𝜃(𝛽)C = 𝐺

.

&/+

 

⇒ 				𝜃(𝛽) =
1
𝑁 E𝐺 −A

1

1 + 𝑁 − 𝐺𝐺 𝑒'(&)-)+)

.

&/+

F. 

Given that the term in square brackets converges to a constant as 𝑁goes to infinity, the division by 

𝑁ensures that 𝜃(𝛽) converges to zero. It follows that the non-normalized ranking function 

provides a good approximation to the augmented (normalized) ranking function for a sufficiently 

large search space. The non-normalized function also ensures that the probability of success lies 

in the [0,1] range and so we assume this function in what follows, recognizing that we are 

implicitly assuming a sufficiently large value of 𝑁 so that any approximation error is negligible.  

 For considering the effects of improved prediction on expected search outcomes it is useful 

to introduce an idea of dominance in comparing ranking functions. The swivel property of the 

ranking function ensures that as we increase 𝛽 the probability of success at all ranks 1 to 𝐺 will 

increase. Provided that the relevant range of ranking function is for probabilities of success greater 
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than 𝐺 𝑁⁄ , we can say that in comparing two ranking functions A and B, where A has a higher 

value of 𝛽 than B, then A dominates B over the relevant range. In the next section, we examine in 

the context of some simple search structures how an improvement in the prediction model – i.e., 

an increase in 𝛽 – affects the search and the expected net value of innovation resulting from that 

search.  

4.  A Two-Stage (Predict-Test) Example of Searching with a Map 

In this section, we explore in the context of a two-stage example how access to an improved 

prediction model could affect the innovation process and its outcomes without for the moment 

considering the source of the improvement. We label the stages 0 and 1. Stage 0 (prediction) is the 

development (or “training”) of the prediction mode and the choice of probability threshold at or 

above which a combination is sent for testing (Stage 1). We conveniently represent the output of 

the prediction model as a ranking function mapping the rank (1 for the top ranked combination to 

𝑁 for the bottom ranked combination) to the model-based probability that the combination is a 

success. Stage 1 (testing) involves the conducting of the test, where we assume that the testing is 

a regulatory requirement that cannot be bypassed by taking a promising combination straight to 

market. The cost of a test is 𝑐+.  

  Three cases of two-stage innovation search are now considered. In Case 1, the value of 

innovations is independent of which other valuable innovations are discovered, combinations are 

advanced in parallel, and our risk-neutral innovator seeks to discover all valuable combinations 

with a positive expected value net of the cost of testing. In Case 2, the value to our innovator of 

finding additional successful combinations once one success is achieved is then zero so that 

combinations that match the target are perfect substitutes. Combinations are again advanced in 

parallel but the innovator takes into account the probability that a success will be found with other 

combinations in the portfolio to be tested in deciding to add an additional combination to that 

portfolio. Finally, Case 3 most closely matches the Weitzman framework with sequential search. 

We explore both a version with identical payoffs conditional on success and identical testing costs 

and a version that allows for heterogeneity along one or both of these dimensions. We consider 

each case in turn focusing on how an improvement in the prediction model affects the decision to 

select combinations for testing and ultimately the expected total net value of innovation.   
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Case 1:  Parallel search for innovations and innovations are independent 

In our first case, our innovator seeks to discover as many as possible successes for a single target 

that is hidden in the search space. Using the analogy of “locks” and “keys” familiar from drug 

discovery, there is a single lock and 𝐺 keys hidden in boxes spread across the search landscape. 

However, the boxes are costly to open, which forces the innovator to prioritize. We assume the 

keys are differentiated and it is possible to find multiple valuable keys to the lock with negligible 

competition between them, say different versions of a drug with the same therapeutic effect but 

appeal to different segments of the market.13 It follows that the expected value of innovation is 

additive. We will dispense with the assumption of no-redundancy in Case 2 below. 

To evaluate the expected value impact of an improved prediction technology it is useful to 

cast the testing decision in terms of a comparison of the expected marginal gross value and 

marginal cost of testing. We denote the optimal number of combinations to send for testing as 𝑟∗. 

Assuming an ordering of tests in terms of decreasing expected marginal gross value of the 

innovation, the expected marginal gross value of the 𝑟$% test is simply: 

(5)				𝑀𝑉&1 = 𝑝&". 

The marginal cost of the 𝑟$% test is a constant, 𝑐+. 

The expected marginal gross value and marginal cost curves are illustrated in Figure 3a, where we 

ignore the discrete nature of the problem for graphical simplicity. The subset of combinations that 

will be sent for testing comprises those combinations with an expected marginal gross value 

greater than or equal to marginal cost. If we make the additional simplifying assumption that at 

the last combination sent for testing marginal value and marginal cost are equated, then the 

probability threshold is given by:  

(6)				𝑝&∗
" = 𝑐+. 

 
13 A more technical motivation comes from using a Dixit-Sliglitz-Ethier type preferences/production function. With 
an additive objective function of this type, the demand curve for a new variety is unaffected by the discovery of an 
additional variety given the preference for variety built into these functions. 
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Using equation (2) – our logistic ranking function – allows us to solve for the optional number of 

tests.  All tests where the expected marginal gross value is greater than or equal marginal cost will 

be conducted: 

(7)				
1

1 + M𝑁 − 𝐺𝐺 N 𝑒'(&∗)-)+)
= 𝑐+	 

 

																=> 					 𝑟∗ = 𝐺 + 1 −
𝑙𝑛 M𝑁 − 𝐺𝐺 N − 𝑙𝑛 M1𝑐+

− 1N

𝛽 . 

More generally, the probability threshold (with associated 𝑟∗) will be the lowest probability in the 

ranking at which 𝑀𝑉&1 ≥ 𝑀𝐶.  

Expected total net value is then: 

 

(8)					𝑉1 = −𝑐+𝑟∗ +A𝑝&"
&∗

&/+

= −𝑐+ S𝐺 + 1 −
1
𝛽 T𝑙𝑛 S

𝑁 − 𝐺
𝐺 U − 𝑙𝑛 S

1
𝑐+
− 1UVU

+AW
1

1 + M𝑁 − 𝐺𝐺 N 𝑒'(&)-)+)
X

&∗

&/+

. 

 From Figure 3b we can see the impact on the number of combinations that will be sent for 

testing of an improvement in the prediction model – i.e., an increase in 𝛽. Provided 𝑐+ > (𝐺 𝑁⁄ ), 

the 𝑀𝐶 curve will intersect the 𝑀𝑉1 curves above the crossing point of the 𝑀𝑉1 curves at 𝐺 𝑁⁄ . 

We assume that this condition holds, recalling that the number of undiscovered combinations is 

assumed to be small compared to the size of the combinatorial search space. The number of 

combinations sent for testing will be a non-decreasing function of 𝛽 and strictly increasing for a 

large enough increase in 𝛽 for it to be optimal to send at least one additional combination for 

testing.   
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 Of most interest is what happens to the expected total net value of innovation, 𝑉1, when 

there is an improvement in the prediction model. At the original optimal number of tests, 𝑟∗, the 

marginal expected gross value will be greater with the new (higher 𝛽) prediction model than with 

the original model (see Figure 3b). It follows that 𝑉1 must be higher even if the number of 

combinations going for testing did not change. However, any increase in the optimal number of 

tests from 𝑟∗ to 𝑟∗∗ as a result of the improved prediction model will lead to a further increase in 

𝑉1. The (approximate) overall increase in 𝑉1 is shown as the relevant area under the curve in 

Figure 3b.   

Case 2: Parallel search for innovations and Innovations are perfect substitutes 

Case 1 made the strong assumption that the value of alternative innovations are independent and 

our risk neutral innovator seeks all innovations that yield a positive expected net value. However, 

in many innovation search problems the innovator may be looking for a single combination that 

meets a particular target such as a small molecule drug that binds with a target protein to improve 

its functioning or a material for a battery with a desired property. Bringing multiple innovations to 

market that achieve the same target will be wasteful to the extent that these innovations are perfect 

substitutes.   

 Returning to our analogy of locks and keys, there is now a single target and 𝐺 possible keys 

that open that lock. As with Case 1, the innovator must choose which boxes to open prior to 

opening any of the boxes (so it remains a case of parallel search), but in adding an additional box 

to the portfolio of boxes to be opened, the innovator takes into account that already included boxes 

in the portfolio may lead to the finding of the key that opens the box, making the additional box 

redundant ex post.14  

 The difference from Case 1 comes in the position and shape of the expected marginal gross 

value curve: as our innovator evaluates the expected marginal gross value of an additional test they 

 
14 We	assume	that	the	model	of	the	search	landscape	is	given.	However,	 if	the	model	could	be	rerun	before	
choosing	the	next	combination	to	be	added	to	the	testing	portfolio	test	(i.e.,	choosing	the	next	additional	box	to	
open),	the	innovator	could	rerun	the	model	based	on	the	assumption	that	the	previous	combinations	in	the	
portfolio	 were	 failures	 and	 thereby	 improve	 the	 portfolio	 selected	 through	 incremental	 additions	 of	
combinations.			
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must consider the probability that a combination meeting the target would have been discovered 

with the existing tests.  The expected marginal gross value curve is now:  

 

(9)				𝑀𝑉&1 = 𝑝&"																																												for			𝑟 = 1 

																																																	= Z∏ Z1 − 𝑝&)2" \&)+
2/+ \𝑝&"									for    𝑟 = 2, 3,	 . . ., 2# − 𝐷. 

For the marginal test, 𝑟, the term inside the first round brackets gives the probability that the 

desired target combination will not have been discovered in the previous 𝑟 − 1 tests. For example, 

for the 3rd test the probability that the target will not have been discovered in tests 1 and 2 is 

(1 − 𝑝+")(1 − 𝑝3"). The probability (1 − 𝑝+")(1 − 𝑝3")𝑝4" is thus the probability that target will be 

found in the third test and not before.   

The marginal cost of a test is again equal to 𝑐+. As illustrated in Figure 4a, the optimal 

number of combinations to send for testing is identified by moving down the probability ranking 

and testing all combinations for which the expected marginal gross value is greater than or equal 

to the marginal cost. This gives the optimal number of tests, 𝑟∗, and the expected total net value 

is:  

(10)					𝑉1 = −𝑐+𝑟∗ +ABW]Z1 − 𝑝&)2" \
&)+

2/+

X𝑝&"C
&∗

&/+

. 

Figures 4b and 4c show the impact on the optimal number of tests when the innovator gets 

access to an improved prediction model, again captured by an increase in 𝛽. As can be seen from 

the figures, the marginal value curves (pre and post improvement) will cross at a certain point in 

the ranking. The impact of an improvement in the prediction model will depend on whether 

marginal cost, 𝑐+, is above or below marginal value at this crossover point. Figure 4b shows a case 

where the crossover point occurs below 𝑐+.  In this case the optimal number of tests will increase. 

Figure 4c shows a case where the crossover occurs above 𝑐+ and the optimal number of tests will 

decrease.   

What is the effect of an increase in 𝛽 on 𝑉1? Provided 𝑝&" is greater than 𝐺 𝑁⁄ , we can 

show that 𝑉1 increases regardless of whether the optimal number of tests rises or falls. To see why, 
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note that for a higher value of 𝛽 the probability of success is higher for each position in the ranking. 

Comparing the probability that a success will have been found at the rth ranked combination with 

and without the improvement in the prediction (where a prime indicates the post-improvement 

probability at a given rank): 

(11)				1 −]Z1 − 𝑝&)2"5 \ > 1 −]Z1 − 𝑝&)2" \.
&

2/+

&

2/+

 

Given the improved prediction model, the probabilities on the left-hand-side all greater than the 

probabilities on the right-hand-side at a given rank. Thus, the cumulative probability that a success 

will have been discovered is also higher for every position in the ranking. In Figure 4b, 𝑉1 is thus 

higher with the higher 𝛽 at the original optimal number of tests, 𝑟∗. The move to the higher optimal 

number of tests 𝑟∗∗ increases 𝑉1 still further. A similar situation arises in Figure 4c even though 

the optimal number of tests now falls rather than rises. At the original number of tests 𝑉1 is again 

higher with the higher 𝛽.The move to the optimal number of tests (fewer tests in this situation) 

further increases this gain relative to the situation with the inferior prediction model (i.e., lower 

𝛽).   

Case 3. Sequential search where successful innovations are perfect substitutes 

Our first two cases assume identical payoffs (gross value) across combinations conditional on a 

successful test and identical testing costs for all combinations. Both cases also involve parallel 

rather than sequential search. Our third case more closely follows the Weitzman structure with 

potentially combination-specific payoffs, 𝜋6, conditional on a successful test and combination-

specific second stage testing costs, 𝑐+,6. The innovator is seeking a match for a single target and 

search is sequential, so that a test must be completed before moving on to the next combination in 

the search order. As shown in Weitzman (1979), the optimal ranking of combinations (or boxes) 

in a sequential search problem is based in this setting on their “reservation price”, 𝑧6, given by:  

(12)					𝑝6"𝜋6 + (1 − 𝑝6")𝑧6 − 𝑐+,6 = 𝑧6 

=>						 𝑧6 = 𝜋6 −
𝑐+,6
𝑝6"
. 
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The first equation can be viewed as a comparison between a “sure thing” available to the innovator 

with payoff, 𝑧6, and a lottery where the sure thing is available as a backup option. For a given 

combination, 𝑧6 is determined as the value that makes the innovator indifferent between the two 

alternatives. The innovator will sequentially search in decreasing order of reservation prices and 

stop the search when a success is achieved (see Appendix 1).  

 For ease of comparison with Cases 1 and 2, we first consider the special situation where 

combinations differ only in their probabilities of success (i.e., payoffs conditional on success and 

testing costs are the same across combinations). As with the other cases, we examine how an 

improvement in the prediction model (i.e., an increase in 𝛽) affects the combinations that advance 

for testing and the expected value of innovation. However, in contrast to parallel search, the 

number of combinations that the innovator that will advance for testing (or, equivalently, the 

duration of search) is uncertain at the outset of testing. 

The expected duration of search (i.e., the expected number of combinations to be tested) is 

equal to the probability that the search will involve exactly 𝑟 combinations times 𝑟, summed from 

𝑟 = 1,… , 𝑟89:, where 𝑟89: is the maximum number of combinations with an expected net value 

greater than or equal to zero: 

(13)						𝐿1 = A W]Z1 − 𝑝2)+" \𝑝2"
&

2/+

X𝑟.
&#$%

&/+

 

 How does an improvement in the prediction model affect the expected total net value of 

search? Assuming the improvement increases the maximum number of combinations that would 

be tested, the expected total value of the search will increase. Given the increased likelihood of an 

early success with improved predictions, it is also likely the expected duration of the search will 

fall, which would lower expected costs and reinforce the positive effect on expected total net value. 

However, with the increased maximum possible duration of the search, the possibility of an 

increase in the expected duration of the search cannot be ruled out. Without identification of the 

precise parameters, it is therefore not possible to be definitive on the overall effect of an 

improvement in the prediction model on expected total net value.  

 With sequential search, it is interesting to see the possible effects of relaxing the 

homogeneity assumption and instead allow for combinations to vary in terms of the payoff 
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conditional on success. (We continue to assume the testing cost is the same for all combinations.) 

To see the potential implications of an improvement in the prediction model under such 

heterogeneity, note first that the partial derivative of the reservation price that determines the 

search ordering with respect to the probability of success is: 

(14)				
𝜕𝑧6
𝜕𝑝6"

=
𝑐+,6
Z𝑝6"\

3. 

The impact of a small change in the probability of success for a combination is thus decreasing in 

the initial probability of success.  

To see how an improvement in the prediction model could lead to a shift in the sequential 

search ordering towards “riskier” combinations, we consider two combinations, 𝑖 and 𝑗, with 

identical initial (i.e., pre-improvement in the prediction model) reservation prices (i.e.,	𝑧6 = 𝑧2), 

but where 𝜋6 < 𝜋2 and 𝑝6" > 𝑝2". Thus, box 𝑗 is riskier in the sense that it has a lower probability 

of success but a higher payoff conditional on success. To bias things against the riskier 

combination we further assume that ∆𝑝6" > ∆𝑝2" > 0 as a result of the improved prediction model. 

The following approximations hold for relatively small increases in the predicted probabilities: 

(15)				∆𝑧6 ≈
𝑐+

Z𝑝6"\
3 ∆𝑝6

", 

 

(16)				∆𝑧2 ≈
𝑐+

Z𝑝2"\
3 ∆𝑝2

". 

However, despite combination 𝑖 having the larger increase in the probability of success, 

combination 𝑗 – the riskier combination – will actually move ahead in the ranking when:  

(17)			∆𝑧2 > ∆𝑧6 , 

=>					
𝑝6"

𝑝2"
>

∆𝑝6"

𝑝6"

∆𝑝2"

𝑝2"

, 



25 
 

That is, box 𝑗 will move ahead in the ranking if the ratio of proportionate changes in the probability 

of success is less than the initial ratios of the probabilities of success. Therefore, it is possible for 

riskier combinations to move ahead in the ranking despite experiencing a smaller increase in their 

probability of success as a result of the improved prediction model. This suggests another possible 

effect of improved prediction: improved prediction leads to riskier combinations moving along the 

discovery pipeline, enhancing the chances of more radical innovations being discovered.  

4.3 Extensions 

Multi-objective-optimization (MOO)  

Our basic model implicitly assumed a single objective (e.g., the binding efficacy of a small 

molecule drug with a given protein target). More realistically, a successful combination will have 

to meet multiple objectives – e.g., the drug is non-toxic in addition to efficacious binding. One 

straightforward extension is to assume that a combination must meet all requirements to be 

considered a success. That is, it must achieve a value of 1 on all necessary dimensions so that the 

overall indicator of success is the product of the individual success indicators. We then assume 

that the logistic ranking function applies to the overall probability of success.  

A less strict approach where objectives are measured continuously is to identify a Pareto frontier 

whereby one objective (say non-toxicity) cannot be increased without sacrificing another objective 

(say efficacy). The trade-offs between objectives might then be considered at a later stage of the 

discovery process (e.g. lead optimization). We discuss a multi-stage extension of our two-stage 

model that allows for multiple intermediate screening stages prior to final determinative testing 

below.  

Multi-task and transfer learning 

One challenge in applying AI-based prediction to tasks such as discovering a small-molecule drug 

that is effective against a given target is the sparsity of relevant data. This has led to interest in 

techniques such as multi-task learning where the prediction model is estimated based on a vector 

of outcome variables. 

Transfer learning refers to the ability to transfer knowledge from the use of data in related domains 

in the generation of the prediction model for new innovation tasks. We have already implicitly 
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used the idea of transfer learning in the cases analysed above in that related successes must be used 

in generating the prediction model for targets that by definition have not yielded a success.  

Active learning 

In our model, the innovator is only focused on the exploitation of the prediction model of the 

search space so as to discover new valuable combinations. Therefore, the choice of combinations 

to send for testing in both the cases discussed is solely based on the predicted probabilities of 

success of those combinations. However, another goal in selecting combinations to send for testing 

might be the improvement of the prediction model for future innovation search tasks. The optimal 

exploration might lead to different choices in terms of the ranking of combinations to send for 

testing. For example, the innovator may want to explore relatively unknown parts of the search 

space even if the benefit for current tasks is limited. In the context of an ongoing innovation effort, 

there can therefore be a trade-off between the goals of exploitation and exploration. An “active 

learning” strategy directly addresses this trade-off between the immediate innovation value and 

future information value of testing. 

A possible limitation of passive learning strategies based on exploitation of the existing prediction 

model is that there will be overconcentration on known parts of the combinatorial search space. In 

the context of, say, drug or materials design, active learning strategies have included techniques 

such as uncertainty sampling – testing combinations predicted with low confidence by the model 

– and model-improvement – testing combinations based on predictions of the how the new data 

point will improve the performance of the prediction model (Reker and Schneider, 2014). Active 

learning strategies “assist the selection process by focusing on areas of chemical space that have 

the greatest chance of success while considering structural novelty. The core feature of these 

algorithms is their ability to adapt the structure-activity landscapes through feedback” (Reker and 

Schneider, 2014, p. 458). 

Discriminative versus generative models.  

We have modelled the prioritization process as an effort to discriminate between potential 

combinations based on their predicted probability of success. A complementary approach aims to 

directly “design” a combination – say a small molecule drug – that meets specific requirements 

using a generative approach (see, e.g., Merk et al., 2018). The generative approach effectively 
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inverts the process, whereby the researcher starts with the desired properties and uses the model 

to identify the combination that comes closest to achieving these properties. Such generative 

modelling using AI falls into the broader category of de novo design. These approaches may be 

especially important in the context of refinements of rankings (such as lead optimization in the 

case of drug discovery): 

While compound elimination by appropriate scoring models discards the bulk of the 

designs (“negative design”) with acceptable accuracy, the selection of the best or most 

promising (“positive design”) remains prone to error. More accurate activity prediction 

models that extend the capabilities of existing approaches could originate from advanced 

machine learning methods. (Schneider, 2018, p. 109.) 

5.  A Multi-Stage Discovery Process and with Bottlenecks 

5.1. Extension of the model to include multiple intermediate screening stages with Bayesian 

updating between stages 

We assumed in Section 4 a highly simplified two-stage innovation process involving prediction 

(development of a prediction model choosing a testing threshold) and testing (testing all 

combinations with a probability of success at or above a threshold value that depended on the 

market value of an innovation success and the cost of conducting the test).  The motivation for this 

simple set-up is that the discovery pipeline often involves the production of a priority list for testing 

where such testing is expensive.  AI can be introduced as a possible way to improve the list.   

Of course, in reality innovation processes are more complex and involve multiple stages 

rather than just two. The typical stages of the drug discovery process include target identification, 

hit generation, generation of lead compounds from the hits (“hits to lead”), optimization of the 

lead compounds, pre-clinical trials (animal studies), and Phase I, II and III human clinical trials.  

In materials discovery, the stages can involve prediction of molecule properties, synthesis of the 

molecules, and characterization of the actual properties through testing, but this can be followed 

by further stages such as investigating the ability to synthesize at scale and testing the molecule 

under the different environmental conditions that could be observed in the field. 

We therefore extend our two-stage prediction-test model in this section to a multi-stage 

setting. Our main focus is on the implications of bottlenecks in later stages of the discovery 
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pipeline. The basic two-stage model already highlights one cause of bottlenecks – the costliness 

of later-stage testing. This has the implication that higher testing costs will reduce the number of 

combinations that advance to testing. However, another important source of bottlenecks is the poor 

efficacy of the various screens that make up the pipeline between the initial prediction stage and 

final testing stage. In the context of an option to abandon combinations following a negative 

screening result, we show that less effective screens also reduce the number of combinations that 

enter the pipeline. We discuss how such bottlenecks could limit the benefit from improved AI-

based prediction and how AI might itself be applied to later stages in the pipeline to help alleviate 

those bottlenecks.   

More specifically, we extend the basic two-stage model of prediction and testing to a 

discovery pipeline that involves potentially multiple intermediate screening stages in addition to 

the prediction and final (determinative) testing stages.15 As in Case 1 above, we assume that the 

innovator is seeking to find all combinations with a positive net value. Although we continue to 

assume that the final testing stage is determinative, we allow for imperfections in the intermediate 

screening stages in the form of the possibility of false negatives and false positives in the screens. 

For simplicity, we assume the false negative rates and the false positive rates are constant across 

each of the intermediate stages. We denote the false negative rate as 𝑥 and the false positive rate 

as 𝑦; the corresponding true positive and true negative are 1 − 𝑥 and 1 − 𝑦 respectively.  

To minimize notation we again assume, without loss of generality, that the gross payoff 

from a success, 𝜋, is equal to 1. Thus, the expected gross value of a combination at the completion 

of any given stage is just the estimated probability of success at that stage. We assume initially 

that all stages must be completed to launch an innovation on the market so that it is not possible to 

skip a stage. At the completion of the final (test) stage, the gross value is equal to 1 (a success) or 

0 (a failure), with the estimated probability of a success going into the testing stage equal to the 

estimated probability of success at the completion of the last intermediate stage.  

 There are 𝑆 stages, 𝑠 = 0,… , 𝑆, including the Stage 0 prediction stage, the final Stage 𝑆 

testing stage and 𝑆 − 1 intermediate stages. For any given intermediate stage, 𝑠 ∈ {1, … , 𝑆 − 1}, 

 
15 As	applied	 to	a	 specific	 candidate	combination,	our	multi-stage	discovery	process	 is	an	example	of	what	
Roberts	and	Weitzman	(1981)	call	a	Sequential	Development	Project:	costs	are	additive	across	stages;	value	is	
received	only	at	the	end	of	the	project;	and	there	is	a	possibility	of	abandoning	the	project	at	the	end	of	each	
stage.		 
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the probability of success is optimally calculated using Bayes rule given the prior probability 

inherited from the previous stage. We thus model the pipeline as a series of screens between the 

initial prediction stage and the final determinative test that lead to Bayesian updating of the prior 

probability of success.  Applying Bayes rule, this updating process is given by:  

(18)					𝑝&;|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑠𝑐𝑟𝑒𝑒𝑛 = 	
(1 − 𝑥)𝑝&;)+

(1 − 𝑥)𝑝&;)+ + 𝑦(1 − 𝑝&;)+)
. 

 

(19)				𝑝&;|𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑠𝑐𝑟𝑒𝑒𝑛 = 	
𝑥𝑝&;)+

𝑥𝑝&;)+ + (1 − 𝑦)(1 − 𝑝&;)+)
, 

where the denominators in (18) and (19) are the probability of a positive screen and a negative 

screen respectively. 

 As a combination advances along the discovery pipeline, it is assumed to follow a discrete-

stage Markov process as illustrated in Figure 5. The assumption of constant values of 𝑥 and 𝑦 at 

each stage means that we obtain the binomial lattice (or recombinant) structure shown in the figure, 

where the branches recombine to limit the number of possible values for the probability of success 

at each stage in the process. For example, the lattice structure implies that at Stage 3 the expected 

probability of success is the same for a given Stage 0 probability where there is a scenario of two 

positive screens followed by a negative screen, a scenario of a negative screen followed by two 

positive screens, or a scenario of a positive screen followed by a negative screen followed by 

another positive screen. Conveniently, the lattice structure implies that number of values that this 

probability can take at Stage 𝑠 is 𝑠 + 1, so that the number of possible values rises only linearly 

with the number of the stage.16 

For a given 𝑝&", the probability of a reaching a given node at Stage 𝑠 for a given number of 

positive and negative screens is:  

(20)					𝑞&;(ℎ) = (1 − 𝑥)%𝑥;)%𝑝&" + 𝑦%(1 − 𝑦);)%(1 − 𝑝&"). 

 
16 With	stage-specific	values	of	𝑥	and	𝑦,	the	number	of	possible	values	for	the	probability	of	success	would	rise	
exponentially	with	the	number	of	stages	so	that	the	number	of	possible	values	at	stage	s	would	be	2&.	Therefore	
the	lattice/recombinant	structure	dramatically	simplifies	the	computational	burden	when	there	are	multiple	
intermediate	stages. 
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In the case where any negative screen leads the combination to be abandoned, we obtain a simple 

expression for the probability that the combination survives 𝑠 stages: 

(21)				𝑞&;(𝑠) = (1 − 𝑥);𝑝&" + 𝑦;(1 − 𝑝&"). 

Figure 6 shows how the probability of surviving for a combination falls through multiple 

intermediate stages (assuming a combination is always abandoned following a negative screen). 

Thus, in addition to showing how the probability of success evolves as a combination travels 

through the pipeline, the model also allows us to makes predictions about the survival rates along 

the pipeline.  

Note that the probabilities for possible nodes that can be reached at a given stage s sum to 

1: 

(22)				A M𝑠ℎN [(1 − 𝑥)
%𝑥;)%𝑝&; + 𝑦%(1 − 𝑦);)%(1 − 𝑝&")] = 1,

;

%/"

 

where the number of paths to a given node is M𝑠ℎN. For example, at stage 3, there are three paths 

to the nodes involving a total of two successes and one failure: M𝑠𝑛N = M32N =
4!

(4)3)!3!
= 3. At 

Stage 𝑠, the probability of success given h positive screens and s – h negative screens (i.e., the 

probability of success at the given node) is:  

 

(23)				𝑝&;|ℎ	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑠𝑐𝑟𝑒𝑒𝑛𝑠 = 	
(1 − 𝑥)%𝑥;)%𝑝&"

(1 − 𝑥)%𝑥;)%𝑝&" + 𝑦%(1 − 𝑦);)%(1 − 𝑝&")
. 

We can verify that when viewed from the end of the Stage 0 (i.e., the prediction stage) the expected 

probability of success at Stage 𝑠 remains equal to 𝑝&":  

(24)				𝑝&; = AM𝑠𝑘N [(1 − 𝑥)
%𝑥;)%𝑝&" + 𝑦%(1 − 𝑦);)%(1

;

%/"

− 𝑝&")]
(1 − 𝑥)%𝑥;)%𝑝&"

(1 − 𝑥)%𝑥;)%𝑝&" + 𝑦%(1 − 𝑦);)%(1 − 𝑝&")
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=AM𝑠𝑘N (1 − 𝑥)
%𝑥;)%𝑝&" = 𝑝&"

;

%/"

. 

5.2 A three-stage “predict-screen-test” example 

 We now examine the implications of the existence of the option to abandon a combination 

upon the realization of a negative screen. We illustrate the implications for the number of 

combinations that initially enter the discovery pipeline with a three-stage example – that is a 

pipeline with an initial prediction stage (Stage 0) a single intermediate screening stage (Stage 1) 

and the final determinative testing stage (Stage 2). The cost of the intermediate screen is 𝑐+ and 

the cost of final test is 𝑐3. We assume that 𝑐+ + 𝑐3 ≤ 1 and that both 𝑐+ and 𝑐3 are strictly positive. 

Upon receiving a negative result on the intermediate screen, the option to abandon will be 

exercised if:  

(25)						
𝑥𝑝&"

𝑥𝑝&" + (1 − 𝑦)(1 − 𝑝&")
< 𝑐3. 

=>								 𝑝&" <
(1 − 𝑦)𝑐3

𝑥 + (1 − 𝑥 − 𝑦)𝑐3
 

Given the availability of the option to abandon, we now move attention back to the end of Stage 

0. We assume that the innovator is operating in the range where the combination will be abandoned 

on the realization of a negative screen in Stage 1. We can therefore determine the cut-off Stage 0 

probability below which combinations will not advance to intermediate screening, with a higher 

cut-off probability implying that fewer combinations advance given the ranking function. Equating 

expected marginal value with expected marginal cost allows us to identify the cut-off probability 

for advancing a combination to the intermediate stage. Moreover, given the logistic ranking 

function, the probability of success declines monotonically with the rank of the combination, so 

identifying the cut-off probability is identical to identifying the number of combinations to advance 

in the pipeline.  

The equation of expected marginal value and expected marginal cost yields:  
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(26)				y(1 − 𝑥)𝑝&∗
" + 𝑦Z1 − 𝑝&∗

" \z {
(1 − 𝑥)𝑝&∗

"

(1 − 𝑥)𝑝&∗" + 𝑦(1 − 𝑝&∗" )
|

= 𝑐+ + y(1 − 𝑥)𝑝&∗
" + 𝑦Z1 − 𝑝&∗

" \z𝑐3, 

=>				 𝑝&∗
" =

𝑐+ + 𝑦𝑐3
(1 − 𝑥)(1 − 𝑐3) + 𝑦𝑐3

. 

Note that for this cut-off probability to be strictly less than 1 we require that 𝑐+ < (1 −

𝑥)(1 − 𝑐3).	Moreover, for the denominator to be positive (and thus that the cut-off probability is 

greater than zero), we require that (1 − 𝑥)(1 − 𝑐3) + 𝑦𝑐3 > 0. Finally, note that for the probability 

of a successful screen to increase with the prior probability of success we require that 1 − 𝑥 − 𝑦 >

0.	 

The innovator will choose to advance all combinations with a positive expected net value 

recognizing that Stage 2 cost will not be incurred (i.e., the option to abandon will be exercised) in 

the event of a negative screen. Figure 7 examines this decision by relating the expected net value 

of the 𝑟$% ranked combination, 𝑣&1, to 𝑝&". The line with the intercept−(𝑐+ + 𝑐3) shows how the 

expected net value changes with 𝑝&" in the absence of an option to abandon or where that option is 

not exercised. The line with the intercept−(𝑐+ + 𝑦𝑐3) shows how expected net value evolves with 

𝑝&" assuming the option to abandon is always exercised when there is a negative result on the Stage 

1 intermediate screen. The bold line shows the evolution of expected net value given the optimal 

advancement of combinations from Stage 0 as given by equation (21) and the optimal exercise of 

the option to abandon after the screening result given by equation (20). For low values of 𝑝&" the 

combination will not advance to the screening stage and the expected net value is zero. For 

intermediate values of 𝑝&" the combination will advance to screening but will be abandoned in the 

event of a negative screen, saving on Stage 2 testing costs. For high enough values of 𝑝&" the 

combination will not be abandoned even in the event of a negative screen. However, we assume 

here that the screen must take place due to it being an indispensable part of the final testing stage 

so that it needs to be conducted regardless of whether the combination advances to the final stage.  

In the next section, we examine the implications of being able to skip the screening stage altogether 

where Stage 0 predictions are sufficiently high and go straight to determinative testing.  
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 We finally examine how a change in either the cost of the screening or testing stages, or in 

the accuracy of the screen (which is affected by both 𝑥 and 𝑦), impacts the number of combinations 

that advance from Stage 0. Starting with a change in either of the costs, we find: 

(27)							
𝜕𝑝&∗

"

𝜕𝑐+
=

1
(1 − 𝑥)(1 − 𝑐3) + 𝑦𝑐3

> 0. 

 

(28)						
𝜕𝑝&∗

"

𝜕𝑐3
=
𝑦[(1 − 𝑥)(1 − 𝑐3) + 𝑦𝑐3] + (1 − 𝑥 − 𝑦)[𝑐+ + 𝑦𝑐3]

[(1 − 𝑥)(1 − 𝑐3) + 𝑦𝑐3]3
> 0 

The accuracy of the test will decrease with either a rise in the false negative rate (i.e., an increase 

in 𝑥) or a rise in the false positive rate (i.e., an increase in 𝑦) on the screen. In both cases, the effect 

is to raise the cut-off probability and thus decrease the number of combinations advancing in the 

pipeline:  

(29)			
𝜕𝑝&∗

"

𝜕𝑥 =
(1 − 𝑐3)[𝑐+ + 𝑦𝑐3]

[(1 − 𝑥)(1 − 𝑐3) + 𝑦𝑐3]3
> 0. 

 

(30)				
𝜕𝑝&∗

"

𝜕𝑦 =
𝑐3[(1 − 𝑥)(1 − 𝑐3) − 𝑐+]
[(1 − 𝑥)(1 − 𝑐3) + 𝑦𝑐3]3

> 0. 

Therefore, in addition to the bottlenecks that result from the costliness of later stages in the 

discovery pipeline, this simple model of the pipeline shows how an additional source of 

bottlenecks can result from poorly performing screens as captured by high false negative rates 

and/or high false positive rates. As an increase in either 𝑥 or 𝑦 will effectively decrease the 

uncertainty associated with a given screen, it decreases the value of the option to abandon. A 

bottleneck is then a reflection of low uncertainty relating to the screen given the poor 

discriminating power of that screen. As is familiar with options pricing in the financial and real 

options contexts, this reduction in uncertainty as a result of low efficacy screens will reduce the 

option value component of the total net expected value.  

The effect of an increase in bottlenecks (i.e., some combination of higher values of 𝑐+ 

and/or 𝑐3 and higher values of 𝑥 and/or 𝑦) on the number of combinations advancing from Stage 
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0 is shown in Figure 8. A worsening of any of the determinants of the bottlenecks will shift the 

horizontal line upwards, leading to an increase in the cut-off Stage 0 probability of success and 

thus a reduction in the number of combinations that enter the pipeline (i.e., a fall in 𝑟∗).  

The logic of the three-stage example can be extended to a discovery process with 	𝑆 − 1 

intermediate stages. Entering the penultimate stage (i.e., the last intermediate stage) the analysis is 

identical at any given node to the three-stage example given above. Any positive option value for 

this sub-problem will result in positive option value for the decision problem overall. A similar 

argument applies to any other node along the decision tree, where the decision maker assumes they 

will act optimally in terms of any decision to abandon at any subsequent node. Therefore, if the 

option to abandon has value at any node in the decision tree, then the existence of the option has 

value for the decision process overall.  

 The challenge faced by innovators is sometimes thought of in terms of the high failure rate 

along the discovery pipeline. However, this analysis points to the importance of “failing” early 

before significant costs are incurred in pursuing ultimately unsuccessful innovations. Being able 

to identify poor combinations early increases the incentive to allow combinations to advance from 

the AI-assisted prediction stage. The goal might be thought of as: “fail early, fail often” (Babineaux 

and Krumboltz, 2003). We can think of an important adverse effect from the bottleneck as being 

combinations that stay too long in the pipeline but eventually fail, decreasing the incentive to enter 

combinations into the post-prediction pipeline to begin with. 

6. Interaction of bottlenecks with an AI-based improvement in prediction  

6.1 Examples of Negative Interactions  

Our model of the discovery process has shown: (i) that an AI-based improvement in first-stage 

prediction leads to an increase in the expected net value of innovation; and (ii) for any given 

combination that enters the discovery pipe, that bottlenecks in the pipeline due to costly screening 

and testing and/or the poor efficacy of screens reduces the expected net value of that combination. 

A remaining question is how the existence of bottlenecks interacts with the AI-based improvement 

in prediction. While the interaction is generally quite complex, depending, inter alia, on the nature 

of the innovation task, we illustrate the possibility of a negative interaction for the independent 
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innovations case where the innovator is seeking all possible positive expected value innovations. 

We examine both a two-stage and a three-stage example.  

A two-stage (predict-test) example 

We begin with a simple two stage example where the only source of bottleneck is the cost of Stage 

1 testing. Figure 9 shows the expected net gain from the adoption of the AI-prediction technology. 

Ignoring the discrete nature of the problem, the area between the ranking functions up to the 

number of combinations that advance for testing is the total expected gain from the access to AI. 

The left panel shows the case of a low cost of second-stage testing (i.e., less severe bottleneck) 

and the right panel shows the case of high cost second-stage testing (i.e., more severe bottleneck). 

The increase in expected total net value from access to the improved prediction technology is 

negatively affected where the extent of the bottleneck is greater. In addition to reducing the positive 

impact of the improved prediction technology once adopted, the existence of the more severe 

bottleneck could affect the decision to invest in the AI-based prediction technology to begin with. 

Such negative interaction could therefore lead to a limited impact on the innovation process of the 

availability of the improved prediction technology, even though in expectation the impact remains 

positive.  

A three stage (predict-screen-test) example 

We next consider the interaction between an improved prediction model and the wider set of 

potential bottlenecks in the three-stage model. We make the additional simplifying assumption 

that the false positive rate, 𝑦, is zero, leaving three sources of potential bottlenecks – high values 

of 𝑐+, 𝑐3 or 𝑥. Using equation (26), we can write the expected net value of a combination at a given 

rank, 𝑟, as:  

(31)			𝑣&1 = (1 − 𝑥)𝑝&" − 𝑐+ − [(1 − 𝑥)𝑝&"]𝑐3 

						= [(1 − 𝑥)(1 − 𝑐3)]𝑝&" − 𝑐+. 

We can therefore visualize the expected total net value, 𝑉1, as the area between the two curves 

shown in Figures 10a and 10b up to the optimal number of combinations to be sent for testing. 

Figure 10a shows the impact of an improved prediction model on 𝑉1 for both high and low values 

of 𝑐+. The increase in 𝑉1is higher where 𝑐+ is low rather than where it is high, indicating again a 
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negative interaction between the improvement in the prediction model and the extent of the 

bottleneck. Figure 10b compares the impact of an improved prediction model in the case where 

either 𝑐3 or 𝑥 is low compared to where either 𝑐3 or 𝑥 is high. The size of both 𝑐3 or 𝑥 will affect 

how much the downward-sloping curve will shift following an improvement in the prediction 

model. As with the first example, we see a negative interaction between the improved model and 

the size of the bottleneck. More substantial bottlenecks will again make it less likely that an 

investment in the improved prediction technology will be undertaken.  

 We hasten to add that both these examples assume independent innovations (Case 1). As 

we have seen in our analysis of Case 1 in Section 4, an improvement in the prediction technology 

leads to more combinations advancing in the pipeline. This explains why higher costs and less 

effective screens tend to blunt the positive impact of the improved technology. However, as was 

evident in Cases 2 and 3, it is possible that the improved technology leads to more targeted search 

with fewer combinations advancing. With less combinations advancing the existence of 

bottlenecks becomes less of a concern (e.g. fewer costly tests need to be conducted), so that the 

improvement in the prediction technology and the extent of the bottlenecks interact positively 

rather than negatively. Nevertheless, putting aside the interactions, it remains true that if AI can 

be applied to later stages of the pipeline to reduce bottlenecks, there will be a direct gain in 

expected value (e.g. lower costs for any advancing combination). We finally briefly discuss how 

AI could be applied beyond the prediction stage and consider both the possible direct and indirect 

benefits for innovation.   

6.2 Could AI Reduce Bottlenecks Over Time?  

As they relate to the innovation process, one characterization of recent advances in AI-

based prediction is as a new general purpose technology (GPT) for invention (Agrawal et al., 

2018a; Cockburn et al., 2018).  As has been identified in other contexts, new GPTs may only have 

their full effect after a significant elapse of time due to the need for complementary upstream and 

downstream investments. In a classic paper, Paul David (1990) has explored the lagged 

productivity effects of both the invention of electricity and the computer, and similar lagged effects 

might be operating for AI as a technology for discovery.17 Brynjolfsson et al. (2017) explore four 

 
17 Drawing	on	historical	analogies	of	delayed	productivity	effects,	David	cautioned	against	undue	pessimism	
due	to	the	apparent	limited	impact	of	computers	on	productivity,	notwithstanding	their	growing	prevalence:	
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potential causes of the general (not discovery-specific) productivity paradox in AI - false hopes, 

mismeasurement, redistribution, and implementation lags - and conclude that precisely this issue, 

implementation lags due to under developed complements, is the most likely culprit. 

  In the example of drug discovery, the benefit of AI in generating and ranking a large 

number of leads may be compromised, say, by a bottleneck following lead identification stage. It 

is worth considering a David-type solution that might evolve over time. As AI-assisted prediction 

develops, it might also be applied directly in other stages, including substituting for human 

judgment in the lead optimization (see Agrawal et al., 2019b on the roles of prediction and 

judgement in a multi-stage decision process).18 One possibility is that AI is used to predict the 

outcome of later screens – say the toxicity of a drug. This could lead to the early abandonment of 

unpromising combinations before significant costs are incurred.  

Although it could be some distance in the future, with well-enough performing AI it might 

be possible to eliminate certain screening stages altogether and replace them with AI-based 

predictions, eliminating, say, the need for animal-based safety screens to allow a candidate drug 

to advance to clinical trials. 

In the context of our three-stage example of predict-screen-test, we have already seen that 

if the Stage 0 predicted probability of success is high enough then the innovator knows that 

combination will not be abandoned even with a negative screen. We previously assumed that the 

costly screen had to be conducted (possibly for regulatory reasons). However, in the case where 

the screen is redundant, we can imagine a situation where the innovator is allowed to skip the 

screening stage. It follows if 𝑝&" is high enough we return essentially to the two-stage case of predict 

and test.  

 
“Closer	study	of	some	economic	history	of	technology,	and	familiarity	with	the	story	of	the	dynamo	revolution	
in	particular,	should	help	us	avoid	the	pitfall	of	undue	sanguinity	and	the	pitfall	of	unrealistic	impatience	into	
which	current	discussions	of	the	productivity	paradox	seem	to	plunge	all	too	frequently,”	(p.	359-360). 
18 Much	of	 the	recent	 interest	 in	machine	 learning	 in	 the	econometrics	and	policy	evaluation	 literature	has	
focused	on	the	value	of	machine	learning	in	causal	inference	and	policy	evaluation	(see	Athey,	2019,	for	a	recent	
survey).	 	Machine	 learning	 is	 being	 applied	 to	 help	 control	 for	 confounding	 variables	 to	 estimate	 average	
treatment	effects	and	also	to	estimate	heterogeneous	treatment	effects	(Athey,	2019;	Athey	and	Imbens,	2019).	
Such	tools	may	be	especially	relevant	in	later	stages	of	a	multi-stage	discovery	process	as	complements,	say,	to	
random	and	natural	experiments.		Thus	machine	learning	may	itself	help	relieve	the	bottleneck	problem	over	
time. 
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Figure 11 amends Figure 7 to allow for this possibility. If the Stage 0 predicted probability 

of success is high enough, we see a discontinuous jump in the bold line that links that probability 

to the expected net value of the combination, 𝑣&1. Therefore, if the use of AI-based prediction is 

successful enough in terms of generating high probability of success candidate combinations, it 

may directly obviate the requirement for costly (and time consuming) downstream parts of the 

discovery pipeline.  

One additional active area of interest in terms of complementary investments to improved 

AI-based prediction technologies is the development of “autonomous discovery” systems (Aspuru-

Guzik and Persson, 2018). Such systems are particularly relevant where it is possible to have rapid 

feedback in terms of success data on combinations that advance along the pipeline, where those 

data can be used to improve the prediction model as part of an active learning strategy. For 

example, machine-learning-based predictions determine which candidates are tested using robotic 

high throughput screening (HTP) methods.19   

Lamenting the slow speed and high cost of the development and deployment of advanced 

materials using the traditional approach – new materials typically “reach the market after 10-20 

years of basic and applied research” – Tabor et al. (2018, p.5) outline what they see as required for 

an autonomous (closed-loop) innovation process: 

To fully exploit the advances in autonomous robotics, machine learning, high-throughput 

virtual screening, combinatorial methods and in situ or in operando characterization, we 

must close the loop in the research process.  This means that humans must partner with 

autonomous research robots to design experimental campaigns and that the research robots 

perform experiments, analyze the results, update our understanding and then use AI and 

machine learning to design new experiments optimized to the research goals, thus 

completing one experimental loop.   

 
19 An	early	example	of	such	an	autonomous	system	 is	 the	Robot	Scientist	 (Sparkes	et	al.,	2010).	 	 	The	 first	
prototype	Robot	Scientist,	Adam,	generated	hypotheses	and	carried	out	experiments	related	to	the	functional	
genomics	of	a	yeast.	 	 	While	 it	 is	unlikely	that	truly	closed-loop	systems	will	 lead	to	a	mass	replacement	of	
scientists,	the	potential	exists	for	the	greater	use	of	AI	and	automation	to	ease	bottlenecks	across	the	discovery	
pipeline.			
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Current processes are affected by the bottleneck problem, which Tabor et al. (2018, p.16) suggest 

is in the “experimental synthesis, characterization and testing of theoretically proposed materials,” 

but that if an autonomous approach could be implemented “the bottleneck will move to AI.”   

7.  Making Predictions: Advances in AI as a Shock to the Innovation Process 

In this section, we further discuss AI as the source of the shock to the innovation process. 

Our generic workflow in the multi-stage model is initial prediction followed by various screens 

and tests based the sequential refinement of the predicted probability of success. There are a 

number of ways to generate such Stage 0 prediction models for the landscape. A useful distinction 

is between theory- and simulation-based approaches on one hand and data-based approaches on 

the other. For reasons to be explained below, we treat machine learning as a subset of the data-

based approach. While data is obviously also central in the other stages (say through the use of 

controlled or natural experiments), the focus here is on how data is used to generate prediction 

models.     

In order to better delineate the role of machine learning as a prediction tool, we first 

underline the role of theory in generating predictions in Popper’s classic account of the scientific 

method. However, we take it that the central requirement for science is that predictions can be 

tested and leave open the source of those predictions to include data-based approaches. Theory, of 

course, remains a major source of predictions even with the advance of AI. In theoretical 

chemistry, for example, the Schrödinger equation remains central to the predictions of molecular 

properties. Given the complexity of predictions beyond extremely small molecules, various 

approximations such as the Born-Oppenheimer (1927) approximation or Hartree-Fock theory are 

used (Szabo and Ostlund, 1996). However, even with these approximations the complexity of the 

calculations requires the use of (typically costly) computer simulations.   

The second broad method of prediction prior to testing is data-based prediction generation. 

As noted, we think of machine learning as a subset of data-based prediction – a subset for which 

there has been recent rapid progress. In distinguishing this subset, we find it useful to make use of 

Leo Breiman’s (2001) contrast between “two cultures” of statistical modeling, which he labels the 

“data modeling culture” and the “algorithmic modeling culture.”  We identify the latter with what 

is commonly referred to as machine learning, although we recognize that there is no widely 

accepted division between what is part of traditional statistics and what is part of machine learning. 
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Breiman outlines what he sees are the broad differences between the two approaches, but a key 

feature for our purposes is that the former, typically informed explicitly by scientific theory, uses 

a parametric data model. This model will typically specify the dependent variable, the predictor 

variables, the functional form and the stochastic form of the disturbance term in the model.   

We now consider the effect of having access to machine learning as an alternative tool for 

statistical modeling of the landscape. Breiman (2001, p. 205) describes the alternative 

“algorithmic” approach as follows: 

The approach is that nature produces data in a black box whose insides are complex, 

mysterious, and, at least, partly unknowable.  What is observed is a set of x’s that go in and 

a subsequent set of y’s that come out. The problem is to find an algorithm f(x) such that 

for a future x in a test set, f(x) will be a good predictor of y.   

The data-generating processes in many combinatorial-type problems – drug discovery, 

materials science, genomics, etc. – do appear to fit the description of “complex, mysterious and, 

at least, partly unknowable.” To the extent that the machine learning approach provides a better 

prediction model (in at least some circumstances) for valuable new combinations that are 

distributed over a vast and complex search space, it would appear to have the potential to boost 

the productivity of the innovation search process.20    

How does machine learning fit our generic predict-screen-test workflow? We assume that 

part of the knowledge base consists of data on previous experiments that we treat for simplicity as 

indicating tested combinations were successes or failures. These binary outcome data together with 

input data on the combinations (amino acid sequences, molecular descriptors, etc.) are the training 

data for our supervised machine learning prediction model. The measure of a good prediction 

model will be how well it predicts (or generalizes) outside of the training sample.   

Of course, there is a vast – and rapidly growing – array of available machine learning 

algorithms. To give a flavor of their use in generating prediction models we note just a selection 

here and relate them to our generic workflow of classifying potential combinations into predicted 

 
20 It	is	important	to	note	that	textbooks	on	machine	learning	typically	subsume	parametric	regression	and	
classification	models	as	forms	of	machine	learning.	However,	we	find	Breiman’s	distinction	to	be	useful	in	
highlighting	the	shock	to	the	innovation	process	that	the	rapid	advance	in	machine	learning	has	engendered,	
and	take	his	narrower	category	to	be	what	is	meant	by	machine	learning	(see	also	Athey	and	Imbens,	2019). 
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successes and failures. Probably the most intuitive algorithm is k-nearest neighbors. The predicted 

probability of success of a candidate combination is simply the average success rate of the k nearest 

neighbors in the search space. Decision tree methods work by instead segmenting the search space 

into success and failure regions. The more complex decision tree methods used in practice (e.g. 

random forests) involve multiple trees that are combined together to produce the predicted 

probability of success. A third example is the naïve Bayes classifier. In contrast to the approaches 

noted already, this approach concentrates on the individual “features” – the states of an element of 

the string describing a combination in our generic example – which are each assumed to have an 

independent effect on the success of a combination. The output is an estimate of the probability of 

success conditional on the states all the elements in the string describing that candidate 

combination.   

In addition to the increased availability of data and computing power, much of the recent 

excitement concerning machine learning is due to rapid improvement in algorithms. Of particular 

note is the rapid improvement in prediction models based on artificial neural networks, most 

notably so-called deep learning algorithms.   

Deep learning is making major advances in solving problems that have resisted the best 

attempts of the artificial intelligence community for many years.  It has turned out to be 

very good at discovering intricate structures in high-dimensional data and is therefore 

applicable to many domains of science, business and government.  (LeCun, et al., 2015, p. 

436.) 

Although an in-depth discussion of the technical advances underlying deep learning is 

beyond the scope of this paper, three aspects are worth highlighting. First, the development and 

optimization of multilayer neural networks allows for substantial improvement in the ability to 

predict outcomes in high-dimensional spaces with complex non-linear interactions (LeCun et al., 

2015).21 Second, given that previous generations of machine learning were constrained by the need 

 
21	For	example,	a	review	of	the	use	of	deep	learning	in	computational	biology	notes	that	the	“rapid	increase	in	
biological	 data	 dimension	 and	 acquisition	 rate	 is	 challenging	 conventional	 analysis	 strategies,”	 and	 that	
“[m]odern	machine	 learning	methods,	 such	 as	 deep	 learning,	 promise	 to	 leverage	 very	 large	 data	 sets	 for	
finding	hidden	structure	within	them,	and	for	making	accurate	predictions”	(Angermueller	et	al.,	2016,	p.1).		
Another	review	of	 the	use	of	deep	 learning	 in	computational	chemistry	highlights	how	deep	 learning	has	a	
“ubiquity	and	broad	applicability	to	a	wide	range	of	challenges	in	the	field,	 including	quantitative	structure	
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to extract features (or explanatory variables) by hand before statistical analysis, a major advance 

in machine learning involves the use of “representation learning” to automatically extract the 

relevant features.22  And third, recent optimism about developments in deep learning relates to 

demonstrated out-of-sample performance of deep learning models across a range of tasks, 

including image recognition, speech recognition, language processing, and autonomous vehicles.23  

Notwithstanding that the most publicized successes of deep learning have been in areas 

such as games of strategy including chess and go and the winning of image recognition 

competitions such as ImageNet, parallels to the way in which the new methods work on 

unstructured data are increasingly being identified in many fields with similar data challenges to 

produce research breakthroughs.24 While these new general purpose research tools will certainly 

not replace displace traditional theory, simulation, and statistical data modeling – nor the 

researcher’s intuition – as methods for developing predictive models of fitness landscapes, 

machine learning methods such as deep learning appear to offer powerful new tools for prediction, 

especially where the complexity of the underlying phenomena present obstacles to more traditional 

methods.25 

8. Policy Implications 

 
activity	relationship,	virtual	screening,	protein	structure	prediction,	quantum	chemistry,	materials	design	and	
property	prediction”	(Goh	et	al.,	2017).				
22	As	described	by	LeCun	et	al.	(2015,	p.	436),	“[c]onventional	machine-learning	techniques	were	limited	in	
their	 ability	 to	process	natural	 data	 in	 their	 raw	 form.	 	 For	decades,	 constructing	 a	 pattern-recognition	or	
machine-learning	system	required	careful	engineering	and	considerable	domain	expertise	to	design	a	feature	
extractor	 that	 transformed	 the	 raw	 data	 (such	 as	 the	 pixel	 values	 of	 an	 image)	 into	 a	 suitable	 internal	
representation	or	feature	vector	from	which	the	learning	subsystem,	often	a	classifier,	could	detect	or	classify	
patterns	in	the	input.	.	.	.	Representation	learning	is	a	set	of	methods	that	allows	a	machine	to	be	fed	with	raw	
data	and	to	automatically	discover	the	representations	needed	for	detection	or	classification.”	
23 While	 scholars	 consider	deep	 learning	models	 something	of	 a	 black	box	due	 to	 their	 complexity,	 recent	
theoretical	work	has	made	progress	in	understanding	why	these	models	have	had	such	success	in	generalizing	
beyond	their	training	data	(see,	for	example,	Shwartz-Ziv	and	Tishby,	2017).	
24	A	recent	review	of	deep	learning	applications	in	biomedicine	usefully	draws	out	these	parallels:	“With	some	
imagination,	parallels	can	be	drawn	between	biological	data	and	the	types	of	data	deep	learning	has	shown	the	
most	 success	with	 –	 namely	 image	 and	 voice	 data.	 A	 gene	 expression	 profile,	 for	 instance,	 is	 essentially	 a	
‘snapshot,’	or	image,	of	what	is	going	on	in	a	given	cell	or	tissue	in	the	same	way	that	patterns	of	pixilation	are	
representative	of	the	objects	in	a	picture”	(Mamoshina	et	al.,	2016,	p.	1445).			
25	A	recent	survey	of	the	emerging	use	of	machine	learning	in	economics	(including	policy	design)	provides	a	
pithy	characterization	of	the	power	of	the	new	methods:		“The	appeal	of	machine	learning	is	that	it	manages	to	
uncover	generalizable	patterns.	In	fact,	the	success	of	machine	learning	at	intelligence	tasks	is	largely	due	to	its	
ability	 to	discover	complex	structure	that	was	not	specified	 in	advance.	 It	manages	to	 fit	complex	and	very	
flexible	functional	forms	to	the	data	without	simply	overfitting;	it	finds	functions	that	work	well	out	of	sample”	
(Mullainathan	and	Spiess,	2017,	p.	88).			
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We focus on policies arising from three distinct market failures. First, the gap between the socially 

optimal and privately optimal levels of data sharing may be severe. Data is one of the primary 

ingredients for building AI systems. Policies that either regulate or incentivize the sharing of 

privately held data may yield significant social welfare dividends under conditions where those 

data enable the development of AI models that support productivity enhancing innovations.   

Second, the private sector may severely under invest in the running of experiments that 

generate data that could subsequently be used for training AI models to support productivity 

enhancing innovations. This is likely to be especially salient as lab work is automated via robotics, 

lowering the marginal cost of experiments. Thus, subsidies and other incentives for running 

experiments in order to generate data in sparse areas of the search space may generate outsized 

positive externalities for discovery.  

Finally, there may be path dependency associated with the location of market leaders in 

markets that become highly dependent on AI for innovation, such as drug discovery and materials 

discovery. Leadership in these domains may depend on access to labor with cross-disciplinary 

skills (e.g., biology and machine learning). As universities are slow to internalize market forces, 

regions may benefit from implementing funding and other incentives to accelerate the provision 

of new cross-disciplinary programs that create a local supply of talent that is suitably trained to 

commercialize opportunities at the intersection of AI and scientific discovery. We explain these 

three market failures below, but first put them in context as novel due to the shifting frontier of 

technological advance.  

8.1 Policy and the shifting frontier 

 The technological frontier has shifted over the past half century. Advances in AI are both 

a result of that shift, which has favored information sciences and biology over energy, 

transportation, and chemicals, and are now also a cause of that shift because AI increases returns 

to the types of discovery that are enabled via prediction predicated on big data. So, AI-related 

policy must be considered in the context of innovation frontiers that are different today than when 

many innovation policies were established in the period immediately following WWII. 

In terms of productivity, despite indications of rapid technical advance in areas such as 

information technology and genomics, growth in recent decades has been disappointing (see, e.g., 
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Gordon, 2015). Various explanations have been given including increased mismeasurement and 

lags between breakthroughs in general purpose technologies and productivity impacts 

(Brynjolfsson et al., 2019). As argued by Gordon, it is also possible that the low hanging fruit in 

terms of useful productivity improvements have been picked, notwithstanding the appearances of 

rapid technical advance.  

The late 19th century and first half of the 20th century was a period of rapid improvement 

in the understanding of physical and chemical phenomena. These improvements in turn led to 

theory-based prediction models that had wide practical application in the middle decades of the 

20th century, including in areas such as energy (e.g., electricity), transportation (e.g., the internal 

combustion engine) and chemicals (e.g., fertilizers).  

In contrast, many of the most important breakthroughs in recent decades have been in the 

biological and information sciences. Advances in these areas have also interacted as the 

complexity of biological systems necessitates complex statistical models, increased computing 

power, and huge amounts of data. Examples already discussed include the prediction of small 

molecule drug binding with target proteins, predictions of protein folding to better understand 

target proteins, and the identification of a broader range of intervention targets through improved 

understanding of gene regulatory networks. Even in domains where there remains significant 

potential for theory and simulation-based prediction models – as in materials science – the 

computational burden of applying these prediction tools over large search spaces can be 

prohibitive, leading to increased interest in AI-aided approaches that support the search process.  

There has therefore been an apparent shift in the technological frontier and in the parts of 

that frontier that are amenable to further advances using AI-based prediction tools. This changing 

frontier suggests the need for policymakers to support the redirection of resources to areas where 

the potential for new discoveries is greatest. In the remainder of this section, we consider three 

challenges that policymakers must grapple with as they respond to these changes: access to (big) 

data; bottlenecks in increasingly AI-aided discovery processes; and the policy implications of the 

changing market for scientist skills. 

8.2 Policies to Incentivize Data Sharing   
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Perhaps the most consequential policy implication of our combinatorial search model 

relates to the importance of data. Access to data – findings on prior successes and failures in our 

simplified setting – is essential to building effective prediction models. Greater access to data 

allows for better exploitation of the fruitful parts of the space by building better maps of that space.  

The model also suggests the importance of data spillovers in addition to more traditional idea 

spillovers for sustaining economic growth.  

Scientists, funders, and policymakers are increasingly recognizing the importance of open 

data, and numerous collective efforts have arisen to improve data access. Funding agencies, for 

example, are more often requiring open access as a condition for funding. Scientists themselves 

are mobilizing to solve the collective action problem of access to data: the number of open-source 

datasets is growing. Examples include The 1000 Genomes Project (genomics), PubChem 

(chemistry) and The Materials Project (materials science).26  

A significant concern is a lack of access to data on failures, which are more likely to remain 

hidden in the notebooks of experimentalists given the strong incentives to publish data on 

successes and missing incentives to publish data on failures (Raccuglia et al., 2016). The successful 

training of supervised machine learning models requires knowledge of what failed as well as what 

succeeded in the past. While access to data on failures has always been valuable for scientific 

research, the necessity of failure data to train AI models greatly increases the value of failure data. 

As the extant system of science that favors the publication of successful experiments, new 

incentives are required to increase the propensity of scientists to publish their failed experiments. 

Policies designed increase the incentives and decrease the frictions associated with sharing data 

on failed experiments will likely generate significant positive externalities in a new era where AI 

models play an important role in productivity enhancing innovation. 

Another policy concern stems from the importance of large private companies in the 

innovation process. Private companies may have strong incentives to limit access to proprietary 

data. This gives larger companies an advantage that can become self-reinforcing as they 

 
26 AI	is	itself	being	applied	to	help	discover	data.	For	example,	BenchSci	is	an	AI-based	search	technology	for	
identifying	antibodies	that	act	as	reagents	in	scientific	experiments.		It	attempts	to	deal	with	the	challenge	
that	reports	on	compound	efficiency	are	scattered	through	millions	of	scientific	papers	with	limited	
standardization	on	how	the	reports	are	provided.	BenchSci	extracts	compound	efficiency	information	thus	
allowing	scientists	to	more	effectively	identify	compounds	for	experiments. 
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monopolize access to expanding datasets. However, many firms are recognizing the advantage of 

open innovation models (see Chesbrough et al., 2006, for an early discussion) as they gain access 

as well as provide access by engaging in open knowledge sharing networks. Firms may also have 

an incentive to make data (and algorithms) accessible as they attempt to stave off regulation and 

anti-trust enforcement. Even so, recognizing the relative power of leading technology (including 

social networking) companies in accessing data compared to universities and smaller firms, 

policies that increase the cost of innovation-retarding monopolization of key emerging sectors will 

likely yield significant social benefits by way of enabling productivity enhancing innovation.  

Finally, national and regional approaches to data protection policies could also affect the 

geographical evolution of AI-related activity. For example, the relatively stringent approach to 

data protection under the European General Data Protection Regulation could hinder the 

development of certain types of AI-based discovery and innovation in the EU.  The increasing 

salience of privacy issues could limit access to certain forms of data such as patient health records, 

although privacy issues should be less of an issue where personal data is not involved (e.g., datasets 

on molecular descriptors and properties). China’s less protective approach to personal data (e.g., 

facial recognition data) could give it a competitive advantage in certain settings. Policymakers will 

have to make difficult choices on how to balance the trade-off between data access and privacy 

protection in the context of international competition for leadership in important emerging 

economic sectors.  

8.3. Policies to Incentivize the Creation of Data  

AI models are much better at predicting successful combinations from the parts of the 

search space that are well populated with experimental data compared to those parts that are 

sparsely populated. Profit-maximizing firms will understandably focus on harvesting results from 

heavily populated parts of the search space. The difference between the private versus social 

benefits of running experiments, that are less likely to succeed but will add data to the sparsely 

populated parts of the search space, may be very significant due to the private costs of running 

experiments and the public benefits of populating the search space. Therein lies another 

opportunity for welfare enhancing policies in the context of AI and innovation. 

Our model highlights the problem of bottlenecks in the discovery process that could limit 

the productivity benefits of machine learning as a GPT for prediction. The issue of bottlenecks has 
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probably received most attention in the context of materials discovery.  The long timelines between 

the initiation of research and the launch of new materials have led to interest in more autonomous 

(or “self-driving) discovery processes (Aspuru-Guzik and Persson, 2018). The slow speed and high 

failure rates of discovery pipelines plagued with bottlenecks has increased interest in more 

autonomous processes that utilize a combination of AI and robotics. For example, machine-

learning-based predictions determine which candidates are tested using robotic high throughput 

screening (HTP) methods. While it seems unlikely that truly closed-loop systems will lead to a 

mass replacement of scientists, the potential exists for the greater use of AI and automation to ease 

bottlenecks across the discovery pipeline.   

The promise of autonomous systems is expressed by Tabor et al. (2018, p.5) as follows: 

“[P]latforms that integrate AI with automated and robotized synthesis and characterization have 

the potential to accelerate the entire materials discovery and innovation process to reduce this time 

[10-20 years] by an order of magnitude.” To deliver on this promise, they call on efforts and 

leadership from academia, governments, and industry in building the required multi-disciplinary 

workforce and supporting collective action efforts such as the Material Genome Initiative and the 

multi-country Mission Innovation Initiative.27 

 The prediction model in our two-task process played a basic role: predicting the probability 

of success of any given candidate combination and thus the combinations that should go for testing. 

In a truly closed-loop process, an additional source of value from tests needs to be considered: how 

the data from those tests can be used to improve the prediction model.  For example, an additional 

test observation that allows for more accurate discrimination for candidate combinations in the 

neighborhood of the probability threshold may have a particularly high information value as the 

innovator seeks to exploit promising parts of the combinatorial space.  

 
27 Tabor	et	al.	 (2018,	p.15)	outline	what	 they	see	as	 required	 for	an	autonomous	(closed-loop)	 innovation	
process:	 “To	 fully	 exploit	 the	 advances	 in	 autonomous	 robotics,	machine	 learning,	 high-throughput	 virtual	
screening,	combinatorial	methods	and	in	situ	or	in	operando	characterization,	we	most	close	the	loop	in	the	
research	 process.	 This	 means	 that	 humans	 must	 partner	 with	 autonomous	 research	 robots	 to	 design	
experimental	campaigns	and	that	the	research	robots	perform	experiments,	analyze	the	results,	update	our	
understanding	and	then	use	AI	and	machine	learning	to	design	new	experiments	optimized	to	the	research	
goals,	thus	completing	one	experimental	loop.”			
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In contrast, test observations whose neighbors are in parts of the space that have very high 

or very low probabilities of success may have low information value. On the other hand, when the 

cost of autonomous experimental tests is low, it may make sense to conduct more exploratory 

testing of regions of the space where data on successes and failures is sparse, potentially opening 

truly novel approaches (say in materials for energy harvesting or storage). While the best 

experimental design will be context dependent, the important point is that a truly autonomous 

process will require closing the loop by choosing which experiments to conduct based on both the 

direct expected innovation value and the indirect expected data value of the test. To the extent that 

the exploration benefits spillover to other users in the form of generally available data, there is a 

role for policy to offset the resulting bias towards exploitation over exploration.    

8.4. Demand for and supply of scientist skills  

 Much of the AI-related policy analysis focuses on its potential implications for labor 

demand and consequently for wages, labor shares, and employment. Concerns of adverse effects 

on scientists, engineers, and others working in innovation intensive sectors are heightened if we 

move towards fully autonomous discovery systems. We therefore next consider policy 

implications of the increased use of machine learning in discovery on the demand for various types 

of R&D labor.     

In a series of papers, Daron Acemoglu and Pascual Restrepo extensively analyze the effects 

of AI and robotics on labor demand (e.g., Acemoglu and Restrepo, 2018 and 2019a). We adopt 

the useful framework set out in Acemoglu and Restrepo (2019b). This framework decomposes the 

labor demand effects into displacement effects, countervailing productivity effects, and new task 

(or reinstatement) effects.    

 Our multi-stage model shows the potential for human skill displacement as a result of 

breakthroughs in machine learning for both tasks. As outlined in Section 7, prediction can be 

achieved through various methods including theory, computer-based simulation, and the use 

human intuition to achieve educated guesses. Furthermore, these forms of prediction can be present 

together as, say, intuition guides theory development and predictions are generated from complex 

theoretical models using computer aided simulations as in the use of density functional theory in 

chemistry. Statistical data modeling can also be the basis for prediction by highlighting 
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associations in the data and can also inform theory and simulation (e.g., by aiding the initial 

calibration of simulation models).   

By providing an alternative source of predictions, there is an obvious potential for machine 

learning to displace certain existing skills. In fact, we might normally expect that improved 

prediction would increase the demand for testing through an increased flow of promising 

combinations through the discovery pipeline. Yet, as Case 2 (search for a single successful 

combination) of the two-stage model of Section 4 shows, the effect of an upward shift in the 

ranking function on the amount of testing depends on the relative cost of testing compared to the 

value of a successful innovation. At sufficiently low levels of this ratio, a more discriminating 

prediction model actually leads to fewer tests performed as the expected value of the marginal test 

declines. The reason is that improved prediction increases the probability that the target will be 

achieved by the other tests performed, lowering the expected value of the marginal test.   

 While the potential for displacement is clearly present, there may also be countervailing 

productivity effects that increase the demand for certain skills. Most obviously, where improved 

prediction does increase the flow of combinations through the pipeline, the demand for the skills 

of testers (say experts in experimental design or lab technicians) will increase. Acemoglu and 

Restrepo (2019b) also note additional sources of countervailing effect through increased capital 

investments and the “deepening of automation.” These processes may be particularly relevant as 

investments and technological development takes place to remove the bottlenecks in the system in 

order to better take advantage of the new prediction GPT.   

Acemoglu and Restrepo (2019b) stress the importance of the demand for new tasks (and 

related skills) that come into being as a result of AI. The AlphaFold case with which we open the 

paper provides a good example: this protein folding prediction effort brought together an 

interdisciplinary team from structural biology, physics, and machine learning. 

 Critical to the success of teams at the cutting edge of scientific discovery and innovation is 

likely to be the ability of members to communicate with other specialists: machine learning 

specialists need to have a sufficiently deep understanding of biology to work with the structural 

biologists; the structural biologists will need to know enough machine learning, for tasks such as 

preparing the data for building well-performing prediction models, to complement the machine-

learning specialists.  Skill sets that combine expertise such as computer programming or statistics 
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with knowledge of specific scientific domains are likely to be in especially heavy demand. Such 

evolving demands will lead to incentives for specific upskilling and career transitions and also 

changes in the curricula (and hiring priorities) in universities and other training programs.   

This creates challenges for academia, government, and industry as they engage in 

workforce planning. Such integration challenges have long been recognized in innovation-

intensive industries such as biotechnology. 

To perform well the [biotechnology] sector requires appropriate mechanisms for bringing 

together and integrating the right mix of cross-disciplinary talents, skills and capabilities. 

These mechanisms include organizational structures and strategies and the means by which 

different types of organizations (large firms, small start-ups, universities, etc.) interact. 

However, the sector also requires micro-organizational mechanisms for creating truly 

integrated problem solving and avoiding islands of specialization. And, perhaps most 

importantly, it requires ways of getting together the right mix of people from different 

scientific and functional backgrounds to collaborate and exchange information. (Pisano, 

2006, p.76.) 

Universities are understandably slow to internalize market signals for skills newly 

rewarded by the labor market. Yet, there is often geographic path dependency in the leadership of 

markets in transition (see e.g., Zucker, Darby, and Brewer (1998) for an example from 

biotechnology in the 1980s). In other words, the rewards for being early to train graduates with 

novel skills may be partially appropriated by the local region. So, for the purpose of regional 

economic development, there may be a case for policy intervention to increase the incentives for 

universities to accelerate the evolution of their programs for training students with specific skills. 

In the case of AI, this includes the skills to take advantage of (or indeed build) the new GPTs for 

discovery. It also includes incentives to ensure appropriate research-led teaching by frontier 

researchers so that the innovation workers of the future have the (integrated) skills that will be 

newly in demand.  

 

9.  Concluding Comments 



51 
 

AI has achieved well-documented recent successes in tasks such as image recognition, 

speech recognition, language translation, recommendation systems, and autonomous vehicles. It 

is now viewed as a GPT for prediction tasks that can be combined with other components to 

produce novel products and services (Agrawal et al., 2018). The machine-learning based prediction 

models have the common feature that they can deal with vast combinatorial spaces (e.g. pixels in 

an image). This paper has focused on machine learning as a GPT for use in the discovery process 

itself.  Conceptualizations of the innovation process as search over a combinatorial space suggests 

the value of machine learning in helping to map this space in the form of a prediction model.   

The burgeoning scientific literature applying machine learning tools suggests the practical 

value of being able to make predictions when the number of potential combinations can be in the 

billions.  But prediction is just one part of the discovery process. We thus embedded the prediction 

task as just one part of a costly multi-stage process. In our model of AI-aided discovery, the 

prediction model produced a ranking function that essentially provided a priority list for later 

(costly) screening and testing. Improvements in the prediction model – say as a result of the 

availability of a better performing algorithm – allowed for a more discriminating prioritization and 

ultimately for a more productive discovery pipeline.    

The main testable hypothesis from the model is therefore that access to AI will increase 

the productivity of the innovation process for combinatorial-type problems through improved 

prioritization. Although there has been rapid growth in the use of machine learning – and a great 

deal of optimism expressed about its effects – the productivity benefits have yet to be well 

established (Brown et al., 2020). Indeed, there is skepticism about its ultimate benefits, in part 

reflecting the previous waves of optimism and pessimism associated with AI. There have also been 

well-publicized cases where early optimistic scientific findings have been reversed and exits of 

high-profile research groups. Skeptics have a number of concerns, including: limited and error-

prone data leading to poorly performing models; failure to replicate results; excessive 

concentration on already well explored regions of the search space where data are plentiful; 

difficulties of interpretation of “black box” models and associated issues of trust; and models that 

appear to work well on test data sets but ultimately perform poorly due to redundancy between 

training and test data (Bender and Cortés-Cirano, 2020; Wallach and Heifets, 2018).   
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The next step in our research program is therefore to look for evidence of the productivity 

effects of increased access to AI-aided discovery. This is obviously complicated by the relative 

newness of some of the main developments (including the improved performance of deep neural 

network algorithms). However, we hope it will be possible to exploit plausibly exogenous variation 

in the access to AI tools. One idea we are exploring is to use variation in historic expertise at the 

department level in machine learning in computer science and engineering departments, and to see 

how it relates to later output in application domains within the university (medicine, chemistry, 

etc.) based on assumption of local knowledge spillovers. Another avenue is to look for access 

shocks to AI-prediction technologies and see how they differentially affect the productivity of 

researchers. 

The paper also considered the policy implications of the rise in AI-aided discovery. Part of 

the background is recent disappointing productivity growth despite apparent rapid technological 

advance, particularly in the biological and information sciences. These advances are opening new 

frontiers of discovery that have the potential to significantly improve welfare through impacts on 

areas such as health, agriculture, energy, and climate. If pessimism about future growth in part 

reflects concerns that the “low-hanging fruit” has been picked, AI may both open new orchards 

and – the focus of this paper – provide new tools to pick the heretofore hard to reach fruit. However, 

any beneficial effects of AI on the discovery process could be slowed by barriers to data access, 

missing incentives to run experiments that will generate data in sparse areas of the search space, 

and the under provision of training in skills that combine domain-specific knowledge and AI 

expertise. Policymakers thus face a range of challenges to address these market failures in order 

to ensure that the potential for AI-aided discovery is realized.  

Inspired by burgeoning scientific work using AI tools for discovery (see, e.g. Ramsundar 

et al. 2019), the type of AI in the model developed in this paper is of the task-specific rather than 

the general variety. More precisely, the model is motivated by the observed use of AI to help 

prioritize costly search over physical spaces (e.g. the space of molecules, gene networks, protein 

shapes, etc.). In contrast, an important idea in modern growth theory is the hypothesis that new 

ideas are generated by combining existing ideas in a cumulative process (Weitzman, 1998; Romer, 

1993; Arthur, 2009; Agrawal et al., 2019). Cognitive scientists have also extensively studied the 

mental processes underlying such combinatorial processes (Langley et al., 1987; Boden, 2004; 
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Thagard, 2012). If done by machines, search over idea space would appear to require more human-

like artificial general intelligence (AGI) rather than the more specific task-focused tools we have 

assumed.  

The likelihood of the emergence of AGI is extensively debated among AI researchers, with 

many skeptical of its prospects (see, e.g., Boden, 2016 and Mitchell, 2019). Others, while 

recognizing the challenges in developing AGI, believe that the implications could be sufficiently 

disruptive that is important to begin preparing now (Tegmark 2017; Russell, 2019; Acemoglu, 

2021). Going back to Poincaré (1913) and Hadamard (1945), human discovery has been 

conceptualized as a search process over combinatorial search spaces, but discoveries were thought 

to often require inspiration that comes from the unconscious rather than the conscious mind leaving 

it primarily in the domain of human intelligence. Others, however, have viewed it as more of a 

rational process that could in principle be done by machines. Langley et al. (1987), for example, 

offer the example of Planck’s discovery of a prediction formula for blackbody radiation as 

resulting from a conscious search process across the space of possible equations that are consistent 

with the given available experimental data — a task that could, in principle, be replicated by an 

AI.  

While we think that a significant replacement of human intelligence with AGI is unlikely 

in the coming decades, we note the continued rapid pace of advance in AI technologies. Just to 

note two examples that are relevant to discovery: first, the development of AI Feynman has shown 

the power a neural network to use “symbolic regression” to rediscover many of the equations from 

classical physics (Udrescu and Tegmark, 2020; Udrescu et al. 2020); and second, 

transformer/attention models (Vaswani, 2017) are leading to significant breakthroughs in natural 

language processing (e.g. in OpenAI’s GPT-3) and are providing “foundation models” 

(Bommasani, et al., 2021) that support transfer learning – an important element of more general 

tools – between domains.28 But whatever the progress towards AGI for discovery, the recent 

explosion in research using more task-specific AI tools for prioritization in costly search as 

modelled in this paper suggests AI is already having important effects on the process of scientific 

discovery and innovation.  

 
28 A	fascinating	derivative	of	GPT-3	is	OpenAI	Codex,	which	predicts	software	code	from	natural	language	
prompts	from	the	creator.		



54 
 

References  

Acemoglu, Daron (2021) Redesign AI: Boston: Boston Review Forum.  

Acemoglu, D. and D. Autor (2011): “Skills, tasks and technologies: Implications for employment 

and earnings,” in Handbook of labor economics, Elsevier, vol. 4, 1043–1171.  

Acemoglu, D. and P. Restrepo (2018): “The Race between Man and Machine: Implications of 

Technology for Growth, Factor Shares, and Employment,” American Economic Review, 108, 

1488–1542.  

——— (2019a): “Artificial Intelligence, Automation, and Work,” in The Economics of Artificial 

Intelligence: An Agenda, ed. by Agrawal, Gans, and Goldfarb, University of Chicago Press: 

Chicago, IL.  

——— (2019b): “Automation and New Tasks: How Technology Displaces and Reinstates 

Labor,” Journal of Economic Perspectives, 33, 3–30.  

Aghion, P. and P. Howitt (1992): “A Model of Growth through Creative Destruction,” 

Econometrica, 60.  

Aghion, P., B. Jones, and C. Jones (2019): “Artificial Intelligence and Economic Growth,” in 

The Economics of Artificial Intelligence: An Agenda, ed. by Agrawal, Gans, and Goldfarb, 

University of Chicago Press: Chicago, IL.  

Agrawal, A., A. Goldfarb, and F. Teodoridis (2016): “Understanding the changing structure of 

scientific inquiry,” American Economic Journal: Applied Economics, 8, 100–128.  

Agrawal, A., J. McHale, and A. Oettl (2019a): “Finding Needles in Haystacks: Artificial 

Intelligence and Recombinant Growth,” in The Economics of Artificial Intelligence: An Agenda, 

ed. by Agrawal, Gans, and Goldfarb, University of Chicago Press: Chicago, IL.  

Agrawal, A. K., J. S. Gans, and A. Goldfarb (2019b): “Exploring the impact of artificial 

intelligence: Prediction versus judgment,” in The Economics of Artificial Intelligence: An 

Agenda, ed. by Agrawal, Gans, and Goldfarb, University of Chicago Press: Chicago, IL.  



55 
 

Angermueller, C., T. Pa ̈rnamaa, L. Parts, and O. Stegle (2016): “Deep learning for 

computational biology,” Molecular systems biology, 12, 878.  

Arrow, K. J. (1962): “The economic implications of learning by doing,” The review of economic 

studies, 29, 155–173.  

Arthur, B. W. (2009): The Nature of Technology: What it is and How it Evolves,, Penguin 

Books, London.  

Aspuru-Guzik, A. and K. Persson (2018): “Materials Acceleration Platform: Accelerating 

Advanced Energy Materials Discovery by Integrating High-Throughput Methods and Artificial 

Intelligence.” Tech. rep., Canadian Institute for Advanced Research.  

Athey, S. (2017): “Beyond prediction: Using big data for policy problems,” Science, 355, 483–

485.  

Athey, S. (2019): “The Impact of Machine Learning on Economics,” in The Economics of 

Artificial Intelligence: An Agenda, ed. by Agrawal, Gans, and Goldfarb, University of Chicago 

Press: Chicago, IL. 

Athey, S. and G. Imbens (2019): “Machine Learning Methods Economists Should Know About,” 

arXiv preprint arXiv:1903.10075.  

Audretsch, D. and M. Feldman (1996): R&D Spillovers and the Geography of Innovation and 

Production,” The American Economic Review, Vol. 86, No. 3, pp. 630-640. 

Autor, D. H. (2015): “Why are there still so many jobs? The history and future of workplace 

automation,” Journal of Economic Perspectives, 29, 3–30.  

Babineaux, R., and J. Krumboltz (2013). Fail fast, fail often: How losing can help you win. 

TarcherPerigee. 



56 
 

Bender, A. and I. Cortés-Ciriano (2020): “Artificial Intelligence in Drug Discovery: What is 

Realistic, What are the illusions? Part 1: Ways to Make Impact and Why we are Not There Yet, 

Drug Discovery Today, 26(2), 511-524.  

Bloom, N., C. I. Jones, J. Van Reenen, and M. Webb (2017): “Are Ideas Getting Harder to 

Find?” Working Paper 23782, National Bureau of Economic Research.  

Boden, Margaret (2004), The Creative Mind: Myths and Mechanisms, Cambridge, MA: Harvard 

University Press.  

Boden, Margaret (2016), AI: Its Nature and Future, Oxford: Oxford University Press.  

Bommasani, Rishi et al. (2021), “On the Opportunities and Risks of Foundation Models,” arXiv: 

2108.07258v2 [cs.LG].  

Born, M., and R. Oppenheimer (1927): Zur quantentheorie der molekeln. Annalen der physik, 

389(20), 457-484. 

Breiman, L. (2001): “Statistical Modeling: The Two Cultures,” Statistical Science, 16, 199–231.  

Brown, N., P. Ertl, R. Lewis, T. Luksch, D. Reker, and N. Schneider (2020): “Artificial 

Intelligence in Chemistry and Drug Design,“ 34, 709-715.  

Brynjolfsson, E., D. Rock, and C. Syverson (2017): “Artificial Intelligence and the Modern 

Productivity Paradox: A Clash of Expectations and Statistics” NBER Working Paper No. 24001. 

Butler, K. T., D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh (2018): “Machine learning 

for molecular and materials science,” Nature, 559, 547. 

Chade, H. and L. Smith (2006): “Simultaneous Search,” 74(5), 1293-1307. 

Chen, H., O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke (2018): “The rise of deep 

learning in drug discovery,” Drug discovery today. 

Chesbrough, H. W. (2006): Open innovation: The new imperative for creating and profiting from 

technology, Harvard Business Press.  



57 
 

Cockburn, I., R. Henderson, and S. Stern (2019): “The Impact of Artificial Intelligence on 

Innovation,” in The Economics of Artificial Intelligence: An Agenda, ed. by Agrawal, Gans, and 

Goldfarb, University of Chicago Press: Chicago, IL.  

David, P. A. (1990): “The dynamo and the computer: an historical perspective on the modern 

productivity paradox,” The American Economic Review, 80, 355–361.  

Dixit, A.K., and R.S. Pindyck (1994): Investment under Uncertainty, Princeton University Press: 

Princeton, NJ.   

Fleming, L. (2001): “Recombinant uncertainty in technological search,” Management science, 

47, 117–132.  

Fleming, L. and O. Sorenson (2004): “Science as a map in technological search,” Strategic 

Management Journal, 25, 909–928.  

Gavetti, G. and D. Levinthal (2000): “Looking forward and looking backward: Cognitive and 

experiential search,” Administrative science quarterly, 45, 113–137.  

Goh, G. B., N. O. Hodas, and A. Vishnu (2017): “Deep learning for computational chemistry,” 

Journal of computational chemistry, 38, 1291–1307.  

Gomes, J., B. Ramsundar, E. N. Feinberg, and V. S. Pande (2017): “Atomic convolutional 

networks for predicting protein-ligand binding affinity,” arXiv preprint arXiv:1703.10603.  

Gordon, Robert (2016): “The Rise and Fall of American Growth: The US Standard of Living 

Since the Civil War,” Princeton, NJ: Princeton University Press. 

Grossman, G. and E. Helpman (1991): “Quality Ladders and Product Cycles,” Quarterly Journal 

of Economics, 106, 557–586.  

Hadamard, Jacques (1945), The Mathematician’s Mind: The Psychology of Invention in the 

Mathematical Field, Princeton: Princeton University Press.  



58 
 

Iansiti, Marco, Karim Lakhani, Hannah Mayer, and Kerry Herman (2021): “Moderna” Harvard Business 

School Case # 9-621-032, Harvard Business School Publishing. 

Jones, C. (1995): “R&D-Based Models of Economic Growth,” Journal of Political Economy, 

103, 759–784.  

Jones, C.  (2005): “Growth and ideas,” in Handbook of economic growth, Elsevier, vol. 1, 1063– 

1111.  

Jones, C. (2021): “Recipes and Economic Growth: A Combinatorial March Down an 

Exponential Tail,” NBER Working Paper 28340.  

Kauffman, S. (1993): The origins of order: Self-organization and selection in evolution, Oxford 

University Press, Oxford and New York.  

Kauffman, S., J. Lobo, and W. G. Macready (2000): “Optimal search on a technology 

landscape,” Journal of Economic Behavior & Organization, 43, 141–166.  

Keith, J.A., V. Vassilev-Galindo, B. Cheng, S. Chmiela, M. Gastegger, K.R. Müller, A. 

Tkatchenko (2021): “Combining machine learning and computational chemistry for predictive 

insights into chemical systems,” arXiv: 2102.06321v1 [physics.chem-ph]. 

Kortum (1997): “Research, Patenting, and Technological Change,” Econometrica, 65(6), 1389-

1419.  

Langley, Pat, Herbert A. Simon, Gary L. Bradshaw, and Jan M.Zytkow (1987), Scientific 

Discovery: Computational Explorations of the Creative Process, Cambridge, MA: The MIT Press.  

LeCun, Y., Y. Bengio, and G. Hinton (2015): “Deep learning,” nature, 521, 436.  

Leung, M. K., A. Delong, B. Alipanahi, and B. J. Frey (2016): “Machine learning in genomic 

medicine: a review of computational problems and data sets,” Proceedings of the IEEE, 104, 

176–197.  

Levinthal, D. A. (1997): “Adaptation on rugged landscapes,” Management science, 43, 934–950. 



59 
 

Mamoshina, P., A. Vieira, E. Putin, and A. Zhavoronkov (2016): “Applications of Deep 

Learning in Biomedicine,” Molecular Pharmaceutics, 5, 1445.  

Merk D., L. Friedich, F. Grisoni, and G. Schneider (2018), “Do Novo Design of Bioactive Small 

Molecules by Artificial Intelligence,“ Molecular Informatics, 37. 

Mitchell, Melanie (2019), Artificial Intelligence: A Guide for Thinking Humans: London: Pelican  

Mullainathan, S. and J. Spiess (2017): “Machine learning: an applied econometric approach,” 

Journal of Economic Perspectives, 31, 87–106. 

Nature Communications (2020), “Computation sparks chemical discovery,” Nature 

Communications (Editorial), 1-3.  

Nelson, R. R. and S. G. Winter (1982): An evolutionary theory of economic change, Cambridge, 

MA: Harvard University Press.  

Pisano, G. P. (2006): Science business: The promise, the reality, and the future of biotech, 

Harvard Business Press.  

Poincaré, Henri (1913),The Foundations of Science: Science and Hypotheses, The Value of 

Science, Science and Method, New York: The Science Press. 

Popper, K. R. (1959): The logic of scientific discovery, Hutchinson: London.  

Pyzer-Knapp, E. O., K. Li, and A. Aspuru-Guzik (2015): “Learning from the harvard clean 

energy project: The use of neural networks to accelerate materials discovery,” Advanced Func- 

tional Materials, 25, 6495–6502.  

Raccuglia, P., K. C. Elbert, P. D. F. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S. A. 

Friedler, J. Schrier, and A. J. Norquist (2016): “Machine-learning- assisted materials discovery 

using failed experiments,” Nature, 533, 73 EP –.  



60 
 

Ramsundar, Bharath, Peter Eastman, Patrick Walters, and Vijay Pande (2019), Deep Learning for 

the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery and More, 

Sebastopol, CA: O’Reilly.  

Reker, D., and G. Schneider (2014): “Active-Learning Strategies in Computer-Assisted Drug 

Discovery,“ Drug Discovery Today, 20(4), 458-465. 

Rivkin, J. W. (2000): “Imitation of complex strategies,” Management science, 46, 824–844.  

Roberts, K. and M.L. Weitzman (1981): “Funding Criteria for Research, Development and 

Exploratoin Projects,” Econometrica, 49(5), 1261-1288. 

Romer, P. (1990): “Endogenous Technical Change,” Journal of Political Economy, 94, S71–

S102.  

——— (1993): “Two Strategies for Economic Development: Using and Producing Ideas,” 

Proceed- ings of the World Bank Annual Conference on Development Economics.  

Russell, Stuart (2019), Human Coompatible: AI and the Problem of Control, London: Penguin 

Books 

Schneider, G. (2018): “Automating Drug Discovery,” Nature Reviews: Drug Discovery, 17, 97-

113.  

Schumpeter, J. A. (1939): Business cycles, vol. 1, McGraw-Hill New York. 

Shwartz-Ziv, R. and N. Tishby (2017): “Opening the black box of deep neural networks via 

information,” arXiv preprint arXiv:1703.00810.  

Sivviu-Marian Udrescu and Max Tegmark (2020), “AI Feynman: A Physics-Inspired Method for 

Symbolic Regression,” Science Advances, 6:eaa72631.  

Sivviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu and Max Tegmark 

(2020) “AI Feynman 2.0: Pareto Optimal Symbolic Regression Exploiting Graph Modularity,” 

arXiv: 2006.10782 [cs.LG].  



61 
 

Sparkes, A., W. Aubrey, E. Byrne, A. Clare, M. N. Khan, M. Liakata, M. Markham, J. Rowland, 

L. N. Soldatova, K. E. Whelan, M. Young, and R. D. King (2010): “Towards Robot Scientists 

for autonomous scientific discovery,” Automated Experimentation, 2, 1.  

Stigler, G.J. (1961): “The Economics of Information,” Journal of Political Economy, 69(3), 213-

225. 

Szabo, A., and N.S. Ostlund (1996): Modern quantum chemistry : introduction to advanced 

electronic structure theory. Mineola, New York: Dover Publishing. 

Tabor, D. P., L. M. Roch, S. K. Saikin, C. Kreisbeck, D. Sheberla, J. H. Montoya, S. 

Dwaraknath, M. Aykol, C. Ortiz, H. Tribukait, et al. (2018): “Accelerating the discovery of 

materials for clean energy in the era of smart automation,” Nat. Rev. Mater., 3, 5–20.  

Taddy, M. (2019): “The Technological Elements of Artificial Intelligence,” in The Economics of 

Artificial Intelligence: An Agenda, ed. by Agrawal, Gans, and Goldfarb, University of Chicago 

Press: Chicago, IL.  

Tang, B. Z. Pan, K. Yin, and A. Khateeb (2019): “Recent Advances of Deep Learning in 

Bioinformatics and Computational Biology,” Frontiers in Genetics, 10.  

Tegmark, Max (2017), Life 3.0: Being Human in an Age of Artificial Intelligence, London: 

Penguin Books.  

Tegmark (2020) “AI Feynman 2.0: Pareto Optimal Symbolic Regression Exploiting Graph 

Modularity,” arXiv: 2006.10782 [cs.LG]. 

Thagard, Paul (2012), The Cognitive Science of Science: Explanation, Discovery, and Conceptual 

Change, Cambridge, MA: The MIT Press.  

Tjur, T. (2009): “Coefficients of determination in logistic regression models—A new proposal: 

The coefficient of discrimination,” The American Statistician, 63, 366–372.  



62 
 

Trammell, P. and A. Korinek (2020): “Economic growth under transformative AI: A guide to the 

vast range of possibilities for output growth, wages, and the labor share, GPI Working Paper No. 

8, Global Priorities Institute, University of Oxford.  

Usher, A. P. (1929): A history of mechanical inventions: revised edition, New York: McGraw-

Hill.  

Vamathevan, J., D. Clark, P. Czodrowski, I. Dunham, E. Ferran, G. Lee, B. Li, A Madabhushi, 

P. Shah, M. Spitzer, and S. Zhao (2019): “Applications of machine learning in drug discovery 

and development,” Nature Reviews Drug Discovery, 18: 463-477.  

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. 

GomexLukasz Kaiser, and Illia Polosukhin (2017), “Attention is All You Need,” arXiv: 

1706.03762. 

Virshup, A. M., J. Contreras-Garc ́ıa, P. Wipf, W. Yang, and D. N. Beratan (2013): “Stochastic 

voyages into uncharted chemical space produce a representative library of all possible drug-like 

compounds,” Journal of the American Chemical Society, 135, 7296–7303.  

Wainberg, M., D. Merico, A. Delong, and B. J. Frey (2018): “Deep learning in biomedicine,” 

Nature biotechnology, 36, 829.  

Wallach, I., M. Dzamba, and A. Heifets (2015): “AtomNet: A deep convolutional neural network 

for bioactivity prediction in structure-based drug discovery,” arXiv preprint arXiv:1510.02855.  

Wallach, I. and A. Heifets (2018): “Most Ligand-Based Classification Benchmarks Reward 

Memorization Rather than Generalization,” Journal of Chemical Information and Modeling, 58, 

916–932, pMID: 29698607.  

Waltz, Emily (2020): “What AI Can – and can’t – do in the race for a coronavirus vaccine,” 

IEEE Spectrum (online: https://spectrum.ieee.org/what-ai-can-and-cant-do-in-the-race-for-a-

coronavirus-vaccine) 



63 
 

Weitzman, M.L. (1979): “Optimal Search for the Best Alternative,” Econometrica, 47(3), 641-

654.   

Weitzman, M. L. (1998): “Recombinant growth,” The Quarterly Journal of Economics, 113, 

331–360.  

Wright, S. (1932): “The roles of mutation, inbreeding, crossbreeding and selection in evolution,” 

in Proceedings of the sixth international congress of Genetics, vol. 1, 356–366. 

Zou, J., M. Huss, A. Abid, P. Mohammadi, A. Torkamani, and A. Telenti (2019): “A primer on 

deep learning in genomics,” Nature Genetics, 51: 12-18.  

Zucker, Lynne G., Michael R. Darby, and Marilynn B. Brewer (1998): “Intellectual Human 

Capital and the Birth of U.S. Biotechnology Enterprises,” The American Economic Review, Vol. 

88, No. 1, pp. 290-306.   



64 
 

Appendix 1. Optimality of the Weitzman Ordering Over Bernoulli Boxes 

In this appendix, we provide a simple proof of the optimality of the Weitzman ordering for 

searching Bernoulli boxes. Each box, 𝑖, is described by a probability that it contains a success, 𝑝6", 

a payoff conditional on success, 𝜋6, and a cost of searching the box, 𝑐+,6. We assume that 𝑝6" and 

𝑐+,6 are strictly greater than zero and that there is no time discounting. As set out in the text, each 

box has a “reservation price,” 𝑧6 = 𝜋6 −
=),+
>+
, . The reservation price has the interpretation of the 

“sure-thing” that has an expected payoff equal to the lottery of opening the box (at a cost) where 

there is a back-up option equal to the sure-thing that is payable in the event that the opening of the 

box does not yield a success. In our setting, we interpret the opening of a box as the conduct of a 

costly test that determines whether it contains a success or not. Applied to Bernoulli boxes, the 

Weitzman result is that the expected value of the search for the best alternative is maximized by 

sequentially searching the boxes with an expected net value greater than zero in declining order of 

reservation prices and stopping the search once a success is achieved.  

 The optimality of this search strategy can be demonstrated by considering the optimal 

pairwise ordering of any two boxes 𝑖 and 𝑗, where we initially assume that 𝑧6 > 𝑧2. From the 

definition of the reservation price we can immediately see that this implies that 𝜋6 > 𝑧2. Therefore, 

if a success is found on opening box 𝑖 the search will stop. The intuition is that the payoff from 

box 𝑖 becomes the sure-thing for the lottery of opening box 𝑗 and the sure-thing is greater than 

required for indifference between taking the sure thing and playing the (costly) lottery of opening 

box 𝑗.  

 The key question is whether it is optimal to open box 𝑖 first. Contrariwise, consider the 

strategy of opening box 𝑗 first. There are two possibilities assuming a success is found on opening 

the box. First, if 𝜋2 < 𝑧6 it will not be optimal to stop the search and the search will continue to 

box 𝑖. Of course, since 𝜋6 > 𝜋2 given 𝑧6 > 𝑧2 and 𝜋2 < 𝑧6, box 𝑖 would always be chosen if a 

success is achieved with both boxes. Therefore, it would always be optimal to first open box 𝑖 and 

only continuing to box 𝑗 if a success is not found and otherwise saving on the search cost for box 

𝑗 if a success is found for box 𝑖.  
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Second, and more interesting, is the case where 𝜋2 > 𝑧6 so that search would stop if a success is 

found on first opening box 𝑗. The choice facing the innovator is now whether to first search box 

𝑖	and stop if a success is found or to first search box 𝑗	and stop if a success is found. The optimal 

order to open these boxes is found by comparing the expected value of the two strategies. The 

expected value of opening box 𝑖 will be greater when:  

 

(𝐴. 1)				𝑝6"Z𝜋6 − 𝑐+,6\ + (1 − 𝑝6")Z𝑝2"𝜋2 − 𝑐+,6 − 𝑐+,2\

> 𝑝2"Z𝜋2 − 𝑐+,2\ + Z1 − 𝑝2"\Z𝑝6"𝜋6 − 𝑐+,2 − 𝑐+,6\ 

⟺					 𝑧6 > 𝑧2 , 

 

where the latter implication is derived by simple algebraic manipulation of the first inequality and 

the definition of the reservation price. Therefore, the strict ordering of the reservation prices in 

favor of box 𝑖 is a necessary and sufficient for a strict preference for first searching box 𝑖. In the 

case where the reservation prices are equal, the expected value will be independent or the order in 

which the boxes are searched and the innovator will be indifferent as to the order of search. In this 

case, we assume that the order of the search is chosen randomly. (Note that 𝜋6 > 𝑧2 and 𝜋2 > 𝑧6 

under indifference so that it will be optimal to stop the search upon finding a success no matter 

which of the boxes is searched first.) As such pairwise comparisons can be applied to every pair 

of boxes, we obtain, as required, a complete (and transitive) optimal search ordering of the full list 

of relevant boxes based on their reservation prices with search stopping once a success is achieved.  

 

	

	

  



66 
 

 

	 	

Figure	1:	Unit	Step	Function	Representing	the	Ranking	Function	for	the	Ground	Truth	

	

Notes:	Where	the	innovator	can	perfectly	discriminate	between	successes	and	failures,	the	ranking	function	takes	the	form	
of	a	unit	step	function.	Within	the	subsets	of	successes	and	failures,	the	ranking	is	arbitrary.	At	the	other	extreme,	where	
there	is	no	ability	to	discriminate	between	successes	and	failures	prior	to	testing,	the	ranking	function	is	horizontal	at	the	
probability	of	finding	a	success	based	on	a	random	draw	from	the	search	space.		
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Figure	2:	Ranking	Function	Curves	for	Different	Values	of	the	Discrimination	Parameter,	b	

	

Notes:	The	figure	shows	how	the	logistic	ranking	function	changes	as	a	result	of	an	increase	in	𝛽,	which	we	equate	with	an	
improvement	in	Stage	0	prediction.	The	logistic	ranking	function	is	horizontal	at	the	probability	𝐺/𝑁	when	𝑏	is	equal	to	
zero.	Increases	in	𝑏	cause	the	logistic	ranking	function	to	swivel	in	a	clockwise	direction	around	the	point	(𝐺 + 1, 𝐺/𝑁).	As	
𝛽	 goes	 to	 infinity	 the	 ranking	 function	 will	 converge	 towards	 the	 unit	 step	 function	 representing	 perfect	 ability	 to	
discriminate	between	successes	and	failures.		
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Figure	3a:	Determination	of	the	Optimal	Number	of	Combinations	to	Advance	to	Testing	

	

Figure	3b:		Impact	of	an	Improvement	in	the	Prediction	Model	on	the	Optimal	Number	of	

Combinations	to	Advance	to	Testing	
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Figure	4a:	Optimal	Number	of	Tests	when	the	Innovator	a	Single	Innovation	Target

	

Figure	4b:		Impact	of	an	Improvement	in	the	Prediction	Model	on	the	Optimal	Number	of	Tests	
when	the	Innovator	has	a	Single	Innovation	Target	and	the	Crossover	Probability	is	below	𝒄𝟏

	

Figure	4c.		Impact	of	an	Improvement	in	the	Prediction	Model	on	the	Optimal	Number	of	Tests	
when	the	Innovator	has	a	Single	Innovation	Target	Crossover	Probability	is	above	𝒄𝟏	

	

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

1 2 3 4 5 6 7 8 9 10
𝑟

𝑝"# = 𝑀𝑉"$, 𝑀𝐶

𝑐!

𝑟∗

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

1 2 3 4 5 6 7 8 9 10𝑟

𝑝"# = 𝑀𝑉"$, 𝑀𝐶

𝑐!

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

1 2 3 4 5 6 7 8 9 10𝑟

𝑝"# = 𝑀𝑉"$, 𝑀𝐶

𝑟∗

𝑟∗ 𝑟∗∗ 

𝑟∗∗ 

𝑐% 

Gain	in	expected	total	net	
value	due	to	improvement	in	
the	prediction	model	

Gain	in	expected	
total	net	value	

Loss	in	expected	
total	value	



70 
 

	

	

Figure	5.	Evolution	of	the	Probability	of	Success	through	a	Multi-Stage	Discovery	Pipeline

	

Notes:	The	 figure	shows	an	example	of	a	5-stage	discovery	pipeline	(where	 the	 final	determinative	 testing	stage	 is	not	
shown).	In	addition	to	the	initial	Stage	0	prediction	and	final	Stage	4	testing	stages,	there	are	three	intermediate	stages.	The	
assumption	of	common	values	of	both	𝑥	(false	negative	rate)	and	𝑦	(false	positive	rate)	for	each	of	the	screening	stages	
produces	the	binomial	lattice	(or	recombinant)	structure	of	the	possible	evolutions	of	the	probability	of	success	of	a	given	
combination	 as	 it	 advances	 along	 the	 pipeline.	 The	 initial	 node	 gives	 the	 probability	 of	 success	 following	 the	 initial	
prediction	stage	(𝑝%& = 0.25	in	the	example	above).	At	each	intermediate	stage,	the	node	gives	the	probability	of	success	
given	the	outcome	of	the	screen.	The	slopes	of	the	lines	on	the	graph	are	determined	by	ex	ante	probability	of	success	or	
failures	going	into	a	given	screening	stage	with	depends	on	the	relevant	prior	probability	of	success	and	the	values	of	𝑥	and	
𝑦.	For	a	given	stage,	𝑠,	the	number	of	possible	values	for	the	probability	of	success	rises	linearly	with	the	number	of	the	
stage	according	to	𝑠 + 1.	Viewed	from	Stage	0,	the	rational	expectation	of	the	probability	of	success	at	any	subsequent	state	
is	𝑝%'. 
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Figure	6.	Probability	of	Survival	Following	Completion	of	Stage,	s  

Example	of	the	case	where	the	combination	is	always	abandoned	following	a	negative	screen	

	

The	 figure	 shows	 that	 survival	 probability	 through	 the	 pipeline	 under	 the	 assumption	 that	 the	 combination	 will	 be	
abandoned	in	the	event	of	a	negative	screen.	It	thus	gives	the	cumulative	probability	of	𝑠	successful	screens.		
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Figure	7:	Expected	Net	Value	of	a	Combination	with	Option	to	Abandon	and	Screen	Must	be	
Completed	to	Advance	a	Combination	to	Testing	

	
Notes:	The	figure	shows	how	the	expected	net	value	of	a	combination	varies	with	the	post-Stage	0	probability	of	success	for	
a	three-stage	discovery	pipeline	with	a	single	intermediate	screening	stage,.	The	line	with	intercept	−(𝑐( + 𝑐))	shows	how	
the	expected	net	value	would	evolve	if	both	the	intermediate	screening	and	final	testing	stage	have	to	be	completed.	The	
line	with	intercept	−(𝑐( + 𝑦𝑐))	shows	how	the	expected	net	value	would	evolve	if	a	combination	is	always	abandoned	if	
there	is	a	negative	screen.	The	bold	line	reflects	optimal	behaviour	on	the	part	of	the	innovator	where:	(i)	negative	expected	
net	value	combinations	will	not	advance	 from	Stage	0	even	after	 taking	 into	account	 the	optional	 to	abandon	after	 the	
screening	stage;	and	(ii)	for	high	enough	values	of	the	Stage	0	probability	of	success	the	combinations	will	abandoned	even	
after	receiving	a	negative	result	at	the	intermediate	screening	stage.	The	first	upward	pointing	arrow	indicates	the	cut-off	
value	for	the	Stage	0	probability	of	success	for	advancement	to	the	intermediate	state.	The	second	upward	pointing	arrow	
indicates	the	Stage	0	probability	of	success	below	which	the	option	to	abandon	would	be	exercised	on	receiving	a	negative	
screen.	The	gap	between	the	dashed	line	and	non-bold	solid	line	gives	the	value	of	the	option	to	abandon	for	combinations	
where	the	option	to	abandon	would	be	exercised	upon	receipt	of	a	negative	screen.		
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Figure	8.	Impact	of	an	Increase	in	Bottlenecks	on	the	Number	of	Combinations	Advancing	to	the	
Screening	Stage	in	the	Discovery	Pipeline	
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Figure	9:	Expected	Gain	in	Total	Net	Value	from	Access	to	Improved	AI-Based	Prediction	

Technology	in	the	Two-Stage	Model	(Case	1)	
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Figure	10a:	Expected	Gain	in	Total	Net	Value	from	Access	to	Improved	AI-Based	Prediction	

Technology	in	the	Three-Stage	Model	(Low	versus	High	Values	of	𝒄𝟏)	

          
 

   

 

       
      

 

   
          
  

 

   
 

   
          
          
          
    

 

     
          
          
          
          

Figure	10b:	Expected	Gain	in	Total	Net	Value	from	Access	to	Improved	AI-Based	Prediction	

Technology	in	the	Three-Stage	Model	(Low	versus	High	Values	of	𝒄𝟐	or	𝒙)	
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Figure	11:	Expected	Net	Value	of	a	Combination	with	Option	to	Abandon	and	a	Redundant	Screen	
can	be	Skipped	

	
Notes:	This	figure	modifies	Figure	7	to	allow	for	the	screening	stage	to	be	skipped	when	even	a	negative	result	on	the	screen	
does	not	lead	to	the	exercise	of	the	option	to	abandon	the	combination.	Such	an	outcome	will	only	result	where	the	Stage	0	
probability	of	success	is	sufficiently	high:	𝑝%& ≥ (1 − 𝑦)𝑐)/[𝑥 + (1 − 𝑥 − 𝑦)𝑐)].	There	is	then	a	discontinuous	jump	in	the	
bold	line	that	relates	a	given	Stage	0	probability	of	success	for	a	combination	to	the	expected	net	value	of	that	combination.	
If	an	AI-based	improvement	in	prediction	results	in	such	high	probabilities,	it	would	have	an	additional	effect	of	altering	
the	subsequent	downstream	discovery	pipeline.		
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