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Abstract
A quantum thermal machine is an open quantum system that enables the conversion between heat and work at the micro or nano-scale. 
Optimally controlling such out-of-equilibrium systems is a crucial yet challenging task with applications to quantum technologies and 
devices. We introduce a general model-free framework based on reinforcement learning to identify out-of-equilibrium thermodynamic 
cycles that are Pareto optimal tradeoffs between power and efficiency for quantum heat engines and refrigerators. The method does not 
require any knowledge of the quantum thermal machine, nor of the system model, nor of the quantum state. Instead, it only observes the 
heat fluxes, so it is both applicable to simulations and experimental devices. We test our method on a model of an experimentally realistic 
refrigerator based on a superconducting qubit, and on a heat engine based on a quantum harmonic oscillator. In both cases, we identify 
the Pareto-front representing optimal power-efficiency tradeoffs, and the corresponding cycles. Such solutions outperform previous 
proposals made in the literature, such as optimized Otto cycles, reducing quantum friction.

Keywords: quantum thermal machines, reinforcement learning, quantum optimal control, quantum thermodynamics, quantum 
technologies
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Thermal machines, such as heat engines and refrigerators, allow the conversion between heat and work. Quantum thermal machines 
are micro or nano-scale thermal machines that operate exploiting quantum effects, potentially improving their performance. 
However, the optimal control of such quantum devices is an extremely challenging task with application to quantum technologies 
in general. Here, we develop a reinforcement learning framework to optimally control quantum thermal machines as to maximize 
their power-efficiency tradeoff. The method does not require any knowledge of the innerworkings of the device, nor of its state, mak-
ing it potentially applicable directly to experimental devices. It only monitors the heat currents through the device. We apply our 
method to two prototypical setups, outperforming previous proposals made in the literature.
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A driving force of the research field of quantum thermodynamic is the 
quest of understanding and designing quantum thermal machines 
(QTMs), i.e. devices that convert between heat and work at the micro 
or nanoscale exploiting quantum effects (1–5). Such devices could be 
operated as heat engines, which convert heat into work, or refrigera-
tors, that extract heat from a cold bath. Recent experiments have 
measured the heat flowing across these devices (6–9), and early ex-
perimental realizations of QTMs have been reported (10–17).

However, the optimal control of such devices, necessary to re-
veal their maximum performance, is an extremely challenging 
task that could find application in the control of quantum 

technologies and devices beyond QTMs. The difficulties include: 
(i) having to operate in finite time, the state can be driven far 
from equilibrium, where the thermal properties of the system 
are model-specific; (ii) the optimization is a search over the space 
of all possible time-dependent controls, which increases exponen-
tially with the number of time points describing the cycle; (iii) in 
experimental devices, often subject to undesired effects such as 
noise and decoherence (18), we could have a limited knowledge 
of the actual model describing the dynamics of the QTM.

A further difficulty (iv) arises in QTMs, since the maximization 
of their performance requires a multiobjective optimization. 

PNAS Nexus, 2023, 2, 1–16 

https://doi.org/10.1093/pnasnexus/pgad248
Advance access publication 2 August 2023 

Research Report

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/2/8/pgad248/7235395 by FU

 Berlin FB H
um

anm
edizin user on 13 O

ctober 2023

https://orcid.org/0000-0003-4626-2869
mailto:p.erdman@fu-berlin.de
mailto:frank.noe@fu-berlin.de
https://creativecommons.org/licenses/by/4.0/


Indeed, the two main quantities that describe the performance of 
a heat engine (refrigerator) are the extracted power (cooling 
power) and the efficiency (coefficient of performance). The opti-
mal strategy to maximize the efficiency consists of performing re-
versible transformations (19) which are, however, infinitely slow, 
and thus deliver vanishing power. Conversely, maximum power is 
typically reached at the expense of reduced efficiency. Therefore, 
one must seek optimal tradeoffs between the two.

The theoretical optimization of QTMs is typically carried out 
making restrictive assumptions on the cycle. For example, opti-
mal strategies have been derived assuming the driving speed of 
the control to be slow (20–29) or fast (30–32) compared to the ther-
malization time. Other approaches consists of assuming a priori a 
specific shape of the cycle structure (33–40), such as the Otto cycle 
(41–56). Shortcuts to adiabaticity (57–65) and variational strat-
egies (66–68) have also been employed.

In general, aside from variational approaches, there is no guar-
antee that these regimes and cycles are optimal. Recently, re-
inforcement learning (RL) has been used to find cycles that 
maximize the power of QTMs without making assumptions on 
the cycle structure (69). However, this approach requires a model 
of the system and the knowledge of the quantum state of the sys-
tem, which restricts its practical applicability. This calls for the 
development of robust and general strategies that overcome all 
above-mentioned difficulties (i–iv).

We propose a RL-based method with the following properties: 
(i) it finds cycles yielding near Pareto-optimal tradeoffs between 
power and efficiency, i.e. the collection of cycles such that it is 
not possible to further improve either power or efficiency, without 
decreasing the other one. (ii) It only requires the heat currents as 
input, and not the quantum state of the system. (iii) It is complete-
ly model-free. (iv) It does not make any assumption on the cycle 
structure, nor on the driving speed. The RL method is based on 
the Soft Actor-Critic algorithm (70, 71), introduced in the context 
of robotics and video-games (72, 73), generalized to combined dis-
crete and continuous actions and to optimize multiple objectives. 
RL has received great attention for its success at mastering tasks 
beyond human-level such as playing games (74–76), and for robot-
ic applications (77). RL has been recently used for quantum con-
trol (78–87), outperforming previous state-of-the-art methods 
(88, 89), for fault-tolerant quantum computation (90, 91), and to 
minimize entropy production in closed quantum systems (92).

We prove the validity of our approach finding the full 
Pareto-front, i.e. the collection of all Pareto-optimal cycles de-
scribing optimal power-efficency tradeoffs, in two paradigmatic 
systems that have been well studied in the literature: a refriger-
ator based on an experimentally realistic superconducting qubit 
(6, 49), and a heat engine based on a quantum harmonic oscillator 
(43). In both cases, we find elaborate cycles that outperform previ-
ous proposal mitigating quantum friction (43, 49, 55, 66, 93–95), 
i.e. the detrimental effect of the generation of coherence in the in-
stantaneous eigenbasis during the cycle. Remarkably, we can also 
match the performance of cycles found with the RL method of 
Ref. (69) that, as opposed to our model-free approach, requires 
monitoring the full quantum state and only optimizes the power.

Setting: black-box quantum thermal machine
We describe a QTM by a quantum system, acting as a “working 
medium”, that can exchange heat with a hot (H) or cold (C) ther-
mal bath characterized by inverse temperatures βH < βC (Fig. 1). 
Our method can be readily generalized to multiple baths, but we 
focus the description on two baths here.

We can control the evolution of the quantum system 
and exchange work with it through a set of time-dependent 
continuous control parameters 􏿻u(t) that enter in the 
Hamiltonian H[􏿻u(t)] of the quantum system (96), and through 
a discrete control d(t) = {Hot, Cold, None} that determines 
which bath is coupled to the system. JH(t) and JC(t) denote the 
heat flux flowing out, respectively, from the hot and cold bath 
at time t.

Our method only relies on the following two assumptions: 

(i) the RL agent can measure the heat fluxes JC(t) and JH(t) (or 
their averages over a time period Δt);

(ii) JC(t) and JH(t) are functions of the control history 
(􏿻u(t − T), d(t − T)), . . . , (􏿻u(t), d(t)), where T is the timescale 
over which the QTM remembers past controls.

In contrast to previous work (69), the RL optimization algo-
rithm does not require any knowledge of the microscopic mod-
el of the inner workings of the quantum system, nor of its 
quantum state; it is only provided with the values of the 
heat fluxes JC(t) and JH(t). These can be either computed from 
a theoretical simulation of the QTM (69), or measured directly 
from an experimental device whenever the energy change in 
the heat bath can be monitored without influencing the ener-
getics of the quantum system (see e.g. experimental demon-
strations (6–9)). In this sense, our quantum system is treated 
as a “black-box,” and our RL method is “model-free.” Any the-
oretical model or experimental device satisfying these require-
ments can be optimized by our method, including also 
classical stochastic thermal machines. The timescale T is finite 
because of energy dissipation and naturally emerges by mak-
ing the minimal assumption that the coupling of the quantum 
system to the thermal baths drives the system towards a ther-
mal state within some timescale T. Such a timescale can be 
rigorously identified e.g. within the weak system-bath coupling 
regime, and in the reaction coordinate framework that can de-
scribe non-Markovian and strong-coupling effects (97). In a 
Markovian setting, T is related to the inverse of the character-
istic thermalization rate.

Quantum Thermal Machine

Computer Agent

Hot bath Quantum
System

H( )

( )

C( )
Cold bath

Extracted 
power

…
System 

controls 
Heat bath 
coupling

control 

Fig. 1. Schematic representation of a quantum thermal machine 
controlled by a computer agent. A quantum system (gray circle in 
the center) can be coupled to a hot (cold) bath at inverse temperature βH 

(βC), represented by the red square to the left (blue square to the right), 
enabling a heat flux JH(t) (JC(t)). The quantum system is controlled by 
the computer agent through a set of experimental control parameters 
􏿻u(t), such as an energy gap or an oscillator frequency, that control 
the power exchange P(t), and through a discrete control d(t) = 
{Hot, Cold, None} that determines which bath is coupled to the 
quantum system.
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The thermal machines we consider are the heat engine and the 
refrigerator. Up to an internal energy contribution that vanishes 
after each repetition of the cycle, the instantaneous power of a 
heat engine equals the extracted heat:

Pheat(t) = JC(t) + JH(t), (1) 

and the cooling power of a refrigerator is:

Pcool(t) = JC(t). (2) 

The entropy production is given by

Σ(t) = −βCJC(t) − βHJH(t), (3) 

where we neglect the contribution of the quantum system’s en-
tropy since it vanishes after each cycle.

Machine learning problem
Our goal is to identify cycles, i.e. periodic functions 􏿻u(t) and d(t), 
that maximize a tradeoff between power and efficiency on the 
long run. Since power and efficiency cannot be simultaneously op-
timized, we use the concept of Pareto-optimality (98, 99). 
Pareto-optimal cycles are those where power or efficiency cannot 
be further increased without sacrificing the other one. The 
Pareto-front, defined as the collection of power-efficiency values 
delivered by all Pareto-optimal cycles, represents all possible op-
timal tradeoffs. To find the Pareto-front, we define the reward 
function rc(t) as:

rc(t) = c
P(t)
P0

− (1 − c)
Σ(t)
Σ0

, (4) 

where P(t) is the power of a heat engine (Eq. 1) or cooling power of a 
refrigerator (Eq. 2), P0, Σ0 are reference values to normalize the 
power and entropy production, and c ∈ [0, 1] is a weight that deter-
mines the tradeoff between power and efficiency. As in Ref. (69), 
we are interested in cycles that maximize the long-term perform-
ance of QTMs; we thus maximize the return 〈rc〉(t), where 〈·〉(t) in-
dicates the exponential moving average of future values:

〈rc〉(t) = κ∫∞0 e−κτrc(t + τ) dτ. (5) 

Here, κ is the inverse of the averaging timescale, that will in prac-
tice be chosen much longer than the cycle period, such that 〈rc〉(t) 
is approximately independent of t.

For c = 1, we are maximizing the average power 〈r1〉 = 〈P〉/P0. For 
c = 0, we are minimizing the average entropy production 
〈r0〉 = −〈Σ〉/Σ0, which corresponds to maximizing the efficiency. 
For intermediate values of c, the maximization of 〈rc〉 describes 
tradeoffs between power and efficiency (see “Optimizing the en-
tropy production” in Materials and Methods for details). 
Interestingly, if convex, it has been shown that the full 
Pareto-front can be identified repeating the optimization of 〈rc〉 
for many values of c (98, 100).

Results
Deep RL for black-box QTMs
In RL, a computer agent must learn to master some task by repeated 
interactions with some environment. Here, we develop an RL ap-
proach where the agent maximizes the return 5 and the environ-
ment is the QTM with its controls (Fig. 2A). To solve the RL 
problem computationally, we discretize time as ti = iΔt. By time- 
discretizing the return 5, we obtain a discounted return whose dis-
count factor γ = exp ( − κΔt) determines the averaging timescale 
and expresses how much we are interested in future or immediate 

rewards (see “Reinforcement Learning Implementation” in 
Materials and Methods for details).

At each time step ti, the agent employs a policy function π(a | s) 
to choose an action ai = {􏿻u(ti), d(ti)} based on the state si of the en-
vironment. Here, the policy function π(a | s) represents the prob-
ability of choosing action a, given that the environment is in 
state s, 􏿻u(t) are the continuous controls over the quantum system, 
and d(ti) ∈ {Hot, Cold, None} is a discrete control that selects the 
bath the system is coupled to. All controls are considered to be 
constant during time step of duration Δt. The aim of RL is to learn 
an optimal policy function π(a | s) that maximizes the return.

In order to represent a black-box quantum system whose inner 
mechanics are unknown, we define the control history during a 
time interval of length T as the observable state:

si = (ai−N, ai−N+1, . . . , ai−1), (6) 

where N = T/Δt. Therefore, the state of the quantum system is im-
plicitly defined by the sequence of the agent’s N recent actions.

To find an optimal policy we employ the soft actor-critic 
algorithm, that relies on learning also a value function Q(s, a), 
generalized to a combination of discrete and continuous actions 
(70–73). The policy function π(a | s) plays the role of an “actor” 
that chooses the actions to perform, while a value function 

= , d ti

( | )

+1 = Δ −1∫ +Δ
+1 = −( −1), . . ,

( , )

,

− −1… … − −1…
,
…

A

B C

Fig. 2. A) Schematic representation of the learning process. A computer 
agent (center left blue box) chooses an action ai at time-step i based on the 
current state si of the QTM (center right gray box) through the policy 
function π(ai | si). The action, that encodes the control (􏿻u(ti), d(ti)), is passed 
to the QTM (lower arrow). The new state si+1, composed of the time-series 
of the last N actions, and the reward ri+1 are returned to the agent (upper 
arrow), which uses this information to improve π(a | s) using the soft 
actor-critic algorithm, which learns also the values function Q(s, a). This 
process is reiterated until convergence of the policy. B,C) Schematic 
representation of the NN architectures used to parameterize the policy (B) 
and the value function (C). The action time-series in si is processed using 
multiple 1D convolution blocks, each one halving the length of the series. 
The final output is produced by fully connected (f.c.) layers.
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Q(s, a) plays the role of a “critic” that judges the choices made by 
the actor, thus providing feedback to improve the actor’s behav-
ior. We further optimize the method for a multiobjective setting 
by introducing a separate critic for each objective, i.e. one value 
function for the power, and one for the entropy production. This 
allow us to vary the weight c during training, thus enhancing con-
vergence (see “Reinforcement Learning Implementation” in 
Materials and Methods for details).

We learn the functions π(a | s) and Q(s, a) using a deep NN archi-
tecture inspired by WaveNet, an architecture that was developed 
for processing audio signals (101) (See Fig. 2B and C). We introduce 
a “convolution block” to efficiently process the time-series of ac-
tions defining the state si. It consists of a 1D convolution with ker-
nel size and stride of 2, such that it halves the length of the input. 
It is further equipped with a residual connection to improve train-
ability (102) (see “Reinforcement Learning Implementation” in 
Materials and Methods for details). The policy π(ai | si) is described 
by a NN that takes the state si as input, and outputs parameters μ 
and σ describing the probability distribution from which action ai 

is sampled (Fig. 2B). The value function Q(si, ai) is computed by 
feeding (si, ai) into a NN, and outputting Q(si, ai) (Fig. 2C). Both 
π(ai | si) and Q(si, ai) process the state by feeding it through mul-
tiple convolution blocks (upper orange boxes in Fig. 2B and C), 
each one halving the length of the time-series, such that the num-
ber of blocks and of parameters in the NN is logarithmic in N. Then 
a series of fully connected layers produce the final output.

The policy and value functions are determined by minimizing 
the loss functions in Eqs. 39 and 49 using the ADAM optimization 
algorithm (103). The gradient of the loss functions is computed 
off-policy, over a batch of past experience recorded in a replay 
buffer, using back-propagation (see “Reinforcement Learning 
Implementation” in Materials and Methods for details).

Pareto-optimal cycles for a superconducting qubit 
refrigerator
We first consider a refrigerator based on an experimentally realis-
tic system: a superconducting qubit coupled to two resonant cir-
cuits that behave as heat baths (49) (Fig. 3A). Such a system was 
experimentally studied in the steady-state in Ref. (6). The system 
Hamiltonian is given by (49, 55, 63):

Ĥ[u(t)] = −E0[Δσ̂x + u(t)σ̂z], (7) 

where E0 is a fixed energy scale, Δ characterizes the minimum gap 
of the system, and u(t) is our control parameter. In this setup the 
coupling to the baths, described by the commonly employed 
Markovian master equation (104–107), is fixed, and cannot be con-
trolled. However, the qubit is resonantly coupled to the baths at 
different energies. The u-dependent coupling strength to the 

cold (hot) bath is described by the function γ(C)
u (γ(H)

u ), respectively 
(Fig. 3F). As in Ref. (63), the coupling strength is, respectively, max-
imal at u = 0 (u = 1/2), with a resonance width determined by the 
“quality factor” QC (QH) (see “Physical model” in Materials and 
Methods for details). This allows us to choose which bath is 
coupled to the qubit by tuning u(t).

In Fig. 3, we show an example of our training procedure to op-
timize the return 〈rc〉 at c = 0.6 using N = 128 steps determining the 
RL state, and varying c during training from 1 to 0.6 (Fig. 3C). In the 
early stages of the training, the return 〈rc〉i, computed as in Eq. 28
but over past rewards, and the running averages of the cooling 
power 〈Pcool〉i and of the negative entropy production −〈Σ〉i all start 
off negative (Fig. 3B), and the corresponding actions are random 
(left panel of Fig. 3D). Indeed, initially the RL agent has no 

experience controlling the QTM, so random actions are per-
formed, resulting in heating the cold bath, rather than cooling it, 
and in a large entropy production. However, with increasing steps, 
the chosen actions exhibit some structure (Fig. 3D), and the return 
〈rc〉i increases (Fig. 3B). While both the power and the negative en-
tropy production initially increase together, around step 100k we 
see that −〈Σ〉i begins to decrease. This is a manifestation of the fact 
that power and entropy production cannot be simultaneously op-
timized. Indeed, the agent learns that in order to further increase 
the return, it must “sacrifice” some entropy production to produce 
a positive and larger cooling power. In fact, the only way to 
achieve positive values of 〈rc〉i is to have a positive cooling power, 
which inevitably requires producing entropy. Eventually all quan-
tities in Fig. 3B reach a maximum value, and the corresponding fi-
nal deterministic cycle (i.e. the cycle generated by policy 
switching off stochasticity, see “Reinforcement Learning 
Implementation” in Materials and Methods for details) is shown 
in Fig. 3E as thick black dots.

A

B

C

D

E F

Fig. 3. Training of the superconducting qubit refrigerator model to 
optimize 〈rc〉 at c = 0.6. A) Schematic representation of the energy levels of 
the qubit (horizontal black lines) that are controlled by u(t). The 
vertical gray arrow represents the input power, while the 
colored horizontal arrows represent the heat fluxes. B) Return 〈rc〉i 

computed over past rewards (black curve), running average of the cooling 
power 〈Pcool〉i/P0 (green curve), and of the negative entropy production 
−〈Σ〉i/Σ0 (orange curve), as a function of the training step. The dashed line 
represents the value of the return found optimizing the period of a 
smoothed trapezoidal cycle. C) Value of the weight c as a function of the 
step. It is varied during training from 1 to the final value 0.6 to improve 
convergence. D) Actions chosen by the agent, represented by the value of 
u, as a function of step, zoomed around the three black circles in panel (B). 
E) Final deterministic cycle found by the agent (thick black dots) and 
smoothed trapezoidal cycle (thin dashed line) whose return is given by the 
dashed line in panel (B), as a function of time. F) coupling strength γ(C)

u 

(blue curve) and γ(H)
u (red curve) as a function of u (on the y-axis). The 

parameters used for training are N = 128, gH = gC = 1, βH = 10/3, βC = 2βH, 
QH = QC = 4, E0 = 1, Δ = 0.12, ωH = 1.028, ωC = 0.24, U = [0, 0.75], Δt = 0.98, 
γ = 0.997, P0 = 6.62·10−4, and Σ0 = 0.037.
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For the same system, Ref. (63) proposed a smoothed trapezoidal 
cycle u(t) oscillating between the resonant peaks at u = 0 and 
u = 1/2 and optimized the cycle time (Fig. 3E, dashed line). While 
this choice outperformed a sine and a trapezoidal cycle (49), the 
cycle found by our RL agent produces a larger return (Fig. 3B). 
The optimal trapezoidal cycle found for c = 0.6 is shown in 
Fig. 3E as a dashed line (see “Comparing with other methods” in 
Materials and Methods for details).

Fig. 4 compares optimal cycles for different tradeoffs between 
cooling power and coefficient of performance ηcool, the latter de-
fined as the ratio between the average cooling power, and the 
average input power. This is achieved by repeating the optimiza-
tion for various values of c. To demonstrate the robustness of 
our method, the optimization of 〈rc〉 was repeated five times for 
each choice of c (variability shown with error bars in Fig.4A, and 
as separate points in Fig.4B). The RL method substantially outper-
forms the trapezoidal cycle by producing larger final values of the 
return 〈rc〉 at all values of c (Fig. 4A), and by producing a better 
Pareto front (Fig. 4B). The RL cycles simultaneously yield higher 
power by more than a factor of 10, and a larger ηcool, for any choice 
of the power-efficiency tradeoff. The model-free RL cycles can also 
deliver the same power at a substantially higher COP (roughly 10 
times larger) when compared with the cycle found with the RL 
method of Ref. (69), which only optimizes the power. This is re-
markable since, as opposed to the current model-free method, 
the method in Ref. (69) has access to the full quantum state of 
the system, and not only to the heat currents (see “Comparing 
with other methods” in Materials and Methods for details). This 
also shows that a large efficiency improvement can be achieved 
by sacrificing very little power.

As expected, the period of the RL cycles increases as c decreases 
and the priority shifts from high power to high ηcool (Fig. 4C to F, 
black dots). However, the period is much shorter than the corre-
sponding optimized trapezoidal cycle (dashed line), and the opti-
mal control sequence is quite unintuitive, even going beyond 
the resonant point at u = 1/2. As argued in (49, 55, 63), the gener-
ation of coherence in the instantaneous eigenbasis of the quan-
tum system, occurring because [Ĥ(u1), Ĥ(u2)] ≠ 0 for u1 ≠ u2, 
causes power losses that increase with the speed of the cycle. 
We find that we can interpret the power enhancement achieved 
by our cycle as a mitigation of such detrimental effect: indeed, 
we find that trapezoidal cycles operated at the same frequency 
as the RL cycle generate twice as much coherence as the RL cycles 
(see “Generation of coherence” in Materials and Methods for de-
tails). In either case, cycles with higher power tend to generate 
more coherence.

Given the stochastic nature of RL, we also compared the cycles 
obtained across the five independent training runs, finding that 
cycles are typically quite robust, displaying only minor changes 
(see Fig. 8 of Methods for four cycles found in independent training 
runs corresponding to Fig. 4C to F).

Pareto-optimal cycles for a quantum harmonic 
oscillator engine
We now consider a heat engine based on a collection of noninter-
acting particles confined in a harmonic potential (43) (Fig. 5A). The 
Hamiltonian is given by

Ĥ[u(t)] =
1

2m
p̂2 +

1
2

m(u(t)w0)2q̂2, (8) 

where m is the mass of the system, w0 is a reference frequency and 
p̂ and q̂ are the momentum and position operators. The control 
parameter u(t) allows us to change the frequency of the oscillator. 

Here, at every time step, we let the agent choose which bath (if 
any) to couple to the oscillator. The coupling to the baths, charac-
terized by the thermalization rates Γα, is modeled using the 
Lindblad master equation as in Ref. (43) (see “Physical model” in 
Materials and Methods for details). In contrast to the supercon-
ducting qubit case, c is held constant during training.

Fig. 5 reports the results on the optimal tradeoffs between ex-
tracted power and efficiency ηheat, the latter defined as the ratio 
between the extracted power and the input heat, in the same style 
of Fig. 4. In this setup, we compare our RL-based results to the 
well-known Otto cycle. The authors of Ref. (43) study this system 
by optimizing the switching times of an Otto cycle, i.e. the dur-
ation of each of the four segments, shown as a dashed lines in 
Fig. 5D and E, composing the cycle (see “Comparing with other 
methods” in Materials and Methods for details).

The RL method produces cycles with a larger return and with a 
better power-efficiency Pareto-front with respect to the Otto cycle 
(Fig. 5B and C). The cycles found by the RL method significantly 
outperforms the Otto engine in terms of delivered power. For 
c = 1, a high-power cycle is found (Fig. 5D and corresponding 
blue dots in Figs. 5B-C) but at the cost of a lower efficiency than 
the Otto cycles. However, at c = 0.5, the RL method finds a cycle 
that matches the maximum efficiency of the Otto cycles, while de-
livering a ∼ 30% higher power (Fig. 5E and corresponding blue dots 
in Fig. 5B and C) Remarkably, our model-free RL method also finds 
cycles with nearly the same power as the RL method of Ref. (69), 
but at almost twice the efficiency (see “Comparing with other 

A

C D

E F

B

Fig. 4. Results for the optimization of the superconducting qubit 
refrigerator model. A) Final value of the return 〈rc〉, as a function of c, 
found using the RL method (black and blue points), and optimizing the 
period of a trapezoidal cycle (red dots). The error bars represent the 
standard deviation of the return computed over 5 independent training 
runs. B) Corresponding values of the final average cooling power 〈Pcool〉 
and of the coefficient of performance ηcool found using the RL method 
(black and blue dots), optimizing the trapezoidal cycle (red dots), and 
using the RL method of Ref. (69) (purple cross). Results for each of the 5 
repetitions are shown as separate points to visualize the variability across 
multiple trainings. C–F) Final deterministic cycles identified by the RL 
method (thick black dots), as a function of time, corresponding to the blue 
points in panels (A) and (B) (respectively, for c = 1, 0.8, 0.6, 0.4 choosing the 
training run with the largest return). The dashed line represents the 
trapezoidal cycle that maximizes the return for the same value of c [not 
shown in panel (F) since no cycle yields a positive return]. The parameters 
used for training are chosen as in Fig. 3.
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methods” in Materials and Methods for details). As in Fig. 4, we see 
that a very small decrease in power can lead to a large efficiency 
increase.

Interestingly, as shown in Fig. 5D and E, the cycles found by the 
RL agent share many similarities with the Otto cycle: both alter-
nate between the hot and cold bath (orange and blue portions) 
with a similar period. However, there are some differences: at 
c = 1, the RL cycle ramps the value of u while in contact with 
the bath, eliminating the unitary stroke (Fig. 5D). Instead, at 
c = 0.5, the RL agent employs a unitary stroke that is quite 
different respect to a linear ramping of u (Fig. 5E, green dots). 
As in the superconducting qubit case, the enhanced performance 
of the RL cycle may be interpreted as a mitigation of quantum 
friction (43, 93).

Also in this setup, we verified that the discovered cycles are 
quite robust across the five independent training runs, display-
ing only minor changes (see Fig. 9 of Methods for two cycles 
found in independent training runs corresponding to Fig. 5D 
and E).

Discussion
We introduced a model-free framework, based on RL, to 
discover Pareto-optimal thermodynamic cycles that describe 
the best possible tradeoff between power and efficiency of 
out-of-equilibrium QTMs (heat engines and refrigerators). Our 
algorithm only requires monitoring the heat fluxes of the QTM, 
making it a model-free approach. It can therefore be used both 
for the theoretical optimization of known systems, and poten-
tially for the direct optimization of experimental devices for 
which no model is known, and in the absence of any measure-
ment performed on the quantum system. Using state-of-the-art 
machine learning techniques, we demonstrate the validity of 
our method applying it to two different prototypical setups. 
Our black-box method discovered elaborate cycles that outper-
form previously proposed cycles and are on par with a previous 
RL method that observes the full quantum state (69). Up to mi-
nor details, the cycles found by our method are reproducible 
across independent training runs. Physically, we find that Otto 
cycles, commonly studied in the literature, are not generally op-
timal, and that optimal cycles balance a fast operation of the 
cycle, with the mitigation of quantum friction.

Our method paves the way for a systematic use of RL in the field 
of quantum thermodynamics. Future directions include investing 
larger systems to uncover the impact of quantum many-body ef-
fects on the performance of QTMs, optimizing systems in the pres-
ence of noise, and optimizing tradeoffs that include power 
fluctuations (99, 108–110).

Materials and methods
In this section, we provide details on the optimization of the en-
tropy production, on the RL implementation, on the physical mod-
el used to describe the QTMs, on the training details, on the 
convergence of the method, on the comparison with other meth-
ods, and on the computation of the generation of coherence dur-
ing the cycles. We also provide access to the full code that was 
used to generate the results presented in the manuscript, and 
the corresponding data.

Optimizing the entropy production
Here, we discuss the relation between optimizing the power and 
the entropy production, or the power and the efficiency. 
We start by noticing that we can express the efficiency of a 
heat engine ηheat and the coefficient of performance of a re-
frigerator ηcool in terms of the averaged power and entropy pro-
duction, i.e.

ην = η(c)
ν [1 + 〈Σ〉/(βν〈Pν〉)]−1, (9) 

where ν = heat, cool, η(c)
heat ≡ 1 − βH/βC is the Carnot efficiency, 

η(c)
cool ≡ βH/(βC − βH) is the Carnot coefficient of performance, and 

where we defined βheat ≡ βC and βcool ≡ βC − βH. We now show 
that, thanks to this dependence of ην on 〈Pν〉 and 〈Σ〉, if a cycle 
is a Pareto-optimal tradeoff between high power and high effi-
ciency, then it is also a Pareto-optimal tradeoff between high 
power and low entropy-production up to a change of c. This 

A

B

D

E

C

Fig. 5. Results for the optimization of the harmonic oscillator heat engine 
model. A) Schematic representation of the energy levels of the particles 
(black horizontal lines) trapped in a harmonic potential (parabolic curve) 
whose amplitude is controlled by u(t). The vertical gray arrow represents 
the extracted power, while the colored horizontal arrows represent the 
heat fluxes. B) Final value of 〈rc〉, as a function of c, found using the RL 
method (black and blue dots), and optimizing the Otto cycle (red dots). 
The error bars represent the standard deviation of the return computed 
over five independent training runs. C) Corresponding values of the 
average power 〈Pheat〉/P0 and of the efficiency ηheat found using the RL 
method (black and blue dots), optimizing the Otto cycle (red dots), and 
using the RL method of Ref. (69) (purple cross). Results for each of the five 
repetitions are shown as separate points to visualize the variability across 
multiple trainings. D,E) Final deterministic cycle identified by the RL 
method (thick dots), as a function of time, corresponding to the blue 
points in panels (B) and (C) (respectively, c = 1, 0.5 choosing the training 
run with the largest return). The color corresponds to the discrete choice 
d = {Hot, Cold, None} (see legend). The dashed line represents the Otto 
cycle that maximizes the return for the same value of c. The parameters 

used for training are N = 128, Γ(H) = Γ(C) = 0.6, βH = 0.2, βC = 2, w0 = 2, U = 
[0.5, 1] [to enable a fair comparison with Ref. (43)], Δt = 0.2, γ = 0.999, 
P0 = 0.175, and Σ0 = 0.525.
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means that if we find all optimal tradeoffs between high power 
and low entropy-production (as we do with our method if 
the Pareto-front is convex), we will have necessarily also found 
all Pareto-optimal tradeoffs between high power and high 
efficiency.

Mathematically, we want to prove that the cycles that maxi-
mize

〈Gν(c)〉 ≡ c〈Pν〉 + (1 − c)ην (10) 

for some value of c ∈ [0, 1], also maximize the return in Eq. 5 for 
some (possibly different) value of c ∈ [0, 1]. To simplify the proof 
and the notation, we consider the following two functions

F(a, b, θ) = aP(θ) − bΣ(P(θ), η(θ)),

G(a, b, θ) = aP(θ) + bη(θ),
(11) 

where P(θ) and η(θ) represent the power and efficiency of a cycle 
parameterized by a set of parameters θ, a > 0 and b > 0 are two sca-
lar quantities, and

Σ(P, η) =
η(c)

ν − η
η

βνP (12) 

is obtained by inverting Eq. 9.
We wish to prove the following. Given some weights a1 > 0 and 

b1 > 0, let θ1 be the value of θ that locally maximizes G(a1, b1, θ). 
Then, it is always possible to identify positive weights a2 > 0, b2 > 
0 such that the same parameters θ1 (i.e. the same cycle) is a local 
maximum for F(a2, b2, θ). In the following, we will use that

∂PΣ ≥ 0, ∂ηΣ < 0, (13) 

and that the Hessian H(Σ) of Σ(P, η) is given by

H(Σ) =
0 −βν

η(c)
ν

η2

−βν
η(c)

ν

η2 2βνP
η(c)

ν

η3

⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠
. (14) 

Proof: by assumption, θ1 is a local maximum for G(a1, b1, θ). 
Denoting with ∂i the partial derivative in (θ)i, we thus have

0 = ∂iG(a1, b1, θ1) = a1∂iP(θ1) + b1∂iη(θ1). (15) 

Now, let us compute the derivative in θ of F(a2, b2, θ1), where a2 > 0 
and b2 > 0 are two arbitrary positive coefficients. We have

∂iF(a2, b2, θ1) = (a2 − b2∂PΣ)∂iP(θ1) − (b2∂ηΣ)∂iη(θ1). (16) 

Therefore, if we choose a2 and b2 such that

a1

b1

􏼒 􏼓

= 1 −∂PΣ
0 −∂ηΣ

􏼒 􏼓
a2

b2

􏼒 􏼓

, (17) 

thanks to Eq. 15 we have that

0 = ∂iF(a2, b2, θ1), (18) 

meaning that the same parameters θ1 that nullifies the gradient of 
G, nullifies also the gradient of F at a different choice of the 
weights, given by Eq. 17. The invertibility of Eq. 17 (i.e. a nonnull 
determinant of the matrix) is guaranteed by Eq. 13. We also 
have to make sure that if a1 > 0 and b1 > 0, then also a2 > 0 and 
b2 > 0. To do this, we invert Eq. 17, finding

a2

b2

􏼒 􏼓

= 1 −∂PΣ/(∂ηΣ)
0 −1/(∂ηΣ)

􏼒 􏼓
a1

b1

􏼒 􏼓

. (19) 

It is now easy to see that also the weights a2 and b2 are positive us-
ing Eq. 13.

To conclude the proof, we show that θ1 is a local maximum for 
F(a2, b2, θ) by showing that its Hessian is negative semi-definite. 
Since, by hypothesis, θ1 is a local maximum for G(a1, b1, θ), we 
have that the Hessian matrix

H(G)
ij ≡ ∂ijG(a1, b1, θ1) = a1∂ijP + b1∂ijη (20) 

is negative semi-definite. We now compute the Hessian H(F) of 
F(a2, b2, θ) in θ = θ1:

H(F)
ij = a2∂ijP − b2[∂PΣ ∂ijP + ∂ηΣ ∂ijη + Qij], (21) 

where

Qij = (∂iP ∂iη)H(Σ) ∂jP
∂jη

􏼒 􏼓

, (22) 

and H(Σ) is the Hessian of Σ(P, η) computed in P(θ1) and η(θ1). Since we 
are interested in studying the Hessian of F(a2, b2, θ1) in the special point 
(a2, b2) previously identified, we substitute Eq. 19 into Eq. 21, yielding

H(F)
ij = H(G)

ij +
b1

∂ηΣ
Qij. (23) 

We now prove that H(F)
ij is negative semi-definite since it is the sum of 

negative semi-definite matrices. By hypothesis H(G)
ij is negative semi- 

definite. Recalling Eq. 13 and that b1 > 0, we now need to show that 
Qij is positive semi-definite. Plugging Eq. 14 into Eq. 22 yields

Qij = β[ν]

η(c)
[ν]

η2 ∂iη∂jηRij, (24) 

where

Rij ≡ 2
P
η

+ Sij + ST
ij , Sij = −

∂iP
∂iη
. (25) 

We now show that if Rij is positive semi-definite, then also Qij is posi-

tive semi-definite. By definition, Qij is positive semidefinite if, for any 

set of coefficient ai, we have that 
􏽐

ij aiQijaj ≥ 0. Assuming Rij to be 

positive semi-definite, and using that β[ν], η(c)
[ν], η > 0, we have

􏽘

ij

aiQijaj = β[ν]

η(c)
[ν]

η2

􏽘

ij

xiRijxj ≥ 0, (26) 

where we define xi ≡ ∂iηai. We thus have to prove the positivity of Rij. 

We prove this showing that it is the sum of 3 positive semi-definite ma-
trices. Indeed, the first term in Eq. 25, 2P/η, is proportional to a matrix 
with 1 in all entries. Trivially, this matrix has 1 positive eigenvalue, 
and all other ones are null, so it is positive semi-definite. At last, Sij 

and its transpose have the same positivity, so we focus only on Sij. Sij 

is a matrix with all equal columns. This means that it has all null eigen-
values, except for a single one that we denote with λ. Since the trace of a 
matrix is equal to the sum of the eigenvalues, we have λ = Tr[S] =

􏽐
i Sii. 

Using the optimality condition in Eq. 15, we see that each entry of S is 
positive, i.e. Sij > 0. Therefore λ > 0, thus S is positive semi-definite, con-

cluding the proof that H(F)
ij is negative semi-definite.

To conclude, we notice that we can always renormalize a2 and 
b2, preserving the same exact optimization problem. This way, a 
value of c ∈ [0, 1] can be identified.

RL implementation
As discussed in the main text, our goal is to maximize the return 
〈rc〉(t) defined in Eq. 5. To solve the problem within the RL 
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framework, we discretize time as ti = iΔt. At every time-step ti, the 
aim of the agent is to learn an optimal policy that maximizes, in 
expectation, the time-discretized return 〈rc〉i. The time-discrete 
reward and return functions are given by:

ri+1 = Δt−1∫ti+Δt

ti
rc(t) dt, (27) 

〈rc〉i = (1 − γ)
􏽘∞

j=0

γ jri+1+j. (28) 

Equation 28 is the time-discrete version of Eq. 5, where the discount 
factor γ = exp ( − κΔt) determines the averaging timescale and ex-
presses how much we are interested in future or immediate rewards.

To be precise, plugging Eq. 27 into Eq. 28 gives 〈rc〉(t) (up to an 
irrelevant constant prefactor) only in the limit of Δt→ 0. 
However, also for finite Δt, both quantities are time-averages of 
the reward, so they are equally valid definitions to describe a long- 
term tradeoff maximization.

As in Ref. (69), we use a generalization of the soft-actor critic 
(SAC) method, first developed for continuous actions (70, 71), to 
handle a combination of discrete and continuous actions (72, 
73). We further tune the method to stabilize the convergence in 
a multiobjective scenario. We here present an overview of our im-
plementation of SAC putting special emphasis on the differences 
with respect to the standard implementation. However, we refer 
to (70–73) for additional details. Our method, implemented with 
PyTorch, is based on modifications and generalizations of the 
SAC implementation provided by Spinning Up from OpenAI 
(111). All code and data to reproduce the experiments is available 
online (see Data Availability and Code Availability sections).

The SAC algorithm is based on policy iteration, i.e. it consists of 
iterating multiple times over two steps: a policy evaluation step, and a 
policy improvement step. In the policy evaluation step, the value func-
tion of the current policy is (partially) learned, whereas in the policy 
improvement step a better policy is learned by making use of the 
value function. We now describe these steps more in detail.

In typical RL problems, the optimal policy π∗(s | a) is defined as 
the policy that maximizes the expected return defined in Eq. 28, i.e.:

π∗ = arg max
π

Eπ
s∼μπ

􏽘∞

k=0

γkrk+1

􏼌
􏼌
􏼌
􏼌
􏼌
s0 = s

􏼢 􏼣

, (29) 

where Eπ denotes the expectation value choosing actions according 
to the policy π. The initial state s0 = s is sampled from μπ, i.e. the 
steady-state distribution of states that are visited by π. In the SAC 
method, balance between exploration and exploitation (112) is 
achieved by introducing an Entropy-Regularized maximization ob-
jective. In this setting, the optimal policy π∗ is given by

π∗ = arg max
π

Eπ
s∼B

􏽘∞

k=0

γk(rk+1 + αH[π(· | sk)])

􏼌
􏼌
􏼌
􏼌
􏼌
s0 = s

􏼢 􏼣

, (30) 

where α ≥ 0 is known as the “temperature” parameter that balances 
the tradeoff between exploration and exploitation, and

H[P] = E
x∼P

[ − log P(x)] (31) 

is the entropy of the probability distribution P. Notice that we re-
placed the unknown state distribution μπ with B, which is a replay 
buffer populated during training by storing the observed one-step 
transitions (sk, ak, rk+1, sk+1).

Developing on Ref. (69), we generalize such approach to a 
combination of discrete and continuous actions in the following 
way. Let us write an arbitrary action a as a = (u, d), where u is the 

continuous action and d is the discrete action (for simplicity, we de-
scribe the case of a single continuous action, though the general-
ization to multiple variables is straightforward). From now on, all 
functions of a are also to be considered as functions of u, d. We de-
compose the joint probability distribution of the policy as

π(u, d | s) = πD(d | s)·πC(u | d, s), (32) 

where πD(d | s) is the marginal probability of taking discrete action 
d, and πC(u | d, s) is the conditional probability density of choosing 
action u, given action d (D stands for “discrete”, and C for “continu-
ous”). Notice that this decomposition is an exact identity, thus al-
lowing us to describe correlations between the discrete and the 
continuous action. With this decomposition, we can write the en-
tropy of a policy as

H[π(· | s)] = Hπ
D(s) + Hπ

C(s), (33) 

where

Hπ
D(s) = H[πD(· | s)], Hπ

C(s) =
􏽘

d

πD(d | s)H[πC(· | d, s)], (34) 

correspond, respectively, to the entropy contribution of the dis-
crete (D) and continuous (C) part. These two entropies take on val-
ues in different ranges: while the entropy of a discrete distribution 
with |D| discrete actions is nonnegative and upper bounded by 
log (|D|), the (differential) entropy of a continuous distribution 
can take on any value, including negative values (especially for 
peaked distributions). Therefore, we introduce a separate tem-
perature for the discrete and continuous contributions replacing 
the definition of the optimal policy in Eq. 30 with

π∗ = arg max
π

Eπ
s∼B

􏽘∞

k=0

γk(rk+1 + αDHπ
D(sk)

􏼢

+ αCHπ
C(sk))

􏼌
􏼌
􏼌
􏼌
􏼌
s0 = s

􏼣

, (35) 

where αC ≥ 0 and αD ≥ 0 are two distinct “temperature” parame-
ters. This is one of the differences with respect to Refs. (69–71). 
Equation 35 defines our optimization objective. Accordingly, we 
define the value function Qπ(s, a) of a given policy π as

Qπ(s, a) = Eπ r1 +
􏽘∞

k=1

γk(rk+1 + αDHπ
D(sk)

􏼢

+ αCHπ
C(sk))

􏼌
􏼌
􏼌
􏼌
􏼌
s0 = s, a0 = a

􏼣

. (36) 

Its recursive Bellman equation therefore reads

Qπ(s, a) = E
s1

a1∼π(·|s1)

[r1 + γ(Qπ(s1, a1) + αDHπ
D(s1)

+αCHπ
C(s1)) | s0 = s, a0 = a]. (37) 

As in Ref. (70, 71), we parameterize πC(u | d, s) as a squashed 
Gaussian policy, i.e. as the distribution of the variable

ũ(ξ | d, s) = ua + ub−ua
2 [1 + tanh(μ(d, s) + σ(d, s)·ξ))],

ξ ∼ N (0, 1),
(38) 

where μ(d, s) and σ(d, s) represent, respectively, the mean and stand-
ard deviation of the Gaussian distribution, N (0, 1) is the normal dis-
tribution with zero mean and unit variance, and where we assume 
that U = [ua, ub]. This is the so-called reparameterization trick.

We now describe the policy evaluation step. In the SAC algo-
rithm, we learn two value functions Qϕi

(s, a) described by the learn-
able parameters ϕi, for i = 1, 2. Qϕ(s, a) is a function approximator, 
e.g. a neural network. Since Qϕi

(s, a) should satisfy the Bellman 
Eq. 37, we define the loss function for Qϕi

(s, a) as the mean square 
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difference between the left and right-hand side of Eq. 37, i.e.

LQ(ϕi) = E
(s,a,r,s′)∼B

[(Qϕi
(s, a) − y(r, s′))2], (39) 

where

y(r, s′) = r + γ E
a′∼π(· | s′ )

min
j=1,2

Qϕtarg,j
(s′, a′) + αDHD(s′)

􏼔

+αCHC(s′)
􏼕

. (40) 

Notice that in Eq. 40 we replaced Qπ with min j=1,2 Qϕtarg,j
, where ϕtarg,j, 

for j = 1, 2, are target parameters which are not updated when minim-
izing the loss function; instead, they are held fixed during backpropaga-
tion, and then they are updated according to Polyak averaging, i.e.

ϕtarg,i ← ρpolyakϕtarg,i + (1 − ρpolyak)ϕi, (41) 

where ρpolyak is a hyperparameter. This change was shown to improve 

learning (70, 71). In order to evaluate the expectation value in Eq. 40, we 
use the decomposition in Eq. 32 to write

E
a′∼π(· | s′ )

[·] =
􏽘

d′
πD(d′ | s′) E

u′∼πC(· | d′ ,s′)
[·], (42) 

where we denote a′ = (u′, d′). Plugging Eq. 42 into Eq. 40 and writing the 
entropies explicitly as expectation values yields

y(r, s′) = r + γ
􏽘

d′
πD(d′ | s′)

· E
u′∼πC(· | d′ ,s′ )

min
j=1,2

Qϕtarg,j
(s′, d′, u′) − αC log πC(u′ | d′, s′)

􏼔 􏼕􏼠

−αD log πD(d′ | s′)

􏼡

. (43) 

We then replace the expectation value over u′ in Eq. 43 with a single 

sampling u′ ∼ πC(· | d′, s′) (therefore one sampling for each discrete ac-
tion) performed using Eq. 38. This corresponds to performing a full 
average over the discrete action, and a single sampling of the continu-
ous action.

We now turn to the policy improvement step. Since we intro-
duced two separate temperatures, we cannot use the loss func-
tion introduced in Refs. (70, 71). Therefore, we proceed in two 
steps. Let us define the following function  

Zπ(s) = − E
a∼π(· | s)

[Qπold
(s, a)] − αDHπ

D(s) − αCHπ
C(s), (44) 

where Qπold
(s, a) is the value function of some given “old policy” 

πold, and π is an arbitrary policy. First, we prove that if a policy 
πnew satisfies

Zπnew (s) ≤ Zπold (s) (45) 

for all values of s, then πnew is a better policy than πold as defined in 
Eq. 35. Next, we will use this property to define a loss function that 
implements the policy improvement step. Equation 45 implies 
that

E
a∼πold(· | s)

[Qπold
(s, a)] + αDHπold

D (s) + αCHπold

C (s)

≤ E
a∼πnew(· | s)

[Qπold
(s, a)] + αDHπnew

D (s) + αCHπnew

C (s).
(46) 

We now use this inequality to show that πnew is a better policy. 

Starting from the Bellmann equation 37 for Qπold
, we have Eq. 47.

Qπold
(s, a)=

E
s1

a1∼πold(·|s1)

􏽨
r1 + γ(Qπold (s1, a1) + αDHπold

D (s1) + αCHπold

C (s1))
􏼌
􏼌 s0 = s, a0 = a

􏽩

≤ E
s1

a1∼πnew(·|s1)

􏽨
r1 + γ(Qπold (s1, a1) + αDHπnew

D (s1) + αCHπnew

C (s1))
􏼌
􏼌 s0 = s, a0 = a

􏽩

=E
s1

a1∼πnew(·|s1)

􏽨
r1 + γ(αDHπnew

D (s1) + αCHπnew

C (s1))
􏼌
􏼌 s0 = s, a0 = a

􏽩

+γE
s1

a1∼πnew(·|s1)

􏽨
Qπold (s1, a1)

􏼌
􏼌 s0 = s, a0 = a

􏽩

≤ · · · ≤ Qπnew
(s, a).

(47) 

Using a strategy similar to that described in Refs. (70, 112), in Eq. 
47, we make a repeated use of inequality 46 and of the Bellmann 

equation for Qπold
(s, a) to prove that the value function of πnew is 

better or equal to the value function of πold.
Let πθ(a | s) be a parameterization of the policy function that de-

pends on a set of learnable parameters θ. We define the following 
loss function

Lπ(θ) = E
s∼B

a∼πθ (·|s)

[ − Qπold
(s, a) − αDHπθ

D (s) − αCHπθ
C (s)]. (48) 

Thanks to Eqs. 44 and 45, this choice guarantees us to find a 
better policy by minimizing Lπ(θ) with respect to θ. In order 
to evaluate the expectation value in Eq. 48, as before we 
explicitly average over the discrete action and perform a 

single sample of the continuous action, and we replace Qπold 

with minj Qϕj
. Recalling the parameterization in Eq. 38, this 

yields

Lπ(θ) = E
s∼B

􏽘

d

πD,θ(d | s) αD log πD,θ(d | s)
􏼒􏼢

+αC log πC,θ(ũθ(ξ | d, s) | d, s) − min
j=1,2

Qϕj
(s, ũθ(ξ | d, s), d)

􏼓􏼕

,

ξ ∼ N (0, 1).

(49) 

We have defined and shown how to evaluate the loss functions 
LQ(ϕ) and Lπ(θ) that allow us to determine the value function 
and the policy [see Eqs. 39, 43 and 49]. Now, we discuss how 
to automatically tune the temperature hyperparameters αD 

and αC. Ref. (71) shows that constraining the average entropy 
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of the policy to a certain value leads to the same exact SAC al-
gorithm with the addition of an update rule to determine the 

temperatures. Let H̅D and H̅C be, respectively, the fixed average 
values of the entropy of the discrete and continuous part of 
the policy. We can then determine the corresponding temper-
atures αD and αC minimizing the following two loss functions

LD(αD) = αD E
s∼B

[Hπ
D(s) − H̅D],

LC(αC) = αC E
s∼B

[Hπ
C(s) − H̅C].

(50) 

As usual, we evaluate the entropies by explicitly taking the aver-
age over the discrete actions, and taking a single sample of the 
continuous action. To be more specific, we evaluate LD by com-
puting

LD(αD) = αD E
s∼B

−
􏽘

d

πD(d | s) log πD(d | s) − H̅D

􏼢 􏼣

, (51) 

and LC by computing

LC(αC) = αC· E
s∼B

−
􏽘

d

πD(d | s) E
u∼πC(· | d, s)

[ log πC(u | d, s)] − H̅C

􏼢 􏼣

(52) 

and replacing the expectation value over u with a single sample.
To summarize, the SAC algorithm consists of repeating over 

and over a policy evaluation step, a policy improvement step, 
and a step where the temperatures are updated. The policy evalu-
ation step consists of a single optimization step to minimize the 
loss functions LQ(ϕi) (for i = 1, 2), given in Eq. 39, where y(r, s′) is 
computed using Eq. 43. The policy improvement step consists of 
a single optimization step to minimize the loss function Lπ(θ) given 
in Eq. 49. The temperatures are then updated performing a single 
optimization step to minimize LD(αD) and LC(αC) given, respective-
ly, in Eqs. 51 and 52. In all loss functions, the expectation value 
over the states is approximated with a batch of experience 
sampled randomly from the replay buffer B.

We now detail how we parameterize π(a | s) and Q(s, a). The idea is 
to develop an efficient way to process the state that can potentially 
be a long time-series of actions. To this aim, we introduce a “convo-
lution block” as a building element for our NN architecture. The con-
volution block, detailed in Fig. 6, takes an input of size (Cin, Lin), 
where Cin is the number of channels (i.e. the number of parameters 
determining an action at every time-step) and Lin is the length of the 
time-series, and produces an output of size (Cout, Lout = Lin/2), thus 
halving the length of the time-series. Notice that we include a skip 
connection (right branch in Fig. 6) to improve trainability (102).

Using the decomposition in Eq. 32 and the parameterization in Eq. 
38, the quantities that need to be parameterized are the discrete 
probabilities πD(d | s), the averages μ(d, s) and the variances σ(d, s), 
for d = 1, . . . , |D|, |D| = 3 being the number of discrete actions. The 
architecture of the neural network that we use for the policy function 
is shown in Fig. 7A. The state, composed of the time-series si = 
(ai−N, . . . , ai−1) which has shape (Cin, Lin = N), is fed through a series 
of ln2 (N) convolutional blocks, which produce an output of length 
(Cout, L = 1). The number of input channels Cin is determined by 
stacking the components of 􏿻u (which, for simplicity, is a single real 
number u in this appendix) and by using a one-hot encoding of the 
discrete actions. We then feed this output, together with the last ac-
tion which has a privileged position, to a series of fully connected 
NNs with ReLU activations. Finally, a linear network outputs 
W(d | s), μ(d, s) and log (σ(d, s)), for all d = 1, . . . , |D|. The probabilities 
πD(d | s) are then produced applying the softmax operation to W(d | s).

We parameterize the value function Qϕ(s, u, d) as in Fig. 7B. As 
for the policy function, the state s is fed through ln2 (N) stacked 
convolution blocks which reduce the length of the input to 
(Cout, L = 1). This output, together with the action u, is fed into a 
series of fully connected layers with ReLU activations. We then 
add a linear layer that produces |D| outputs, corresponding to 
the value of Q(s, u, d) for each d = 1, . . . , |D|.

At last, we discuss a further change to the current method that 
we implemented in the superconducting qubit refrigerator case to 
improve the converge. This idea is the following. The return 〈rc〉 is 
a convex combination of the power and of the negative entropy 
production. The first term is positive when the system is delivering 
the desired power, while the second term is strictly negative. 
Therefore, for c close to 1, the optimal value of the return is 
some positive quantity. Instead, as c decreases, the optimal value 
of the return decreases, getting closer to zero (this can be seen ex-
plicitly in Figs. 4A and 5B). However, a null return can also be 
achieved by a trivial cycle that consists of doing nothing, i.e. of 
keeping the control constant in time. Indeed, this yields both 

ReLU

1D conv, ker=stride=2

Convolution Block

( in , in )

( out , in/2)

+

avg. pooling, ker=stride=2

1D conv, ker=1

( in , in/2)

( out , in/2)

Fig. 6. Schematic representation of the convolution block that takes as 
input a 1D time-series of size (Cin, Lin), where Lin is the length of the series 
and Cin is the number of channels, and produces an output of size 
(Cout, Lin/2). In this image Lin = 4. The output is produced by stacking a 1D 
convolution of kernel size and stride of 2, and a nonlinearity (left branch). 
A residual connection (right branch), consisting only of linear operations, 
is added to improve trainability.

−44 −3− −22 −1

ln2

,

−44 −3− −22 −1

A B

Fig. 7. Neural network architecture used to parameterize the policy 
π(􏿻u, d | s) A) and to parameterize the value function Q(s, 􏿻u, d) B).
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zero power, and zero entropy production. Therefore, as c de-
creases, it becomes harder and harder for the RL agent to distin-
guish good cycles from these trivial solutions. We thus modify 
our method to allow us to smoothly change the value of c during 
training from 1 to the desired final value, which allows to tackle 
an optimization problem by “starting from an easier problem” 
(c = 1), and gradually increasing its difficulty. This required the fol-
lowing modifications to the previously described method.

We introduce two separate value functions, one for each ob-
jective (P for the power, and Σ for the entropy production)

Qπ
P(s, a) = Eπ r(P)

1 +
􏽘∞

k=1

γk(r(P)
k+1 + αDHπ

D(sk)

􏼢

+ αCHπ
C(sk)) s0 = s, a0 = a

􏼌
􏼌
􏼌
􏼌
􏼌

􏼣

,

Qπ
Σ(s, a)= Eπ r(Σ)

1 +
􏽘∞

k=1

γk(r(Σ)
k+1 + αDHπ

D(sk)

􏼢

+ αCHπ
C(sk)) s0 = s, a0 = a

􏼌
􏼌
􏼌
􏼌
􏼌

􏼣

,

(53) 

where

r(P)
i+1 ≡

1
Δt

∫ti+Δt
ti

P(τ)
P0

dτ, r(Σ)
i+1 ≡

1
Δt

∫ti+Δt
ti

Σ(τ)
Σ0

dτ, (54) 

represent, respectively, the normalized average power and aver-
age entropy production during each time-step. Since the value 
functions in Eq. 53 are identical to Eq. 36 up to a change of the re-
ward, they separately satisfy the same Bellmann equation as in 

Eq. 37, with r1 replaced respectively with r(P)
1 and r(Σ)

1 . Therefore, 
we learn each value functions minimizing the same loss function 

LQ given in Eq. 39, with ri replaced with r(P)
1 or r(Σ)

1 . Both value func-
tions are parameterized using the same architecture, but separate 
and independent parameters. We now turn to the determination 
of the policy. Comparing the definition of ri given in the main 

text with Eq. 54, we see that ri+1 = cr(P)
i+1 − (1 − c)r(Σ)

i+1. Using this prop-

erty, and comparing Eq. 36 with Eq. 53, we see that

Qπ(s, a) = cQπ
P(s, a) − (1 − c)Qπ

Σ(s, a). (55) 

Therefore, we learn the policy minimizing the same loss function as 
in Eq. 49, using Eq. 55 to compute the value function. To summarize, 
this method allows us to vary c dynamically during training. This re-
quires learning two value functions, one for each objective, and stor-

ing in the replay buffer the two separate rewards r(P)
i and r(Σ)

i .
At last, when we refer to “final deterministic cycle”, we are sam-

pling from the policy function “switching off the stochasticity”, i.e. 
choosing continuous actions u setting ξ = 0 in Eq. 38, and choosing 
deterministically the discrete action with the highest probability.

Physical model
As discussed in the main text, we describe the dynamics of the two 
analyzed QTMs employing the Lindblad master equation that can 
be derived also for nonadiabatic drivings (107), in the weak 
system-bath coupling regime performing the usual Born-Markov 
and secular approximation (104–106) and neglecting the 
Lamb-shift contribution. This approach describes the time- 
evolution of the reduced density matrix of the quantum system, 
ρ̂(t), under the assumption of weak system-bath interaction. 
Setting h− = 1, the master equation reads

∂
∂t

ρ̂(t) = −i[Ĥ[􏿻u(t)], ρ̂(t)] +
􏽘

α
D

(α)
􏿻u(t),d(t)[ρ̂(t)], (56) 

where Ĥ[􏿻u(t)] is the Hamiltonian of the quantum system that de-
pends explicitly on time via the control parameters 􏿻u(t), [·, ·] denotes 

the commutator, and D(α)
􏿻u(t),d(t)[·], known as the dissipator, describes 

the effect of the coupling between the quantum system and bath 
α = H, C. We notice that since the RL agent produces piece-wise con-
stant protocols, we are not impacted by possible inaccuracies of the 
master equation subject to fast parameter driving (113), provided 
that Δt is not smaller than the bath timescale. Without loss of gen-
erality, the dissipators can be expressed as (105, 106)

D
(α)
􏿻u(t),d(t) = λα[d(t)]

􏽘

k

γ(α)
k,􏿻u(t) Â(α)

k,􏿻u(t)ρ̂Â(α)†
k,􏿻u(t)

􏼒

−
1
2

Â(α)†
k,􏿻u(t)Â

(α)
k,􏿻u(t)ρ̂ −

1
2

ρ̂Â(α)†
k,􏿻u(t)Â

(α)
k,􏿻u(t)

􏼓

, (57) 

where λα[d(t)] ∈ {0, 1} are functions that determine which 

bath is coupled the quantum system, Â(α)
k,􏿻u(t) are the Lindblad 

operators, and γ(α)
k,􏿻u(t) are the corresponding rates. In particular, 

λH(Hot) = 1, λC(Hot) = 0, while λH(Cold) = 0, λC(Cold) = 1, and 
λH(None) = λC(None) = 0. Notice that both the Lindblad operators 
and the rates can depend on time through the value of the control 
􏿻u(t). Their explicit form depends on the details of the system, i.e. 
on the Hamiltonian describing the dynamics of the overall system in-
cluding the bath and the system-bath interaction. Below, we provide 

the explicit form of Â(α)
k,􏿻u(t) and γ(α)

k,􏿻u(t) used to model the two setups 

considered in the manuscript. We adopt the standard approach to 
compute the instantaneous power and heat currents (114)

P(t) ≡ −Tr ρ̂(t)
∂
∂t

Ĥ[􏿻u(t)]
􏼔 􏼕

,

Jα(t) ≡ Tr Ĥ[􏿻u(t)]D(α)
􏿻u(t),d(t)

􏽨 􏽩
,

(58) 

that guarantees the validity of the first law of thermodynamics 
∂U(t)/(∂t) = −P(t) +

􏽐
α Jα(t), the internal energy being defined as 

U = Tr[ρ̂(t)Ĥ[􏿻u(t)]].
In the superconducting qubit refrigerator, we employ the mod-

el first put forward in Ref. (49), and further studied in Refs. (55, 63). 
In particular, we consider the following Lindblad operators and 
corresponding rates (identifying k = ±):

Â(α)
+,u(t) = −i|eu(t)〉〈gu(t)|, Â(α)

−,u(t) = +i|gu(t)〉〈eu(t)|, (59) 

where |gu(t)〉 and |eu(t)〉 are, respectively, the instantaneous ground 

state and excited state of Eq. 7. The corresponding rates are given 

by γ(α)
±,u(t) = Sα[ ± Δϵu(t)], where Δϵu(t) is the instantaneous energy gap 

of the system, and

Sα(Δϵ) =
gα

2
1

1 + Q2
α (Δϵ/ωα − ωα/Δϵ)2

Δϵ
eβαΔϵ − 1

(60) 

is the noise power spectrum of bath α. Here ωα, Qα and gα are the 
base resonance frequency, quality factor and coupling strength 
of the resonant circuit acting as bath α = H, C (see Refs. (49, 63) 
for details). As in Ref. (63), we choose ωC = 2E0Δ and 

ωH = 2E0

�����������
Δ2 + 1/4

􏽰
, such that the C (H) bath is in resonance with 

the qubit when u = 0 (u = 1/2). The width of the resonance is gov-
erned by Qα. The total coupling strength to bath α, plotted in 
Fig. 3F, is quantified by

γ(α)
u(t) ≡ γ(α)

+,u(t) + γ(α)
−,u(t). (61) 

In the quantum harmonic oscillator-based heat engine, following 
Ref. (43), we describe the coupling to the baths through the 
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Lindblad operators Â(α)
+,u(t) = â†u(t), Â(α)

−,u(t) = âu(t) and corresponding 

rates γ(α)
+,u(t) = Γα n(βαu(t)ω0) and γ(α)

−,u(t) = Γα[1 + n(βαu(t)ω0)], where we 

identify k = ±. âu(t) = (1/
��
2
√

)
����������
mω0u(t)

􏽰
q̂ + i/

����������
mω0u(t)

􏽰
p̂ and â†u(t) are, 

respectively, the (control dependent) lowering and raising opera-
tors, Γα is a constant rate setting the thermalization timescale of 

the system coupled to bath α, and n(x) = [ exp (x) − 1]−1 is the 
Bose-Einstein distribution.

Training details
We now provide additional practical details and the hyper param-
eters used to produce the results of this manuscript.

In order to enforce sufficient exploration in the early stage of 
training, we do the following. As in Ref. (111), for a fixed number 
of initial steps, we choose random actions sampling them uni-
formly withing their range. Furthermore, for another fixed num-
ber of initial steps, we do not update the parameters to allow 
the replay buffer to have enough transitions. B is a 
first-in-first-out buffer, of fixed dimension, from which batches 
of transitions (sk, ak, rk+1, sk+1, ak+1) are randomly sampled to up-
date the NN parameters. After this initial phase, we repeat a pol-
icy evaluation, a policy improvement step and a temperature 
update step nupdates times every nupdates steps. This way, the over-
all number of updates coincides with the number of actions per-
formed on the QTM. The optimization steps for the value 
function and the policy are performed using the ADAM opti-
mizer with the standard values of β1 and β2. The temperature pa-
rameters αD and αC instead are determined using stochastic 
gradient descent with learning rate 0.001. To favor an explora-
tory behavior early in the training, and at the same time to 
end up with a policy that is approximately deterministic, we 
schedule the target entropies H̅C and H̅D. In particular, we vary 
them exponentially during each step according to

H̅a(nsteps) = H̅a,end

+ (H̅a,start − H̅a,end) exp ( − nsteps/H̅a,decay),
(62) 

where a = C, D, nsteps is the current step number, and H̅a,start, 

H̅a,end and H̅a,decay are hyperparameters. In the superconducting 

qubit refrigerator case, we schedule the parameter c according 
to a Fermi distribution, that is

c(nstep) = cend + (cstart − cend) 1 + exp
nstep − cmean

cdecay

􏼠 􏼡􏼢 􏼣−1

. (63) 

In the harmonic oscillator engine case, to improve stability 
while training for lower values of c, we do not vary c during train-
ing, as we do in the superconducting qubit refrigerator case. 
Instead, we discourage the agent from never utilizing one of 
the two thermal baths by adding a negative reward if, withing 
the last N = 128 actions describing the state, less than 25 de-
scribe a coupling to either bath. In particular, if the number of 
actions Nα where d = α, with α = Hot, Cold is less than 25 in the 
state time-series, we sum to the reward the following penalty

rpenalty = −1.4
25 − Nα

25
. (64) 

This penalty has no impact on the final cycles where Nα is much 
larger than 25.

All hyperparameters used to produce the results of the super-
conducting qubit refrigerator and of the harmonic oscillator 
heat engine are provided respectively in Tables 1 and 2, where c re-
fers to the weight at which we are optimizing the return.

Convergence of the RL approach
The training process presents some degree of stochasticity, such 
as the initial random steps, the stochastic sampling of actions 
from the policy function, and the random sampling of a batch of 
experience from the replay buffer to compute an approximate 
gradient of the loss functions. We thus need to evaluate the reli-
ability of our approach.

As shown in the main text, specifically in Figs. 4 and 5, we ran the 
full optimization five times. Out of 65 trainings in the superconduct-
ing qubit refrigerator case, only 4 failed, and out of the 55 in the har-
monic oscillator engine, only 2 failed, where by failed we mean that 
the final return was negative. In such cases, we ran the training an 
additional time.

Figs. 4A and 5B display an error bar corresponding to the standard 
deviation, at each value of c, computed over the five repetitions. 
Instead, in Figs. 4B and 5C we display one black dot for each individ-
ual training. As we can see, the overall performance is quite stable 
and reliable.

At last, we discuss the variability of the discovered cycles. The 
cycles shown in Figs. 4C–F and 5D–E were chosen by selecting the 
largest return among the five repetitions. In Figs. 8 and 9, we dis-
play cycles discovered in the last of the five repetition, i.e. chosen 
without any post-selection. They correspond to the same setups 
and parameters displayed in Figs. 4C–F and 5D–E. As we can see, 
5 out of the 6 displayed cycles are very similar to the ones dis-
played in Figs. 4C–F and 5D–E, with a very slight variability. The 
only exception is Fig. 8B, where the cycle has a visibly shorter pe-
riod and amplitude than the one shown in Fig. 4D. Despite this vis-
ible difference in the cycle shape, the return of the cycle shown in 
Fig. 8B is 0.382 compared to 0.385 of the cycle shown in Fig. 4B.

We therefore conclude that, up to minor changes, the cycles 
are generally quite stable across multiple trainings.

Comparing with other methods
In Figs. 4 and 5, we compare the performance of our method re-
spectively against optimized trapezoidal cycles, and optimized 
Otto cycles. In both cases, we also maximize the power using 

Table 1. Hyperparameters used in numerical calculations 
relative to the superconducting qubit refrigerator that are not 
reported in the caption of Fig. 3.

Hyperparameter Qubit refrigerator

Batch size 512
Training steps 500 k
Learning rate 0.0003
B size 280 k
ρ polyak 0.995
Channels per conv. block (64, 64, 64, 128, 128, 128, 128)
Units per f.c. layer in π (256)
Units per f.c. layer in Qπ (256, 256)
Initial random steps 5 k
First update at step 1 k
nupdates 50
H̅C,start 0
H̅C,end −3.5
H̅C,decay 440 k
cstart 1
cend c
cmean 170 k
cdecay 20 k
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the RL method of Ref. (69). We now detail how we perform such 
comparison.

In the refrigerator based on a superconducting qubit, we con-
sider the trapezoidal cycle proposed in Ref. (49, 63), i.e. we fix

u(t) =
1
4

1 +
tan(a cos Ωt)

tanh(a)

􏼒 􏼓

(65) 

with a = 2, and we optimize 〈rc〉 with respect to frequency Ω. In the 
heat engine case based on a quantum harmonic oscillator, we fix 
an Otto cycle as described in Ref. (43), i.e. a trapezoidal cycle con-
sisting of the 4 strokes shown in Fig. 5D and E as a dashed line, and 
we optimize over the duration of each of the 4 strokes. In particu-
lar, we first performed a grid search in the space of these four du-
rations for c = 1. After identifying the largest power, we ran the 
Newton algorithm to further maximize the return. We then ran 
the Newton algorithm for all other values of c.

The comparison with Ref. (69) was done using the source code 
provided in Ref. (69), and using the same exact hyperparameters 
that were used in Ref. (69).

In particular, in the case of the refrigerator based on a super-
conducting qubit, we re-ran the code using the hyperparameters 
reported in Table 1, column “Figs. 3 and 4,” of the Methods section 
of Ref. (69), and we trained for the same number of steps (500k). 
We then evaluated its power and coefficient of performance 
evaluating the deterministic policy (which typically has a better 
performance). In the heat engine case based on a quantum har-
monic oscillator, we evaluated the performance of the cycle re-
ported in Fig. 5a,c of Ref. (69), whose training hyperparameters 
are reported in Table 1, column “Fig. 5A,” of the Methods section 
of Ref. (69).

Generation of coherence
In order to quantify the coherence generated in the instantaneous 
eigenbasis of the Hamiltonian in the refrigerator based on a super-
conducting qubit, we evaluated the time average of relative entropy 
of coherence (115), defined as

C(ρ̂(t)) = S(ρ̂diag.(t)) − S(ρ̂(t)), (66) 

where S(ρ̂) = −Tr[ρ̂ ln ρ̂] is the Von Neumann entropy, and

ρ̂diag.(t) = 〈gu(t)|ρ̂(t)|gu(t)〉·|gu(t)〉〈gu(t)|

+ 〈eu(t)|ρ̂(t)|eu(t)〉·|eu(t)〉〈eu(t)|
(67) 

is the density matrix, in the instantaneous eigenbasis |gu(t)〉 and 

|eu(t)〉, with the off-diagonal terms canceled out.
We compute the time-average of the relative entropy of coher-

ence generated by the final deterministic cycle found by the RL 
agent, and compare it to the coherence generated by a trapezoidal 
cycle operated at the same speed, i.e. with the same period. As we 
can see in Table 3, the trapezoidal cycles generate twice as much 
coherence as the RL cycles shown in Fig. 4C to F, i.e. corresponding 
to c = 1, 0.8, 0.6, 0.4.
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Table 2. Hyperparameters used in numerical calculations 
relative to the harmonic oscillator heat engine that are not 
reported in the caption of Fig. 5.

Hyperparameter Harmonic engine

Batch size 512
Training steps 500 k
Learning rate 0.0003
B size 160 k
ρ polyak 0.995
Channels per conv. block (64, 64, 64, 128, 128, 128, 128)
Units per f.c. layer in π (256)
Units per f.c. layer in Qπ (256, 128)
Initial random steps 5 k
First update at step 1 k
nupdates 50
H̅C,start −0.72
H̅C,end −3.5
H̅C,decay 144 k
H̅D,start ln 3
H̅D,end 0.01
H̅D,decay 144 k

Table 3. Coherence generated by the final deterministic cycles 
identified by the RL method (RL column) and generated by a 
trapezoidal cycle operated at the same speed (Trapez. column) at 
the values of c shown in the first column. These values correspond 
to the cycles shown in Fig. 4C to F.

c RL Trapez.

1 0.068 0.13
0.8 0.050 0.12
0.6 0.054 0.092
0.4 0.035 0.090

A B

C D

Fig. 8. Final deterministic cycle, identified in the superconducting qubit 
refrigerator, at the fifth training. Same parameters and quantities are 
shown as in Fig. 4C to F.

A

B

Fig. 9. Final deterministic cycle, identified in the harmonic oscillator 
engine, at the fifth training. Same parameters and quantities are shown 
as in Fig. 5D and E.
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