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Abstract: Symmetry concepts in parametrized dynamical systems may reduce the number of external
parameters by a suitable normalization prescription. If, under the action of a symmetry group G,
parameter space A becomes a (locally) trivial principal bundle, A ∼= A/G × G, then the normalized
dynamics only depends on the quotient A/G. In this way, the dynamics of fractional variables in
homogeneous epidemic SI(R)S models, with standard incidence, absence of R-susceptibility and
compartment independent birth and death rates, turns out to be isomorphic to (a marginally extended
version of) Hethcote’s classic endemic model, first presented in 1973. The paper studies a 10-parameter
master model with constant and I-linear vaccination rates, vertical transmission and a vaccination
rate for susceptible newborns. As recently shown by the author, all demographic parameters are
redundant. After adjusting time scale, the remaining 5-parameter model admits a 3-dimensional
abelian scaling symmetry. By normalization we end up with Hethcote’s extended 2-parameter model.
Thus, in view of symmetry concepts, reproving theorems on endemic bifurcation and stability in
such models becomes needless.

Keywords: symmetries in parametric dynamical systems; SIRS model; classic endemic model;
parameter reduction; normalization
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1. Introduction

The classic SIR model was introduced by Kermack and McKendrick in 1927 [1] as one
of the first models in mathematical epidemiology. The model divides a population into
three compartments with fractional sizes S (Susceptible), I (Infectious) and R (Recovered),
such that S + I + R = 1. The flow diagram between compartments, as given in Figure 1,
leads to the dynamical system

Ṡ = −βSI, İ = βSI − γI, Ṙ = γI. (1)

Figure 1. Flow diagram of the SIR model.

Here, γ denotes the recovery rate and β the effective contact rate (i.e., the number of
contacts/time leading to infection of a susceptible, given the contacted was infectious).
Members of R are supposed to be immune forever. Due to (1), S decreases monotonically,
eventually causing βS < γ and İ < 0. At the end, the disease dies out, I∞ = 0, and one
maintains a nonzero final size S∞ > 0, thus providing a model for herd immunity.

To construct models also featuring endemic situations, one needs a sufficient supply
of susceptibles to keep the incidence βSI ongoing above a positive threshold. The literature
discusses three basic methods to achieve this—see Figure 2.
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• Heathcote’s classic endemic model adds balanced birth and death rates µ to the SIR
model and assumes all newborns are susceptible. This leads to a bifurcation from a
stable disease-free equilibrium point to a stable endemic scenario when raising the
basic reproduction number r0 = β/(γR + µ) above one [2–5].

• The SIRS model adds an immunity waning flow, αRR from R to S, to the SIR model,
leading to the same result, with r0 = β/γR

• The SIS model considers recovery without immunity, i.e., a recovery flow γS I from I to
S, while putting R = 0. Again, this leads to the same result, with r0 = β/γS.

(a) Heathcote’s model

(b) SIRS model (c) SIS model
Figure 2. Standard models featuring endemic equilibria.

Since the original work by Hethcote the literature on endemic bifurcation in SI(R)S-
type models is vast. For a comprehensive and self-contained overview of the history,
methods and results in mathematical epidemiology see the textbook by M. Martcheva [6],
wherein an extensive list of references to original papers is also given.

Of course, since 2020, there has also been a huge tsunami of papers analyzing appli-
cations of such models to COVID-19. Presenting a representative list of references at this
point would overkill the scope of this paper. Some relevant references to SIRS models have
been presented by the author in [7], where it has been shown that endemic oscillations
predicted by the SIRS model decay much too fast to explain COVID-19 waves in the real
world. More generally, one should always be aware that autonomous models with constant
parameters often fail to describe time dependent social behavior due to public information,
governmental measures and seasonal effects. Finally, one should also mention that SIR-
type models always neglect incubation times, so this paper will not look at SEIR models
addressing that.

This paper is based on the idea that, when adding more parameters to standard models,
reproving theorems may become superfluous if instead there is a symmetry operation
“turning parameter space north”, i.e., mapping the seemingly more complicated model
to the simpler one. Obvious examples would be diagonalizing the matrix A in a linear
system ẋ = Ax or rotating a constant external (say magnetic) force field B = (B1, B2, B3) in a
system of radially interacting particles such that gB = (0, 0, |B|), g ∈ SO(3). In SI(R)S-type
models the simplest example has been proposed in [8], showing that, under quite general
conditions, demographic parameters are explicitly redundant when looking at fractional
variables (so this may be viewed as a translation symmetry in parameter space). Applying
this, for example, to a recent paper on backward bifurcation in a variable population SIRS
model with R-susceptibility by [9], many results of that paper already follow from earlier
results in [10,11].

Going one step ahead, this paper analyzes parameter symmetries in a homogeneous
10-parameter SI(R)S ≡ combined SIRS/SIS model with standard incidence, four demo-
graphic parameters and a continuous vaccination flow from S to R. Motivated by common
observations in the COVID-19 pandemic, the vaccination rate is also assumed to contain
a part proportional to I. This models diminishing willingness to get vaccinated when
public data indicate decreasing prevalence. For models letting the vaccination activity be
functionally dependent on the history of prevalence see e.g., [12–14].
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Using redundancy of birth and death rates and three scaling transformations, we will
see that such an elaborated model in fact still boils down to a marginally extended version
of Hethcote’s classic endemic model. This generalizes earlier results in [7]. As a particular
consequence, an I-linear vaccination rate may always be transformed to zero. In summary,
by symmetry arguments, reproving theorems on endemic bifurcation and stability in such
models becomes needless.

The plan of this paper is as follows. Section 2 gives a self contained review on
Hethcote’s endemic model, thereby introducing basic terminology and notation. To prepare
the setting for symmetry operations, a slightly extended version will be considered by
allowing also negative values of S and possibly negative recovery rates γR > −µ. Standard
techniques for proving endemic bifurcation and stability immediately generalize to this
setting. Identifying γ := γR + µ > 0 as a pure time scale, this model essentially depends
on just two parameters.

Section 3 introduces the 10-parameter SI(R)S model. After removing redundant
demographic parameters and performing two more transformation steps, we will see
that for a wide range of parameters a ∈ A?, including all epidemiologically interesting
scenarios, this model actually becomes isomorphic to the extended 2-parameter Hethcote
model. In absence of immunity waning and constant vaccination, but still with an I-linear
vaccination and two recovery flows from I to R and S, respectively, the model even becomes
isomorphic to the classic SIR model, see Section 3.5.

Section 4 provides a group theoretical approach to explain this scenario. There is a
coordinate free concept of parameter symmetry as a group G acting on phase × parameter
space, P ×A, projecting to an action of G on A, and leaving the dynamical system form
invariant. In our SI(R)S model, choosing suitable coordinates in P ×A, the group G is easily
identified as a composition of scaling transformations of, respectively, S, I and x− 1, x being
the replacement number. The action of G onA leaves the above sub-rangeA? ⊂ A invariant
and turns A into a principal G-bundle. Moreover, A? ∼= A?/G × G as trivial principal
bundles, and any such trivialization induces an isomorphism mapping the original system
with parameter space A? to an equivalent system with reduced parameter space A?/G.
In this way, the 2-parameter space of the extended Hethcote model is identified as the
quotient A?/G. We also have a “gauge fixing result” result, showing that any parameter
configuration a ∈ A? is G-equivalent to a configuration a′ ∈ Abio, where Abio ⊂ A denotes
the subset of epidemiologically admissible parameters.

Appendix A relates the Korobeinikov-Wake SIRS model in [15] to the present formula-
tion in Section 3, showing that without additional parameter constraints their model may
possibly lead to non-physical equilibrium states, S∗ > 1. Appendix B provides a Hamil-
tonian approach to the ”quasi-SIR case" in Section 3.5 and Appendix C shortly describes
the exceptional case of a SIS model with I-linear vaccination not covered within the main
setting.

2. Hethcote’s Endemic Model Revisited

In this Section we introduce notation and terminology and shortly review Hethcote’s
classic results [2–5]. Replacing R = 1− S− I, Hethcote’s model in Figure 2 leads to the
dynamic system

Ṡ = −βSI + µ(1− S), İ = βSI − (γR + µ)I

Introducing dimensionless variables

γ := γR + µ r0 := β/γ a := µ/γ

x := r0S y := r0 I τ := γt
(2)

we obtain
γ−1 ẋ = −xy + a(r0 − x) ,

γ−1ẏ = (x− 1)y .
(3)
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Here, r0 is the basic reproduction number (also called contact number by Hethcote), i.e., the
average number of new cases produced by one infected in a totally susceptible population,
and x is the effective reproduction number (also called replacement number by Hethcote), i.e.,
the average number of new cases produced by one infected at time t. More generally, the
replacement number x could be defined as the ratio inflow/outflow at the I-compartment,
making the second equation in (3) universal by definition. In particular, endemic equilibria
always satisfy x = 1. Looking at the domains of the definition, Equation (2) implies that

(x, y) ∈ R2
≥0 , x + y ≤ r0 , 0 < a < 1 , r0 > 0 .

Also, γ > 0 only sets the time scale, i.e., without loss, one could choose γ = 1 and use
τ as a rescaled time variable. We now slightly extend the above restrictions by using the
following definition:

Definition 1. By the extended Hethcote model we mean the dynamical system (3) on phase
space P = {(x, y) ∈ R×R≥0} with parameters γ > 0, a > 0, r0 ∈ R.

Note that the limit a = 0 yields the classic SIR model. Hethcote’s original methods
now immediately apply to this extended definition. First note:

Lemma 1. For any initial condition p0 ∈ P the forward flow of the system (3) stays bounded.

Proof. Let x− ≤ min{0, r0} and x+ ≥ max{0, r0, ar0 + (1− a)x−} and denote T(x−, x+) ⊂
P the triangle with corners p/ = (x−, 0), p. = (x+, 0) and pM = (x−, x+ − x−). Since
given p0 ∈ P we can always choose x± as above such that p0 ∈ T(x−, x+), it is enough
to show that T(x−, x+) is forward invariant. Since y = 0 ⇒ ẏ = 0 and x = x− ⇒ ẋ ≥ 0
we are left to show that on the diagonal 0 ≤ y = x+ − x ≤ x+ − x− we have ẋ + ẏ ≤ 0.
Assuming a ≤ 1 we get ẋ + ẏ = a(r0 − x+) + (a − 1)y ≤ 0. If instead a > 1, then
ẋ + ẏ ≤ a(r0 − x+) + (a− 1)(x+ − x−) ≤ 0.

Next, using y−1 as a Dulac function as in [3,4], one immediately checks ∂x(ẋ/y) +
∂y(ẏ/y) = −(1 + a/y) < 0, and so, by the Bendixson–Dulac theorem, in P there exist no
periodic solutions, homoclinic loops or oriented phase polygons of the dynamical system
(3). Thus, we arrive at

Theorem 1 (Hethcote 1973 [2]). For any initial conditon p0 = (x0, y0) ∈ P the forward orbit
φt(p0) of the dynamical system (3) exists for all t > 0. If r0 ≤ 1 or y0 = 0, then limt→∞ φt(p0) =
(r0, 0). Otherwise limt→∞ φt(p0) = (1, a(r0 − 1)).

Proof. Existence of φt for all t > 0 follows from boundedness. If y0 = 0, then (3) can
immediately be integrated yielding φt(x0, 0) = (r0 + (x0 − r0)e−at, 0). If r0 ≤ 1, then the
disease free equilibrium p∗d f e := (r0, 0) is the only equilibrium point (EP) in P and the
statement follows by absence of periodic solutions and the Poincaré-Bendixson Theorem.
If r0 > 1, then there also exists the endemic EP p∗end := (1, a(r0 − 1)) ∈ P and, by the same
argument, the omega limit set of {φt(p0)} must consist of one of the two EPs. If y0 > 0
it must be p∗end, either by arguing that p∗d f e is a saddle point with attractive line {y = 0}
(calculate the Jacobian), or by using that

L(x, y) := y exp
[

y + (x− 1)2/2
a(1− r0)

]
provides a Lyapunov function satisfying L(x, 0) = 0, L(x0, y0) > 0 and

γ−1 L̇ =
(a + y)(x− 1)2

r0 − 1
L ≥ 0.
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To study the asymptotic behavior at these equilibria one has to compute eigenvalues and
slopes of eigenvectors of the Jacobian. For example, as already noted by Hethcote in [3–5], see
also chapter 3.4–3.5 in the text book by M. Martcheva [6], there is a sub-range a < 1 and
1 < r− < r0 < r+, where the endemic equilibrium becomes spiral and hence this model
shows endemic oscillations. A complete detailed analysis of possible asymptotic scenarios
has also been given in [7].

3. The 10-Parameter SI(R)S Model

This section introduces a homogeneous 10-parameter SI(R)S-model (i.e., mixed SIRS/
SIS model) with standard incidence and flow diagram as depicted in Figure 3. The model
describes the infection dynamics of three compartments with populations P = (S,R, I) ∈
R3
≥0 and total population N = S+ I+R > 0. Members of I are infectious, members of S

are susceptible (not immune) and members of R are immune due to recovery or vaccination.
To model widely experienced social behavior, Figure 3 introduces the parameter θ to the
classic setting. It describes the willingness to get vaccinated by assuming a vaccination rate
θ I proportional to the prevalence I := I/N. As we will see, such an extended model can
always be transformed to the standard case θ = 0 (Corollary 2).

Figure 3. Flow diagram of the SI(R)S model. B = νN − pνI denotes the number of not infected
newborns per unit of time.

Parameters in this model are

αS : Constant vaccination rate.
θ : Willingness to get vaccinated given the actual prevalence I = I/N.
αR : Immunity waning rate.
β : Effective contact rate of a susceptible from S.
γS, γR, γ : Recovery rates for I→ S and I→ R, respectively. γ := γS + γR.
µ : Mortality rate, assumed to be compartment independent.
ν : Rate of newborns, assumed to be compartment independent.

Newborns from S and R are not supposed to be infected.
p : Probability of a newborn from I to be infected.
B : Sum of not infected newborns, B = νN − pνI.
qS, qR : Split ratio of not infected newborns landing in S and R, qS + qR = 1.

So, qR is the vaccinated portion of not infected newborns.

Epidemiologically, all parameters are assumed nonnegative. Also, p ≤ 1, qS + qR = 1,
β > 0 and γ > 0. So, in total we have 10 parameters, four of which, (ν, µ, p, qR), are
purely demographic. Subcases of this model with constant population and θ = 0 have
been analyzed e.g., in [15,16]. Of course, Hethcote’s classic endemic model is also a special
subcase, which has been reinvented several times; see, e.g., [17–19].

At this place one should mention that there are various models in the literature treating
vaccination and loss of immunity differently. For example, one might introduce a separate
compartment V to distinguish vaccinated from recovered individuals (see, e.g., [20]). A
model for booster vaccination with a separate compartment for primary vaccination has
been proposed by [21] and periodic pulse vaccination has been studied e.g., in [22–24].
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Time dependent vaccination rates have also been studied in [25] by applying optimal
control methods and in [12] by letting the vaccination activity be functionally dependent
on the history of the prevalence via the Preisach hysteresis operator. Following a similar
philosophy, in [13,14] the authors use an information variable, M, to model how information
on current and past states of the disease influences decisions in families whether to vaccinate
or not their children.

Partial and/or waning immunity may also be modeled by introducing a diminished
transmission rate directly from R to I (or V to I). Such models are well known to lead to a
so-called backward bifurcation; see, e.g., [9,10,20,26–28]. In fact, the methods of this paper
will generalize to such a setting; see [29].

The next section will show that the full 10-parameter model in Figure 3 in fact boils
down to the extended Hethcote model as defined in Definition 1.

3.1. Redundancy of Birth and Death Rates

In a first step, we follow the strategy of [8], showing that in the dynamics of fractional
variables p := N−1P ≡ (S, R, I) the four demographic parameters (µ, ν, p, qS = 1− qR)
become redundant. We have Ṅ = (ν− µ)N and

ṗ = Lp + M p + Λ(p) + (µ− ν)p , (4)

L :=

qSν− µ qSν qS(1− p)ν
qRν qRν− µ qR(1− p)ν

0 0 pν− µ

 (5)

M :=

−αS αR γS
αS −αR γR
0 0 −γ

, Λ(p) :=

−(β + θ)SI
θSI
βSI

. (6)

Now, demographic parameters become redundant by putting M̃ij := Mij + Lij + (µ−
ν)δij, i.e.,

α̃S := αS + qRν , γ̃S := γS + qS(1− pI)ν ,
α̃R := αR + qSν , γ̃R := γR + qR(1− pI)ν .

(7)

In this way, the number of effective parameters reduces from ten to six. So, from
now on, we put without loss µ = ν = 0 and omit the tilde above parameters. Again, it is
convenient to introduce dimensionless parameters. Put γ := γR + γS and

α1 := αS/γ, γ1 := γS/γ, β1 := β/γ,

α2 := αR/γ, γ2 := γR/γ, θ1 := θ/γ.

Note that β1 ≡ r0. The new notation indicates a possible generalization to models
where also R is susceptible [29]. With this notation the dynamics takes the form

γ−1 ṗ = Fa(p) := M p + Λ(p) (8)

M :=

−α1 α2 γ1
α1 −α2 γ2
0 0 −1

, Λ(p) := SI

−(β1 + θ1)
θ1
β1

. (9)

We start with an extended parameter space by putting a := α1 + α2, β+ := β1 + θ1
and requiring a := (α1, α2, γ1, γ2, β1, β+) ∈ A. Here we put
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A := {a ∈ R4 ×R2
+ | a > 0 ∧ γ1 + γ2 = 1}, (10)

Abio := A∩ {αi ≥ 0 ∧ γi ≥ 0 ∧ β+ ≥ β1}, (11)

Abio,0 := Abio ∩ {θ1 = 0}, (12)

while γ > 0 is understood throughout. So, Abio denotes the epidemiologically admissible
subset of parameters. Also, we start with defining the system (8) on the extended phase
space given by the half plane

P := {p ≡ (S, R, I) ∈ R2 ×R≥0 | S + R + I = 1}. (13)

Clearly, P stays invariant under the dynamics (8) for all a ∈ A. Epidemiologically the
system is considered for initial conditions in the physical triangle Tphys ⊂ P

Tphys := P ∩R3
≥0. (14)

It is straightforward to check that for all a ∈ Abio this triangle stays forward invariant
under the dynamics (8), i.e., if p ∈ Tphys and pi = 0 then ṗi ≥ 0. (More generally, it can be
shown that Tphys is forward invariant, iff a ∈ A ∩ {θ1 ≥ −α1 − γ2 − 2

√
α1γ2}.)

Remark 1. The “quasi-SIR limit” α1 = α2 = 0 becomes an integrable Hamiltonian model, see
Section 3.5 and Appendix B.

3.2. Dynamics of the Replacement Number

From now on, we substitute R = 1− S − I and drop the variable R. Hence P =
{(S, I) ∈ R×R≥0} and Tphys = {(S, I) ∈ R2

≥0 | S + I ≤ 1} ⊂ P . In a second step, we
proceed in a similar way to [7] and define

x := β1S, y := β+ I,

R0 := β1
α2

a
≡ r0

α2

a
, ρ := (α2 − γ1)

β1

β+
.

(15)

Then (x, y) ∈ P and the equations of motion (8) are equivalent to

γ−1 ẋ = −xy− ρy + a(R0 − x),

γ−1ẏ = (x− 1)y.
(16)

Here, x is again the replacement number and R0 is the well known vaccination reduced
reproduction number [30]. Note that for a ∈ Abio the definitions imply 0 ≤ R0 ≤ r0 and
−1 ≤ ρ ≤ a. Also note that choosing the variables (x, y) has further reduced the number
of free parameters from six to four, i.e., the dynamics in Equation (16) is independent of
β1 and β+. Instead, these parameters now fix the image of the physical triangle Tphys in
xy-space.

Tphys(β1, β+) := {(x, y) ∈ R2
≥0 | x/β1 + y/β+ ≤ 1}, 0 < β1 ≤ β+. (17)

So, given (a, R0, ρ) and the position of Tphys ⊂ P , one recovers a ∈ A. More precisely,
we have

Lemma 2. Put b := (α2 − γ1)β1 ≡ β+ρ and B := (R+ ×R2)×R2
+. The map

f : A 3 a 7→ (a, R0, b)× (β1, β+) ∈ B

is bijective with inverse f−1 given by
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α1 = a− aR0/β1, α2 = aR0/β1, γ1 = (aR0 − b)/β1, γ2 = 1− γ1. (18)

Moreover,
f (Abio) = B ∩ {0 ≤ R0 ≤ β1 ≤ β+ ∧ aR0 − β1 ≤ b ≤ aR0}. (19)

Proof. Equation (18) is straightforward and the conditions in the r.h.s. of (19) are equivalent
to, respectively, 0 ≤ α2 ≤ a, θ1 ≥ 0 and 0 ≤ γ1 ≤ 1.

Lemma 2 motivates the following definition.

Definition 2. Let a > 0, 0 ≤ R0 and −1 ≤ ρ ≤ a be given. Then (β1, β+), respectively triangles
Tphys(β1, β+), are called admissible, if (a, R0, β+ρ)× (β1, β+) ∈ f (Abio).

Since for a ∈ Abio physical triangles are forward invariant under the dynamics (8), we
conclude

Corollary 1. Admissible triangles Tphys(β1, β+) are forward invariant under the dynamics (16).

Remark 2. One should remark that Equation (16) has been obtain in equivalent form by Ko-
robeinikov and Wake in [15], with ρ ≥ 0, but without the upper bound ρ ≤ a. This is due to the fact
that the authors consider possibly unbalanced birth and death rates, µ 6= ν, but still require the total
population to be time independent. In other words, the recovered/immune compartment is forced to
obey Ṙ = −Ṡ− İ. For µ 6= ν, this leads to a non-constant and S- and I-dependent mortality rate
in the R-compartment. Nevertheless, this system transforms to the present setting, with a ∈ A, but
possibly with α1 and γ2 negative, so a 6∈ Abio, see Appendix A for the details. The fact that global
stability results as in [15] may also hold outside of Abio will be covered by Theorem 2 below.

3.3. Equilibrium States

From the dynamics (16) we immediately read off the solutions of ẋ = ẏ = 0, yielding
a disease free equilibrium (x∗dfe, y∗dfe) and an endemic equilibrium (x∗end, y∗end),

(x∗dfe, y∗dfe) = (R0, 0), (x∗end, y∗end) = (1, a(R0 − 1)/(ρ + 1)), (20)

where the endemic equilibrium requires R0 > 1 and ρ > −1. In terms of original variables
and parameters, this results in

(S∗dfe, I∗dfe) =

(
R0

r0
, 0
)

=

(
αR

αS + αR
, 0
)

, (21)

(S∗end, I∗end) =

(
1
r0

,
αRr0

(αR + γR)r0 + θ
(1− 1

R0
)

)
=

(
1
r0

,
(r0 − 1)αR − αS
(αR + γR)r0 + θ

)
. (22)

This generalizes well known results in the literature [2–5,15–19] to the case of our
present 10-parameter model.

Remark 3. As already noted, for a ∈ Abio we have −1 ≤ ρ ≡ b/β+ ≤ a, where the boundary
case ρ = −1 is equivalent to α2 = γ2 = θ1 = 0. In particular, it also requires R0 = 0 and
β1 = β+. Epidemiologically, this case is uninteresting and excluded in what follows. It will be
discussed shortly in Appendix C.

Remark 4. Typically, vaccination diminishes the reproduction number R0 as in Equation (15),
where ∂R0/∂α1 < 0. This allows us quite generally to determine lower bounds on vaccination
rates to achieve herd immunity by requiring R0 ≤ 1, see e.g. the text book [6]. In contrast, here
R0 is independent of the I-linear vaccination rate θ1. In fact, θ1 just diminishes I∗end, see (22), and
increases the recovered/immune fraction accordingly. But it doesn’t influence the value of S∗end, nor
the disease free equilibrium, nor the endemic threshold R0 = 1⇔ r0 = 1 + α1/α2. In fact, as we
will see in Corollary 2 in Section 4.2, by a scaling transformation (S, I) 7→ (λS, I), λ = β/(β+ θ),
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the SI(R)S model (8) with parameters in a ∈ Abio and θ > 0 maps isomorphically to a system with
appropriately transformed parameters a′ ∈ Abio,0, i.e., θ′ = 0, while keeping R0 invariant.

3.4. Transformation to the Extended Hethcote Model

In the third step, we now apply a rescaling transformation of x− 1 as first introduced
in [7]. This will show that for ρ > −1 the system (16) is isomorphic to an extended Hethcote
model as defined in Definition 1. Hence, to prove stability properties for the above SI(R)S
model equilibria, we just need to quote Hethcote’s results in the formulation of Theorem 1.

Proposition 1 (Nill 2022 [7]). Consider the system (16) on phase space P and for parameters
γ > 0, ρ > −1, a ≥ 0 and R0 ∈ R. Define rescaled variables and parameters by

x̄− 1 =
x− 1
ρ + 1

, ȳ =
y

ρ + 1
, ā =

a
ρ + 1

, R̄0 − 1 =
R0 − 1
ρ + 1

, γ̄ = (ρ + 1)γ. (23)

Then (x̄, ȳ, γ̄, ā, R̄0) ∈ P ×R2
+ ×R and the system (16) is isomorphic to the extended Hethcote

model (3).
γ̄−1 ˙̄x = −x̄ȳ + ā(R̄0 − x̄), γ̄−1 ˙̄y = (x̄− 1)ȳ. (24)

Proof. By straightforward calculation.

Since sign(R̄0 − 1) = sign(R0 − 1) and sign(x̄ − 1) = sign(x − 1), the results of
Theorem 1 now immediately translate to our original model. In doing so, due to the
global boundedness property in Lemma 1, we no longer have to restrict ourselves to
parameter constraints a ∈ Abio to guarantee the forward invariance of physical triangles.
The following more general definition of A? will suffice.

Theorem 2. Consider the SI(R)S model (8) on phase space P (13) with parameters

a ∈ A? := A∩ {ρ > −1} ≡ A ∩ {θ1/β1 > −α2 − γ2}. (25)

(i) For any initial conditon p0 = (S0, I0) ∈ P the forward orbit φt(p0) exists for all t > 0. If R0 ≤
1 or I0 = 0, then limt→∞ φt(p0) = (S∗dfe, I∗dfe). Otherwise limt→∞ φt(p0) = (S∗end, I∗end).

(ii) If a ∈ A? ∩ {αi ≥ 0} then (S∗dfe, I∗dfe) ∈ Tphys.
(iii) If a ∈ A? ∩Abio and R0 > 1, then (S∗end, I∗end) ∈ Tphys.

Proof. Under the transformations (15) the equivalence of systems (8) and (16) holds for all
a ∈ A and the equivalence of (16) and (24) holds for all ρ > −1 by Proposition 1. Part (i)
follows from Theorem 1, part (ii) is obvious from 0 ≤ αi/a ≤ 1 and part (iii) follows from
forward invariance of Tphys for a ∈ Abio.

3.5. The Quasi SIR Limit

In the limit α1 = α2 = 0, γi ≥ 0 and θ1 ≥ 0 the system (8) becomes a combined
SIR/SIS model with absence of immunity waning and just an I-linear vaccination rate. In
this case, we obtain a = aR0 = 0 and ρ = −γ1β1/β+ ∈ [−1, 0]. For ρ = −1 this is the pure
SIS model, γ2 = θ1 = 0, and for −1 < ρ ≤ 0 the transformation (23) reduces to the classic
SIR model, Equation (24) with ā = āR̄0 = 0. Hence, this model also shows herd immunity
and standard results for the classic SIR model [1,3,4,31–33] now apply, see Appendix B
for more details. Below, let W+ : [−1/e, ∞) → [−1, ∞) denote the upper branch of the
so-called Lambert-W function [34,35], i.e., the inverse of [−1, ∞) 3 z 7→ zez ∈ [−1/e, ∞).

Theorem 3. Consider the SI(R)S model (8) for αi = 0, 0 ≤ γi ≤ 1 and θ1 ≥ 0, excluding the case
(γ1, θ1) = (1, 0) (pure SIS model). Assume β1 ≡ r0 > 1 and initial conditions (S0, I0) ∈ Tphys,
I0 > 0 and S0 > γ1/(β1 + θ1).
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(i) The limits limt→±∞(S(t), I(t)) = (S±∞, 0) exist and satisfy

γ1/(β1 + θ1) < S∞ < r−1
0 < S−∞ < ∞. (26)

(ii) Put ρ = −r0γ1/(β1 + θ1) and x̄−∞ = (r0S−∞ + ρ)/(ρ + 1). Then the following general-
ized final size formula holds

r0S∞ = −(ρ + 1)W+
(
−x̄−∞ex̄−∞

)
− ρ. (27)

(iii) Assume S−∞ ≤ 1. As t → +∞ a fraction θ1/(θ1 + r0γ2)∆R of the total increase ∆R =
S−∞ − S+∞ in the R-compartment is vaccinated.

Remark 5. Note that Tphys is not backward invariant, i.e., depending on (S0, I0) one may obtain
S−∞ > 1. Also note that the case ρ = 0⇔ γ1 = 0 reduces to the classic SIR model for variables
(S, I), equipped with an I-linear vaccination rate θ = γθ1. In this case, the final size (27) is
independent of θ1. In fact, under the usual assumption S−∞ = 1, it reduces to the standard final
size formula in the classic SIR model; see, e.g., [1,3,5,31,36–38]. Theorem 3 is proven in Appendix B,
where also the cases S0 ≤ γ1/(β1 + θ1) and r0 ≤ 1 are discussed.

In summary, in this section we have seen that, for parameters a ∈ A? (25), the SI(R)S
model (8) is isomorphic to the extended Hethcote model (24), and that in the limit αi = 0
and ρ + 1 ∈ (0, 1] we obtain a quasi-SIR model. The equivalences of these models have
been obtained by applying three scaling transformations

S→ x = β1S, x− 1→ x̄− 1 = (x− 1)/(ρ + 1), I → ȳ = β+ I/(ρ + 1). (28)

The next section studies these transformations and the relation between A? and Abio
more systematically under group theoretical aspects.

4. Symmetries and Parameter Reduction
4.1. Basic Concepts

For simplicity, unless stated explicitly, all maps in this section are supposed to be C∞.
A model class on some phase space P is a family of dynamical systems ṗ = F(p, a), where
Fa ≡ F(·, a) ∈ Ω1(P) are vector fields on P parametrized by a set of external parameters
a ∈ A. Typically A ⊂ Rm and for a = (a1, · · · , am) ∈ A we have F = F0 + ∑m

ν=1 aνFν,
where Fν ∈ Ω1(P), 1 ≤ ν ≤ m, are linearly independent as vector fields on P . Given
a model class F, it is helpful to consider a ∈ A also as dynamical variables obeying
ȧ = 0. Putting M := P × A, the associated vector field FM ∈ Ω1(M) is given by
FM(p, a) := (F(p, a), 0) ∈ TpP⊕ 0TaA ⊂ T(p,a)M.

Two model classes (P ,A, F) and (P̃ , Ã, F̃) are said to be isomorphic, if there exists
a diffeomorphism Φ : M = P × A → M̃ = P̃ × Ã projecting to a diffeomorphism
ϕ : A → Ã (i.e., πÃ ◦Φ = ϕ ◦ πA), such that Φ∗FM = F̃M̃. Here, πA : M→ A denotes
the canonical projection and, for diffeomorphisms ψ : M → N , ψ∗ : Ω1(M) → Ω1(N )
denotes the “push forward” on vector fields, ψ∗F := Dψ ◦ F ◦ ψ−1.

Definition 3. A parameter symmetry group G of a model class F is a left G-action onM =
P ×A by diffeomorphisms ψg : M → M, g ∈ G, projecting to a G-action on A, denoted by
G ×A 3 (g, a) 7→ g . a ∈ A, such that (ψg)∗FM = FM for all g ∈ G.

To understand this definition, let ψg(p, a) = (ψg(p, a), g . a). Then DMψg(p, a) ◦
FM(p, a) = (DPψg(p, a) ◦ Fa(p), 0) and G acts as a parameter symmetry group, iff for all
g ∈ G and a ∈ A

DPψg(p, a) ◦ Fa(p) = Fg. a(ψg(p, a)). (29)
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In other words, the equations of motion stay invariant under the transformation
ψg(·, a) : P → P , if we transform parameters a ∈ A accordingly. Also note that in
most common examples the G-action on M factorizes, i.e., ψg is independent of a and
ψg(p, a) = (ψg(p), g . a).

Given a parameter symmetry G, the family of parametrized dynamical systems
ṗ = Fa(p) falls into isomorphy classes labeled by the orbits [a] ≡ G . a ∈ A/G. Un-
der some technical assumptions, this allows us to construct equivalent transformed systems
with reduced parameter space A/G. Equivalently, one may “turn parameter space north”
by choosing a suitable section σ : A/G → A and solving the system for a ∈ σ(A/G). A
simple example would be P = Rn, ṗ = Ap, A ∈ A the space of symmetric n× n-matrices,
and G = SO(n). In this case parameter reduction means diagonalizing A. Another example
would be the dynamics of mutually interacting classical particles in a constant external (say
magnetic) field B = (B1, B2, B3). In this case A = R3 \ {0} and G = SO(3) and “turning
parameter space north” means putting without loss g .B = (0, 0, |B|). As a third example,
quasimonomial transformations to canonical forms for generalized Lotka–Volterra (GLV)
systems can also be understood in this way; see [39,40].

4.2. The SI(R)S Symmetry

We now apply this formalism to the 6-parameter SI(R)S model (8) with phase space
P ∼= R×R≥0 and parameter space Â := {(γ, a) ∈ R+ ×A}, where A is given in Equa-
tion (10). Following the three scaling transformations in (28), denote G the multiplicative
abelian group

G = GS × GI × GX = R3
+.

Elements of G are denoted g = (λ, η, ξ) ∈ R3
+. By convenient notation, we identify

λ ≡ (λ, 1, 1) ∈ GS ⊂ G etc. Put M = P × Â and N = P × B̂, where B̂ = R+ × B
and where B = (R+ × R2) × R2

+ has been defined in Lemma 2. To define the action
ψg :M→M in the sense of Definition 3 we first transform to an isomorphic model class
by applying the diffeomorphism

Φ :M 3 (S, I, γ, a) 7→ (u := β1S− 1, I, γ, f (a)) ∈ N , (30)

where f : A → B has been defined in Lemma 2. The Φ-transformed dynamical system
with phase space (u, I) ∈ P and parameters (γ, a, R0, b, β1, β+) ∈ B̂ is then obtained by
replacing y = β+ I and x = u + 1 in (16).

γ−1u̇ = −β+uI − au− (b + β+)I + a(R0 − 1)

γ−1 İ = uI.
(31)

Hence, using (a, R0 − 1, b + β+, β1, β+) as adapted coordinates in B, the scaling sym-
metry G operates linearly and factorizing on N .

Theorem 4. For g = (λ, η, ξ) ∈ G and b := (a, R0 − 1, b + β+, β1, β+) ∈ B let the G-action
.B : G × B → B be given by

g .B b :=
(

ξa, ξ(R0 − 1), η−1ξ2(b + β+), λ−1ξβ1, η−1ξβ+

)
(32)

and put Lg : N → N ,

Lg(u, I, γ, b) :=
(

ξu, η I, ξ−1γ, g .B b
)

. (33)

(i) Then Lg provides a parameter symmetry of the model class (31).
(ii) Put ψg := Φ−1 ◦ Lg ◦Φ :M→M. Then ψg provides a parameter symmetry of the SI(R)S

model (8) satisfying
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ψg(S, I, γ, a) =
(

λS + λβ−1
1 (ξ−1 − 1), η I, ξ−1γ, g .A a

)
. (34)

Here the G-action .A : G ×A → A is given by g .A := f−1 ◦ g .B ◦ f .
(iii)For a = (α1, α2, γ1, γ2, β1, β+)T ∈ A and Ca := (a,−a,−a− β+, a+ β+− β1, 0, 0)T ∈ R6,

a = α1 + α2, we have

g .A a = DS(λ)DI(η
−1)

(
ξ1 +

ξ − 1
β1

C
)

a, (35)

DS(λ) :=



1 1− λ 0 0 0 0
0 λ 0 0 0 0
0 0 λ 0 0 0
0 0 1− λ 1 0 0
0 0 0 0 λ−1 0
0 0 0 0 1− λ−1 1


, (36)

DI(η) :=



1 0 0 0 0 0
0 1 0 0 0 0
0 1− η η 0 0 0
0 η − 1 1− η 1 0 0
0 0 0 0 1 0
0 0 0 0 η − 1 η

. (37)

Proof. Parts (i) and (ii) are obvious. (Note that invariance under the action of λ ∈ GS in (32)
follows trivially, since the dynamics in (31) is independent of β1.) To prove part (iii), since
we already know that by construction .A provides a G-action on A, it suffices to prove
the formulas (35)–(37) separately for g = λ, g = η and g = ξ. This is a straightforward
calculation, which is left to the reader.

As a particular consequence, we now see that SI(R)S models with an I-linear vaccina-
tion θ always map isomorphically to models with a constant vaccination, θ′ = 0.

Corollary 2. For a = (α1, α2, γ1, γ2, β1, β+) ∈ Abio put λ := β1/β+ ≤ 1 and a′ := DS(λ)a.
Then

a′ = (a− λα2, λα2, λγ1, 1− λγ1, β+, 0) ∈ Abio,0 (38)

and the scaling transformation (S, I) 7→ (λS, I) maps the SI(R)S model with parameters a isomor-
phically to the model with parameters a′ while keeping R′0 = R0.

Remark 6. While, in general, ψg(·, γ, a) will not preserve physical triangles and g .A will not
preserve Abio, λ ≤ 1 in Corollary 2 assures that both statements hold for g = λ.

The fact that the G-action does not preserve the physical triangle also implies that
for a ∈ A? \ Abio disease free or endemic equilibria may well lie outside Tphys. Below, we
anticipate G .AA? = A? from Lemma 3.

Corollary 3. Let (S∗(a), I∗(a)) be a disease free or endemic equilibrium, (21)–(22). Then

(S∗(g .A a), I∗(g .A a)) = (λS∗(a) + λβ−1(ξ−1 − 1), η I∗(a)) , ∀g = (λ, η, ξ) ∈ G.

In particular, for all a ∈ A? there exists ã = g .A a ∈ A? such that S∗(ã) + I∗(ã) > 1.

4.3. Parameter Reduction

This subsection gives a group theoretical approach to the parameter reduction in
Proposition 1 and Theorem 2. First we look at the parameter subspace A? ⊂ A introduced
in Theorem 2.
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Lemma 3. Let A? ⊂ A be given by Equation (25). Then G .AA? = A? and A? ∼= A?/G × G
as trivial principal G-bundles. A choice of trivialization is given by

ΓA : A? 3 a 7→ (ā, R̄0)× (
1
β̄1

,
1

β̄+
, ρ + 1) ∈ (R+ ×R)×R3

+
∼= A?/G × G, (39)

where β̄1 = β1/(ρ + 1), β̄+ = β+/(ρ + 1) and (ā, R̄0) have been defined in (23).

Proof. We equivalently prove the statements with (A?, .A , ΓA) replaced by (B?, .B , ΓB),
where

B? := f (A?) = {(a, R0, b, β1, β+) ∈ B | b + β+ > 0}

and where ΓB := ΓA ◦ f−1. Using (ρ + 1)β+ = b + β+, Lemma 2 and (23), one immediately
checks that ΓB : B? → (R+ ×R)×R3

+ is a diffeomorphism with Γ−1
B given by

(a, R0 − 1, b + β+, β1, β+) = (ρ + 1)
(
ā, R̄0 − 1, (ρ + 1)β̄+, β̄1, β̄+

)
. (40)

Moreover, by (32), ΓB ◦ g .B = (idR+×R × `g) ◦ ΓB , where `g : G → G denotes left
multiplication by g. Hence B? ∼= B?/G × G as principal G-bundles.

In the obvious way, this structure also lifts to Â? := R+×A? with G-action g .Â (γ, a) :=
(ξ−1γ, g .A a) and trivialization

ΓÂ : Â? 3 (γ, a) 7→ (γ̄, ΓA(a)) ∈ Â?/G × G,

where γ̄ := (ρ + 1)γ, see (23).
Given such a setting, parameter reduction as in (24) is obtained in general by passing

from a model class (P ,A, F) to an isomorphic model class (P ,A/G, F̄) as follows. Any
trivialization A ∼= A/G × G is of the form ΓA(a) = ([a], h(a)), where h : A → G satisfies
h(g .A a) = gh(a). Putting againM = P ×A and denoting M̄ := P × (A/G × G) there
is a naturally induced diffeomorphism Φ̄ :M→ M̄,

Φ̄(p, a) :=
(

ψ
h(a)−1(p, a), [a], h(a)

)
.

The Φ̄-transported G-action, ψ̄g := Φ̄ ◦ψg ◦ Φ̄−1 : M̄ → M̄, is given by ψ̄g(p, [a], h) =
(p, [a], gh). Since (ψg)∗FM = FM, the transported vector field, F̄M̄ := Φ̄∗FM, is invariant
under the transported G-action, (ψ̄g)∗F̄M̄ = F̄M̄, and hence, using (29) and DP ψ̄g = 1,
F̄([a],h) = F̄([a],gh) for all g ∈ G. Thus, F̄ only depends on (p, [a]) ∈ P × Â/G.

In our case we have to replace A by Â? and put h(γ, a) = (β̄−1
1 , β̄−1

+ , ρ + 1). Then

Φ̄(p, γ, a) = (x̄, ȳ)× (γ̄, ā, R̄0)× (β̄−1
1 , β̄−1

+ , ρ + 1)

and the Φ̄-transported vector field F̄ is given by (24) and independent of (β̄1, β̄+, ρ + 1).

Remark 7. Note that, similarly as in (17), the G-fiber coordinates (β̄1, β̄+, ρ + 1) are again
determined by the images of physical triangles in (x̄, ȳ)-space.

Tphys(β̄1, β̄+, ρ + 1) := {p̄ = (x̄, ȳ) ∈ R×R≥0 | 0 ≤ 1
β̄1

(x̄− ρ

ρ + 1
) +

ȳ
β̄+
≤ 1}.

Geometrically these are the triangles with corners p̄/ = (ρ/(ρ+ 1), 0), p̄. = (ρ/(ρ+ 1)+ β̄1, 0)
and p̄M = (ρ/(ρ+ 1), β̄+). One may now proceed as in Definition 2 and call (β̄1, β̄+, ρ+ 1) (or the
triangle Tphys(β̄1, β̄+, ρ + 1)) admissible with respect to (ā, R̄0), if Γ−1

A (ā, R̄0, β̄1, β̄+, ρ + 1) ∈
Abio. As in Corollary 1, this implies, that for given (ā, R̄0) admissible triangles are always forward
invariant w.r.t. the dynamics (24). Using Lemma 2, it is straightforward to derive conditions for
admissibility of (β̄1, β̄+, ρ + 1). Since formulas do not seem enlightening, this is left as an exercise
to the reader.
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4.4. Fixing the Gauge

In physics terminology, “fixing the gauge” means choosing a representative from an
equivalence class. In our case this may be rephrased by “turning parameter space north”,
i.e., choosing a section σ : A?/G → A?. We now show that for a ∈ A? a representative of
the equivalence class [a] ∈ A?/G can always be chosen in Abio,0 := Abio ∩ {θ1 = 0}.

Proposition 2. Let R0 = β1α2/(α1 + α2) be the vaccination reduced reproduction number as in
(15) and use (ā, R̄0) ∈ R+ ×R as global coordinates in A?/G, see Proposition 1 and Equation
(24). Pick c > max{0, R̄0, āR̄0} arbitrary.

(i) An element a ∈ A? in the equivalence class (ā, R̄0) exists uniquely under the conditions

(a) If R̄0 > 0 : θ1 = 0, β1 = c, α2 = γ1.
(b) If R̄0 ≤ 0 : θ1 = 0, β1 = c, α2 = 0.

(ii) Under these conditions a ∈ Abio,0 \ {ρ = −1} and therefore A? = G .A (Abio,0 \ {ρ =
−1}).

Proof. In both cases put β+ = β1 = c⇐⇒ θ1 = 0. In case a) the condition α2 = γ1 implies
ρ = 0 by Equation (15) and hence a = ā > 0 and R0 = R̄0 > 0 by Equation (23). Next,
again by Equation (15), 0 < γ1 = α2 = aR0/c ≤ min{1, a}, γ2 = 1− γ1 and α1 = a− α2.
This proves that a exists uniquely and a ∈ Abio,0 \ {ρ = −1}.

In case b) α2 = 0 implies R0 = 0 and therefore, by Equation (23), ρ + 1 = (1− R̄0)
−1 ∈

(0, 1]. Hence, α1 = a = (ρ + 1)ā > 0 and from β1 = β+ = c and (15) we conclude γ1 =
α2 − ρ = −ρ and γ2 = ρ + 1. So, also here a exists uniquely and a ∈ Abio,0 \ {ρ = −1}.

Remark 8. In Proposition 2 choose c(ā, R̄0) > max{0, āR̄0, R̄0} as a smooth function. Then the
section σ : A?/G → Abio,0 defined by the above conditions is C∞ for R̄0 6= 0, but only continuous
at R̄0 = 0.

Remark 9. Proposition 2 may be reformulated by stating that (β̄1, β̄+, ρ + 1) ∈ R3
+ are admissible

w.r.t. (ā, R̄0), if R̄0 > 0, ρ = 0 and β̄1 = β̄+ = c, or if R̄0 ≤ 0, ρ + 1 = (1− R̄0)
−1 and

β̄1 = β̄+ = c(1− R̄0), where c > max{0, R̄0, āR̄0}.

5. Summary and Outlook

In summary, this paper has demonstrated that symmetry concepts in parametrized
dynamical systems may help to reduce the number of external parameters by a suitable
normalization prescription. If the symmetry group G is an n-dimensional Lie Group and
the G-action on parameter space A admits a trivialization, A ∼= A/G × G as principal
G-bundles, then there is a natural diffeomorphism mapping the original system with pa-
rameters inA to an equivalent system with parameter spaceA/G ×G. For the transformed
system, invariance under G simply means that the dynamics only depends on A/G, thus
reducing the number of essential parameters by n. If, as a principal G-bundle, A is only
locally trivial, this procedure still works by covering A with suitable charts U ∼= U/G × G.
In an obvious way, this algorithm would also generalize to the case A ∼= A/G × V , where
G acts transitively (but possibly not freely) on the fiber V .

This strategy applies to the fractional dynamics of a general class of epidemic SI(R)S
models, with standard incidence and up to ten parameters, including immunity waning,
two recovery flows and constant and I-linear vaccination rates. Omitting four redundant
demographic parameters, this model admits G = R3

+ as a symmetry group, acting on
phase space by rescaling S, I and x− 1, respectively, x being the replacement number. Thus,
identifying the total waiting time γ−1 in I as a pure time scale, we get a normalized version
with essentially just 2 independent parameters, which turns out to be a marginally extended
version of Hethcote’s classic endemic model first presented in 1973.

To apply this framework, we had to extend phase space P by allowing (S, I) ∈ R×R+,
while keeping R = 1− S− I. At the same time, the range of parameters had to be enlarged
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to A?, including possibly non-physical negative values. As it turned out, apart from
an uninteresting boundary case (see Appendix C), A? coincides with the G-orbit of the
epidemiologically admissible parameter subset Abio. Thus, by symmetry arguments,
proving endemic bifurcation and stability results in any of these models becomes needless;
it is all contained in Hethcote’s original work.

Of course, one has to be aware that, for a ∈ A? \ Abio, equilibrium states may possibly
lie outside the physical triangle Tphys = {(S, I, R) ∈ R3

≥0 | S + I + R = 1}. As shown in
Appendix A, although not addressed by the authors, such a scenario may indeed show up
in the Korobeinikov/Wake type of SIRS model [15].

As a special consequence, we have also seen that I-linear vaccination may always
be “scaled to zero”, i.e., without leaving Abio or Tphys there always exists a G-equivalent
system with θ = 0. In particular, since the threshold for endemic bifurcation, R0 = 1, must
be G-invariant, I-linear vaccination doesn’t influence this threshold. This is in contrast to a
constant vaccination rate, which is well known to reduce the reproduction number [30].

Finally, the symmetry also covers the “quasi-SIR limit”, defined by absence of constant
vaccination and immunity waning. In this limit, we either have a pure SIS model or
the model becomes G-equivalent to a pure classic SIR model. Thus, the Hamiltonian
formulation for these models carries over to the “quasi-SIR” case, see Appendix B.

As an outlook, let me mention that the methods of this paper generalize to SI(R)S-type
models with incomplete immunity, i.e., where also the R-compartment becomes susceptible.
When including a social behavior term, the symmetry enlarges to G = GS×GI ×GX , where
GS now becomes non-abelian and is defined to be the sub-group of real 2× 2-matrices
with positive determinant, acting on (S, R) ∈ R2 and leaving S + R invariant [29]. In
combination with redundancy results for demographic parameters in [8], this covers a
whole class of homogeneous SI(R)S-type models with time dependent total population,
excess mortality and possibly also backward bifurcation [9–11,20,26–28,41–45].
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Appendix A. The Korobeinikov-Wake SIRS Model

This appendix shortly describes, within the present framework, the type of SIRS
model introduced by Korobeinikov and Wake in [15]. It turns out that in a certain range of
seemingly admissible parameters, this model shows non-physical disease free and endemic
equilibrium states satisfying S∗dfe > 1 and S∗end > 1.

The SIRS model in [15] introduces compartment dependent mortality rates (µS, µI , µR),
keeping µS and µI time independent and postulating a time dependent µR(t), fine-tuned
such that the total population N stays constant. In this way, using the terminology of
Figure 3, the dynamics of fractional variables becomes

Ṡ = −(β + θ)SI + qSν(S + I + R− pI I)− (αS + µS)S + γS I + αRR, (A1)

İ = βSI − γ̃I, γ̃ := γS + γR + µI − pIν, (A2)

Ṙ = −Ṡ− İ. (A3)

Hence, also in this model demographic parameters become redundant, but the formu-
las in (7) have to be replaced by

α̃S := αS + µS − qSν , γ̃S := γS + qS(1− pI)ν ,
α̃R := αR + qSν , γ̃R := γ̃− γ̃S = γR + µI − (qR pI + qS)ν .

(A4)

In [15] the authors considered their SIRS model without vaccination and with temporal
immunity after recovery by putting qS = 1 and θ = qR = αS = γS = 0. So, replacing
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R = 1− S− I, this model stays in the setting of Section 3.2, with ã ∈ Abio, provided the
birth rate ν is small enough, ν ≤ min{µS, γR + µI}. However, let’s now consider the case
αR + µS > 0 and

0 ≤ µS < ν < (γR + µI)/pI .

Then α̃S < 0, γ̃ > 0, α̃S + α̃R > 0 and, by (15),

ρ̃ = (α̃R − γ̃S)β/γ̃2 = (αR + pIν)β/γ̃2 ≥ 0.

Hence, we are still in the setting of Section 3.2, but this time with ã ∈ A? \ Abio, due
to the negative “would-be” vaccination rate α̃S. In particular, irrespective of the value of
R0, under these conditions the disease free equilibrium in (21) will always be non-physical

S∗dfe =
α̃R

α̃R + α̃S
=

αR + ν

αR + µS
> 1.

By the same effect, putting r̃0 := β/γ̃, the ”would-be vaccination reduced” reproduc-
tion number actually satisfies R0 = r̃0S∗dfe > r̃0; see Equation (15). Hence, we could choose
0 < β < γ̃ such that

αR + µS
αR + ν

< r̃0 < 1

to get R0 > 1 and therefore, by Theorem 2 and Equation (22), in this scenario we would
have a globally stable endemic equilibrium as in [15], which, however, would also be
non-physical,

S∗end = 1/r̃0 > 1.

Apparently, these scenarios have not been addressed by the authors in [15].

Appendix B. The quasi-SIR Hamiltonian

To be self contained, this Appendix shortly studies the quasi-SIR limit, α1 = α2 = 0
and θ1 ≥ 0, of the SI(R)S model (8) and (9). This also leads to a proof of Theorem 3. Again,
put x = β1S and y = β+y as in (15) to obtain

γ−1 ẋ = −(x + ρ)y, ρ = −γ1β1/β+ ∈ [−1, 0]

γ−1ẏ = (x− 1)y.
(A5)

This system factorizes, so we may choose ω = (x + ρ)−1y−1 as integrating factor,
such that ω[(x− 1)ydx + (x + ρ)ydy] = dH, with Hamiltonian H and symplectic form ω
given by

H = y + x− (ρ + 1) log |x + ρ|, (A6)

ω = −(γ(x + ρ)y)−1dx ∧ dy (A7)

Note that ρ = −1 (i.e., γ1 = 1, γ2 = 0 and θ = 0) simplifies to the classic SIS model,
H = x + y, and ρ = 0 reproduces the classic SIR model Hamiltonian [46]. For 0 ≥ ρ > −1
we can apply the transformation (23) to end up with the system (24) with ā = 0, i.e., the
classic SIR model in the variables x̄ = (x + ρ)/(ρ + 1) and ȳ = y/(ρ + 1). In all cases,
phase space trajectories are lines of constant “energy”, H = const.. Hence, they look like
in the classic SIR model, extended to negative values, ρ/(1 + ρ) ≤ x̄ < 0. So, we have a
continuum of disease free equilibria, which are neutrally stable for x < 1 (⇔ x̄ < 1) and
unstable for x > 1 (⇔ x̄ > 1). Also, at x = −ρ (⇔ x̄ = 0) we have an infinite energy
barrier, which cannot be reached from either side, see Figure A1. In fact, for initial condition
x0 = −ρ the explicit solution is given by the vertical line (x(t), y(t)) = (−ρ, y0e−γ(ρ+1)t).
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Figure A1. Phase diagram of the quasi-SIR model. x(t) increases for x0 < −ρ and decreases for
x0 > −ρ. The vertical line corresponds to initial condition x0 = −ρ.

For initial conditions 0 ≤ x0 < −ρ < 1 and y0 > 0 we have ẋ(t) > 0 and ẏ(t) < 0, for
all t ≥ 0, and limt→∞(x(t), y(t)) = (x∞, 0), where x0 < x∞ < −ρ < 1 solves H(x0, y0) =
H(x∞, 0). In this case, no epidemic arises and S(t) ↑ S∞ ≡ x∞/r0. This is due to the fact
that in this region the recovery flow γS I exceeds the sum of infection + vaccination flow
(β + θ)SI.

If x0 > −ρ, solutions qualitatively behave like in the classical SIR model, i.e., x(t)
monotonically decreases with ẏ > 0 for x > 1, ẏ < 0 for x < 1 and y = ymax at x = 1.
Again, we have limt→∞(x(t), y(t)) = (x∞, 0), where H(x0, y0) = H(x∞, 0), but this time
−ρ < x∞ < 1. Note that x0 > 1 necessarily requires r0 > 1, i.e., no epidemic can arise for
r0 ≤ 1, as in the classic SIR model. Also, the inverse function t(x) can be given explicitly,
similarly as in [32].

Lemma A1. Solutions of the dynamical system (A5) with initial conditions x0 6= −ρ, y0 > 0 and
“energy” E = H(x0, y0) satisfy

γt = −
∫ x(t)

x0

dx
(x + ρ)(E− x + (ρ + 1) log |x + ρ|) , sign(x(t) + ρ) = sign(x0 + ρ).

Proof. This follows immediately from γ−1 ẋ = −(x + ρ)y = −(x + ρ)(E − x + (ρ +
1) log |x + ρ|) .

Finally, the final size formula for S∞ as a function of S−∞ in Theorem 3 is also obtained
by “energy” conservation.

Proof of Theorem 3. Part (i) follows from the fact that in variables (x̄, ȳ) the system
becomes a classic SIR model, where the initial conditions I0 > 0 and S0 > γ1/(β1 + θ1)
translate to ȳ0 > 0 and x̄0 > 0. Hence x̄∞ < x̄0 and 0 < x̄∞ < 1 < x̄−∞ < ∞. To prove part
(ii), use

exp
(

H(S∞, 0)
ρ + 1

)
= exp

(
H(S−∞, 0)

ρ + 1

)
=⇒ x̄∞e−x̄∞ = x̄−∞e−x̄−∞ ,

Equation (27) follows from β1 ≡ r0 and x̄ = (r0S + ρ)/(ρ + 1). To prove part (iii), use∫ ∞

−∞
İdt = 0 =⇒ β

∫ ∞

−∞
SIdt = γ

∫ ∞

−∞
Idt.
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Hence, we obtain

∆R =
∫ ∞

−∞
Ṙdt = γ

(
θ1

∫ ∞

−∞
SIdt + γ2

∫ ∞

−∞
Idt
)
= γθ1

∫ ∞

−∞
SIdt + γ2β

∫ ∞

−∞
SIdt ,

where the first term gives the fraction of vaccinated people. Part iii) follows from r0 =
β/γ.

Appendix C. The SIS Model with Vaccination

The transformation (23) from the SI(R)S model to Hethcote’s model becomes ill-defined
for ρ = −1. Epidemiologically, the model with parameters a ∈ Abio ∩ {ρ = −1} is
uninteresting and near trivial. It implies α2 = γ2 = θ1 = 0, whence also R0 = 0; see
Remark 3. This is a pure SIS model furnished with a constant vaccination rate from S to R
and permanent immunity in R. So, eventually, all people are vaccinated and this model
only shows the trivial equilibrium (S∗, I∗, R∗) = (0, 0, 1). Global stability in Tphys follows
from absence of periodic solutions (use I−1 as a Dulac function as in [3,4]) and the fact that
Tphys is forward invariant.
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