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Abstract

Multivalent bindings are a combination of several weaker bonds be-

tween two molecules such as a receptor and a ligand. Because the

combined bonds are stronger than the individual ones, the molecules

may interact longer. Thus, this concept is very interesting for tar-

geted drug design. Theoretically, these bindings and unbindings are

rare stochastic events. Literature on multivalency is vast, especially

on specific experimental setups. However, there exists little theoreti-

cal studies for general n-valent settings. This thesis aims to fill that

gap by modelling the binding process as kinetic rate matrices and

applying the clustering algorithm PCCA+. While the binding and

unbinding of the single ligand-receptor pairs happens on a fast time

scale i.e. in the micro-perspective, the association or dissociation of a

complex is acting on a slow timescale, thus in the macro-perspective.

The existing kinITC method does not capture the switch between

these time scales. Thus the method proposed in this thesis describes

an alteration to kinITC, called kinITC+.

The key findings of the thesis are:

• It is possible to gain kinetic information from thermodynamic

data.

• The macroscopic binding rate kon is not constant, but ligand

concentration dependent.

• There is at least one counterexample to the assumption that the

thermodynamic contribution of rebinding increases with valency.
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Chapter 1

Introduction

With the increase of computation power of modern supercomputers, the bound-

ary of the curse of dimensionality has been pushed further and further. One of the

many research fields that benefited substantially is computational drug design.

With the help of supercomputing, not every pharmacological experiment has to

be carried out in the laboratory, but the molecule can be first systematically al-

tered virtually. Effective medication not only fits to the specific pain receptor,

but binds as long as possible with as many ligands as possible.

One use case for the virtual drug development was the wide ranging opioid use

and abuse especially in the USA in the last 20 years with severe physical and

lethal side effects. According to the US Centers for Disease Control and Preven-

tion (CDC) almost ”500,000 people died from an overdose involving any opioid,

including prescription and illicit opioids” from 1999-2019 [1]. In the US the

fentanyl induced death rates spiked in the years 2013-2014 [2]. Because of the

addictive side effect, the black market was flourishing and fentanyl submissions

did not match subscription counts. The goal of effective drug development was

to design an opioid without these lethal and addictive side effects. A successful

example for virtual drug development in this case is the prototype of fluorinated

fentanyl ”which activates the µ-opioid receptors in the inflamed tissue only” (pH

up to 5.5) instead of healthy tissue (pH of 7.4) and thus reduces noxious and/or

lethal side effects [3].
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1. INTRODUCTION

Another use case for the research of multivalent virus interaction is to tackle respi-

ratory diseases. With the outbreak of the worldwide coronavirus (SARS-CoV-2)

in late 2019, the topic of multivalent virus research got worldwide attention. The

immense health and economic related lagged effects of COVID-19 have already

cost over 6.6 millions of lives according to the World Health Organization (WHO)

[4] and brought public life as well as economy to a standstill. 2020-2021 and prob-

ably the subsequent years will go down in history as the years of the corona virus

pandemic. Tabish and Hamblin describe the multivalent nature of SARS-CoV-

2 and how multivalent nanomedicine has the potential to ”target multiple viral

factors involved in infections at cellular levels” [5]. What is evident is that a mul-

tivalent vaccine needed to be developed urgently to treat this pulmonary disease.

Hardly any topic has had such a broad media coverage as COVID-19 vaccination

development, vaccinations, and infection incidences in 2021. With the ongoing

mutation of the virus and yet increasing incidence numbers and death tolls, the

search for multivalent vaccines is still ongoing.

These uses cases show how existing drugs can be altered virtually in order to

a) minimise side effects and b) to develop new drugs faster than in traditional

laboratory research in order to quickly react to a pandemic.

Multivalent ligand-receptor interaction studies were trending in the last 20 years,

thus biochemistric literature is vast. However, it is either rather conceptual [6; 7]

or for very specific experimental setups [8; 9]. A mathematical approach, treating

multivalent bindings as stochastic events, is still lacking. This thesis aims to fill

that gap.

Physically, a molecular system has N atoms that move on some energy landscape.

Each atom has three spatial coordinates qi and three momenta pi with i = 1, 2, 3.

Thus, the phase state space Γ = Ω×R3N . In the micro perspective, the molecules

have a probability to be in a certain micro state according to the Boltzmann

distribution [10]

π(q, p) =
1

Z
exp(−βH(q, p))

with the inverse temperature β = 1/(kBT ) divided by the Boltzmann constant
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kB and Z =
∫
Γ
exp(−βH(q, p))d(q, p). H is a Hamiltonian function given by the

sum of kinetic energy K and potential energy V : H(q, p) = K(p) + V (q). This

is the usual procedure of classical molecular dynamics. A trajectory is started at

a certain point in the energy landscape and is simulated over the longest possi-

ble time span. One is interested which of the ’valleys’ and ’hills’ of the energy

landscape are visited and how often. However, if one is interested in the macro

perspective, this approach is not suitable. Here, the molecular kinetics are ob-

tained as a projection by clustering many micro states into very few macro states

[11]. Another important aspect of the differentiation between the macro and the

micro perspective are the timescales. The single formation and loss of bonds

between ligand and receptor happen on a fast timescale. The clustered macro

binding and unbinding take place on a slow timescale. These bindings with their

respective timescales are depicted in Figure 1.1.

Figure 1.1: This schema shows a simplification of a multivalent binding with
exemplary two binding sites A and B at the ligand and two sites 1 and 2 at the
receptor. The upper part of the figure shows the slow timescale of binding and
unbinding the whole entities. The lower scheme shows an excerpt of the many
microstates.

In this work we are particularly interested into the two macro states ’bound’
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1. INTRODUCTION

and ’unbound’. For monovalent binding interactions this is straight forward, but

when can a multivalent receptor-ligand complex be considered as bound? Is it

only bound if all of the binding sites are occupied or more than half of them?

What if ligand and receptor do not have the same number of binding sites, how

can one tell if the system is bound or not? This question cannot be answered in a

black and white manner. There are many shades in between that will be captured

by membership functions. Mathematically, these are bases having values between

0 and 1, capturing the situations of being gradually bound.

Once the first bond is made, both ligand and receptor backbones are spatially

close. That means, that every subsequent bond is more likely. Just like binding,

they can also unbind again. After unbinding, the ligand and receptors are still

in a spatial proximity, such that another binding is probable. If this rebinding

phenomenon can be quantified, it could be applied in drug design in such a way

that drug dosing may be decreased and with it the drug’s side effects. With

rebinding taking place, the ligand has a high probability to bind again and has

more time to develop its effect on the receptor.

Related Work

Monovalent and bivalent binding processes are well understood and there exists

extensive amounts of literature, e.g. Merchant et al. [12], Howorka et al. [13] ,

and Corazza et al. [14]. Existing multivalent ligand-receptor interaction studies

are either rather conceptual like in Krishnamurthy et al. [6], Mammen andWhite-

sides [7] or more experimental for very specific setups such as in Kiessling et al.

[8] or Lundquist and Toone [9]. Biochemistric literature is vast, but a mathemat-

ical approach, treating multivalent bindings as stochastic events, is still lacking.

One of the first and most cited works in multivalency is the review by Mammen,

Choi and Whitesides from the late 1990s [7]. Therein the authors describe many

examples of multivalent interactions in biology such as E. coli bacteria attach-

ment to endothelial urethral cells or the binding of antibodies to bacteria. The

nomenclature and descriptions of thermodynamic features such as enthalpy and

entropy introduced by these authors are also used in the present thesis.
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Another often cited paper is the fundamental research by Cairo, Kiessling et al.

[15]. In this paper the authors analyzed the influence of stoichiometry, rate of

cluster formation and receptor proximity on multivalent ligand binding.

A more recent overview of multivalent interactions is given by Fasting et al. [16].

Their work ranges from theoretical aspects such as artificial models to practical

aspects such as measurement techniques and scaffold architecture.

A contemporary and comprehensive overview of concepts, research and applica-

tions of multivalency is given in the book ’Multivalency - Concepts, Research and

Applications’ by Huskens, Prins, Haag and Ravoo [17]. Especially the chapters

on models and methods by Huskens and design principles for super selectivity by

Curk et al. were of particular interest for the present work.

The method of kinetic isothermal titration calorimetry (kinITC) shows how to

obtain kinetic information of a thermodynamic measurement technique and can

be found in the papers by Dumas et al. [18] and Egawa et al. [19]. However,

this work focuses more on experimental aspects rather than mathematical impli-

cations.

Concerning the mathematical foundation of molecular dynamics, the book ’Metasta-

bility and Markov state models in molecular dynamics: modeling, analysis, algo-

rithmic approaches’ by Schütte and Sarich [10] must be named. In the present

thesis the nomenclature of Markov processes, metastability and transfer opera-

tors have been adapted from their book.

Another thorough analysis of the transfer operator approach and Galerkin di-

cretization is the dissertation of Nielsen [20].

Details of the PCCA+ clustering algorithm used throughout the thesis to analyse

experimental data can be found in the works of Weber [11; 21].

A thorough overview of the rebinding effect from a biochemical perspective is

given by Vauquelin [22]. The mathematical aspects of rebinding and the result-

ing lack of Markovianity are presented in Weber et al. [23]. In addition to that

paper, the quantification of rebinding for non-reversible binding processes is fur-

ther described in the thesis of Röhl [24; 25].

The core of this thesis is to show that the binding and unbinding rates are con-

centration dependent. This fact is not yet fully understood and not commonly
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1. INTRODUCTION

accepted within the scientific community. Therefore, there exists very little lit-

erature to explain this phenomenon. However, the paper of Sing and coworkers

[26] must be mentioned. Therein the authors deliver an explanation for this phe-

nomenon for a dimeric protein by coarse-grained simulation. They emphasize

that the concentration-dependent unbinding was only studied for some proteins

interacting with DNA and do not generalize this phenomenon.

Thesis Structure

The thesis is organized as follows:

In Chapter 2, multivalency is described from a biochemistry point of view. Therein

the most important parameters quantifying multivalent interactions and their no-

tations are introduced, as well as isothermal titration calorimetry (ITC), a mea-

surement technique to quantify binding effects. Experimental ITC data will be

used in later chapters for numerical applications.

The core of this work is Chapter 3, where multivalent binding kinetics are coarse

grained via clustering and projection onto an invariant subspace. Before exper-

imental data are clustered, the necessary mathematical background is introduced.

In Chapter 4 the clustering concept lined out in Chapter 3 is applied numeri-

cally for bivalent, trivalent and pentavalent ITC data. Further, it is investigated

how the binding parameters interdepend. Finally, the model’s limitations are

discussed.

In Chapter 5 an alternative way of obtaining binding information is presented:

the Wiseman fitting. It is applied to a bivalent and a trivalent ITC example. The

Wiseman fitting is compared to the PCCA+ clustering from Chapter 4 and the

model limitations are pointed out.

Chapter 6 is dedicated to the rebinding concept. Both, the biochemistry and the

mathematical meaning of rebinding are discussed. Finally, the same experimen-

tal data from Chapter 3 are used to apply the concept of rebinding quantification.

6



The final chapter contains a summary of the thesis and a critical discussion of

all the methods presented. Further, the outlook highlights some potential future

research ideas.

Aim of the Work

The following thesis highlights the stochastic implications of ligand receptor in-

teractions. As mentioned above, it is ambiguous to tell whether a multivalent

complex is bound or unbound. So far, classical ITC analysis assumed a constant

binding rate over all titration steps. This thesis shows that in fact the binding

rates are not constant, but follow a certain regime over time. This regime can be

modeled by clustering. Therefor it is shown that applying a Galerkin discretiza-

tion of the state space is a powerful tool. The key concept is a projection of the

n-dimensional state space down to a two-dimensional subspace. This is done by

using base functions having values between 0 and 1 referring to gradually bound

states.

The present work serves as a contribution to the concentration dependent binding

rates literature. It attempts to explain the relationship theoretically for all kinds

of valencies from a mathematical perspective.

The insights of this thesis boil down to answer the following

Research questions:

1. Is it possible to gain kinetic information from thermodynamic information?

2. How can we determine when a complex is bound or unbound?

3. Does rebinding quantification work for multivalent binding settings?
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Chapter 2

Multivalency

2.1 Introduction

Multivalency is a natural phenomenon in biochemical systems and is character-

ized by the interaction of two molecules by more than one binding site [16; 17].

Through multiple functionalities on one entity and complementary functionali-

ties on another one (such as intramolecular bonds). Even though they may be

weak individually, the binding affinity as well as the complex stability are in-

creased. The pioneers in multivalency research are among others Mammen, Choi

and Whitesides [27], Gestwicki [28] and Cairo [15]. Due to its handy application

in modern drug design the topic became popular within the last 20 years. Among

today’s researchers are Huskens, Haag, Prins and Javoo [17], as well as Fasting,

Schalley, Weber et al. [16] to name just a few.

Studying multivalency is of practical use especially for molecular drug design.

The receptor can be a surface protein receptor like for the Inluenza A virus in

case of an infection [29], or body cells of inflamed tissue. Inflamed tissue and

cancer cells have a close relationship [30]. In both cases, influenza and cancer

cells, as many receptor binding sites as possible are aimed to be occupied by the

ligand, i.e. drug researchers strive to develop a multivalently bio-orthogonally

designed drug, in order to enhance medication effects and minimize drug dosing.

Multivalency can be exploited for targeting cancer immunotherapy in different

ways, see [31; 32].

9



2. MULTIVALENCY

Another example from drug design is using the bivalency of the estrogen receptor

for efficient contraceptives [33].

Multivalency is closely linked to cooperativity, also called allosterism. Curk et

al. describe it as the change of the affinity of an interaction pair caused by the

presence of a neighboring formed interaction pair [17]. Fasting et al. differenti-

ate between non-cooperative (additive) and positively cooperative (synergistic)

binding interactions. ”Most multivalent systems are rather negatively cooperative

(interfering), but still multivalent drugs can yield a bigger effect than analogue

monovalent drug dosing” [16].

2.1.1 Ligand Structure

The ligand moieties are connected to a backbone via a molecular spacer or scaf-

fold. Spacers can be rigid or flexible, rather long or short, limiting the number

of reachable binding sites. In addition, the scaffold can determine the shape of

the whole molecule by i.e. forming a spherical shape. The binding moiety is con-

nected to the spacer or scaffold by a linker. A linker can also maintain a certain

angle between spacer and moiety [34]. The shape of spacers also influence the

conformation entropy of the entities. If the first bond is made, some entropy is

lost because certain degrees of freedom are lost in terms of rotation and transla-

tion. If the spacers are too short, some binding sites cannot be reached after the

first bond is made. If they are too long, the immediate effect is an increase in the

number of unproductive degrees of freedom and therefore decrease the binding

affinity [16]. An example of how spacers are manipulated with DNA such that

more than one binding site can be accessed is described for carbohydrate–lectin

interactions by Scheibe et al [35].

The number of moieties is mostly unequal on the ligand and receptor site. Techni-

cally, interactions between multivalent receptors and several monovalent ligands

cannot be called multivalent. Further, the binding sites on the receptor are not

necessarily the same. If they are, they are called homo-multivalent, if they differ,

they are hetero-multivalent [16].

10



2.2 Examples of Multivalency

Another aspect in multivalent bindings is sensitivity. The binding strength is

highly sensitive to external influences such as temperature, pH, and receptor

concentration [17]. The latter determines the number of reachable binding sites

and therefore influences the binding strength. The so-called selectivity denotes

the ability of multivalent ligands and receptors to distinguish between substrates

depending on the surface of binding sites. Sensitivity in turn influences the se-

lectivity [17].

Two more concepts are affinity and avidity. Affinity denotes the interaction

strength between two molecules [36]. In contrast, avidity is the combined strength

of multiple affinities [17], and is therefore also called functional affinity. Avidity

is more than the sum of the individual binding affinities [34]. However, a mul-

tivalent ligand can have two or more separate coordinate bonds to single atoms.

In this case a so called chelate complex is formed [34].

In this work, we assume a one-to-one stoichiometry of ligand and receptor. Fur-

ther, only homo-multivalent ligands of low valency numbers up to 10 are consid-

ered.

2.2 Examples of Multivalency

A prominent botanical example of multivalency is the burr, binding with many

small hooks to hairy objects acting as loops [16; 34]. The more hooks are fastened,

the more stable is the whole system. This principle was copied by humans as hook-

and-loop-fastener, also known as Velcro. Further, one of the best known biological

examples for multivalency is the binding of oxygen to haemoglobin. Haemoglobin

has four binding sites acting cooperatively, i.e. once the first binding is made, all

three subsequent binding interactions are facilitated. This phenomenon is called

allosteric cooperativity. Thus, haemoglobin tends to bind either with all four

binding sites or none at all [17].

The last example comes again from the medical field: the adhesion of a virus such

as influenza to a mammalian cell [7]. As depicted in Figure 2.1, the influenza virus

attaches itself to the bronchial epithel cell. Here, several trimers of hemagglutinin

bind to moieties of sialic N-acetylneuraminic acid of the target cell. There are

11



2. MULTIVALENCY

600-1200 hemagglutinin binding sites on one virus particle and 50-200 binding

sites per 100 nm2 of target cell.

Figure 2.1: The influenza virus attaches to cells by interaction of trimeric hemag-
glutinin (HA3 , shown as protruding cylinders on the virus) with sialic acid (SA,
shown as caps on the cell). Only a few of the hemagglutinin trimers and SA
groups are represented; neither it is to scale [7]. Copyright Wiley-VCH Verlag
GmbH & Co. KGaA. Reproduced with permission.

The multivalent nature of virus particles is exactly what is exploited to develop

drugs. The more virus binding sites are blocked, the less it can attach itself to the

host cells in the human body. Preferably, these virus binding sites are blocked

by a scaffold hindering the virus to approach the cell surface as shown in Figure

2.2.

12



2.3 Notation and Quantification

Figure 2.2: Multivalent interaction types of a virus particle to a cell surface. In
a) the virus approaches the host. In b) a monovalent drug mimicking the host
ligands is attempting to block as many virus receptors as possible. c) shows that
a scaffold connecting several drug ligands is much more effective in hindering the
virus from attaching itself to the cell surface. Figure taken from Huskens et al.
[17]. Reprinted with kind permission from John Wiley and Sons, Inc.

2.3 Notation and Quantification

The following section first introduces the notation of multivalent binding steps

and then highlights the most important quantities to estimate binding rates.

Finally, one of the most common experiment techniques to determine binding

rates is explained.

2.3.1 Notation of Monovalent and Multivalent Bindings

In general, ligand-receptor (L-R) interactions are described by

L+R
kon−→←−
koff

LR

with a binding rate kon in units of [M−1s−1] and unbind with the rate koff in units

[s−1]. In equilibrium it holds

kon[L][R]↔ koff[LR].

The squared brackets denote the molar concentrations, i.e. of the unbound ligands

[L], of the unbound receptors [R] and of the complex [LR]. The dissociation

13



2. MULTIVALENCY

constant is the ratio of the unbinding rate to the binding rate, that means

Kd =
koff
kon

=
[R][L]

[LR]

in units of molar [M]. The association rate is the inverse of the dissociation rate,

Ka = 1/Kd =
kon
koff

in units of [M−1].

Adding one more intermediate step, the monovalent binding process can be ex-

tended into a bivalent one. That is

L+R
kon1−−→←−−
koff2

(LR)1
kon2−−→←−−
koff1

(LR)2. (2.1)

The subscript to (LR) denotes the number of bonds between the receptor and

the ligand. In this case, there are two dissociation constants, Kd1 and Kd2 . Kd1

is similar to the monovalent binding rate: Kd1 = [R][L]
[LR]

. The second dissociation

constant is analogously the ratio of the concentrations of singly to doubly bound

complexes according to Kd2 =
[(LR)1]
[(LR)2]

.

In a multivalent setting, given that n is the maximum number of possible bonds

between two entities, one or more intermediate binding steps take place according

to

L+R
kon1−−→←−−
koffn

(LR)1
kon2−−→←−−−
koffn−1

(LR)2
kon3−−→←−−−
koffn−2

...
konn−−→←−−
koff1

(LR)n

with koni
the intermediate binding rates and koffi

the intermediate unbinding

rates. The subscript i in (LR)i denotes how many bonds between ligand and

receptor exist. Like in the monovalent case, the dissociation rate is the ratio of

the unbinding to the binding rate in each binding step

KDi
=
koffn−i

koni

.

For the first binding step the dissociation constant is

Kd1 =
[L][R]

[(LR)1]
.

14



2.3 Notation and Quantification

The subsequent dissociation constants are

KDi
=

[(LR)i−1]

[(LR)i]
.

Again, the association constant in each binding step KAi
is the inverse, i.e.

KAi
= 1

KDi
.

2.3.2 Fundamental Equations and Quantification Formalisms

The following section deduces the equations used for ITC analyses as described

in Wiseman et al. [37] and Goodrich and Kugel [36].

The kon rate

Of central importance is the observed kon rate, also called kon−ITC . For simplicity

a 1 : 1 stoichiometry is assumed. The total ligand and receptor concentrations

are the sum of the free species and the ones bound in the complex, respectively.

The conservation equations state that [L]tot = [L] + [LR] and [R]tot = [R] + [LR].

The binding constant or association constant Ka is Ka =
[LR]
[L][R]

. With rearranging

this equation for [LR] and differentiating with respect to [L]tot, it can be related

to the differential heat as

dQ = d([LR]∆H0V0)

with ∆H0 the molar enthalpy of binding and V0 the reaction cell volume.

The Wiseman parameter

The Wiseman parameter c is related to the number of binding sites r, but can

also be computed with the total receptor concentration and the binding constant.

c = 1/r = [R]totKa = [R]tot/Kd.
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2. MULTIVALENCY

For very high c-values, i.e. c =∞, the binding is very tight and all added ligands

are bound to saturation. Moderately tight bindings have c-values between 1 and

1000. Weak bindings have c-values close to 0 [37]. The c-value is connected to

the slope of the isotherm. Like depicted in figure 2.3 it holds that the steeper the

slope, the higher the c-value.

                                              n                                       2n 

 molar ratio

 H          

 

 

 

 

 

 

 evolved              

 heat         

Figure 2.3: Isotherms for different c-values. The intercept is ∆H. The higher the
intercept on the y-axis, the higher the c-value. The blue curve corresponds to
c =∞. The flatter the slope of the curve and the lower the intercept, the smaller
is the c-value. The molar ratio is approximately n at the inflection point of the
curve.

Let us assume a binding process with two consecutive binding steps similar to

the expression 2.1. The time derivative of the species concentration in the fully

bound state is
∂[(LR)2]

∂t
= k2[(LR)1]− k−2[(LR)2].

The concentration change of the singly bound species is

∂[(LR)1]

∂t
= k1[L][R]− k−1[LR]− k2[LR] + k−2[(LR)2].
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2.3 Notation and Quantification

The observed koff value from the ITC measurement is given by

[(LR)2]t
[(LR)2]max

= 1− e−kobst.

[LR]t is the molar concentration of the complex at each time point and [LR]max is

the concentration of the complex at later time points where a plateau is reached.

Assuming that the plateau is the equilibrium concentration is a proven natural

scientific heuristic. kobs is ligand concentration dependent, that is

1

kobs
=

1

k2
+

k−1

k1k2[L]i
=
Kd1

k2

1

[L]i
+

1

k2
.

For increasing ligand concentration, kobs depends only on the forward reaction

rate,

lim
[L]i→∞

1

kobs
=

1

k2
.

The formation of the complex is given by

[(LR)2]t = [(LR)2]max(1− ekobst)

and the decay is [(LR)2]t = [(LR)2]max+ [(LR)2]min(1− ekofft). This is due to the

fact that [(LR)2]t
[(LR)2]i

= e−kofft with the initial concentration [(LR)2]i.

Effective Molarity

Effective molarity (EM ) is defined as the ratio between the rate constants of

the intra- and intermolecular reactions, measured in [M]. The first bond between

ligand and receptor entities is an intermolecular binding step. Any subsequent

bond is intramolecular [17]. EM is mainly a tool to compare different interaction

settings.

The overall effective molarity is the product of the single association constants

Kov = KA1 · KA2 · ...KAn in units [M−n] [17]. It can be related to EM and the

association rate in a monovalent setting by Kov = KAmono ·EM . However, mostly

these quantities are rather of theoretical nature. ”For multivalent systems, exper-

imental data usually provide access only to the final product, the concentrations

17



2. MULTIVALENCY

of the intermediates are too low to be observed” [17]. This is due to that fact,

that the number of binding sites in biological systems is often unknown. On the

other hand, for synthetic materials it is known [16]. EM comes into play when

comparing monovalent guests to a multivalent host with both multivalent guests

and host such as in [16]. If two monovalent guests bind to a bivalent host, the

binding coefficient only depends on the monovalent affinity constant. In the mul-

tivalent setting, it is a function of both the monovalent affinity constant and EM.

Indeed, so far there is no theoretic relationship between the binding constant K

and EM. In the papers by Kaufmann et al. [38] and Fasting et al. [16] a linear

relationship was determined. However, depending on the setup of the experiment,

there are different constant prefactors.

The Enhancement Factor

The enhancement factor β examines the effect on the binding rate by using a

multivalent ligand instead of a monovalent ligand with a multivalent receptor.

It holds that β = Kmulti

Kmono
[16]. The concentration of free ligands and receptors

influences the nature of binding. When the concentration of the free components

approaches a value close to EM, the probability of intermolecular binding (poly-

merization) becomes equally likely as intramolecular binding (cyclization) [16].

Figure 2.4 depicts the relationship between dissociation constants and enhance-

ment factor for monovalent and bivalent bindings.

The Hill-Langmuir Curve

To measure the cooperativity described earlier in this chapter, the Hill-Langmuir

curve θ comes into play. θ = [L]n

Kd+[L]n
is a rectangular hyperbola denoting oc-

cupancy of receptors by ligands with θ the ratio of the bound receptors to the

total receptors in the experiment, [L] the unbound ligand concentration, Kd the

dissociation rate and the Hill coefficient n. For n > 1 there is positive cooperativ-

ity, i.e. if there already is a bond, the affinity for subsequent bonds in increased

[39]. For n < 1 there is negative cooperativity, i.e. the affinity decreases if there

already is a bond. This may be due to unfavorable spacers, e.g. they are too

short such that the next moiety cannot reach a binding site. For n = 1 the single

18



2.3 Notation and Quantification

Figure 2.4: Thermodynamic equilibria used for the definitions of affinity, avidity,
and enhancement.
a) A monovalent ligand binds a monovalent receptor with a dissociation constant
of Kaffinity

d .
b) The oligovalent (here bivalent) ligand binds a receptor of the same valency
with a dissociation constant of Kd,2 for the equilibrium between the fully com-
plexed receptor and free receptor and ligand.
c) The bivalent receptor can also bind the bivalent ligand with only one receptor-
ligand interaction; the complex has a dissociation constant of Kd,1. The enhance-
ment β is the ratio of the affinity to the avidity. In this case, the enhancement
contains a contribution from a statistical factor of 2.
Figure taken from Krishnamurty et al. [6]. Copyright Wiley-VCH Verlag GmbH
& Co. KGaA. Reproduced with permission.

19



2. MULTIVALENCY

binding steps take place independently.

The Adair Equation

The cooperative binding is quantified with the Adair equation. Given a macro-

scopic association constant Ki, for any protein with n ligand binding sites, the

fractional occupancy can be expressed as

Ȳ =
1

n

KI [L] + 2KII [L]
2 + . . .+ nKn[L]

n

1 +KI [L] +KII [L]2 + . . .+Kn[L]n

where [L] is the ligand concentration and each Ki is a combined association

constant, describing the binding of i ligand molecules. The Adair equation and

the Langmuir Hill plot have a connection, as Stefan and le Novère describe: ”By

combining the Adair treatment with the Hill plot, one arrives at the modern

experimental definition of cooperativity. The resultant Hill coefficient, or more

correctly the slope of the Hill plot as calculated from the Adair Equation, can be

shown to be the ratio between the variance of the binding number to the ratio

of the binding number in an equivalent system of non-interacting binding sites.

Thus, the Hill coefficient defines cooperativity as a statistical dependence of one

binding site on the state of other site(s)” [39].

Degree of Binding

The degree of binding of a macromolecule M to a ligand L can be quantified

by ν = nKa[L]
1+Ka[L]

= [L]total−[L]
[Mtotal]

. Here, it is assumed that the macromolecule can

host n ligands that have one binding site each. For the monovalent case, it holds

that ν1 = [L]
Kd+[L]

. For a detailed derivation and proof see Zumbansen [40]. This

concept is interesting for bindings of one macromolecule to several ligands such

as the haemoglobin-oxygen example. Because of this limitation, this concept is

not useful for one-to-one stoichiometries and multivalent ligands.
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2.4 Thermodynamic and Kinetic Studies of Multivalency

2.4 Thermodynamic and Kinetic Studies of Mul-

tivalency

Both enthalpic and entropic behavior influence the multivalent binding mech-

anisms. The degree of influence is still a piece of research. As Goodrich and

Kugel describe, ”kinetic studies measure changes in the concentrations of reac-

tants and/or products that occur in reactions over time. To study the kinetics of

a binding reaction, the equilibrium between free and bound species is perturbed

and changes in their concentrations are measured over time as the reaction ap-

proaches a new state of equilibrium” [36].

In order to determine general association and dissociation constants there are sev-

eral techniques such as fluorescence spectroscopy, total internal reflection fluores-

cence spectroscopy, microscopy, and quartz crystal microbalance measurements.

Atomic force microscopy (ATF) is a method to measure binding strength. For

quantifying thermodynamic and kinetic parameters, surface plasmon resonance

(SPR) and isothermal titration calorimetry (ITC) are the methods of choice, see

[16] and references therein. However, SPR is better suited to determine binding

constants for monovalent ligands due to the often heterogeneous binding sites of

multivalent ligands [41]. ITC is better suited for complex formation studies than

SPR and fluorescence spectroscopy in terms of cost and ease of use [42], therefore

the thesis is focused on ITC. The most important thermodynamic quantities are

entropy and enthalpy as discussed in the next two sections.

Entropy

Entropy S of a macro state depends on the number of possible micro states i and

their respective probabilities pi. With the Boltzmann constant kB = 1.38065 ·
10−23J/K, S is defined as

S = −kB
∑

pi ln pi.

Generally, with every (additional) binding, the system loses degrees of freedom

and therefore entropy. Often it is referred to as disorder or chaos. A monovalent

binding eliminates both translational and rotational entropy. ”The translational

entropy of a molecule arises from its freedom to translate independently through

21



2. MULTIVALENCY

space; the value of ∆Strans is related to the logarithm of its mass M (∆Strans ∝
lnM), and inversely to the logarithm of its concentration ∆Strans ∝ 1

ln[L]
. The

rotational entropy, ∆Srot, arises from the freedom of the particle to rotate around

all three of its principle axes, and is related logarithmically to the product of its

three principle moments of inertia Ix, Iy and Iz, ∆Srot ∝ (IxIyIz). The values

of ∆Strans and ∆Srot for a particle are, therefore, only weakly (logarithmically)

dependent on its mass and dimensions” [7]. In the bivalent setting, the first

binding eliminates translational entropy and the second binding the rotational

entropy. Further, in multivalent cases it must be differentiated between one or

more entitites of ligand binding to one multivalent receptor. Figure 2.5 illustrates

these differences. In theory, one must distinguish between rigid (conformational

entropy ∆S = 0) and flexible linking groups (∆S ̸= 0). However, in reality most

linking groups are somewhat flexible.

Enthalpy

Enthalpy H quantifies the heat content of a chemical system. Thus, ∆H is the

total energy evolved or absorbed by a chemical reaction at constant pressure and

temperature. It only depends on the unbound and bound state of the system [34].

If the system absorbs heat energy, enthalpy increases. Inversely, it decreases if the

system emits heat. Ligand-receptor bindings produce heat, whereas unbinding

absorbs heat.

Gibb’s free energy difference ∆G depends on the enthalpic and entropic compo-

nents, as well as temperature T [7].

∆G = ∆H − T∆S.

In the multivalent setting there are several sources of enthalpic penalties ∆Hstrain.

Firstly, if the spacer is rigid and not all the receptor-ligand pairs can reach each

other, some enthalpic potential is forgone. This setting is rather unrealistic. Sec-

ondly, there may be unfavourable angles between the bonds that may hinder

adjacent ligand-receptor pairs to reach each other. Thirdly, the receptors’ selec-

tivity play a great role - adding enthalpic penalty by not accepting any random

ligand. These penalties can partly be overcome by spacer, scaffold and linker
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2.4 Thermodynamic and Kinetic Studies of Multivalency

Figure 2.5: Relationships among translational, rotational, and conformational
entropies for a bivalent system with a rigid and flexible linking group.
a) The total entropic cost of association of two monovalent receptors with two
monovalent ligands is 2∆Strans + 2∆Srot.
b) With a rigid linking group and the correct spacing to match the two receptor
and ligand sites, the entropic cost of assembling both bivalent species is ∆Strans+
∆Srot.
c) Here it is distinguished between the conformational cost being less (only path
A), equal (path A and B) or higher (path C) than the total translational and
rotational cost.
Figure taken from Mammen et al. [7]. Copyright Wiley-VCH Verlag GmbH &
Co. KGaA. Reproduced with permission.
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2. MULTIVALENCY

design. Theoretically, it holds that ∆Hmulti = n∆Hmono with n the number of

binding sites. However, due to the strains mentioned, it is hardly ever reached.

With favorable molecular design, the bivalent enthalpic balance may become

∆Hbi = 2∆Hmono + ∆Hstrain + ∆Hspacer with ∆Hspacer ≤ −∆Hstrain [34]. The

penalties spacer rigidity and distortion θ from the system’s most stable confor-

mation and their effects on enthalpy are depicted in Figure 2.6.

Entropy and enthalpy can partly compensate each other in terms of affinity of

multivalent bindings. A reaction is favored if entropy increases. It is also favored

if enthalpy decreases [43].

The enthalpic considerations so far were of rather theoretic nature. In the fol-

lowing, enthalpy quantification is discussed. As titrations are one of the most

common tools to measure the enthalpy of a complex, the next subsection is fo-

cusing on the ITC method.
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2.4 Thermodynamic and Kinetic Studies of Multivalency

Figure 2.6: Enthalpy of binding for multivalent interactions.
a) Possible binding modes of monovalent and divalent ligands to a divalent re-
ceptor. If the two receptor sites are independent and non interfering, the binding
of two monovalent ligands occurs with twice the enthalpy of binding one ligand.
1: bivalent receptor, 2: two monovalent ligands, 3: rigid group spacer R fits the
spacing of 1, 4: R is too short for the spacing of 1, 5: R is too long to fit the
spacing of 1. 4 and 5 do not hinder binding per se, but lead to a strained confor-
mation.
b) The binding of a divalent antibody to ligand present at variable densities on
the surface may be enthalpically diminished due to strain induced by distortion
of the antibody from its most stable conformation (θ0).
Figure taken from Mammen et al. [7]. Copyright Wiley-VCH Verlag GmbH &
Co. KGaA. Reproduced with permission.
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2. MULTIVALENCY

2.4.1 Isothermal Titration Calorimetry

In general, titrations are designed such that the ratio of the two components

are gradually changed and their behavior is observed until the equilibrium is

reached. The concentration of one component is fixed, while the concentration of

the counterpart is increased and their equilibrium is observed.

Specifically, the Isothermal Titration Calorimetry (ITC) setup consists of two

adiabatic cells: a sample or titration cell and a reference cell with a buffer solution

such as water, as depicted on the left hand side of Figure 2.7. In the sample cell

a certain receptor concentration is fixed on a plate and remains unchanged. At

regular time intervals, a solution with a known ligand concentration is injected

from a syringe. For theoretical aspects and specific applications of ITC see [44]

and [45] respectively. ”In the absence of a reaction, the feedback power will be

constant at the resting baseline value. Exothermic reactions will temporarily

decrease and endothermic reactions temporarily increase feedback power” [37].

Complex formation produces heat in the sample cell. A thermostat regulates the

temperature in the titration cell in order to keep it equal to the reference cell

temperature. The data output of an ITC experiment is a thermogram, which

records the time-course of this compensatory power Q required to maintain a

constant temperature differential between the titration cell and the reference

cell. As shown in the upper right diagram of Figure 2.7, the heat peaks show

a sigmoidal shape with a decreasing tail as biomolecules reach their saturation.

The enthalpy change is the total heat effect: ∆H = H2 −H1 = Qtot. If ∆H > 0,

the reaction is exothermic, otherwise endothermic. The entropy S describes the

degrees of conformational freedom of the system. If ∆S > 0, the reaction is

irreversible, if it is zero, it is reversible. The sign of the Gibb’s free energy change

∆G indicates whether the reaction is spontaneous (∆G < 0) or not (∆G > 0).

For ∆G = 0, the system reached thermodynamic equilibrium [46].

The heat curve is described by Q =
∑n

k=1∆Hk∆ckV with Q being the heat

evolved after titrating ligands to the reaction cell, ∆Hk the complexation en-

thalpy of complex LR, ∆ck the concentration change of species k, V is the cell

volume of the titration equipment, see Figure 2.7 upper right.

As described above, the shape of the binding isotherm is directly linked to the
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2.4 Thermodynamic and Kinetic Studies of Multivalency

Figure 2.7: Basic principle of isothermal titration calorimetry. Schematic repre-
sentation of the isothermal titration calorimeter (left) and a characteristic titra-
tion experiment (upper right) with its evaluation (lower right). In the upper right
picture, the titration thermogram is represented as heat per unit of time released
after each injection of the ligand into the protein (black), as well as the dilution
of ligand into buffer (blue). In the lower right picture, the dependence of released
heat in each injection versus the ratio between total ligand concentration and
total protein concentration is represented. Circles represent experimental data
and the line corresponds to the best fitting to a model considering n identical
and independent sites. The syringe is inserted in the sample cell and a series of
injections are made. Figure taken from Song et al. [47]. Licensed by Creative
Commons Attribution 4.0 International Public License.
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Wiseman parameter c = Rtot

Kd
. ”For very tight binding (c =∞), all added ligand

is bound until saturation occurs so that a rectangular curve of height ∆H is seen.

For moderately tight binding with c values between 1 and 1000 the shape of the

binding isotherms are very sensitive to small changes in c values. The intercept of

these curves on the ordinate is no longer exactly equal to ∆H but this parameter

is still easily obtained by deconvolution from the total area under the curve and

its shape. Very weak binding (cf. c = 0.1) yields a nearly horizontal trace which

again, like very tight binding, yields little information of the precise value of K”

[37]. Further, the Wiseman parameter is linked to the equilibration time θ [48].

The first injection leads to a minimum equilibration time θ1 and reaches its max-

imum at mid-titration time θmax. Their ratio is approximated by the Wiseman

parameter by the relationship θmax/θ1 ≈
√
c/2. The following relationship helps

approximating koff: θmax ≈ 2k−1
off /
√
c.

ITC simultaneously determines the thermodynamic parameters: binding affinity

Ka, enthalpy changes ∆H, and the binding stoichiometry n. From the isotherm,

see Figure 2.7 lower right, the binding constant Ka can be deduced. The binding

constant Ka is the curve slope at the inflection point. The binding mechanism de-

notes ∆H, i.e. the maximum enthalpy change. The stoichiometry n is the value

on the x-axis where the curve has ∆H/2 on the y-axis.1 From the relationship

∆G = −RT lnKa = RT lnKd = ∆H − T∆S we can calculate Gibb’s free energy

∆G and the entropy change ∆S of the equilibria with the absolute temperature

T and the gas constant R = 8.3145J/molK [37].

Another method to gain the complexation enthalpies is the Van’t Hoff method,

where multiple titrations are performed at varying temperatures [16], but the

equilibrium constants are not only temperature-dependent [17]. That is why in

the subsequent work only the common ITC experiment is considered.

1For sigmoidal curves of the shape f(x) = ect+d

1+ect+d with constant c and d, the inflection
point xi is equal to x such that f(x) = (fmax − fmin)/2. However, depending on the binding
affinity, the heat curves do not necessarily have a sigmoidal shape and an inflection point.
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2.4.2 Kinetic ITC

Kinetic ITC (kinITC) is a relatively new method on how to obtain kinetics in

addition to the thermodynamic information from ITC experiments. The biggest

advantage is that kinetic binding and unbinding rates kon and koff can be obtained.

Its pioneers are Burnouf, Dumas and co-workers, and Vander Meulen and Butcher

[18; 48; 49]. In the classical ITC measurements, only the peaks of the heat

curve were considered. Apart from that, it is important how fast the curve

decreases from the peak back to the baseline. Therefor the area under each

peak is integrated until the baseline is reached again. In fact, the apparatus

measures the heat power P in [µcal/s] and not directly the heat Q. They are

related by the time derivative P (t) = ∂Q
∂t
. An equilibration time curve (ETC)

has to be determined, i.e. where each injection starts and ends effectively. For

each titration experiment a weighted average kon value of the single titrations is

determined. The change of the complex concentration over time is

∂[LR]

∂t
= −∂λ

∂t
= kon([L]eq + λ)([R]eq + λ)− koff([LR]eq − λ)

with λ the difference between the equilibrium concentration of the complex and its

current concentration λ = [LR]eq−[LR]. λ cannot be determined analytically, but

together with kon in a least squares approximation. The heat evolution function

is [49]

Qev = −∆HV0(λt=0 − λ).

The equilibrium constants are determined by the Van’t Hoff equation:

∂ lnKa

∂T
=

∆H

RT 2

with R the gas constant and T the temperature. ∆H is known from the ITC

experiment. The binding constants k are temperature dependent and are deter-

mined with the Arrhenius equation:

kon = Ae
−Ea
kBT
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with A some pre-exponential factor depending on the type of chemical reaction,

Ea the activation energy, kB the Boltzmann constant and T the temperature. koff

is obtained by the relationship

koff =
kon
Ka

(2.2)

Since these binding rates depend on the temperature, usually several ITC exper-

iments are run at different temperatures and an average is used.
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Chapter 3

Clustering Multivalent Binding

Data

The third chapter is dedicated to the mathematical fundamentals of Markov

processes and clustering. These concepts will be applied to experimental data of

Isothermal Titration Calorimetry (ITC), the only measurement technique provid-

ing the complexation enthalpies [17] in the next chapter. Therein, it is explained

how thermodynamic information is gathered from the output. Then, the assess-

ment is enhanced in order to gain kinetic information. From a mathematical

perspective, there is even more one can read out of the output. Setting up a the-

oretical rate matrix, discretizing it and clustering it, gives rise to the individual

binding and unbinding coefficients.

3.1 Mathematical Preliminaries

Chemical reactions such as binding and unbinding of receptors and ligands can

be modeled as rare stochastic events. In the following sections, we define the

necessary operators and functions. The ligand-receptor binding interactions are

Markov processes. Let (Xt)t∈T be a stochastic process, (E,Σ) a measurable space

for a given set E and Σ is a σ-algebra on E. (Ω,A,P) is the probability space.

Ω is the sample space, A the event space and P is the probability function.

Definition 1 (Stochastic Process). [50]
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A stochastic (or random) process (Xt)t∈T is a collection of random variables Xt :

Ω → E defined on a common probability space (Ω,A,P) and indexed by the

elements of a parameter set T . Element t ∈ T is usually thought of as time.

Definition 2 (Stochastic Transition Function). [10]

A stochastic transition function p : T×E × Σ→ [0, 1] gives the probability for a

transition to a state A

p(t, x, A) = P[Xt+s ∈ A|Xs = x] (3.1)

and fulfills the following properties for all s, t ∈ T, x ∈ E and A ⊂ E:

i) x 7→ p(t, x, A) is measurable ∀t ∈ T and A ∈ Σ

ii) A 7→ p(t, x, A) is a probability measure ∀t ∈ T and x ∈ E

iii) p(0, x, E \ x) = 0 ∀x ∈ E

iv) the Chapman-Kolmogorov equation

p(t+ s, x, A) =

∫
E

p(t, x, dz)p(s, z, A) (3.2)

holds ∀t, s ∈ T, x ∈ E,A ⊂ Σ.

Definition 3 (Markov Process). A stochastic process (Xt)t∈T on a state space E

is a Markov process if equation 3.1 is fulfilled for all s, t ∈ T and A ∈ Σ.

An invariant measure, also called stationary measure, with respect to a Markov

process describes the situation that the probability to be in a certain subset is

equal to the probability to get into this very subset for any fixed transition time.

Definition 4 (Invariant Probability Measure). [51]

A Markov process Xt admits an invariant probability measure µ, or µ is invariant

with respect to the Markov process, if∫
E

p(t, x, A)µ(dx) = µ(A) ∀t ∈ T, A ∈ Σ.
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Definition 5 (Transient and Recurrent State). [52; 53]

Consider a Markov chain Xn : n ∈ N0 on state space E with transition matrix P .

A state i ∈ E is called recurrent if Pi[Xn = i for infinitely many n] = 1.

A state i ∈ E is called transient if Pi[Xn = i for infinitely many n] = 0.

In the discrete setup, a recurrent state is sure to be returned to. Irreducible

chains on finite space always satisfy this notion.

A Markov process is memoryless, i.e. every state depends only on the current

state. If E consists of a finite number s of states, we can construct a transition

probability matrix P ∈ Rs×s. A stochastic process is in equilibrium if the detailed

balance condition is fulfilled.

Definition 6 (Detailed Balance Condition). [51]

A stochastic transition matrix Q fulfills the detailed balance condition if

πkQkl = πlQlk.

π ∈ Rn denotes the stationary distribution and satisfies πT = (πP )t.

In other words, in equilibrium one cannot tell if a process is going forward or

backward in time. Thus, the detailed balance condition is directly linked to the

reversibility property of a Markov process. A Markov process (Xt) is reversible

with respect to an invariant probability measure µ if the detailed balance con-

dition holds. If it holds and the state space is finite, then all the operator’s

eigenvalues are real [54]. Considering continuous space and time, the reversibility

definition can be written as an integral.

Definition 7 (Reversibility). [10]

Let (Xt)t∈T be a Markov process with invariant probability measure µ. Then Xt

is reversible with respect to µ if∫
A

p(t, x, B)µ(dx) =

∫
B

p(t, x, A)µ(dx)

∀t inT and A,B ∈ Σ.
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3.2 The Transfer Operator

A transfer operator propagates probability densities across time. The time can

be considered forward or backward. Detailed overviews of transfer operators

and their properties can be found in Schütte and Sarich [10]. Nielsen showed

that Markov operators and transfer operators are identical [20]. Further, the

class of adjoint transfer operators can be characterized by generalized Koopman

operators.

Definition 8 (Markov Operator). [20]

A linear operator P : L1(µ)→ L1(µ) satisfying

• Pf ≥ 0 ∀ f ≥ 0, f ∈ L1(µ)

• ||Pf ||1 = ||f ||1 ∀ f ≥ 0, f ∈ L1(µ)

is called a Markov operator.

We consider Banach spaces of equivalence classes of measurable functions weighted

by the invariant measure µ:

Lr(µ) = {f : E → C :

∫
E

|f(x)|rµ(dx) <∞}

with 1 ≤ r <∞ and

L∞(µ) = {f : E → C : µ-ess sup
x∈E

|f(x)| <∞}

with the corresponding norms ||.||r and ||.||∞, respectively [51]. Due to Hölder’s

inequality it holds that Lr(µ) ⊂ Ls(µ) ∀ 1 ≤ s ≤ r < ∞ [51]. We are inter-

ested in transfer operators P t propagating sub-ensembles relative to the weighting

with µ in time according to

νo 7→ νt = P tν0

The following transfer operators are well-defined on Banach spaces Lr(µ), 1 ≤
r ≤ ∞. Specifically, L2(µ) is a Hilbert space with scalar product

⟨f, g⟩µ =

∫
E

f(x)g(x)µ(dx).
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Definition 9 (Forward Transfer Operator). [10; 51]

The forward transfer operator (or propagator) P t : Lr(µ) → Lr(µ) with t ∈ T
and 1 ≤ r ≤ ∞ is defined by∫

A

P tv(y)µ(dy) :=

∫
E

v(x)p(t, x, A)µ(dx) (3.3)

for measurable A ∈ Σ and v ∈ Lr(µ).

Remark. Because µ is invariant, the characteristic function 1 of the entire space

is invariant under P t, that is P t1E = 1E. P
t is a Markov operator and thus norm-

conserving, that is ||P tv||1 = ||v||1. Further, the operator conserves positivity, i.e.
P tv ≥ 0 if v ≥ 0. The forward transfer operator propagates probability densities

according to a given Markov process. Propagators of reversible Markov processes

are well-defined for the Hilbert space L2(µ), too.

Definition 10 (Backward Transfer Operator). [10]

The backward transfer operator T t : Lr(µ)→ Lr(µ) with t ∈ T and 1 ≤ r ≤ ∞ is

defined by

T tu(x) =

∫
E

u(y)p(t, x, dy) (3.4)

for every t ∈ T.

Remark. Like for the propagator, for the backward transfer operator it holds

T 11E = 1E.

Definition 11 (Self-adjointness). [24]

An operator O on L2(µ) is self-adjoint if for all f, g ∈ L2(µ) it holds

⟨f,Og⟩µ = ⟨Of, g⟩µ.

Theorem 1. [51]

Let T : L2(µ) ⊂ L1(µ) → L2(µ) be the transfer operator corresponding to the

Markov process (Xt)t∈T. Then T is self-adjoint with respect to the scalar product

⟨., .⟩µ in L2(µ) if and only if (Xt)t∈T is reversible.
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Both operators are linked by the µ-weighted scalar product:

⟨v, u⟩µ :=

∫
E

v(x)u(x)µ(dx)

The backward transfer operator is adjoint to the forward transfer operator, (P t)∗ =

T t. Therefore, it holds

⟨P tv, u⟩µ = ⟨v, T tu⟩µ. (3.5)

The backward transfer operator is also referred to as Koopman operator in the

literature. It is the solution operator of the backward Kolmogorov equation:

Kt : L
∞(X)→ L∞(X) : Ktf(x) =

∫
X

pτ (x, y)ft(y)dy = E[ft(Xt+τ )|Xt = x]

and describes the evolution of observables [55].

3.2.1 Discrete Transfer Operators

In order to apply the concepts of transfer operators and generators which act on

continuous time and space, we need to discretize both. One possible discretiza-

tion is the Galerkin projection.

By discretizing the transfer operator we get a transition probability matrix.

Definition 12 (Transition Probability Matrix). [54]

The matrix P = P (x, y), x, y ∈ X is called a Markov transition matrix if

P (x, y) ≥ 0,
∑
z∈X

P (x, z) = 1 x, y ∈ X.

The entries Pij denote the probability to jump from state i to state j in within

one time step t.
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3.2 The Transfer Operator

Example

The transition probability matrix

P =

0.8 0.2 0

0.1 0.7 0.2

0 0.5 0.5


describes the probabilities of a molecule that can be in three different states:

unbound, partly bound and fully bound to another protein. Suppose that in the

beginning, the system is unbound and thus the state vector x is x0 = (1, 0, 0)T .

How does the equilibrium distribution look like? Since xt = xTP and as t → ∞
the molecule is most likely partly bound with a little higher propensity to disso-

ciate than associate further, i.e. xT1000 = (0.26, 0.53, 0.21).

In the example above, the molecule had a certain probability to be in all of the

three states. The question, if all states of the state space can be visited when

starting at a specific position at a specific time, is captured by ergodicity, a

concept coined by Boltzmann.

Definition 13 (Ergodicity). [10]

Let (Xt)t∈T be a Markov process with invariant measure µ. Then Xt is ergodic

with respect to µ if for all functions v : E → R with Eµ(|v|) =
∫
E
|v|µ(dx) < ∞

it holds that

lim
T→∞

1

T

∫ T

0

v(Xt)dt =

∫
E

v(x)µ(dx).

In other words, ergodicity means that the space average equals the time average

if time goes to infinity. All subspaces can be visited by the stochastic process.

Huisinga connects ergodicity for Markov processes to irreducibility. In his thesis

[51] he puts ”that it is possible to move from (almost) every state to every ’rele-

vant’ subset within a finite time”. This leads us directly to communication and

irreducibility. Communicating states mean that state x leads to state y. That

means,
∑∞

n=0 P
n(x, y) > 0 and

∑∞
n=0(y, x) > 0 [54].

Definition 14 (Irreducible Spaces and Absorbing Sets). [54]

If for a set C and a space X it holds that C(x) = X for some x, then we say that
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X is irreducible.

We say C(x) is absorbing if P (y, C(x)) = 1 ∀y ∈ C(x).

Semigroup Property: It holds Pτ+σ = PτPσ and Kτ+σ = KτKσ for τ, σ ≥ 0,

i.e. these operators describe time-stationary Markovian dynamics [55].

The transition matrix P (k) of the kth time step meets the semi group property

given by [56]:

P (k) = (P (1))k = P k.

Definition 15 (Infinitesimal Generator). [24]

For the semigroup of transfer operators P : Lr(µ) → Lr(µ) with t ∈ T and

1 ≤ r ≤ ∞, D(Q) is defined as the set of all f ∈ Lr(µ) such that the limit

Qf := lim
t→∞

Ptf − f
t

exists. Then the operator Q : D(Q) → Lr(µ) is called the infinitesimal generator

of Pt.

The propagator P propagates probability densities over time, while the infinitesi-

mal generator Q describes the Markov process in infinitesimal time. By discretiz-

ing Q, we get the transition rate matrix Q.

Definition 16 (Rate Matrix). [57]

The rate matrix Q with entries Q = qij is also called intensity matrix or infinites-

imal generator and has the following properties:

• the off-diagonal entries are positive: qij ≥ 0 for i ̸= j

• each column sum is 0 :
∑

i qij = 0 for all j

• each diagonal element is the negative sum of the column entries: qii =

−
∑

i ̸=j qij.

Remark. The rate matrix Q and the probability matrix P are connected by the

matrix exponential

Pt = exp(tQ) (3.6)
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3.2.2 Defining the Rate Matrix

In the following subsection, the multivalent binding setting is going to be trans-

lated into a rate matrix. This procedure is described in Åberg et al. [58]. First,

some necessary assumptions are made to model the binding process as simplified

as possible, yet realistically. In the model we assume that the molecule backbone

and spacers are somewhat rigid, i.e. the radius of spacer movement is bounded

and not every spacer arm can bind with any binding pocket of the counterpart,

as illustrated by Figure 3.1.

Ligand-receptor binding with rigid
spacers

Ligand-receptor binding with flexi-
ble spacers

Figure 3.1: In this thesis it is assumed that the spacers of ligands and receptors
are rigid, respectively, as depicted in the left image. No cross-linking like in the
right image can occur.

This fact limits the possible combinations in that way that a single binding site

can either bind with a counterpart or with its left or right neighbor (if it is

unbound of course). The (transition) rate matrix, is a square matrix with as

many rows and columns as there are different states in the state space. It is

closely linked to the probability matrix which is defined first.

If the number of binding sites on the receptor and ligand respectively differ, we

will use the minimum n = min(nligand, nreceptor) like in [16]. As an example, let us

assume a bivalent receptor with binding sites A and B interacting with a bivalent

ligand with binding sites 1 and 2. There are four different possibilities to have

39
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one binding and two possibilities for two bindings. Further, for each receptor and

ligand pair, there is only one situation without any bindings. Altogether, there

are seven different states in the bivalent case, as depicted in Figure 3.2.

The order of the states is arbitrary. The order used below is listed in Table 3.1.

[LR1] denotes the total concentration of singly bound ligand-receptor complex

and comprises the sum of the conformational states II, ..., V . [LR2] denotes the

total concentration of the doubly bound ligand-receptor complex and comprises

the sum of states V I and V II.

State Number Combination Number of Bindings

I
1−
2− 0

II
1− A
2− 1

III
1−B
2− 1

IV
1−

2−B 1

V
1−

2− A 1

VI
1− A
2−B 2

VII
1−B
2− A 2

Table 3.1: Order of the seven possible states for bivalent bindings.

How many possible states Z(n) do exist in the n-valent case? There is always one

state for the unbound case and n states for the fully bound case. For the n − 2

states in between, i.e. singly bound, doubly bound,..., n−1 bound, it is a Bernoulli
trial. For each of these ’partly bound states’ there are n possibilities, how to

allocate these Bernoulli trials. Per partly bound states there exist
∑n−1

i=1

(
n
i

)
possibilities to bind. If the valency increases by 1, the state space size increases

by 1 + (n+ 1)
∑n

i=1

(
n+1
i

)
− n

∑n−1
i=1

(
n
i

)
states.
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A

B

1
2

B

A

1
2

A

B

1
2

B

A

1
2

A B

1 2

A B

1 2

B A

1 2

Figure 3.2: This scheme shows how all the seven possible states in a bivalent
binding setting are connected by kon and koff rates.
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Proposition: the number of possible states for an n-valent (n ∈ N+) system is:

Z(n) = 1 + n+ n

n−1∑
i=1

(
n

i

)
.

Proof. Let Z(n) be the statement 1 + n+ n
∑n−1

i=1

(
n
i

)
.

If the valency n is increased by 1, there are altogether Z(n + 1) different states

with Z(n+ 1) = 2 + n+ (n+ 1)
∑n

i=1

(
n+1
i

)
.

This can be written as Z(n+ 1) = Z(n) + 1 + (n+ 1)
∑n

i=1

(
n+1
i

)
− n

∑n−1
i=1

(
n
i

)

Z(n+ 1) = 2 + n+ (n+ 1)
n∑

i=1

(
n+ 1

i

)
!
= Z(n) + 1 + (n+ 1)

n∑
i=1

(
n+ 1

i

)
− n

n−1∑
i=1

(
n

i

)

= 1 + n+ n
n−1∑
i=1

(
n

i

)
+ 1 + (n+ 1)

n∑
i=1

(
n+ 1

i

)
− n

n−1∑
i=1

(
n

i

)
= 2 + n+ (n+ 1)

n∑
i=1

(
n+ 1

i

)
= Z(n+ 1)

Thus, in a bivalent case, we have Z(2) = 7 different states, in the trivalent case

Z(3) = 22, Z(4) = 61 etc. The number of states increases exponentially with the

valency number as depicted in Figure 3.3.

In the following, the rate matrix is filled in the bivalent case and concluding it is

shown how to fill the n-valent rate matrix. The left column represents the first

binding: from unbound to singly bound. These rates depend on the first binding

constant kon1 and the ligand concentration that changes with time. In the case of

ITC, the time is linked to the titration steps at certain time intervals. There is no

direct way to get from unbound to doubly bound, therefore the last two entries

in the first column are zero. The first row is filled in an analogous way. Going
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Figure 3.3: Number of micro states Z depending on the valency number n.

from singly bound to unbound, only the unbinding rate koff1
matters. Again,

there is no way to move from the fully bound state to unbound in one step, that

is why the last two entries in the first row are zero. The submatrix representing

the transition from singly bound to fully bound is of size 2× 4 and depends only

on the kon2 value. In accordance to the first unbinding event, that means moving

from double bound to the singly bound state, the submatrix is of size 4× 2 and

depends on the koff2
value.

Q =



d1 koff1
koff1

koff1
koff1

0 0

kon1
· cL d2 0 0 0 koff2

0

kon1
· cL 0 d2 0 0 0 koff2

kon1 · cL 0 0 d2 0 koff2
0

kon1
· cL 0 0 0 d2 0 koff2

0 kon2
0 kon2

0 d3 0

0 0 kon2 0 kon2 0 d3


(3.7)

with d1 = −4kon1 · cL, d2 = −koff1
− kon2 and d3 = −2koff2

.

The positions of the entries in these two submatrices depend on the order of the

states as in Table 3.1. The order of the states could be different, but it has no

effect on the final result. However, the entry positions have to be the transpose
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of the corresponding submatrix.

The rate matrix for the n-valent binding is only sketched schematically by the

order of its submatrices.

Q =



∗ koff 0 0 . . . 0

kon · cL ∗ X1 0 . . . 0

0 Y1 ∗ X2 . . . 0

0 . . . .
. . .

... 0

0 0 . . . Y2 ∗ Xn−1

0 0 0 . . . Yn−1 ∗


(3.8)

Legend:

* diagonal matrix with the negative column sum such that the
column sum is 0

koff row vector of length n2 with entry koff1

kon · cL column vector of length n2 with entry cL · kon1

Xi i = 1, ..., n− 1 sparse matrix of size (
(
n
i

)
· n ×

(
n

i+1

)
· n) with entries koff2

to
koffn

respectively. The position of these entries depend on the
theoretic order of conformational states.

Yi i = 1, ..., n− 1 sparse matrix of size (
(

n
i+1

)
·n×

(
n
i

)
·n) with entries kon2 to konn ,

respectively. The positions of the entries are the transpose of
the respective Xi submatrices.

The following subsection deals with the clustering of the rate matrix defined above

using PCCA+.
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3.3 Clustering with PCCA+

In the previous subsection it as shown how to discretize the operator practically by

determining the number of states of a ligand-receptor binding system. The next

step is a projection onto an invariant subspace. The ultimate goal is to filter the

essence of this Markov process by clustering. One way is the PCCA+ clustering

algorithm. PCCA+ stands for ’Robust Perron Cluster (Cluster) Analysis’ and

was developed by Weber et al. It is the more robust successor of the PCCA

(Perron Cluster Cluster Analysis) algorithm, developed by Deuflhard et al. [59].

PCCA results in a crisp clustering which is applicable for decomposable Markov

chains. For some applications such as molecular dynamics, the transition matrix

cannot be decomposed completely because there exist transition states due to

entropic and/or enthalpic energy barriers [60]. PCCA+ uses the simplex structure

of the eigenvectors of the transition matrix. The core part is a Galerkin projection

of the transfer operator on the invariant subspace.

Definition 17 (Galerkin Projection). [10]

Let χ = {χ1, ..., χn} ⊂ L2(µ) be a finite family of measurable functions. Let χk

be non-negative, linearly functions, summing up to unity, i.e.∑n
k=1 χk(x) = 1 ∀x ∈ E. Then the Galerkin projection onto the associated

finite-dimensional ansatz space D = span{χ1, ..., χn} by Π : L2(µ) → D has the

form

Πv =
n∑

k,j=1

(S−1)kj⟨χk, v⟩µχj, (3.9)

where S is a non-negative, symmetric square matrix with entries Skj = ⟨χk, χj⟩µ.

S is a Gramian matrix of a set of linearly independent functions and is thus

invertible.

If {χ1, ..., χn} are the characteristic functions {1A1 , ...,1An} belonging to a full

partition of the state space, equation 3.9 becomes

Πv =
n∑

µ(Ak)

⟨χk, v⟩µχk.

χ can be thought of as membership functions of the discrete spaces and S then

45



3. CLUSTERING MULTIVALENT BINDING DATA

refers to the respective overlap matrix of these membership functions. The dis-

cretized propagator ΠPΠ induces an approximate eigenvalue problem:

ΠPΠ = λv.

Next we compute the eigenvectors X of P corresponding to eigenvalues close to

one, PX = XΛ, Λ = diag(λ1, ..., λnC
), 1 ≥ λi ≥ 1 − ϵ and the eigenvectors are

normalized such that XTD2X = I with I the identity matrix and D2 the diagonal

matrix with the stationary distribution π on its diagonal D2 = diag(π).

The aim of the PCCA+ algorithm is to decompose the state space Ω into almost

invariant membership functions χ1, ..., χnC
with nC the number of clusters

χi : Ω→ [0, 1].

The membership function form a partition of unity

nC∑
i=1

χi = 1.

The result is a fuzzy clustering, i.e. each object is assigned to all clusters with

certain probabilities [60]. To find the number of clusters there are three common

approaches [21]:

1. lower boundary for the Perron cluster

2. spectral gap approach

3. minChi Indicator for Simplex Structure

However, for the present use case we can assume that nC = 2 because we are

only interested in the two clustered states ’bound’ and ’unbound’. Experimental

results from the laboratory suggest that in fact there exist at least two clusters

and hence, it is safe to assume that there are indeed two clusters.

PCCA+ is defined for any row-stochastic matrix as input such as a transition

probability matrix of a discrete-time Markov chain [60]. In the following, PCCA+

is applied with the rate matrix instead of the transition probability matrix. The
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rate matrix and the transition matrix are connected by the matrix exponential

P = exp(tQ). This procedure is also valid as shown in the next proof.

Corollary 1.1. The PCCA+ algorithm can be run with the rate matrix as well

as with the transition matrix.

Proof. It has to be shown that PX = XΛ = X exp(τΛ) for time τ .

With the matrix exponential exp(X) =
∑∞

k=0
Xk

k!
, the left hand side of the equa-

tion can be expanded to

PX = =
P=exp(tQ)

exp(τQ)X

= (I + τQ+
1

2
τQ2 + ...)X

= τ(I +Q+
1

2
Q2 + ...)X

= τ(X +QX +
1

2
Q2X + ...)

= τ(X +XΞ +
1

2
XΞ2 + ...)

=
QX=XΞ

X exp(τΞ)

= XΛ

PX =
P=exp(tQ)

(I +Qτ +
(Qτ)2

2
) +

(Qτ)3

6
+ ...)X

=
Q=XΛX−1

X +XΛX−1τ + (XΛX−1)2X
τ 2

2
+ (XΛX−1)3X

τ 3

6
+ ...

= X

(
I + Λτ + Λ2 τ

2

2
+ Λ3 τ

3

6
+ ...

)
= X exp(Λτ)

Thus, the matrix of eigenvalues of the transition and rate matrices respectively,

are connected by the matrix exponential, too. It holds that Λ = exp(τΞ). The

rate matrix can therefore be used for a similar eigenvalue problem. Practically,
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the first step of PCCA+ is the computation of the eigenvalues of Q according to

QX = XΞ

with X the matrix of all the eigenvectors and a diagonal matrix of eigenvalues

Ξ = diag(ξ1, ..., ξn+1). The unique biggest real eigenvalue is called the Perron

eigenvalue [60]. For transition probability matrices, the Perron eigenvalue is

always 1, for rate matrices it is 0 due to the relationship (3.6). The biggest

eigenvalues refer to the slow states and describe the metastabilities. Usually,

there are several eigenvalues only slightly smaller than the maximum eigenvalue

and then a spectral gap occurs. For the purpose of this work, only the two

biggest eigenvalues are of interest because all the states will be clustered into two

states only. The leading eigenvalue and its corresponding leading eigenvector are

selected. The second eigenvector has to satisfy the criterion that the first entry

and the respective last one have the maximum distance, to make sure that the

two states unbound and bound are as distinct as possible. For regular matrices

Q the clustering algorithm gives a membership matrix χ by

χ = XA

with A being a non-singular matrix of linear factors computed by the optimization

process. A has to fulfill the following two conditions:

A(1, j) ≥ −
nC∑
i=2

xi(l)A(i, j), ∀j ∈ 1, ..., nC . l ∈ 1, ..., N positivity (3.10)

A(i, 1) = δi,1 −
nC∑
j=2

A(i, j), ∀i ∈ 1, ..., nC partition of unity (3.11)

with δij =

1, if i = j,

0, if i ̸= j.
the Kronecker delta.

In theory there is an uncountable number of transformation matrices A [21]. To

maximize metastability, the following objective function has been used to find A
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such that

[traceD−2
C χTD2Pχ]→ max

with D2
C = diag(χTω) with ω the stationary distribution.

Definition 18 (Stationary Distribution). The stationary (or invariant) distribu-

tion of a Markov Chain with transition matrix P is some vector π,such that

πP = π,

n∑
i=1

πi = 1

That means that the stationary distribution is a starting distribution that does

not change if the Markov process continues. ”The existence of an invariant mea-

sure prevents the probability mass from ’escaping to infinity’” [53].

In the bivalent application presented in the next section, the matrix χ of mem-

bership functions is a 7 × 2 matrix stating the degree of membership of each of

the seven states to the unbound and bound states, respectively. Its row sum is

always one. In [21] it has been proven that for the case nc = 2, the algorithm

presented therein provides a feasible unique solution. Finally, Q is Galerkin dis-

cretized weighted by the stationary distribution π into Qc (clustered Q) using

χ.

The PCCA+ algorithm only works for reversible Markov processes, showing real

eigenvalues. Complex eigenvalues are a guarantee for non-reversibility. However,

the opposite conclusion is not true. Non-reversible processes can also have real

eigenvalues only. Non-reversibile processes can be tackled with a generalization

of PCCA+ (GenPCCA): using the Schur decomposition instead of the eigenvalue

decomposition. For more details on GenPCCA, refer to [61]. No matter which

decomposition of the rate matrix is used, the next step is to project this state

space down on an invariant subspace. The result is the clustered rate matrix,

also called stochastic coupling matrix.

Definition 19 (Stochastic Coupling Matrix). [21]

The stochastic coupling matrix Q ∈ RnC×nC , which provides the transition prob-

abilities between the transition rates between the conformations χ1, ..., χnC
: Ω→
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[0, 1], is defined as

Qc =

(
⟨χiQ

Tχj⟩π
⟨χi⟩π

)
i,j=1,...,nC

where QT is the matrix exponential of the transfer operator. The trace of Q are

the metastabilities of the conformations χ1, ..., χnC
.

In matrix notation this definition is

Qc = (χTΠχ)−1χTΠQχ

How does this coupling matrix look like in practice? In [62] Berberan-Santos

and Martinho describe a matrix formulation of kinetic rate constants. Recall

how equation 2.3.2 showed the time derivative of the one bond complex in a

micro perspective. Now we are interested in the time derivative of the complex

concentration and the ligand concentration in the macro perspective.

∂[R]

∂t
= −kon[L][R] + koff[LR]

and
∂[LR]

∂t
= −koff[LR] + kon[L][R].

Thus, we have an ODE of the form

( ∂[R]
∂t

∂[LR]
∂t

)
= Qc

(
[L]

[LR]

)
.

Note that this setting is observed in a macro perspective. kon is the overall

binding rate and koff is the overall unbinding rate. [LR] is the bound complex.

Here, it does not play a role how many individual bonds there are exactly. Since

we project on a two-dimensional subspace, our Qc matrix is of size 2 × 2 and
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according to the two ODE’s stated above1, it must have the following entries:

Qc =

(
−kon · cL koff

kon · cL −koff

)

By dividing the lower left matrix entry by the respective ligand concentration cL of

the titration step, we determine the overall binding rate kon. It is an interesting

finding that the evolution of the overall binding rate is in fact concentration

dependent. So far this concentration dependence has not been acknowledged by

the ITC community.

This new method of incorporating the concentration dependence to

the kinITC method will be called kinITC+.

1Note, that one could also use the ODE ∂[L]
∂t = −kon[L][R] + koff[LR] in lieu of ∂[R]

∂t .

Then Qc changes to

(
−kon · cR koff
kon · cR −koff

)
with cR the receptor concentration per titration step.

Technically, the result is the same.
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Chapter 4

KinITC+

The theoretical framework for describing a multivalent binding process and the

logic behind the clustering method PCCA+ have been demonstrated in Chapter

3. This chapter shows their application with ITC experimental data. The appli-

cations in Section 3.3 are based on Erlekam et al. [63] if not indicated differently.

4.1 Application of PCCA+ to Kinetic Binding

Data

Our ligand-receptor interaction process is space and time continuous and needs

to be discretized for numerical results. Therefore, all the possible states were

determined and the resulting transition rate matrix was set up like described in

subsection 3.2.2. The Markov process shall be projected on an invariant subspace.

Since we are only interested if the complex is unbound or bound, this subspace

is two-dimensional. For example in the bivalent case we project the 7 × 7 rate

matrix Q on a 2× 2 clustered matrix Qc.

As a proof of concept, overall kon rates from experimental ITC data sets were

compared to the kon rates obtained from the clustered rate matrices. All ITC

measurements and subsequent kinITC data presented in the following were taken

from Igde et al. [64]. In their paper Igde et al. synthesized a library of mannose-

functionalized oligo(amidoamines) varying the valency of the ligands from mono-

to decavalent, introducing different linkers between the mannose and the oligomer
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backbone and varying the position of mannose ligands along the backbone.

Binding of the glycooligomers to model lectin Concanavalin A (Con A) was stud-

ied by ITC performing normal titration where the glycooligomers were titrated

into the sample cell containing the protein [64]. As described in the Supporting

Information of [63], ITC data were then evaluated for thermodynamic informa-

tion on the ligand-receptor complex formation and kinetic rate constants were

extracted from the heat flow signals of the ITC isotherms following the work

by Dumas et al. [18], Vander Meulen and Butcher [49], and Egawa et al. [19].

For each heat profile of the isotherm, the change in complex enthalpy ∆H is

determined with

P (t) =
dQ

dt
= −∆HV0

d[LR](t)

dt

with V0 the starting volume of the solution in the sample cell and [LR](t) the

ligand-receptor complex at time t. [LR] is the molar complex concentration

and depends on the volume and concentration of the titrated ligands. From the

equilibrium constant Kd which is the slope of the thermogram, the concentrations

of the free ligands and free receptors as well as the complex concentration can be

deduced for every injection. Based on these known concentrations, the reaction

scheme

sL · L+ sR ·R
kon−→←−
koff

sLR · LR

and the reaction rate equations can be set up. sL, sR and sLR are the stoichio-

metric prefactors. For one-to-one bindings, they can be assumed to be 1, but are

included in the following equations for the sake of generality. The rate equations

with their respective boundary conditions are:

d[L](t)

dt
= −kon · sL[L][R] + koff · sL · [LR] [L](0) = [L]0

d[R](t)

dt
= −kon · sR[L][R] + koff · sR · [LR] [R](0) = [R]0

d[LR](t)

dt
= kon · sLR[L][R]− koff · sLR · [LR] [LR](0) = [LR]0

The starting concentrations of [L], [R] and [LR] were known a priori. From P (t)

one binding isotherm and one kon value for every heat flow were determined
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4.1 Application of PCCA+ to Kinetic Binding Data

using a covariant Gauss Newton method, specifically the NLSCON algorithm.

NLSCON stands for Numerical solution of nonlinear (NL) least squares (S) prob-

lems with nonlinear constraints (CON), which was especially designed for numer-

ically sensitive problems that work with an error oriented convergence criterion

[65]. The titration time period was excluded, only the relaxation time period of

each heat signal was considered. After having accounted the uncertainty quan-

tification like shown by Vander Meulen et al. [49], the dilution in the sample

cell and the instrument response time, one gets one kon rate per titration step.

According to equation 2.2 koff can be deduced for each titration.

Variance (n) Structure
Compound

name

bivalent (2) Man(1,5)-5

trivalent (3) Man(1,3,5)-5

pentavalent
(5)

Man(1,3,5,7,9)S-
9

Table 4.1: Ligands used in the study [64; 66].
Figures taken from Erlekam et al. [63]. Copyright MDPI (Molecular Diversity
Preservation International and Multidisciplinary Digital Publishing Institute).
Reproduced with permission.

In the following, a PCCA+ clustering has been performed for the rate matrices,

respectively. Because these rate matrices depend on the single binding and un-
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binding rates, an inverse problem had to be solved. In order to fit the overall

binding rate from the ITC experiments, we need to chose the unknown binding

and unbinding rates, koni
and koffi

, respectively. There are infinitely many com-

binations and hence as a goodness of fit measurement, the correlation coefficient

has been used.

For the following three subsections, data sets of bi-, tri- and pentavalent ligands

binding to tetrameric Con A (four binding sites) were selected from the series

of measurements [64] to be compared with the model derived from the PCCA+

clustering. Table 4.1 shows the ligands that were used for comparing the experi-

mental data to the mathematical model.

4.1.1 Bivalent Ligand Example

Even though the receptor is tetrameric Con A, this interaction is bivalent, because

the ligand has only two binding sites. Assuming a one-to-one stoichiometry, only

two bindings can be made maximum. The graph in Figure 4.1 shows a very
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Figure 4.1: Comparison of the computed and experimental [64] kon rates for biva-
lent Man(1,5)-5, see SI for additional information on experimental data. Figure
taken from Erlekam et al. [63]. Copyright MDPI (Molecular Diversity Preser-
vation International and Multidisciplinary Digital Publishing Institute). Repro-
duced with permission.

good fit with a correlation coefficient of 0.98. The theoretical kon rates are 100

and 1, koff are 1 and 1 in this particular setting. However, this solution is by
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4.1 Application of PCCA+ to Kinetic Binding Data

far not unique. Considering the data, it is obvious that any upward sloping

straight line can fit. Hence, there are many combinations of single kon and koff

rates possible to achieve such a slope. Further, the sensitivity to find these

unknown rates were only in logarithmic terms, i.e. they could have the values

100, 101, 102, 103, 104. The absolute value of the overall kon rates did not match

the experimental value, only the behavior of the slope was considered. It was

shifted for comparison purposes in the figure. Obviously, a stricter goodness of

fit criterion is necessary. A second assessment of the absolute deviation of the

clustered kon rate and the ITC kon showed that the model shown above is also

the best fitting model. However, if the least squares deviation is considered, a

different model showed the minimum deviation, such as shown in Figure 4.2. In
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Figure 4.2: Comparison of the computed and experimental [64] kon rates for
bivalent Man(1,5)-5 with a least squares deviation measure for goodness of fit.

this particular scenario, kon1 = 1, kon2 = 100 and koff2
= 10, koff1

= 1.

The correlation coefficient is still very high with 0.94. The interpretation of these

values tell a slightly different story than the model above. Here, the first binding

is very reluctant and the second one is more likely. Both unbinding processes are

very unlikely.

The MSE of the bivalent ligand was used as an example to compare the result

to the correlation coefficient fitting. We focus on the shape of the overall kon

curve rather on absolute or squared differences of the kon values and therefore

the following examples will be fitted by correlation coefficient only.
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4.1.2 Trivalent Ligand Example

The valency in the next example is limited again by the ligand’s number of bind-

ing sites. Even though the receptor Con A has four binding sites, there cannot be

more than three bindings assuming a one-to-one stoichiometry. This particular
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Figure 4.3: Comparison of the computed and experimental [64] kon rates for bi-
valent Man(1,3,5)-5. Figure taken from Erlekam et al. [63]. Copyright MDPI
(Molecular Diversity Preservation International and Multidisciplinary Digital
Publishing Institute). Reproduced with permission.

model for the trivalent example reached a correlation coefficient of 0.87. The last

data point is clearly an outlier as it does not seem to fit to the downward slope

of the bell shaped curve. Therefore, the last titration has been omitted for fitting

the overall kon rate. In Figure 4.3 it has been plotted for the sake of completeness,

though. The fitted kon rates are 1000, 1000 and 1000, koff are 1, 1 and 1.

Again, the proposed solution is not unique. For the inverse problem, 65 = 15625

different combinations of kon and koff rates were tested. Six because there were

three different kon rates and three different koff rates. Each rate could take five dif-

ferent values: 100, 101, 102, 103, 104. Out of these 15625, 25 combinations showed

the maximum correlation coefficient of 0.87. An interesting finding is the fact

that of these 25 optima is that all the three kon rates are 1000 and koff1
= 1.

Both koff2
and koff3

range between 1 and 10000, thus there are 25 combinations

and their influence seems irrelevant.
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4.2 Parameter Interdependency

4.1.3 Pentavalent Ligand Example

The third example shows binding of a pentavalent mannose ligand to tetrameric

Con A. Since nvalency = min(nligands, nreceptors) = 4, there can be at most four

bindings at a time. Even though the ligand is pentavalent, the binding is at most

tetravalent. The kon rates are 1, 1, 10000, and 10 an the koff rates are 10000,
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Figure 4.4: Comparison of the computed and experimental [64] kon rates for
pentavalent Man(1,3,5,7,9)S-9, see SI for additional information on experimen-
tal data. Figure taken from Erlekam et al. [63]. Copyright MDPI (Molecular
Diversity Preservation International and Multidisciplinary Digital Publishing In-
stitute). Reproduced with permission.

1, 1 and 1. The correlation coefficient for this example is 0.98. The scenario

representing the best fit for this model shows that the first and second binding

seem to be highly unlikely with kon1 = kon2 = 1, but once they took place, the

third binding happens almost surely with kon3 = 10000. The last binding is again

unlikely with kon4 = 10. koff1
= 10000 and koff2

= koff3
= koff4

= 1. That means

that overall unbinding is very low if there is more than one binding. If there is

only one bond between the mannose and Con A, dissociation is very likely.

4.2 Parameter Interdependency

In this section it will be assessed which input values determine the clustered

rate matrix most and how this affects the overall binding rate. First, it will
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be analysed which shapes for the overall kon curve are possible at all. Then an

alternative enhancement factor is introduced to gain insights of the valency and

the enhancement relationship. Finally, the general relationships between input

and output rates are studied by a sensitivity analysis.

4.2.1 Shapes of kon Curves

In Section 4.1 the focus was on finding the optimal input parameters for the

kon and koff rates to achieve the best fitting overall kon curve. In the following,

the same mannose-Con A binding examples are considered. In contrast to the

previous subsections, in this subsection not only the best but all the possible

curve shapes are assessed. For a better visibility, their slopes are only sketched

schematically. For comparison reasons, all curves are scaled such that overall

kon ∈ [0, 1].
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Figure 4.5: Possible overall kon curves shapes for Man15-5 for kon and koff ranging
between 1,10,100,1000 and 10000. The colors of the curves are only a visual
distinction and have no mathematical meaning.

In the bivalent case, there is basically only an upward trend possible as depicted

in Figure 4.5. The main difference is at which titration step the kink in the curve

comes up. It is also possible that the upward slope is so small that the curve

appears to be a constant. Thus, if the experimental kon curve is upward sloping,

it is very easy to fit. Possibly, the higher the valency, the more diverse the shapes
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Figure 4.6: Possible overall kon curves shapes for Man135-5 for kon and koff ranging
between 1,10,100,1000 and 10000. The colors of the curves are only a visual
distinction and have no mathematical meaning.

can be. This assumption is true at least for the trivalent ligand example in Figure

4.6.

As expected, the variety of possible kon curve shapes is much wider in the trivalent

example than in the bivalent one. Most curves show an upward trend, too. Within

the upward sloping curves, there is also a variety. The curves can be convex,

concave or have a sigmoidal shape. However, a constant is also possible as well

as abruptly changing zigzag curves. The latter may indicate a sudden change in

the binding process, i.e. that one process gets significantly faster than the other

one.

As depicted in Figure 4.7, in the pentavalent example the range of possible shapes

is even more diverse than in the previous two examples. It can be constant, a

smooth upward slope or bumpy up and down curves. A sigmoidal shape is also

achievable. This supports the expectation that the more input variables are

involved, the more complex the process and the more diverse the results can be.

Again, abrupt changes such as inflection points indicate that one micro process

takes control over the previous processes. Since these binding and unbinding

events happen on a micro scale, they may have an effect on the macro scale.
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Figure 4.7: Possible overall kon curves shapes for Man13579-9S for kon and koff
ranging between 1,10,100,1000 and 10000. The colors of the curves are only a
visual distinction and have no mathematical meaning.

4.2.2 General Relationship of the Single and Overall Bind-

ing Rates

This section analyses how changing the microscopic kon and koff rates influence

the macroscopic kon rate. We start the assessment with the bivalent rate matrix.

Recall the shape of the bivalent rate matrix (3.7) from section 3.2.2. It is a

sparse matrix with non-zero sub-matrices across the diagonal. The diagonal is

the negative column sum. The following subsections discuss the impact of altering

the input parameters of Q and how the macroscopic binding and unbinding rates

of the clustered rate matrix evolve. For simplicity, the ligand concentration is

assumed to be constant and equal to 1. Thus, Q depends only on the microscopic

kon and koff rates as input parameters.
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Q =



d1 koff1
koff1

koff1
koff1

0 0

kon1 d2 0 0 0 koff2
0

kon1 0 d2 0 0 0 koff2

kon1 0 0 d2 0 koff2
0

kon1 0 0 0 d2 0 koff2

0 kon2 0 kon2 0 d3 0

0 0 kon2 0 kon2 0 d3


(4.1)

with d1 = −4kon1 , d2 = −koff1
− kon2 and d3 = −2koff2

.

In this case study, kon and koff could take values of 10i, i ∈ {0, 1, 2, 3, 4}. Thus,

there are 54 = 625 different combinations. The overall kon rate ranges from 1.41

to 1.9999e+ 04 as shown in Figure 4.8.
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Figure 4.8: Evolution of the overall kon rate depending on the input combination
of kon1 , kon2 , koff1

, koff1
. The upper figure shows the overall kon rate in the order of

the input combination that was tested. In the lower figure the overall kon rates
are sorted from min to max in order to get insights into which input combinations
cause it to decrease or increase, respectively.

We are interested in the evolution of the overall binding rates, therefore they are
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also depicted sorted. The interesting parts are the extremes: arg min kon and

arg max kon. What input values minimize and maximize kon? The 35 smallest

kon values are smaller than 2. Their input variables are listed in Table 4.2.

Table 4.2: Bivalent parameter study. These 35 different input combinations cause
the overall binding rate to be minimal.

kon1 kon2 koff1
koff2

overall kon

1 1 1 1 1.4142

1 1000 10000 1 1.8182

1 100 1000 1 1.8185

1 10 100 1 1.8211

1 1 10 1 1.8443

1 10 10 1 1.9002

10 1 1 1 1.9488

10 1 10 1 1.9585

1 100 10000 1 1.9802

1 10 1000 1 1.9802

10 100 10000 1 1.9803

1 1 100 1 1.9806

10 10 1000 1 1.9809

10 1 100 1 1.9856

1 100 100 1 1.9900

100 1 1 1 1.9950

100 1 10 1 1.9951

100 1 100 1 1.9960

1 10 10000 1 1.9980

1 1 1000 1 1.9980

10 10 10000 1 1.9980

10 1 1000 1 1.9981

100 10 10000 1 1.9981

100 1 1000 1 1.9986

Continued on next page
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Table 4.2 – continued from previous page

kon1 kon2 koff1
koff2

overall kon

1 1000 1000 1 1.9990

1000 1 1 1 1.9995

1000 1 10 1 1.9995

1000 1 100 1 1.9995

1000 1 1000 1 1.9996

1 1 10000 1 1.9998

10 1 10000 1 1.9998

100 1 10000 1 1.9998

1000 1 10000 1 1.9999

1 10000 10000 1 1.9999

10000 1 1 1 1.9999

What is striking is that for all these values, koff2
= 1. It seems like koff2

is a

dominant input variable. The maximum output values for the overall binding

rate is 1.99e+4, which occurs 17 times. Their input factors are shown in Table

4.3 .

Table 4.3: Bivalent parameter study. These 17 different input combinations cause
the overall binding rate to be maximal.

kon1 kon2 koff1
koff2

overall kon

10000 100 1 10000 1.9900e10+4

10000 100 10 10000 1.9900e10+4

10000 100 100 10000 1.9900e10+4

10000 100 1000 10000 1.9905e10+4

10000 100 10000 10000 1.9933e10+4

10000 10000 10 10000 1.9980e10+4

10000 10 1 10000 1.9990e10+4

10000 10 10 10000 1.9990e10+4

Continued on next page
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Table 4.3 – continued from previous page

kon1 kon2 koff1
koff2

overall kon

10000 10 100 10000 1.9990e10+4

10000 10 1000 10000 1.9990e10+4

10000 10 10000 10000 1.9993e10+4

10000 10000 1 10000 1.9998e10+4

10000 1 1 10000 1.9999e10+4

10000 1 10 10000 1.9999e10+4

10000 1 100 10000 1.9999e10+4

10000 1 1000 10000 1.9999e10+4

10000 1 10000 10000 1.9999e10+4

In the table above it is remarkable, that in all cases where the overall kon rate

takes the maximum, both kon1 and koff2
are maximal, i.e. 10000. Both koff1

and

kon2 vary, koff1
even more than kon2 .

In order to assess the individual contribution of each input factor, a sensitivity

study is presented. Again, the ligand concentration remains fixed at 1 for all time

steps. All input variables are also held constant while only one is being changed.

First, the influence of kon1 is depicted in Figure 4.9. When varying only kon1 , the

overall kon curve has a sigmoidal shape with its inflection point around log(kon1) =

0. The overall koff curve first rises linearly with a peak around log(kon1) = 0 and

decreasing somewhat afterwards before reaching an equilibrium.

Secondly, we assess the influence of kon2 in Figure 4.10. Varying kon2 distorts the

sigmoidal shape of the overall kon rate with a downward kink around log(kon2) = 0.

The overall koff rate peaks exactly there. Both curves reach their equilibria when

log(kon2) > 5.

Now the unbinding coefficients are focused on. Thirdly, the influence of koff1
is

shown in Figure 4.11. The variation of koff1
leads to an overall kon rate with a

minimum at log(koff) = 0. The overall koff rate is maximal at this point and

plummets afterwards. Like in the sensitivity study of kon2 , both overall koff curve

and the Kd curve reach their equilibria when log(koff1
) > 5.
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Figure 4.9: Possible output when all input parameters are held constant except
kon1 .
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Figure 4.10: Possible output when all input parameters are held constant except
kon2 .
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Figure 4.11: Possible output when all input parameters are held constant except
koff1

.

Lastly, Figure 4.12 shows the impact of varying koff2
. The overall kon curves of

Figures 4.9 and 4.12 have their sigmoidal shape in common. Both Figures 4.10

and 4.11 show a global minimum at the input value log(1) = 0 and both curves

converge to their maxima at kon = 4 or 2, respectively. Concerning the overall

koff rates, in all four cases the curves have a peak around the input value of

log(1) = 0. After the peak the overall kon rate converges to 1 for varying kon1

and koff2
, and to 0 for varying kon2 and koff1

, respectively.

Examining Tables 4.2 and 4.3 one would expect that varying kon1 and koff2
would

yield the most impact. That means that the overall kon and koff rates would

show the biggest spectra. By varying kon2 and koff1
one might expect almost

stable overall binding and unbinding rates with a limited spectrum respectively.

However, this is obviously not the case. Determining the reason for these cause

and effect relationships is out of the scope of this thesis, but it has been shown

that the mechanisms of the moments when a certain micro process takes control

over the macro process is much more complex than previously anticipated.
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Figure 4.12: Possible output when all input parameters are held constant except
koff2

.

4.2.3 Alternative Enhancement Factor

Recall the enhancement factor β describing the binding enhancement comparing

monovalent bindings to multivalent ones from Section 2.3. In this subsection we

will discuss an alternative metric for that enhancement factor. Therefore we will

compare the binding coefficients of the first bond to the overall binding coeffi-

cients. A possible alternative enhancement factor could be β =
kon1
koff1

koff
kon

. The

second fraction uses the overall binding and unbinding rates determined from the

PCCA+ clustering. The alternative β was chosen this way such that the units

will cancel out. This would not be the case if for example
kon2
koff2

was used instead

of
kon1
koff1

. In the following, the alternative enhancement factor will be calculated

and plotted over time for each of the three titration experiments discussed above.

Table 4.4 assesses the alternative enhancement factor from the bivalent mannose-

Con A fitting from Section 4.1.1. The macroscopic fraction of kon/koff is 100 and

the microscopic fraction is calculated per titration step.
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ligand valency
kon1
koff1

koff
kon

β

bivalent 100
1



0.0407

0.0354

0.0328

0.0305

0.0284

0.0264

0.0246

0.0230

0.0215

0.0202

0.0190

0.0179

0.0169

0.0161





4.0663

3.5364

3.2841

3.0505

2.8355

2.6388

2.4596

2.2972

2.1503

2.0178

1.98986

1.7912

1.6946

1.6076


Table 4.4: Alternative enhancement factor β for bivalent mannose Man(1,5)-5
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Figure 4.13: Alternative enhancement factor β for bivalent mannose Man(1,5)-5

The β -column from Table 4.4 is plotted in Figure 4.13. β has an overall down-

ward trend with a kink at the second titration step. A possible explanation for

the kink is that first binding in the first two titrations happen very fast and then

some other molecular micro-process such as second arm binding or unbinding
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takes over control and happens faster.

The alternative enhancement factor for the trivalent example is also downward

sloping like depicted in Figure 4.14 and Table 4.5. Numerically, it is higher

because the first fraction of β is ten times higher, i.e. kon1/koff1
= 1000. Interest-

ingly, there is also a kink at the second injection, but the slope is much steeper

than in the bivalent example.

ligand valency
kon1
koff1

koff
kon

β

trivalent 1000
1



0.0629

0.0413

0.0325

0.0253

0.0193

0.0145

0.0105

0.0075

0.0051

0.0033

0.0021

0.0013

0.0000





62.9083

41.2577

32.5307

25.2900

19.3237

14.4566

10.5413

7.4523

5.0797

3.3235

2.0865

1.2676

0.000


Table 4.5: Alternative enhancement factor β for trivalent mannose Man(1,3,5)-5

Similar to Figure 4.4, the graph in Figure 4.15 is constant until including the

11th titration step. Afterwards the graph has a downward slope like the other

enhancement factors in Figures 4.13 and 4.14. Due to the big difference between

kon1 and koff1
, Kd is multiplied by almost 0 and therefore β is almost 0 too. The

enhancement effect is negligible in this example.
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Figure 4.14: Alternative enhancement factor β for trivalent mannose Man(1,3,5)-
5

ligand valency
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koff
kon

β

pentavalent 1
10000



0.0179

0.0179

0.0179

0.0179

0.0179

0.0179

0.0179

0.0179

0.0179

0.0179

0.0179

0.0147

0.0090

0.0055





1e− 4 ∗

0.0179

0.0179

0.0179

0.0179

0.0179

0.0179

0.0179

0.0179

0.0179

0.0179

0.0179

0.0147

0.0090

0.0055


Table 4.6: Alternative enhancement factor β for pentavalent mannose
Man(1,3,5,7,9)-9

In Figure 4.4, the overall kon curves show also an upward trend on the first glance.

However, because there are more possible input parameter permutations, there

are also more curves clouding that not all curves are strictly upward sloping.
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Figure 4.15: Alternative enhancement factor β for pentavalent mannose
Man(1,3,5,7,9)-9

Many of them show kinks, or only local maxima. Again, the most likely reason is

that some microscopic process such as a single binding step is much faster than

another one, such as a sudden unbinding step. The first binding step seems to be

slow and the complex’ stability stems from the subsequent bindings.

4.3 Limitations of the Model

As already lined out in the numerical bivalent example, there are many ways to

find suitable input rates to gain the same slope behavior of the kon curve. As

the the curve is a simple upward slope without any kinks or inflections, it is easy

to find some combination using four input variables, namely kon1 , kon2 , koff1
and

koff2
. Thus, there exists a solution, but it is not unique. The number of macro-

scopic binding and unbinding rates is linearly dependent on the valency. Thus,

the higher valency, the more complicated the shape of the overall binding curve

and the more justifiable our solution.

In terms of validation, the choice of measuring the goodness of fit is ambiguous.

It determines which models of the assessed sample mimic the overall kon rate best.

However, different methods to measure the fit do not necessarily come up with

the same output. Compare for instance the correlation coefficient used above

with the mean squared error. A model with exactly the same slope but with
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4. KINITC+

shifted values in y-direction would yield a much lower fit than a graph that is

numerically close to the original curve, but not having the same slope. One way

of tackling this problem is to apply more than one goodness of fit measure, but

then the question of the order of measure applications remains.
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Chapter 5

Wiseman Fitting

Chapters 2 and 3 explained how to obtain thermodynamic and kinetic information

from binding processes using ITC and kinITC. The following chapter is investi-

gating the derivation of kinetic parameters from a different angle: the Wiseman

fitting. Like ITC, the Wiseman fitting extracts binding information such as stoi-

chiometry n, the heat released upon binding, as well as the overall koff rate. Also

similar to ITC, the classical Wiseman fitting does not take intermediate binding

steps into account, but regards even a multivalent binding process as one direct

binding. This chapter will apply the PCCA+ algorithm to the classical Wiseman

fitting to account for intermediate binding steps and kinetic parameters like ob-

tained from kinITC+. The Wiseman fitting will be applied to two multivalent

binding experiments taken from [64] and compared to an amended version of

kinITC+ presented in Chapter 3.

The theory, notation and experimental results presented in this chapter are

adapted from the paper of Erlekam et al. [67] if not specified differently. The

code used for the numerical examples belongs to the same paper and is referenced

therein.

5.1 The classical Wiseman Fitting

In 1989 Wiseman et al. were one of the pioneers to describe the method of how

to extract binding parameters of bivalent and multivalent bindings with titration
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5. WISEMAN FITTING

calorimeters [68]. Like in the previous chapter’s notation, we again model a ligand

- macromolecule binding by

[L] + [M ]
kon−→←−
koff

[LM ]

with [·] denoting the respective concentrations.

Given an experimental ITC output data set with T ∈ N injections, the total

concentrations of the ligand L and the macromolecule M are: Lt = {l1, . . . , lT}
and Mt = {m1, . . . ,mT}. Then the Wiseman function is defined as

W (Ka, n; l,m) :=
1

2

1 +
n− l

m
− 1

mKa√(
n+ l

m
+ 1

mKa

)2
− 4n l

m

 ,

for l ∈ Lt and m ∈Mt.

The peaks of the thermogram are integrated to determine the transition heat

qtrans

qtrans := {(qtrans)1, . . . , (qtrans)T}.

Practically, the integration can be achieved by approximating the upward slope

as a spline curve of a higher degree, i.e. 3 to 5. Finally, the Wiseman fitting is

performed, which is a search algorithm that chooses the numerical values for the

stoichiometry n, the enthalpy ∆H and the association constantKa that minimizes

the difference between qtrans and the Wiseman function with a Frobenius norm:

min
Ka,n,∆H

∥qtrans −W (Ka, n;Lt,Mt)∆H∥ (5.1)

In this formula the termW has no physical unit. As a consequence, qtrans has the

same unit as ∆H. Scaling qtrans just scales ∆H. To make the units fit, Ka needs

to be without a physical unit too, thus it has to be the inverse of the physical

unit of the macromolecule concentration m. Rescaling both m and l would only

change the physical unit of Ka.
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5.2 The Qc Fitting

5.2 The Qc Fitting

The Qc fitting is done the same way as described in Section 3.3. First, a transition

rate matrix is set up as in 3.8. Then the clustering is denoted as

QT
c = (χTΠχ)−1χTΠQTχ,

Again in the end the ODE

Qc =

(
−kon · cL koff

kon · cL −koff

)

must be solved. For this clustered rate matrix the ligand concentration [L] is

needed per titration step. It is computed iteratively as

[L]i =

l1, if i=1,

[L]i−1 + li − (Lb)i−1, otherwise,

where

(Lb)i :=
nmi + li +

1
Ka
−
√(

nmi + li +
1
Ka

)2
− 4nmili

2

is the bound ligand concentration for injection i. A proof for the formula of

ligand concentration can be found in Zumbansen [40]. For an s-valent binding,

the binding parameter for each titration step is

Q(kon1 , koff1
, . . . , kons , koffs

; [L]) = K1, . . . , KT ,

with the set of free ligand concentrations [L] and, on the right side, the resulting

association constants Ki for each injection i ∈ {1, . . . , T}. Then the Qc fitting is

defined with the Frobenius norm as

min
kon1 ,...,kons
koff1 ,...,koffs

n,∆H

∥∥qtrans −W (Q(. . . ; [L]), n;Lt,Mt)∆H
∥∥. (5.2)
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We are thus looking for binding parameters such that the Euclidian distance be-

tween the qtrans vector and the Wiseman function is minimal.

The main difference between the kinITC+ method and this Qc fitting is that

kinITC+ only searches for optimal binding and unbinding parameters on a log-

arithmic scale of base 100 up to 104 and finds the best fitting overall kon curve,

whereas the Qc fitting in this chapter starts the search randomly and the kon

and koff rates can take up any float number. The kinITC+ code was written in

Matlab, the Qc code in Python 3.7.

5.3 Extracting experimental ITC Data

For the Wiseman fitting the total concentrations of ligands Lt and macromolecule

Mt have to be extracted from the ITC data set. Egawa et al.[19] describe in their

Appendix I how to obtain both:

li = cL

(
i∑

k=1

Vk

)
2V0 −

∑i
k=1 Vk

2(V0)2

mi = cM
2V0 −

∑i
k=1 Vk

2V0 +
∑i

k=1 Vk
,

with V0 the main cell volume containing the macromolecules, Vi, i ∈ {1, . . . , T}
the titrated volumes containing the ligands, cL the ligand concentration and cM

the macromolecule concentration. The total volume is VTot = V0 +
∑T

i=1 Vi.

5.4 Application of Qc and extended Wiseman

Fitting

In the following, a bivalent binding and a trivalent binding experiment are fit.

The data is again taken from Igde et al. [64]. The bivalent example is the binding

between bivalent Concanavalin A (Con A) with decavalent oligo(amidoamines)

with pendant mannose side chains. Assuming a one to one stoichiometry and since

min(10, 2) = 2, the binding can be maximum bivalent. The trivalent example is

78



5.4 Application of Qc and extended Wiseman Fitting

tetravalent Con A binding with trivalent mannose macromolecules. Here, the

same stoichiometry is assumend and due to min(4, 3) = 3 there can be a trivalent

binding at most. Again, only the first 14 titration steps are taken into account.

For any computation, we need to extract the concentration and volume data as

described in the previous section. For the bivalent case, the values are:

cM = 0.071 mmol/l V0 = 1.442 ml

cL = 0.7 mmol/l V1 = 0.001 ml, Vj = 0.01 ml

and for the trivalent case:

cM = 0.0918 mmol/l V0 = 1.442 ml

cL = 0.978 mmol/l V1 = 0.001 ml, Vj = 0.01ml

with j ∈ {2, . . . , 14}.

5.4.1 Bivalent Binding Example

Figure 5.1 shows the first 14 heat curve peaks of the bivalent ITC experiment.
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Figure 5.1: Deconvolved power trace of an ITC experiment with bivalent Con A
and decavalent mannose

The results of the Wiseman fitting for the bivalent example are:
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5. WISEMAN FITTING

Ka = 93.3295 n = 0.1998

∆H = -132.3069 kcal/mol error = 5.4838

The Qc fitting not only delivers n, ∆H and Ka, but also the intermediate kon

and koff rates:

kon1 = 136.4185 koff1
= 2.3716

kon2 = 33.4088 koff2
= 18.5925

n = 0.3208 ∆H = -73.4629 kcal/mol

error = 3.435

Heat

evolved

[kcal/mol]

Molar ratio Lt/Mt

Figure 5.2: Wiseman plot of the bivalent ITC experiment with Wiseman fitting
and Qc fitting

Both fittings give different results and have their strengths and weaknesses. The

heat of binding from the Wiseman fitting is 80% higher than ∆H from the Qc

fitting. The number of binding sites from the Wiseman fitting is only 62% of the

n from the Qc fitting. From the sigmoidal curve of the Wiseman graph one can

see that the inflection point is around 0.2. Therefore, the Wiseman fitting shows

an n value closer to the true number of binding sites.

The Wiseman fitting gives only an overall Ka rate, thus we cannot directly com-

pare the microscopic association constants the Qc fitting delivers. These are:

K1 = kon1/koff1
= 57.5217

K2 = kon2/koff2
= 1.7969.

These values suggest a stronger first binding and a much weaker second binding.

Note that due to the lack of physical units, these results are of qualitative nature.
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5.4 Application of Qc and extended Wiseman Fitting

We can only learn about the binding affinity of the first binding relative to the

subsequent ones.

The Qc fitting error is smaller than the Wiseman error. Thus, in terms of absolute

error, theQc produces a better fit to the actual ITC data than the Wiseman fitting

does.

5.4.2 Trivalent Binding Example

Figure 5.3 shows the first 14 heat curve peaks of the trivalent ITC experiment.

For the fitting procedures, the first titration has been omitted, because it is an

outlier.
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Figure 5.3: Deconvolved power trace of an ITC experiment with trivalent Con A
and trivalent mannose

The results of the Wiseman fitting for the trivalent example are:

Ka = 410.2917 n = 0.3586

∆H = -127.7664 kcal/mol error = 13.1455

The Qc fitting for the trivalent example produced the following results:
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kon1 = 559.1484 koff1
= 1844.5886

kon2 = 489.7665 koff2
= 81.966

kon3 = 1056.7834 koff3
= 1338.633

n = 0.3624 ∆H = -115.1639 kcal/mol

error = 11.1979
Figure 5.4 shows both the Wiseman and the Qc fitting.

Heat
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[kcal/mol]

Molar ratio Lt/Mt

Figure 5.4: Wiseman plot of the trivalent ITC experiment with Wiseman fitting
and Qc fitting

Again, the Qc has a lower error in absolute terms than the Wiseman fitting. Both

findings determine a number of binding sites of 3.6. The microscopic binding rates

as a result of the Qc fitting are:

K1 = kon1/koff1
= 0.3031

K2 = kon2/koff2
= 5.9752

K3 = kon3/koff3
= 0.7894.

Once again, we can only discuss the qualitative aspect of these figures. The first

binding is a very hesitant one. Once the first bond is made, the second one is

much more likely. A third one is again rather unlikely.

5.5 Limitations of the Model

There is only a limited choice for setting the parameters of both models. The

Wiseman fitting has become a established tool within the community, so the ob-
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tained association and dissociation constants can be trusted. The Qc fitting de-

pends on the chemical substances: their stoichiometry and the therefore possible

binding events and their concentrations. The parameter that could be discussed

critically is the dimensionality of the subspace that the rate matrix is projected

onto. So far it was assumed, that there is simply bound and unbound and threre-

fore the dimension of the rate matrix was reduced to 2 × 2 by clustering. One

may argue if this is the right method for all kinds of valencies.

There are two timescales at play: the macro perspective, i.e. the overall binding

event, runs on a slow timescale. The micro perspective, all the single binding

and unbinding processes of all binding sites happen on the fast timescale. How

can these timescales be separated? Swope et al. show in their article how the

fastest and the second fastest process can be separated using eigenvalues [69].

The smallest eigenvalues are associated with the fastest processes. The clustered

rate matrix Qc has the smallest eigenvalue λ1 = 0. The timescale separation can

be measured by the ratio of the first non null eigenvalues, thus λ3

λ2
. This ratio is

observed over all titration steps.

In the bivalent ITC experiment, the eigenvalue ratio is 1.1 in the first titration

step and grows to 2 in the last one. This can be interpreted that the second

fastest process is almost twice as fast as the slowest process in the end of the

experiment. These ratios are plausible and show a good timescale separation.

In contrast to that, for the trivalent ITC experiment the ratio of the first non

null eigenvalues is 1.4 for all titration steps. There is obviously no separation in

timescales. Possibly the projection of a trivalent model onto a two-dimensional

subspace is not suitable? Maybe, a two-step macroprocess models this trivalent

example better than the previously used one-stop process? To test this we can

observe the ratio of the third and fourth eigenvalues, i.e. λ4

λ3
instead of λ3

λ2
. λ4

λ3
= 1

for the first titration step and λ4

λ3
= 4.7 for the last one. This growth of eigenvalue

ratio fits better the expected behavior. However, one drawback is that clustering

on a three-dimensional Qc matrix would be impossible to compare to the results

obtained from the Wiseman fitting.

Another point to critically discuss is the robustness of the fittings. This can

be tested by disturbing the input parameters before clustering and compare the

disturbed to the undisturbed output. Every value of the heat curve (input) was
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disturbed by up to 1%. Disturbing the bivalent ITC example yields changes of

the output below 1%. Compared to the undisturbed model n is 0.33% higher,

∆H decreased by 0.31% and the best norm decreased by 0.18%. The binding and

unbinding parameters change even less: kon1 , kon2 , koff1
and koff2

differ by a factor

of 10−6 compared to the undisturbed model. Therefore, K1 and K2 do not differ

either. This method is very robust for a bivalent setting.

Disturbing the input of the trivalent experimental data yields a difference of the

binding and unbinding parameters of up to 743%. Their ratios K1, K2 and K3

thus differ substantially, too: up to 653%.

However, the stoichiometry and the heat of binding are similar. In the disturbed

model, the stoichiometry n is only 0.04% higher, and ∆H is 1.5% smaller. The

best norm decreased by 1.36% compared to the undisturbed model. The spectral

gap analysis already indicated the fact that a Qc fitting distinguishing only be-

tween bound and unbound does not deliver satisfying results. The error estimates

are another confirmation. It needs further study, but likely the Wiseman fitting

is not the suitable fitting for trivalent bindings.

This chapter has presented a different way of fitting data from ITC experiments in

order to gain kinetic information of intermediate binding steps using the Wiseman

fitting. Both ways of fitting may help to explain more complex heat curves where

a Wiseman curve would be too simplistic. This method has been applied to a

bivalent and a trivalent binding process. Both ITC data sets have been fit with the

Wiseman fitting method and compared to the Qc fitting method, which resembles

the previously shown kinITC+ method. It turns out, that the goodness of fit is

better for the Qc fitting method, at least at first sight for these two examples.

One must be careful to generalize these results, as it was only applied for two

examples with low valencies. Firstly, the evaluation of the so called better fitting

method was in terms of minimal absolute errors. One could argue, if this is the

best decision criteria. Secondly, the spectral gap analysis and the error estimates

have shown that the Qc fitting is suitable for the bivalent case but not necessarily

for the trivalent case.

Lastly, the algorithm for the Qc fitting in this chapter is using a random search to

find the optimal binding parameters. Therefore, the algorithm does not always

produce the exact same results. The algorithm could be enhanced further such
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that the best starting point is used. Further, again a one to one stoichiometry

is assumed, which does not always model true binding mechanisms happening

naturally.
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Chapter 6

Rebinding

In the previous two chapters, the overall binding rates were quantified. This

chapter is dedicated to the so-called rebinding effect where the probability of

a monovalent binding event of multivalent ligands is increased by the high local

concentration of ligands with no regard to potential multivalent receptor binding.

For advanced drug therapy the rebinding effect is particularly interesting. What

if a high level of target occupancy can be achieved with only short and thus

negligible interruptions? If a drug molecule stays around the pain receptor in

the human tissue after it unbound, there is a certain likelihood that molecule

and ligand will reattach. In this case, the drug will work again. Exploiting this

kind of rebinding may be useful in drug design. If it was known if and to what

extend rebinding does occur, the drug doses might be lowered, which in turn also

reduced undesirable side effects.

So far there was no distinction made between rebinding and new binding in this

work. There already exist a quantification of the lower bound of rebinding in the

system [11; 70]. In this chapter, such quantification will be applied numerically

for the ITC data presented in Chapter 4.
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6.1 Biochemical and Mathematical Perspectives

on Rebinding

In the literature, there exist different definitions of rebinding. From the pharma-

cologists’ point of view, rebinding takes place when the amount of free ligands

is not reduced by e.g. wash-out experiments. Another point of view, which the

author also shares, is that rebinding means a consecutive binding of freshly dis-

sociated ligands to the same receptors or those in the immediate vicinity [22].

Vauquelin states in [71] that ”drug-target interactions are represented as a re-

versible single-step bimolecular process and pharmacokinetic elimination rates

rely on drug concentrations in the plasma, not in the vicinity of the target itself.”

In the last years, the role of binding kinetics has been evolved as a relevant re-

search topic. So far it has been focused on the koff rate as the key property of

many marketed drugs because it is assumed that slow drug dissociation is equiv-

alent to low koff rates [71]. According to Zhang, there is a missing link between

the measured unbinding rates in vitro and the duration of the drug’s therapeutic

effect in vivo [71; 72].

The rebinding effect is commonly known as a ‘short-time memory’ effect [11; 22].

Mathematically, it occurs when projecting a system onto a smaller state-space.

By clustering of a molecular process onto the macro states ‘bound’ and ‘unbound’,

it loses information about the exact spatial arrangement of the receptors and

ligands in consideration as illustrated in Figure 6.1. In the macroscopic view, the

process is Markovian. That means that the system’s state does not depend on

its historical states. In the microscopic view, Markovianity is lost. That is due

to the fact that shortly after the dissociation of a receptor-ligand-complex, both

molecules are still spatially close and therefore much more likely to bind again,

i.e. their rebinding is more probable than binding of two molecules far apart.

Thus, the spatial situation of ligand and receptor is no longer negligible on the

molecular scale and the current state does depend on the past [11].

This effect is discussed especially in the context of multivalent molecules, where

the spatial connection of molecules can lead to increased rebinding events. This

can be imagined such that one dissociated ligand is ’held at its place’ by its joint
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Figure 6.1: Rebinding effect: a) Spatial constellation after dissociation. b) Spatial
arrangement at arbitrary time. These two configurations of a receptor and a
ligand represent the same macro state (’unbound’) and are not distinguishable in
the clustered model, even though different binding probabilities are expected by
the receptor-ligand-distance on the microscopic scale.

molecules. However, the strength of this effect depends on different parameters

such as the rigidity or flexibility of the spacer [23]. The quantity of such rebinding

events is investigated in [11] for reversible and in [70] for general processes, i.e.

including non-reversible processes. This quantity depends on the choice of the

projection, more clearly on the fuzziness of the membership functions that are

chosen.

6.2 Quantification of Rebinding

As described in Section 3.3 by applying the PCCA+ clustering algorithm, we

project a high dimensional rate matrix Q onto a two-dimensional space: ’bound’

and ’unbound’. As part of PCCA+, the two membership functions χ1, χ2 : Ω→
[0, 1] for the unbound and bound states are calculated. The columns of χ give

good insight into the rebinding behavior of the binding process. If there is a

relatively big overlap between two consecutive states, i.e. from unbound to singly

bound, then rebinding is very likely. As the process belongs to two states, it can

easily jump back and forth between both of them. If the clustering is crisp, i.e.

there is no or very little overlap, rebinding is unlikely. For example, there are

four different macro states in a trivalent binding process: unbound, one bond, two
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bonds and three bonds (fully bound). In this example we focus on the transition

from state 2 to state 3, i.e. singly bound to doubly bound. In Figure 6.2 the left

hand graph shows a crisp clustering, where the membership is either 0 or 1 for

the unbound and fully bound state (state number 1 and 4, respectively). The

transition is very clear cut with little overlap between state 2 and 3 and thus there

is no rebinding. The right hand graph of Figure 6.2 shows that the membership

functions have flatter slopes, they meander from one state to the other. Therefore

rebinding is very likely.
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(a) Crisp clustering.
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(b) High overlap of the clusters.

Figure 6.2: Rebinding effect from the membership function perspective: a high
overlap of membership functions yield much rebinding, while a crisp clustering
makes rebinding unlikely.

Where does this overlap come from? When clustering reversible Markov pro-

cesses, the system needs to commute between time propagation and projection

onto the invariant subspace.

Q(τ) τ→τk //

��

Q(τ)k

��
QC(τ) τ→τk

// (QC(τ))
k

If the diagram was commutative, the order of time propagation and Galerkin

projection would not play a role. Otherwise, there is the inequality

Π(Qk) ̸= (Qc)
k

leading to two kinds of possible errors:
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• Iteration error: ei = Π(Qk)− (Π(Q))k

• Rebinding error: There is a memory effect between two consecutive states,

thus the process is not Markovian.

The overlap can be determined by the scalar product ⟨χ, χ⟩. To quantify the

rebinding we need a weighted mass matrix S.

S = D−1⟨χ, χ⟩π (6.1)

with D = diag(πc). Note that the scalar product ⟨χ, χ⟩ is weighted by the

normalized distribution π before the clustering and the two diagonal elements of

D are the normalized distribution after the clustering.

If χ was unknown because neither PCCA+ nor GenPCCA was performed, S can

be obtained by the optimization process stated below [11]:

We know that A−1A = I and that the first column of A−1 is the first eigenvector

(constantly one) of our discretized rate matrix Q, whereas the other columns of

A−1 are arbitrary multiples of the other eigenvectors.

A−1 =


1
... α2X2 · · · αnXn

1

 , α2, ..., αn ∈ R.

By the following optimization, S is determined:

min
α1,...,αn∈R

|det(S)− 1|

such that α1 = 1,

A−1
ij = αiXij ∀i, j,

S = D−1ATA,

Sij ≥ 0 ∀i, j

(6.2)

S can be interpreted as a weighted row-stochastic overlap matrix. The charac-

teristics of S give insights into the degree of rebinding. Using S we can calculate

91
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the transition matrix T by

T = D−1⟨χ,Qχ⟩µ = D−1ATΛA

with A the matrix solving the optimization problem from equations 3.10 and 3.11.

Both S and T give us information about the rebinding. After clustering, one can

obtain T by T = SQc. The determinants of both S and T are linked by

det(T ) = det(S)det(A−1ΛA)

= det(S)det(Λ)

= det(S)Πn
i=1λi

(6.3)

T is the matrix denoting the movement from the micro state to the macro state.

Tij is the portion of micro states starting in the macro state χi that ends in the

macro state χj within time τ [11]. The state transition matrix T and the overlap

matrix S are responsible for the transition probability matrix P by

P = S−1T

which in turn is linked to the transition rate matrix by

P (τ) = exp(τQ).

The eigenfunctions of P and Q are equivalent. The eigenvalues ψ of Q and λ

of P differ according to the relationship exp(ψi) = λi. Thus the stable macro

states show the maximum eigenvalues of 1 and 0, respectively: maxλi = 1 and

maxψi = 0.

For actually quantifying the rebinding effect, we need to assess the magnitude of

overlap between the conformations.
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6.2 Quantification of Rebinding

Let F := −trace(Qc) be the stability indicator of the molecular system

F = −trace(QC)

= −τ−1log(exp(trace(τQC)))

= −τ−1log(det(exp(τQC)))

= −τ−1log(det(PCτ))

= τ−1(log(detS))− log(det(T ))

For a proof, see Weber and Fackeldey in [11]. F was chosen this way because

it equals the negative sum of the leading eigenvalues of Q. In their paper [11]

the authors show how to optimize S because the transformation matrix A is not

known. A determines the clustered rate matrix by

Qc = A−1ΣA = (⟨χ, χ⟩µ)−1⟨χ,Qχ⟩µ.

In our practical example, we already applied PCCA+ and hence we know A.

Therefore we do not need to optimize S, instead we can compute it directly by

S = χTDµχ.

Since S is a stochastic matrix, the determinant lies between 0 and 1. F is low, if

the determinant of S is low. The lower F , the more stable is the system. Stability

means in this context that the probability of a ligand-receptor system to stay in

a certain state is close to 1. If S is diagonal dominant, there is little rebinding

taking place. If trace(S) ≈ 0, there is much rebinding. If trace(S) = rank(S)

there is no rebinding at all. Another hint is given by the determinant. If det(S)

is close to 1, the system is not stable, if det(S) is close to 0, it is stable [70].

Since we projected onto a two-dimensional subspace, the overlap matrix S is a

stochastic 2× 2 matrix. In this case it is equivalent to assess the determinant or

the trace because trace(S) = 1 + det(S).

Proof. Assume a two-dimensional stochastic matrix S =

(
s11 s12

s21 s22

)
with
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6. REBINDING

s11 + s12 = 1 and s21 + s22 = 1.

traceS − detS = 1

s11 + s22 − (s11s22 − s12s21) = 1

s11 + s22 − s11s22 + (1− s11)(1− s22) = 1

s11 + s22 − s11s22 + 1− s22 + s11s22 − s11 = 1

1 = 1

In [11; 70], the authors state that a two-dimensional clustered rate matrix is per se

reversible and that therefore it is always possible to find a transformation matrix

A yielding detS = 1, and consequently yielding no rebinding. However, this

does not apply if we use the transformation matrix obtained from the previous

clustering.

6.3 Numerical Examples

The examples presented in the following section are the same as previously pre-

sented in Chapter 3. Originally the numerical data stem from Igde et al. [64].

After the clustering process, we are interested in the share of rebinding taking

place over time, i.e. in our case in each titration step.

6.3.1 Bivalent Ligand Example

The following example shows the minimum rebinding effect of interactions of bi-

valent mannose to tetrameric Con A. Within the clustering algorithm, the overlap

matrix S and its trace have been computed. Figure 6.3 shows that there is al-

most no rebinding because trace(S) = rank(S) ≈ 2. Only at later titration steps,

the trace of S decreases a little, thus there is some rebinding taking place. As

discussed in Subsection 4.1.1, the solution presented is not a unique solution of

the optimization problem. However, all the combinations of possible kon and koff

rates showed the same low degree of rebinding effect. The evolution of the trace

of S similar for every combination yielding the maximum correlation coefficient.
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Figure 6.3: Rebinding effect for bivalent Man(1,5)-5 and tetrameric Con A, ex-
perimental data taken from [64] .

6.3.2 Trivalent Ligand Example

The next example illustrates the rebinding for the trivalent mannose Man(1,3,5)-

5 binding with tetrameric Con A from Subsection 4.1.2. Even though, there were
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Figure 6.4: Rebinding effect for trivalent Man(1,3,5)-5 and tetrameric Con A,
experimental data taken from [64] .

25 out of 15625 input combinations yielding the same correlation coefficient in

the optimization process, all of these 25 possibilites yielded the same rebinding

information. The trace of S is almost constant until the 13th titration step and

then drops dramatically. That means, that the rebinding is very low for almost
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6. REBINDING

the whole process and increases in the end after the receptor concentration passes

a certain threshold.

Another reason for the kink in the rebinding curve might be the assumption

that the last titration step was an outlier. Therefore, the trace of S was cal-

culated again without it. The following figure shows the rebinding for only 12

titration steps. This rebinding behavior is interesting because it first goes up as
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Figure 6.5: Rebinding effect of the first 12 titrations teps of trivalent Man(1,3,5)-
5 and tetrameric Con A, experimental data taken from [64] .

trace(S) goes down, and at a certain threshold it goes down again. The turning

point is exactly where the experimental kon rate curve has its inflection point.

Of course, caution must be taken with the input parameters. The optimiza-

tion algorithm process with only 12 titration steps shows slightly different values

than for 14 steps, namely koni
= [1000, 1000, 10000] and koffi

= [1, 1, 1] instead

of koni
= [1000, 10000, 1000] and koffi

= [1, 1, 1] as before. Still the interesting

finding is that an initially low rebinding turns out to be high toward the end of

the experiment.

6.3.3 Pentavalent Ligand Example

Comparing the bivalent and the trivalent examples with each other, the trace of

the overlap matrix decreased throughout all titration steps, thus in the trivalent
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6.3 Numerical Examples

case, there is more rebinding taking place. These two examples might lead to the

proposition that rebinding activities increase the higher the valency number is.

Due to the fact that there are more ligand-receptor couples that can quickly bind

and unbind, contributing to a higher stability of the whole complex, one may

suppose. However, the trace of the overlap matrix of the binding of pentavalent

mannose to tetrameric Con A tells a different story as depicted in Figure 6.6.
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Figure 6.6: Rebinding effect for pentavalent Man(1,3,5,7,9)-9 and tetrameric Con
A, experimental data taken from [64] .

Throughout all the 14 titration steps, trace S = rank S = 2. Thus, it appears

that there is no rebinding at all. How is this possible? In their paper Fackeldey

and Weber show a limit of the rebinding quantification theory with the following

theorem:

Theorem 2. Let the matrix QC ∈ Rn×n be reversible. Furthermore, let QC

stem from a clustering with positive definite overlap matrix S. Then there exists

a feasible matrix A ∈ Rn×n in the optimization problem 3.1 with det(Sopt) =

det(D−1ATA) = 1.

For a proof, cf. the rebinding paper [11]. In this case, the result would mean

that we cannot tell if there is rebinding or not. The clustered rate matrix QC

is indeed reversible. The big difference is that in their paper, the matrix Q is

unknown. From the known matrix QC all possible χ’s were calculated and their

resulting determinant of the overlap matrix to find an upper boundary. In the
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6. REBINDING

present case, χ and S do not have to be optimized, but are obtained from the

actual Q matrix. Concluding, the example above does not show the limitation of

the rebinding quantification, but there really is no rebinding.

How can that happen if there are so many binding sites that may quickly associate

and dissociate with one another? Rebinding entails that the molecule is jumping

quickly many times between two processes before staying in one particular state.

Eventually, the molecule may move to yet another state. If there was no rebinding,

that would imply that there is no or hardly no overlap between two states. Instead

of a step function, χ shows a crisp clustering, as depicted in Figure 6.7. An
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Figure 6.7: Membership functions of the binding of pentavalent Man(1,3,5,7,9)-9
to tetrameric Con A.

interesting finding is the moment when the bound state becomes predominant

over the unbound state: it is exactly at the transition from state 17 to state

18. From the definition of the rate matrix in Subsection 3.2.2 and the number

and order of states, we know that there is one unbound state (state number

one) and sixteen different singly bound states (states two to 17), At state 18,

the bivalently bound states start. When the system is unbound or has only one

bond, the macro state is ’unbound’. If there are two or more bonds, the macro

state instantly jumps to ’bound’. Thus, once the first bond is made, there is no

jumping back and forth between macro-states, but the complex is bound.

98



6.4 Conclusion

6.4 Conclusion

The simple assumption, that the rebinding is higher, the higher the valency, is

not true. There may be cases with a positive correlation of valency number and

rebinding, but it is not a direct relationship. Other factors such as ligand type,

assay, length and rigidity of the spacers etc., influence binding, and thus the

rebinding.

There are two different time scales at work. High rebinding stems from fast

micro processes, i.e. fast binding and unbinding of ligand-receptor couples. The

binding and unbinding of the whole complex run on a slow timescale. In fact,

the complex stays a complex very long even though the single micro processes

change very fast. Thus, rebinding stabilizes the whole complex.
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Chapter 7

Conclusion

This thesis aimed to discuss a way to model receptor-ligand binding processes

from a stochastic perspective in contrast to the existing experimental studies.

It has been shown that it is possible to cluster a high-dimensional state space

into two states only: ’bound’ and ’unbound’. This is achieved by projecting the

n-dimensional state space of multivalent ligands and receptors on an invariant

subspace without losing any crucial information. The subspace is 2-dimensional

and represents the macroscopic binding states ’bound’ and ’unbound’. For the

clustering procedure, the following simplifying assumptions have been made to

the model:

• The scaffold and its spacers are somewhat rigid. That means that not every

ligand arm could bind to any arbitrary receptor binding site. No physical

crossing of binding arms was allowed.

• The stoichiometry was assumed one to one. The complex can be formed

with only one ligand entity and one receptor entity, respectively.

• The microscopic binding and unbinding rates have assumed to range on a

logarithmic scale of base 100 up to 104.

Respecting these assumptions, the rate matrix Q was set up. Importantly, this

matrix is depending on the ligand concentration. Then Q was used to perform

the clustering algorithm PCCA+ to gain the clustered rate matrix QC . In the

course of the clustering, the membership vectors χ have been computed. These

can be used to calculate the overlap matrix S. The trace of S gives insight into
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the thermodynamic contribution of the so-called rebinding. This relationship is

inverse, that means the higher the trace of S, which has a minimum of 0 and a

maximum of the matrix dimension, in this case 2, the lower the rebinding. As a

proof of concept, this method has been applied to one set of experimental ITC

data with bivalent, trivalent and pentavalent mannose ligands and dimeric and

tetrameric Con A. This application has brought the following key findings:

1. The kinITC algorithm only averages binding rates. kinITC+ shows the

change of the species in each time step.

2. The macroscopic binding rate is concentration dependent. kinITC+ con-

firmed, that overall kon varies over time with each titration step.

3. Bindings of ligands and receptors are macroscopically slow processes.

kinITC+ can zoom in and show processes of faster timescales.

4. The common assumption that rebinding increases with valency might be

wrong. At least this relationship is not always verifiable as the experimental

data presented in this thesis is one counterexample.

Especially the third finding may have a practical application in molecular dy-

namics research. So far it was difficult to determine at least a magnitude of the

distinct binding coefficient per time step. The conformational changes happen

too fast to be captured. By using the PCCA+ fitting we have a differential equa-

tion for the concentration dependent binding coefficients for each titration step.

With the pseudo inverse of the clustered rate matrix we can compute the binding

coefficients per time step. This gives us the concentration of the unbound and

bound species that are in reality too transient to be measurable by an apparatus

such as a spectrometer.

Discussion

Simplifying the model came with some cost. The described modeling and clus-

tering has some weaknesses that are discussed below.
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One of the biggest restrictions of the stochastic model in this thesis is the as-

sumption of a one to one stoichiometry. Experimental settings such as titrations

however have shown that this is not always the case. Especially for large valencies

such as decavalent ligands, aggregation does occur. That means that not a one to

one complex is formed but rather a chain of several ligand and receptor entities.

Another critical point is the generality of the method. This thesis is a proof of

concept for the idea of invariant subspace projection, but the method has only

been tested for one experimental study. It was difficult to gain ITC data with

kinetic information. In most studies, the classical ITC method is being used

without the information of free and bound ligands, receptors and complex per

titration step. This information is crucial for applying kinITC and to obtain the

macroscopic binding rate which is being compared to the clustered kon rates.

Within the fitting method of clustered kon there is the weakness of ambiguity

of goodness of fit measures. Depending on the method chosen, such as mean

squared differences or correlation coefficient, some other slightly different input

combination is favorable. As the bivariant parameter study showed, one cannot

tell that a specific microscopic binding or unbinding rate influences the macro-

scopic rates the most.

In comparison to the classical Wiseman fitting, the kinITC+ method delivers

better results in terms of absolute errors. However, it has to be emphasized that

the resulting binding and unbinding parameters are rather of qualitative than of

quantitative nature. This method is not suitable to predict specific kon and koff

values, instead it can be used for ratios and developments, i.e. if kon1 is higher or

lower than kon2 etc.

Special care must be taken for valencies above two. While for bivalent settings,

the kinITC+ method is very robust, the spectral gap analysis and the error esti-

mate have shown the shortcomings of kinITC+ for at least a trivalent setting. To

confirm and generalize this shortcoming, the method should be tested on different

kinITC data of higher valencies. If again, the fitting is not robust, it is worth to
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check for projections onto higher dimensional subspaces.

Furthermore, we learned from the data that the lower the valency number, the

simpler is the overall kon curve. The lack of high valency experimental data is a

shortcoming. As part of future studies, the model could be challenged for kinITC

data with decavalent ligands or even higher valencies.

As a last point it must be mentioned that the rebinding quantification has its

limits too. There was no minimization process to determine the optimal overlap

matrix S, instead S depends on the membership vectors from the clustering. In

some unfavorable cases S can become the identity matrix. Then its trace equals

its dimension m which usually stands for no rebinding. If trace(S) = m, one

has to be cautious and should not conclude directly the absence of rebinding. In

these cases, it is recommended to check how the overlap matrix looks like. If

trace(S) = m− ϵ, ϵ > 0, the lack of rebinding is more likely.

Outlook

The last section of the thesis is dedicated to potential future research.

As mentioned in the previous section, the model should be tested for high va-

lency binding settings. If the valency is big, say ten or higher, the rate matrix

will become exponentially big. Despite its sparse nature, the computation for the

eigenvalue (reversible binding process) or the Schur (irreversible binding process)

decomposition will become tedious. An alternative way to define it, would be

to group the distinct states together. That means, there would be one unbound

state, only one singly bound state etc., plus one fully bound state. The Q matrix

for n-valent bindings would be of dimension R(n+1)×(n+1). It has to be tested if

these compact rate matrices lead to different clustering results than the extensive

rate matrices used above.

In this thesis, a one to one stoichiometry has been assumed for each fitting.

This assumption may be an oversimplification. As a future research work, the

kinITC+ fitting could be adjusted for different stoichiometries. Finally, the best
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fitting stoichiometry could be determined for each binding setting.

Another aspect concerning higher valencies than two is that the fitting is not al-

ways robust. The error estimate study showed that the model is not stable for all

trivalent bindings. Instead of projecting onto a 2× 2 matrix for PCCA+, a 3× 3

matrix might be the right choice for trivalent settings. For higher valencies it has

to be tested whether a 3 × 3 clustered rate matrix is enough or if the clustered

matrix grows with the valency.

For kinITC+ one needs to set up the transition rate matrix. The present thesis

presented one way of defining it, yet there are alternative approaches of how

to obtain the transition rate matrix using square root approximation (SQRA).

The state space is discretized according to a Voronoi tesselation to yield a sparse

rate matrix. There is basic work already done by Donati et al. [73] and Lie

et al. [74]. With this sparse Q matrix, PCCA+ is performed as usual. In

this model, the states of the system are the physical locations of the bindings.

So far the states were modelled according to which ligand connects to which

receptor. In this potential new model, the receptors would be assumed fixed and

the space would be discretized in a grid with periodic boundary conditions. If the

boundary conditions are chosen to be Dirichlet or periodic, it is proven that the

SQRA operator converges the Fokker-Planck operator (which is the Smoluchovski

operator in conformation dynamics) [75].

The particles, i.e. receptor and ligand, move in a Lennard Jones potential V (r) =

− A
r6

+ B
r12

with A the particle attraction parameter, B the particle repulsion

parameter and r the distance between ligand and receptor centers. The Q matrix

would then be filled according to the SQRA. If receptor and ligand were in the

same grid, we would consider them bound. For simplicity, the diffusion would be

held constant in each grid. Then convection can be added to the model, which

is a rate with one predominant direction. One can think of it as a flow. The

potential could further be modeled with a spring constant such that V = k(r−r0)2

with k the spring constant, r the current distance between ligand and receptor

and r0 some fixed distance such as 1nm or 1Å. The flux can be estimated by

exp(−ϕQii(t)) = P (x0 ∈ i|xt ∈ i).
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Basically the state space would be discretized as adjacency matrix. For yet further

advanced studies, some barriers may be included in the state space. That means

that some entries in the adjacency become zero to model that a direct passage of

the particle is impossible.
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Zusammenfassung

Multivalente Bindungen lassen sich hervorragend für gezieltes Wirkstoffdesign

in der Medikamentenforschung nutzen. Theoretisch handelt es sich um seltene

stochastische Ereignisse. Es gibt bisher umfangreiche Literatur zu Multivalenz,

insbesondere zu bestimmten Aspekten der Versuchsanordnung. Jedoch gibt es

bis dato kaum theoretische Studien, die sich auf n-valente Bindungsprozesse ver-

allgemeinern lassen. Diese Dissertation zielt darauf ab, diese Lücke zu schließen,

indem der Bindungsprozess als kinetische Ratenmatrix modelliert wird auf die der

Clustering-Algorithmus PCCA+ angewandt werden kann. Während das Binden

und Lösen der einzelnen Ligand-Rezeptor-Paare auf einer schnellen Zeitskala

abläuft (Mikroperspektive), wirkt die Assoziation oder Dissoziation eines Kom-

plexes auf einer langsamen Zeitskala (Makroperspektive). Die aktuell populäre

kinITC-Methode erfasst den Wechsel zwischen Zeitskalen jedoch nicht. Daher

beschreibt die in dieser Arbeit vorgeschlagene Methode eine kinITC-Erweiterung,

die hier kinITC+ genannt wird.

Die Haupterkenntnisse dieser Doktorarbeit sind:

• Es ist möglich, kinetische Informationen aus thermodynamischen Daten zu

gewinnen.

• Die makroskopische Bindungsrate kon ist nicht konstant, sondern abhängig

von der Ligandenkonzentration.

• Es gibt mindestens ein Gegenbeispiel zu der Annahme, dass der thermody-

namische Beitrag des Rebinding mit der Valenz zunimmt.
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Appendix

The following appendix shows the MATLAB code used for the data preparation,
PCCA+ clustering and binding coefficient fitting.

main

1 % Input :
2 % concentra t ion from ITC experiments
3 % ca l c u l a t e d k on ra t e s from ITC experiments
4 % a f t e r reading the exper imenta l e x c e l f i l e s
5 % Output :
6 % cor r e l a t i o n c o e f f i c i e n t o f Qc/kon and k on ITC
7 % bes t f i t Qc/con
8 % maximum co r r e l a t i on c o e f f i c i e n t
9 % index o f the max co r r e l a t i on c o e f f i c i e n t input parameters

10

11 n va l en t = 3 ;
12 n t i t r a t i o n = 14 ;
13 n = n t i t r a t i o n ;
14 f i l enames = ’Man1355LLBB25 . x l sx ’
15 [ k on ITC , c0 ] = run t i t r a t i on mu l t exp w i th ou tpu t ( char ( f i l enames ) )
16 k on ITC = k on ITC ( 1 : n t i t r a t i o n ) ;
17 con = c0 ( 1 : n t i t r a t i o n , 2 )
18 x = 1 : n ; % p l o t range o f ITC measurements
19 %%se t input parameters
20 kon = [0 3 ] ;
21 ko f f = [ 0 3 ] ;
22 s t ep s = 4 ;
23 B = ones ( steps , n va l en t ) ;
24 B = logspace ( kon (1 ) , kon (2 ) , s t ep s ) ’ .∗ B;
25 B = [B B ] ;
26 kon ko f f combi = zeros ( s t ep s ˆ s ize (B, 2 ) , s ize (B, 2 ) ) ;
27 for k=1: s ize (B, 2 )
28 kon ko f f combi ( : , k )=repmat ( reshape ( repmat (B( : , k ) ’ , s t ep s ˆ( s ize (B, 2 )−k ) ,1 )

, [ ] , 1 ) , s t ep s ˆ(k−1) ,1 ) ;
29 end
30 % s e n s i t i v i t y ana l y s i s
31 co r r = zeros ( length ( kon ko f f combi ) , 1) ;
32 d i f f s q = zeros ( length ( kon ko f f combi ) , 1) ;
33 trS = zeros ( length ( kon kof f combi ) , n ) ;
34 dS = zeros ( length ( kon ko f f combi ) , n ) ;
35 Qc kon = zeros ( length ( kon ko f f combi ) , n ) ;
36 Qc kof f = Qc kon ;
37 Q=create Q matr ix ( n va lent , kon ko f f combi ( 1 , 1 : n va l en t ) , kon ko f f combi (1 ,end−

n va l en t +1:end) , con (1 ) ) ; % big Q
38 [ l ,m] = s ize ( kon ko f f combi ) ;
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39 mse = zeros ( l , 1 ) ;
40 for j = 1 : l %leng t h ( kon ko f f combi )
41 k on = kon kof f combi ( j , 1 : n va l en t )
42 k o f f = kon kof f combi ( j , end−n va l en t +1:end) % i f the k o f f are not equa l
43 [ c o r r ( j ) , d i f f s q ( j ) , Qc kon ( j , : ) , Qc ko f f ( j , : ) , t rS ( j , : ) , dS ( j , : ) ] = Qc f i t

(Q, k on ITC , con , n va lent , n , k on , k o f f , j ) ;
44 mse( j ) = immse ( k on ITC , Qc kon ( j , : ) ) ;
45 i f i s rea l ( co r r ( j ) ) == f a l s e
46 co r r ( j ) = 0 ;
47 end
48 end
49 kmax = sum( sort ( co r r )==max( co r r ) )
50 %% Plot r e s u l t s
51 [ max c , ind maxc ] = maxk( corr , kmax)
52 kmin = sum( sort ( d i f f s q )==min( d i f f s q ) )
53 [ min c , i nd m ind i f f s q ] = mink ( d i f f s q , kmin )
54 [ min c , i nd m ind i f f s q ] = min( d i f f s q )
55 [ mindi f fmaxcorr , ind ] = min( d i f f s q ( ind maxc ) )
56 ind = ind maxc ( ind )
57 input = kon kof f combi ( ind , : )
58 Qc = Qc kon ( ind , : )
59 kon = Qc
60 ko f f = Qc kof f ( ind , : )
61 Kd = ko f f . / kon
62 Qc kon ( ind ) /Qc kof f ( ind )
63 figure (1 )
64 set (gca , ’ FontSize ’ ,18)
65 subplot ( 1 , 2 , 1 )
66 plot (Qc , ’ LineWidth ’ , 2)
67 xlabel ( ’ t i t r a t i o n step ’ , ’ FontSize ’ ,18)
68 ylabel ( ’ k {on} [ 1 / (M s ) ] ’ , ’ FontSize ’ ,18)
69 t i t l e ( ’ computat ional ’ )
70 subplot ( 1 , 2 , 2 )
71 plot ( k on ITC , ’ LineWidth ’ , 2)
72 xlabel ( ’ t i t r a t i o n step ’ , ’ FontSize ’ ,18)
73 ylabel ( ’ k {on} [ 1 / (M s ) ] ’ , ’ FontSize ’ ,18)
74 t i t l e ( ’ exper imenta l ’ )
75 % p l o t both the exper imenta l kon and the computed one in one diagram
76 A = [Qc ’ , ones (n , 1 ) ]
77 s o l = A\k on ITC ’
78 Qc2 = s o l (2 ) + s o l (1 ) .∗ Qc
79 figure (2 )
80 set (gca , ’ FontSize ’ ,18)
81 plot (Qc2 , ’ LineWidth ’ , 2)
82 xlabel ( ’ t i t r a t i o n step ’ , ’ FontSize ’ ,18)
83 ylabel ( ’ k {on} [ 1 / (M s ) ] ’ , ’ FontSize ’ ,18)
84 hold on
85 plot ( k on ITC , ’ ∗ r ’ )
86 figure (3 )
87 subplot ( 1 , 3 , 1 )
88 plot ( kon )
89 t i t l e ( ’ kon ’ )
90 subplot ( 1 , 3 , 2 )
91 plot ( k o f f )
92 t i t l e ( ’ k o f f ’ )
93 subplot ( 1 , 3 , 3 )
94 plot (Kd)
95 t i t l e ( ’Kd ’ )
96

97 % ca l c u l a t e reb ind ing f o r the opt imal kon and k o f f
98 [ t raceS , detS ] = reb ind ing (n , n va lent , kon ko f f combi ( ind , 1 : n va l en t ) ,

kon ko f f combi ( ind , n va l en t +1: end) , con , Qc)
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99 % p l o t reb ind ing
100 t raceS = trS ( ind , : )
101 detS = dS( ind , : )
102 legend ( ’ computat ional kon ’ , ’ exper imenta l kon ’ )
103 figure (4 )
104 plot ( t raceS )
105 hold on
106 plot ( detS )
107 t i t l e ( ’ Rebinding ’ , ’ FontSize ’ ,18)
108 xlabel ( ’ t i t r a t i o n step ’ , ’ FontSize ’ ,18)
109 ylabel ( ’ t r a c e S ’ , ’ FontSize ’ ,18)
110 figure (5 )
111 plot ( trS ( ind maxc , : ) , ’ LineWidth ’ , 2)
112 %t i t l e ( ’ Rebinding ( t race o f over lap matrix S) ’ , ’ FontSize ’ , 18)
113 xlabel ( ’ t i t r a t i o n step ’ , ’ FontSize ’ ,18)
114 ylabel ( ’ t r a c e S ’ , ’ FontSize ’ ,18)
115 set (gca , ’ Fonts i ze ’ , 18) ;
116 axis ( [ 1 14 0 2 ] )

QC fit

1 function [ corr , d i f f s q , Qc kon , Qc kof f , traceS , detS ] = Qc f i t (Q, k on ITC ,
con , n l i gands , n , k on , k o f f , j )

2 Qc kon = zeros (n , 1 ) ;
3 t raceS = zeros (n , 1 ) ;
4 detS = zeros (n , 1 ) ;
5 F = detS ;
6 for i = 1 : n % loop fo r every ITC in j e c t i o n
7 Q = update Q matrix (Q, n l i gands , k on , k o f f , con ( i ) ) ; % exponen t i a l l y

many s t a t e s
8 %c l u s t e r a lgor i thm
9 [ u , ˜]=eig (Q’ ) ;

10 [ ˜ , ind ]=min( real (u ( 1 , : ) ) .∗ real (u(end , : ) ) ) ;
11 u=[ ones ( s ize (u , 1 ) ,1 ) ,u ( : , ind ) ∗sign (u (1 , ind ) ) ] ;
12 ch i=c l u s t e r b y i s a (u , 2) ;
13 [ pi , one ]= e i g s (Q, 1 , ’ l r ’ ) ;
14 pi=pi/sum(pi ) ;
15 Qc=transpose ( inv ( chi ’∗ diag (pi ) ∗ ch i ) ∗( chi ’∗ diag (pi ) ∗Q’∗ ch i ) ) ;
16 F( i )=−trace (Qc) ;
17 [ p i r eb , one ]= e i g s (Qc , 1 , ’ l r ’ ) ;
18 p i r eb=p i r eb /sum( p i r e b ) ;
19 [ v , ˜]=eig (Qc ’ ) ;
20 [ ˜ , ind ]=min( real ( v ( 1 , : ) ) .∗ real ( v (end , : ) ) ) ;
21 v=[ ones ( s ize (v , 1 ) , 1 ) , v ( : , ind ) ∗sign ( v (1 , ind ) ) ] ;
22 ch i2=c l u s t e r b y i s a (v , 2) ;
23 S = Stemp . / (sum(Stemp ’ ) ’ ) ; % make S s t o c h a s t i c
24 t raceS ( i ) = trace (S) ;
25 detS ( i ) = det (S) ;
26 % t e s t whether Qc f i t s the k on va lue s :
27 Qc kon ( i ) = Qc(2 , 1 ) / con ( i ) ;
28 Qc kof f ( i ) = Qc(1 , 2 ) ;
29 end
30 co r r = corrcoef (Qc kon , k on ITC ) ;
31 co r r = co r r (1 , 2 ) ;
32 d i f f k o n = Qc kon−k on ITC ’ ;
33 d i f f s q = sum(abs ( d i f f k o n ) ) ;
34 end
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Extract titration information from experimental

data sets
This function has been written by Susanna Röblitz.

1 function varargout = prob l em t i t r a t i on mu l t exp (x , flag , par )
2 %genera l k i n e t i c s : sT∗TT+sR∗RR = sC∗CC
3 %est imate s i n g l e Kd and mu l t i p l e kon , deltaH V0 from a l l 14 experiments
4 % Problem func t ion .
5 % VAR = PROBLEM(X,FLAG, par ) computes the problem func t ion f (X) ,
6 % Jacobian d f /dx (X) , s t a r t v e c t o r f o r the Gauss−Newton
7 % i t e r a t i o n and vec tor o f to be f i t t e d va lue s .
8 % FX = PROBLEM(X, ’ ’ , par ) re turns the r i g h t hand s i d e f (X) fo r a input column

vec tor X.
9 % JAC = PROBLEM(X, ’ jacobian ’ , par ) re turns the Jacobian d f /dx (X) fo r a input

column vec tor X.
10 switch f lag
11 case ’ ’ % Return y = f ( x ) .
12 [ varargout {1 : 2} ] = f r h s (x , par ) ;
13 case ’ j acob ian ’ % Return Jacobian matrix d f /dx .
14 [ varargout {1 : 2} ] = jacob ian (x , par ) ;
15 otherw i se
16 error ( [ ’Unknown f l a g ’ ’ ’ f lag ’ ’ ’ . ’ ] ) ;
17 end
18 end
19 function [ f , i f a i l ] = f r h s (x , par )
20 i f a i l =1;
21 %ex t r a c t user parameters
22 nt=par . numt ;
23 t=par . t imepo int s ;
24 c0=par . c o n c i n i ;
25 cend=par . conc eq ;
26 nexp=par . nexp ;
27 %uncomment rows i f Kd i s f i x e d
28 Kd=par .Kd;
29 %uncomment rows i f Kd i s es t imated
30 %Kd=x ( end ) ;
31 %uncomment i f s t o i c h i ome t r i c c o e f f i c i e n t s are a l s o es t imated
32 % ln sT=x ( end−2) ;
33 % ln sR=x (end−1) ;
34 % ln sC=x ( end ) ;
35 % sT=exp ( ln sT ) ;
36 % sR=exp ( ln sR ) ;
37 % sC=exp ( ln sC ) ;
38 %uncomment i f s t o i c h i ome t r i c c o e f f i c i e n t s are f i x e d
39 s=par . c o e f f ;
40 sT=s (1 ) ;
41 sR=s (2 ) ;
42 sC=s (3 ) ;
43 %f=zeros ( nt+3,nexp ) ;
44 f=zeros ( nt , nexp ) ;
45 for i exp=1:nexp
46 %ex t r a c t i n j e c t i o n s p e c i f i c user parameters
47 kon=x (2∗ ( iexp −1)+1)
48 deltaH V0=x (2∗ ( iexp −1)+2)
49 TT0=c0 ( iexp , 1 ) ;
50 RR0=c0 ( iexp , 2 ) ;
51 CC0=c0 ( iexp , 3 ) ;
52 ko f f=Kd∗kon ;
53 %so l v e the ODE system
54 opt ions = odeset ( ’ RelTol ’ ,1 e−4, ’ AbsTol ’ ,1 e−4) ;
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55 [ ˜ ,Y] = ode15s (@( t , y ) k i n e t i c f u n ( t , y , kon ,Kd, sT , sR , sC) , t , [ TT0;RR0;CC0] ,
opt i ons ) ;

56 %compute E
57 E=−deltaH V0 ∗( kon∗sC∗Y( : , 1 ) . ˆ ( sT) .∗Y( : , 2 ) . ˆ ( sR)−ko f f ∗sC∗Y( : , 3 ) . ˆ ( sC) ) ;
58 %add equ i l i b r i um concent ra t ions to l i s t o f o b s e r va t i ons
59 f ( : , i exp )=E;
60 end
61 f=reshape ( f , nt∗nexp , 1 ) ;
62 i f a i l = 0 ;
63 end
64 function dy = k i n e t i c f u n ( t , y , kon ,Kd, sT , sR , sC)
65 ko f f=Kd∗kon ;
66 dy = zeros ( 3 , 1 ) ; % a column vec tor
67 dy (1 ) = −kon∗sT∗y (1 ) ˆ( sT) ∗y (2) ˆ( sR)+ko f f ∗sT∗y (3) ˆ( sC) ;
68 dy (2 ) = −kon∗sR∗y (1 ) ˆ( sT) ∗y (2) ˆ( sR)+ko f f ∗sR∗y (3) ˆ( sC) ;
69 dy (3 ) = kon∗sC∗y (1 ) ˆ( sT) ∗y (2) ˆ( sR)−ko f f ∗sC∗y (3) ˆ( sC) ;
70 end
71 function [ f , i f a i l ] = jacob ian (x , par )
72 i f a i l =1;
73 disp ( ’ Jacobian not implemented ’ )
74 end

Assessment of kon shapes

1 Qc kon = zeros ( length ( kon ko f f combi ) , n ) ;
2 Qc kof f = Qc kon ;
3 Q=create Q matr ix ( n va lent , kon ko f f combi ( 1 , 1 : n va l en t ) , kon ko f f combi (1 ,end−

n va l en t +1:end) , con (1 ) ) ; % big Q
4 [ l ,m] = s ize ( kon ko f f combi ) ;
5 for j = 1 : length ( kon ko f f combi )
6 k on = kon kof f combi ( j , 1 : n va l en t ) ;
7 k o f f = kon kof f combi ( j , end−n va l en t +1:end) ; % i f the k o f f are not equa l
8 [ c o r r ( j ) , d i f f s q ( j ) , Qc kon ( j , : ) , Qc ko f f ( j , : ) , t rS ( j , : ) , dS ( j , : ) ] = Qc f i t

(Q, k on ITC , con , n va lent , n , k on , k o f f , j ) ;
9 end

10 un ique ove r a l l k on = unique ( Qc kon , ’ rows ’ )
11 figure (1 )
12 plot ( log ( un ique ove ra l l kon ’ ) )
13 xlabel ( ’ t i t r a t i o n step ’ )
14 ylabel ( ’ l og o v e r a l l kon ’ )
15 figure (2 )
16 plot ( un ique ove ra l l kon ’ )
17 xlabel ( ’ t i t r a t i o n step ’ )
18 ylabel ( ’ o v e r a l l kon ’ )

QC fit rebinding

1 function [ corr , Qc kon ] = Qc f i t r e b i nd i n g (Q, k on ITC , con , n l i gands , n ,
k on , k o f f )

2 Qc kon = zeros (n , 1 ) ;
3 for i = 1 : n % loop fo r every ITC in j e c t i o n
4 Q = create compact Q ( n l i gands , k on , k o f f , con ( i ) )
5 %c l u s t e r a lgor i thm
6 [ u , ˜]=eig (Q’ ) ; % schur
7 [ ˜ , ind ]=min( real (u ( 1 , : ) ) .∗ real (u(end , : ) ) ) ;
8 u=[ ones ( s ize (u , 1 ) ,1 ) ,u ( : , ind ) ∗sign (u (1 , ind ) ) ] ;
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9 ch i=c l u s t e r b y i s a (u , 2)
10 [ pi , one ]= e i g s (Q, 1 , ’ l r ’ ) ;
11 pi=pi/sum(pi ) ;
12 Qc=transpose ( inv ( chi ’∗ diag (pi ) ∗ ch i ) ∗( chi ’∗ diag (pi ) ∗Q’∗ ch i ) ) ;
13 % t e s t whether Qc f i t s the k on va lue s :
14 Qc kon ( i ) = Qc(2 , 1 ) / con ( i ) ;
15 end
16 co r r = corrcoef (Qc kon , k on ITC ) ;
17 co r r = co r r (1 , 2 ) ;
18 end

rebinding

1 function [ t raceS , detS ] = reb ind ing (n , n l i gands , kon , ko f f , con , Qc)
2 % t h i s func t i on c a l c u l a t e s an es t imate f o r the reb ind ing f o r the opt imal kon and

k o f f va lue s
3 t raceS = zeros (n , 1 ) ;
4 detS = zeros (n , 1 ) ;
5 for i =1:n
6 Q = create compact Q ( n l i gands , kon , ko f f , con ( i ) ) ;
7 [ u , X]=eig (Q’ ) ; % schur
8 [ ˜ , ind ]=min( real (u ( 1 , : ) ) .∗ real (u(end , : ) ) ) ;
9 u=[ ones ( s ize (u , 1 ) ,1 ) ,u ( : , ind ) ∗sign (u (1 , ind ) ) ] ;

10 ch i=c l u s t e r b y i s a (u , 2) ;
11 [ pi , one ]= e i g s (Qc , 1 , ’ l r ’ ) ;
12 pi=pi/sum(pi ) ;
13 X = diag ( 1 . / pi )
14 Stemp = chi ’∗X∗ ch i
15 S = Stemp . / (sum(Stemp ’ ) ’ ) ; % make S s t o c h a s t i c
16 t raceS ( i ) = trace (S)
17 detS ( i ) = det (S)
18 end
19 figure (3 )
20 plot ( t raceS ( : ) )
21 hold on
22 plot ( detS ( : ) )
23 legend ( ’ t r a c e S ’ , ’ det S ’ )
24 t i t l e ( ’ Rebinding ’ )
25 xlabel ( ’ t i t r a t i o n step ’ )
26 end

Sensitivity analysis

1 function [ u , v , chi , Q, compare , minQc kon , minQc c kon ] =
sens i t i v i t y ana ly s i s SYK ITC (Q, k on ITC , con , n l i gands , n )

2 % t h i s s e n s i t i v i t y ana l y s i s compares how we l l the SYK model f i t s the measured
data from ITC experiments the matrix compare g i v e s the output f o r a l l k inds
o f d i f f e r e n t inpu t s : kon1 , kon2 , k o f f 1 = ko f f 2 . concentra t ion

3 % then i t i s c a l c u l a t e d : Qc(2 ,1) , Qc(2 ,1) /con ( i ) , abs (Qc(2 ,1) / con ( i ) ) −
k on ITC ( i )

4 % compare = [ kon1 , kon2 , ko f f1 , con , Qc(2 ,1) , Qc(2 ,1) /con ( i ) , abs (Qc(2 ,1) / con
( i ) − k on ITC ( i ) ) ]

5 % minQc kon : a l l the rows from the compare matrix t ha t d i s p l a y the minimum
o v e r a l l k on

6 % minQc c kon : a l l the rows from the compare matrix t ha t d i s p l a y the minimum
d i f f e r n e c e between o v e r a l l k on and k on ITC
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7 [ s , ˜ ] = s ize (Q) ;
8 u1 = zeros ( s , n ) ;
9 u2 = zeros ( s , n ) ;

10 c h i a l l = zeros ( s , 2 , n ) ;
11 Qc a l l = zeros (2 , 2 , n ) ;
12 % se t a l l input parameters
13 s t ep s = 5 ;
14 n = 14 ;
15 k on s t a r t = 0 . 0 1 ;
16 k on end = 4 ;
17 k o f f s t a r t = 0 . 0 1 ;
18 k o f f e nd = 4 ;
19 k on = [ k on s ta r t , k on s t a r t +0 .01 ] ;
20 k o f f = [ k o f f s t a r t , k o f f s t a r t ] ;
21 eps = 0 . 0 1 ;
22 h= n∗ s t ep s ∗ s t ep s ∗(1+ s t ep s ) /2 ;
23 kon = zeros ( n l i gands , s t ep s ) ;
24 for j =1: n l i g and s
25 kon ( j , : ) = linspace ( k on s t a r t + ( j −1)∗eps , k on end , s t ep s ) ;
26 end
27 kon1 = linspace ( k on s ta r t , k on end , s t ep s ) ;
28 kon2 = linspace ( k on s t a r t+ eps , k on end , s t ep s ) ;
29 kon3 = linspace ( k on s t a r t +2∗eps , k on end , s t ep s ) ;
30 kon4 = linspace ( k on s t a r t+ 3∗eps , k on end , s t ep s ) ;
31 ko f f 1 = linspace ( k o f f s t a r t , k o f f end , s t ep s ) ;
32 kon mat = [ kon1 ; kon2 ; kon3 ; kon4 ; ko f f 1 ] ;
33

34 % elements = {kon1 , kon2 , kon3 , k o f f 1 } ; %c e l l array with N vec t o r s to combine
35 e lements {1 , 1} = kon mat (end , : ) ;
36 for j =1: n l i g and s
37 e lements {1 , j+1} = kon mat ( j , : ) ;
38 end
39 combinations = c e l l (1 , numel ( e lements ) ) ; %se t up the varargout r e s u l t
40 [ combinat ions { : } ] = ndgrid ( e lements { :} ) ;
41 combinat ions = c e l l f u n (@(x ) x ( : ) , combinations , ’ uniformoutput ’ , f a l s e ) ; %there

may be a b e t t e r way to do t h i s
42 r e s u l t = [ combinations { : } ] ;
43 h = length ( r e s u l t ) ∗ n ;
44 compare = zeros (h,5+ n l i g and s ) ;
45 h=0;
46 for i = 1 : n % loop fo r every ITC in j e c t i o n
47 for j = 1 : length ( r e s u l t )
48 h=h+1;
49 k on = r e s u l t ( j , 1 : end−1) ;
50 k o f f = r e s u l t ( j , end) ∗ ones ( length ( k on ) ) ;
51 Q = update Q matrix (Q, n l i gands , k on , k o f f , con ( i ) ) ;
52 %c l u s t e r a lgor i thm
53 [ u , v]=eig (Q’ ) ;
54 [ ˜ , ind ]=min( real (u ( 1 , : ) ) .∗ real (u(end , : ) ) ) ;
55 u=[ ones ( s ize (u , 1 ) , 1 ) ,u ( : , ind ) ∗sign (u (1 , ind ) ) ] ;
56 ch i=c l u s t e r b y i s a (u , 2) ;
57 [ pi , one ]= e i g s (Q, 1 , ’ l r ’ ) ;
58 pi=pi/sum(pi ) ;
59 Qc=transpose ( inv ( chi ’∗ diag (pi ) ∗ ch i ) ∗( chi ’∗ diag (pi ) ∗Q’∗ ch i ) ) ;
60 % t e s t whether Qc f i t s the k on va lue s :
61 p = abs (Qc(2 , 1 ) / con ( i ) − k on ITC ( i ) ) ;
62 compare (h , : ) = [ con ( i ) , Qc(2 , 1 ) , Qc(2 , 1 ) /con ( i ) , p , r e s u l t ( j , : ) ] ;
63 end
64 end
65 [M, I ] = min(abs ( compare ( : , 6 ) ) ) ;
66 minQc kon = compare ( I , : ) ;
67 [M, I ] = min(abs ( compare ( : , 7 ) ) ) ;
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68 minQc c kon = compare ( I , : ) ;
69 end

Cluster by isa
This function was written by Marcus Weber.

1 %% Die Funktion c l u s t e r b y i s a k l a s s i f i z i e r t dynamische Daten anhand von
NoOfClus Eigenvektoren (Evs ) der Uebergangsmatrix . NoOfClus ( d e f a u l t =2) l e g t
dabe i f e s t , w i e v i e l e C lus t e r es geben s o l l . Die verwendete Methode : Inner

Simplex Algorithmus .
2 %% Res t r i k t i on : Evs muss mindestens NoOfClus Eigenvektoren be inha l t en .
3 %% Be i s p i e l e :
4 %% c l u s t e r b y i s a (Evs , NoOfClus )
5 %% −−> Ausgabe : Gibt einen Vektor cF aus , der zu j ede r Ze i l e der

Uebergangsmatrix e ine Clusterzuordnung vornimmt .
6 %% [ Chi , ind ] = c l u s t e r b y i s a (Evs , NoOfClus )
7 %% −−> Ausgabe : Gibt einen Vektor cF aus , der zu j ede r Ze i l e der

Uebergangsmatrix e ine Clusterzuordnung vornimmt .
8 %% [ cF , indic , Chi , RotMat ] = c l u s t e r b y i s a (Evs , NoOfClus )
9 %% −−> Ausgabe : cF i s t wieder der Zuordnungsvektor . i nd i c l i e f e r t den Ind i ka to r

fuer d ie E indeu t i g k e i t der Zuordnung . Dieser Zahlenwert s o l l t e ungefaehr
Nul l s e in . Chi g i b t fuer jeden Clus t e r einen Vektor von
Zugehoer i gke i t s g raden im Sinne der Fuzzy−Theorie an . RotMat i s t d i e j e n i g e
l i n e a r e Transformation , d ie Evs in Chi ueber fuehr t , s i e s o l l t e e ine
woh l k ond i t i on i e r t e Matrix se in . ind g i b t d i e Eckenindizes aus

10 function [ Chi , ind ] = c l u s t e r b y i s a (Evs , NoOfClus )
11 %func t ion [ Chi , RotMat ] = c l u s t e r b y i s a (Evs , NoOfClus )
12 % de fau l t−Zuweisung 2 Clus t e r
13 i f nargin < 2
14 NoOfClus =2;
15 end
16 % Sonde r f a e l l e abfangen
17 i f NoOfClus <2
18 Chi=ones ( s ize (Evs , 1 ) , 1 ) ;
19 i n d i c =0;
20 RotMat=1/Evs (1 , 1 ) ;
21 cF=ones ( s ize (Evs , 1 ) , 1 ) ;
22 e l s e i f (NoOfClus >= s ize (Evs , 1 ) & s ize (Evs , 2 )==s ize (Evs , 1 ) )
23 Chi=eye ( s ize (Evs , 1 ) ) ;
24 i n d i c =0;
25 RotMat=inv (Evs ) ;
26 cF=[1: s ize (Evs , 1 ) ] ;
27 else
28 % Genuegend Eigenvektoren angegeben?
29 NoOfClus=round(NoOfClus ) ;
30 i f NoOfClus> s ize (Evs , 2 )
31 NoOfClus=s ize (Evs , 2 ) ;
32 end
33 % Eig en t l i c h e r ISA−Algorithmus
34 C=Evs ( : , 1 : NoOfClus ) ;
35 OrthoSys=C;
36 maxdist =0.0 ;
37 % Ersten beiden Repraesentanten mit maximalen Abstand
38 for i =1: s ize (Evs , 1 )
39 i f norm(C( i , : ) ) > maxdist
40 maxdist = norm(C( i , : ) ) ;
41 ind (1 )=i ;
42 end
43 end
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44 for i =1: s ize (Evs , 1 )
45 OrthoSys ( i , : )=OrthoSys ( i , : )−C( ind (1) , : ) ;
46 end ;
47 % Weitere Repraesentanten ueber Gram−Schmidt Orthogona l i s i e rung
48 for k = 2 : NoOfClus
49 maxdist =0.0 ;
50 temp=OrthoSys ( ind (k−1) , : ) ;
51 for i =1: s ize (Evs , 1 )
52 OrthoSys ( i , : )=OrthoSys ( i , : ) −(temp∗ t ranspose ( OrthoSys ( i , : ) ) ) ∗temp ;
53 d i s t t=norm( OrthoSys ( i , : ) ) ;
54 i f d i s t t > maxdist
55 maxdist = d i s t t ;
56 ind (k )=i ;
57 end
58 end
59 OrthoSys=OrthoSys . /norm( OrthoSys ( ind (k ) , : ) ) ;
60 end
61 % Lineare Transformation der Eigenvektoren
62 RotMat= inv (C( ind , : ) ) ;
63 Chi=C∗RotMat ;
64 % Bestimmung des Ind i ka t o r s
65 i n d i c=min(min(Chi ) ) ;
66 % De fu z z i f i z i e r un g der Zugehoe r i g k e i t s f unk t i onen
67 [ minVal cF]=max( t ranspose (Chi ) ) ;
68 end

create Q matrix

1 function [ Q ] = create Q matr ix ( n l i gands , k on , k o f f , s t a r t con , k )
2 % t h i s func t i on f i l l s a s t a t e a matrix Q
3 % input : number o f l i g and s or recep tors , k on and k o f f v e c t o r s ( each have
4 % n l i g and s en t r i e s ) , a vec to r with the l i g and concentra t ion at t=0
5 % output : quadra t i c matrix Q with rowsum 0
6 % number o f d i f f e r e n t s t a t e s Z
7 temp = 0 ;
8 % number o f d i f f e r e n t s t a t e s f o r each conformation
9 % one d e f a u l t s t a t e : no b ind ings

10 % n l i g and s conformations
11 s t a t e s = ones ( n l i g and s +1, 1) ;
12 %s t a t e s (2) = n l i g and s ∗ n l i g and s ;
13 for i =1: n l i gands −1
14 s t a t e s ( i +1) = n l i g and s ∗ nchoosek ( n l i gands , i ) ;
15 temp = temp+ nchoosek ( n l i gands , i ) ;
16 end
17 s t a t e s (end) = n l i g and s ;
18 Z = 1+n l i g and s+n l i g and s ∗temp ;
19 Q = eye (Z , Z) ;
20 % f i r s t f i l l f i r s t entry , f i r s t l i n e and f i r s t column
21 Q(1 ,1 ) = −s t a t e s (2 ) ∗k on (1)+s t a r t c on (1 ) ;
22 % f i l l f i r s t column
23 Q(2:1+ s t a t e s (2 ) ,1 ) = k on (1) ∗ s t a r t c on (1 ) ;
24 % f i l l f i r s t l i n e
25 Q(1 ,2:1+ s t a t e s (2 ) ) = k o f f (1 ) ;
26 % f i l l the o f f d iagona l b l o c k matr ices
27 for i =2: n l i g and s
28 % f i l l the en t r i e s randomly in the sma l l e r matrix o f f d iagona l
29 [ s t a t e s ( i ) , s t a t e s ( i +1) ]
30 [ i ,1+ n l i g and s − i ]
31 k o f f ( i )
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32 mat = ran mat4 ( [ s t a t e s ( i ) , s t a t e s ( i +1) ] , [ i ,1+ n l i g and s − i ] , k o f f ( i ) )
33 % put t h i s matrix on the upper d iagona l
34 Q(sum( s t a t e s ( 1 : i −1) )+1 : sum( s t a t e s ( 1 : i −1) )+s t a t e s ( i ) , sum( s t a t e s ( 1 : i ) )+1 :

sum( s t a t e s ( 1 : i ) ) + s t a t e s ( i +1) ) = mat ;
35 % transpose i t , change the va lue s and put i t under the d iagona l
36 i f k o f f (1 ) ˜= 0
37 k d iv = k on ( i ) / k o f f ( 1 ) ;
38 else
39 k d iv = 0 ;
40 end
41 Q(sum( s t a t e s ( 1 : i ) )+1 : sum( s t a t e s ( 1 : i ) ) + s t a t e s ( i +1) , sum( s t a t e s ( 1 : i −1) )+1

: sum( s t a t e s ( 1 : i −1) )+s t a t e s ( i ) ) = k d iv ∗mat ’ ;
42 %Q(sum( s t a t e s ( 1 : i ) )+1: sum( s t a t e s ( 1 : i +1)) , s t a t e s ( i −1)+1: s t a t e s ( i −1)+s t a t e s

( i ) ) = k d i v ∗mat ’ ;
43 end
44 % f i l l the diagonal , the column sum must be 0
45 for i =1:Z
46 Q( i , i ) = − (sum(Q( : , i ) ) − Q( i , i ) ) ;
47 end
48 end

Update Q matrix

1

2 function [ Q ] = update Q matrix ( Q old , n l i gands , k on , k o f f , s t a r t c on )
3 % t h i s func t i on updates an o ld Q matrix with new inout v a r i a b l e s
4 % input : another Q matrix , number o f l i g and s or recep tors , k on and k o f f

v e c t o r s ( each have
5 % n l i g and s en t r i e s ) , a vec to r with the l i g and concentra t ion at t=0
6 % output : quadra t i c matrix Q with rowsum 0
7 % number o f d i f f e r e n t s t a t e s Z
8 temp = 0 ;
9 % number o f d i f f e r e n t s t a t e s f o r each conformation : 1 d e f a u l t s t a t e : no b ind ings

and n l i g and s bound conformations
10 s t a t e s = ones ( n l i g and s +1, 1) ;
11 for i =1: n l i gands −1
12 s t a t e s ( i +1) = n l i g and s ∗ nchoosek ( n l i gands , i ) ;
13 temp = temp+ nchoosek ( n l i gands , i ) ;
14 end
15 s t a t e s (end) = n l i g and s ;
16 Z = 1+n l i g and s+n l i g and s ∗temp ;
17 Q = eye (Z , Z) ;
18 % f i r s t f i l l f i r s t entry , f i r s t l i n e and f i r s t column
19 Q(1 ,1 ) = −s t a t e s (2 ) ∗k on (1 )+s t a r t c on (1 ) ;
20 % f i l l f i r s t column
21 Q(2:1+ s t a t e s (2 ) ,1 ) = k on (1 ) ∗ s t a r t c on (1 ) ;
22 % f i l l f i r s t l i n e
23 Q(1 ,2:1+ s t a t e s (2 ) ) = k o f f (1 ) ;
24 % f i l l the o f f d iagona l b l o c k matr ices
25 for i =2: n l i g and s
26 % use the p a r t i a l matrix from the prev ious Q matrix , j u s t put new va lue s on

the non−zero en t r i e s
27 Q temp = Q old (sum( s t a t e s ( 1 : i −1) )+1 : sum( s t a t e s ( 1 : i −1) )+s t a t e s ( i ) , sum(

s t a t e s ( 1 : i ) )+1 : sum( s t a t e s ( 1 : i ) ) + s t a t e s ( i +1) ) ;
28 % put t h i s matrix on the upper d iagona l
29 Q(sum( s t a t e s ( 1 : i −1) )+1 : sum( s t a t e s ( 1 : i −1) )+s t a t e s ( i ) , sum( s t a t e s ( 1 : i ) )+1 :

sum( s t a t e s ( 1 : i ) ) + s t a t e s ( i +1) ) = Q temp ;
30 % transpose i t , change the va lue s and put i t under the d iagona l
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31 Q(sum( s t a t e s ( 1 : i ) )+1: sum( s t a t e s ( 1 : i ) ) + s t a t e s ( i +1) , sum( s t a t e s ( 1 : i −1) )+1 :
sum( s t a t e s ( 1 : i −1) )+s t a t e s ( i ) ) = k on ( i ) ∗Q temp ’ ;

32 end
33 % f i l l the diagonal , the column sum must be 0
34 for i =1:Z
35 Q( i , i ) = − (sum(Q( : , i ) ) − Q( i , i ) ) ;
36 end
37 end
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