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Since all models are wrong the scientist must be alert
to what is importantly wrong. It is inappropriate
to be concerned about mice when there are tigers
abroad.

George E.P. Box [1]

1
Introduction

In molecular biology, many relevant dynamic processes happen on timescales of nano-
seconds to seconds and are governed by spatial rearrangement on length-scales smaller
than nanometers. However, experiments have limited spatiotemporal resolution and
cannot follow the time-course of complexmany-particle systems such aswhole proteins
in the necessary atomistic detail. Therefore, the mechanism of protein function can of-
ten not be observed by an experiment alone. Computer simulations provide a possible
remedy. Not being subject to physical barriers such as the diffraction limit of optical
microscopy, they provide a picture of arbitrary spatiotemporal resolution that is only
bounded by the availability of compute power.
Atomistic molecular dynamics (MD) simulations, based on empirical definitions of

atomistic interaction terms, are commonly used to obtain in silico dynamicmodels. The
resulting simulation data can be analyzed with Markov state models (MSMs), yielding
a quantitative kinetic model that, e.g., encodes state populations and transition rates.
Both approaches have been successfully combined in the past to quantify the dynam-
ics and to push the timescale boundary of classical MD simulations that is posed by
compute power. However, as compute power grows and the size of investigated sys-
tems increases, another fundamental scaling problem of theMD/MSMapproach arises.
Rooted in the representation of the system with global descriptors, ever more sampling
is necessary in order to estimate a valid dynamical model. In this work, it is shown that
this scaling problem can be escaped when leveraging weak couplings between local sub-
systems or domains of a studied system. Decomposing a system into weakly coupled or
even independent local domains drastically decreases the amount of statistics required
to adequately parameterize models and opens up avenues to previously inaccessible
system sizes.
Our approach, termed independent Markov decomposition (IMD), is a first-order

approximation neglecting couplings, i.e., it represents a decomposition of the underly-
ing global dynamics into a set of independent local ones. Using the example of a (truly
uncoupled) ion channel, we demonstrate that the sampling necessary to obtain valid
models can be reduced by three orders of magnitude. Furthermore, IMD is applied to
two biomolecular systems, demonstrating its applicability to high-dimensional prob-
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Chapter 1

lems with sparse sampling. First, synaptotagmin-1 is analyzed, a rapid calcium switch
from the neurotransmitter release machinery. Within its C2A domain, local confor-
mational switches are identified and modeled with independent MSMs. Furthermore,
their allosteric interplay is analyzed using information-theoretic measures like transfer
entropy. This multiscale model sheds light on activation of the C2A domain and shows
howpopulations, rates, and allostericmechanisms change as a function of calciumbind-
ing. Second, the catalytic site of TMPRSS2 is analyzed with a local drug-binding model.
TMPRSS2 is a serine protease that has been shown to be a promising target for antivi-
rals to prevent SARS-CoV-2 or influenza infections. Equilibrium populations of differ-
ent drug-binding modes are derived for three inhibitors. We show that reactive pop-
ulations of drug-enzyme complexes are a good proxy for experimentally determined
drug efficiencies. Finally, we have extended our IMD approach an end-to-end deep
learning framework called independent VAMPnets (or iVAMPnets). It learns a domain
decomposition from simulation data and simultaneously models the kinetics in the lo-
cal domains. iVAMPnets have been shown to succeed in both tasks for fully uncoupled
benchmark systems and for the previously mentioned MD data set of synaptotagmin-1
C2A.We finally classify IMD and iVAMPnets as Markov field models (MFM), which we
define as a class of models that describe dynamics by decomposing systems into local
domains. MostMFMs account for couplings, thus generally being higher-order approx-
imations compared to IMD.

In summary, we present a local approach to Markov modeling, from an abstract
decomposition of the underlying transfer operator through semi-automated domain-
decompositions and local Markovmodeling to a deep learning framework. This work is
highly focused on the applicability to high-dimensional MD data, thus aiming to pave
a path for future quantitative kinetic modeling of large biomolecular complexes.

The following introduction has the goal to provide an introduction to the field of in
silico kinetic modeling of molecular machines. In Sec. 1.1, we start by reviewing basic
statisticalmechanics approaches as an abstract layer connectingmethods used through-
out this thesis. Specifically, we study equations governing the dynamics of thermody-
namic systems. Sec. 1.2 reviews the methods to generate such dynamics by means of
computer simulations: We introduce the framework of atomistic molecular dynamics
simulations and relate them to problems of molecular biology. In Sec. 1.3, we consider
Markovmodels for describingmolecular dynamics simulations. Taking up on the ideas
of statistical physics presented earlier, we lay out estimation procedures and discuss
howMarkovmodels describe molecular kinetics. In Sec. 1.4, we study kinetic modeling
in the specific context of biomolecular machines. Finally, we lead over to the publica-
tions by reviewing conceptual problems with existing approaches and pointing out a
possible remedy in Sec. 1.5, motivating the results presented in the remainder of this
thesis.
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Introduction

1.1 On the time evolution of thermodynamic systems

This work uses concepts from classical statistical physics to describe the time-
dependent properties of thermodynamic systems. The ideas that are most relevant to
the kinetic modeling of biomolecular machines are reiterated here to provide an ab-
stract skeleton for the remainder of this thesis, i.e., to contextualize the used methods
and the contributions of this work.

1.1.1 The Liouville equation of statistical mechanics

As the systems studied in this thesis are thermodynamic many-particle systems and
treating all degrees of freedom explicitly is not desirable, we apply a mathematical for-
malism that is based on densities (in contrast to a particle-based picture). To that end,
it is instructive to derive such a formalism for systems obeying the Hamilton equations
of classical mechanics, a description known as the Liouville equation. The derivation
presented below is based on Ref. [2].
Let Γ be a phase space of a Hamiltonian N-particle system equipped with a Hamilto-

nian that evaluates to the total energy of the system,H = K(p) + U(q). We denote the
vectors encoding the positions and momenta of all particles by q and p, respectively,
and assume that the Hamiltonian is separable into a potential U(q) and a kinetic en-
ergy term K(p). Instead of focusing on a single system, we now define ρ(q,p, t) as the
density of an ensemble of systems at point (q,p) ∈ Γ and time t, with the normalization
condition ∫

Γ
dqdpρ(q,p, t) = 1. (1.1)

This conservation of density means that there is a continuity equation that balances
changes of ρ by a flux into or out of adjacent regions of phase space [3],

∂ρ

∂t +
∂

∂qi

(
∂qi
∂t ρ

)
+

∂

∂pi

(
∂pi
∂t ρ

)
= 0. (1.2)

Now, we use the Hamilton equations ∂qi
∂t = ∂H

∂pi and
∂pi
∂t = −∂H

∂qi . As the second deriva-
tives cancel out due to ∂2H

∂qi∂pi = ∂2H
∂pi∂qi , we can write the time derivative of the density

function as
∂ρ

∂t =

[
∂H
∂qi

∂

∂pi
− ∂H
∂pi

∂

∂qi

]
◦ ρ. (1.3)

This equation is known as the Liouville equation; it can be simplified by introducing the
Liouville operator* L = −i

[
∂H
∂qi

∂
∂pi −

∂H
∂pi

∂
∂qi

]
:

∂ρ(q,p, t)
∂t = iL ◦ ρ(q,p, t). (1.4)

*Following Ref. [4], we define the Liouville operator with imaginary unit i.
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Chapter 1

The Liouville equation describes the time evolution of phase-space densities in any
Hamiltonian system. As the Liouville operator generates this dynamics, it is often called
the generator. Assuming ergodicity (cf. Sec. 1.1.5), it can be applied to both a single
system trajectory or an ensemble of trajectories, and, in particular, can be interpreted
as the equation governing any kind of classical multi-component systems. It therefore
plays a crucial role in statistical physics and is fundamental to the contemporary results
presented in this work. Atomistic molecular dynamics simulations are an example of
particular interest as they usually model intrinsically high-dimensional complex sys-
tems (cf. Sec. 1.2).
Given an initial state (q0,p0) := (q(t=0),p(t=0)), the formal solution [2] of the

Liouville equation is given by

ρ(q,p, t) = exp(itL) ◦ ρ(q0,p0), (1.5)

i.e., the density at its initial time ρ(q0,p0) is propagated by the exponential of the Li-
ouville operator multiplied by a finite time step t, to its target density ρ(q,p, t) at time
t.
In the remainder of this work, the exponential form of the Liouville operator will be

replaced by the Perron–Frobenius (or PF) operator [4],

P(τ) = exp(iτL). (1.6)

For the sake of simplicity, we describe a system’s state as a function of time (omitting
q and p) and additionally use a Greek letter τ instead of the formally used Latin t to
denote that this argument is a fixed, finite time step intrinsic to the operator. Therefore,
Eq. (1.5) becomes

ρ(t0 + τ) = P(τ) ◦ ρ(t0). (1.7)

This equation describes the transfer of density from time t0 to t0 + τ . Therefore, the
PF operator P(τ) is often called a transfer operator. Eq. (1.7) can be regarded funda-
mental for the modeling of kinetics of a system. The remainder of this thesis considers
approximating the PF operator in various forms, for various application cases, e.g., by
Markov state models (cf. Sec. 1.1.5). We note that we will omit some technical details
regarding the operator here and refer to Ref. [5] for details.

1.1.2 Equilibrium

In equilibrium [6, 7], the density of the states populated by an ensemble of systems
does not change with time. It is assumed that any physical system will converge to its
equilibrium state, and that the equilibrium state is uniquely defined. Please note that in
the remainder of this thesis, wewill workwith normalized andnon-negative probability
densities.
Given any initial condition (q0,p0), we define equilibrium as the state that is reached

after infinite time has passed. The density of that state, i.e., the equilibrium density, is
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Introduction

denoted by the Greek letter µ,

lim
t→∞

ρ(q,p, t|q0,p0) = µ. (1.8)

In particular, if our starting state is already the equilibrium distribution, it follows that
it will not be altered by the PF operator P . In other words, the equilibrium density is
an eigenfunction of the PF operator with an eigenvalue of 1,

P ◦ µ = µ. (1.9)

In the scenarios investigated in this thesis, it is assumed that velocities decorrelate
quicker than the processes of interest [8]. This means that the investigated lag times
τ of the propagator are so large that velocities have no effect and are thus omitted as
explicit functional dependencies. See Ref. [5] for a thorough derivation.
The density µ describes the equilibrium state of a thermodynamic system. From the

viewpoint of the Liouville equation (Eq. (1.4)), such a state is represented by a density
that does not explicitly depend on time, i.e., ∂ρ∂t = 0. We therefore relate the equilibrium
distribution to the energy through the Boltzmann distribution

µ(q) ∼ exp
(
−H(U(q))

kBT

)
, (1.10)

which fulfills this requirement. Here,H(U(q)) is the Hamiltonian, i.e., the total energy
of the system in configuration q [6]. We note that the vanishing partial time derivative
is not sufficient to identify the Boltzmann distribution as the unique functional form
of a distribution in the equilibrium state – a thorough derivation can be found, e.g., in
Ref. [3].

1.1.3 Brownian motion and the Langevin equation

The Liouville equation (Eq. (1.4)) and its solution (Eq. (1.5)) do not model the stochas-
ticity that arises from excluding certain degrees of freedom (e.g., those of a heat bath), a
fundamental property of thermodynamic systems. As the latter and their time evolution
are the main focus of this thesis, we present a formalism that describes the dynamics of
systems coupled to a heat bath without explicitly modeling the heat bath. This formal-
ism is incorporated in the Langevin equation [9–11] and will be motivated and derived
following Ref. [2] below.
The canonical example for the Langevin equation is Brownian motion, which de-

scribes the random motion of particles immersed in a fluid at room temperature. It
is a stochastic process can be modeled by a spherical particle of radius r immersed in
a fluid that is subject to frictional forces. These forces may be described by Stokes’ law,
i.e., Ffriction = −ζ v with ζ = 6πηr and η the viscosity of the fluid. If that was the total
force acting on such a particle, the velocity would decay to zero, countering our obser-
vation of the (ongoing) random motion of particles immersed in a fluid. We need to

5



Chapter 1

take into account the equipartition theorem [12, p. 54f.] ⟨v2⟩ = kBT
m which states that

in an equilibrium system that is coupled to a heat bath at finite temperature T > 0, the
expectation value of the velocity ⟨v⟩ must be non-zero. To account for that, a random
force term δF(t) is added, and Newton’s equation of motion becomes

mdv
dt = −ζv+ δF(t). (1.11)

This equation is the Langevin equation for a Brownian particle. The first term describes
the internal friction, i.e., a systematic contribution, and the second is a noise term ac-
counting for random fluctuations within the fluid. We find that the random force has
the properties

⟨δF(t)⟩ = 0 ⟨δF(t)δF(t′)⟩ = 2ζkBTδ(t− t′), (1.12)

i.e., it can be modeled by white noise with zero mean and variance 2ζkBT. We note
the connection between the magnitudes of fluctuations and friction, which is a simple
incarnation of the fluctuation-dissipation theorem [2].
Generalizing the Langevin equation (Eq. (1.11)) to the one of the used molecular dy-

namics engine [13] is trivially achieved by adding a force term f which represents the
molecular dynamics force field. For each particle i, it is given* by

mi
dvi
dt = fi − ζvi + δF(t)i. (1.13)

We are now equipped with a formal description of amulti-particle system in terms of
the per-particle equations of motion (Eq. (1.13)). We note that from the Langevin equa-
tion, we can derive a Fokker-Planck equation that, without friction (ζ = 0), reduces to
the standard Liouville equation, Eq. (1.4) (see, e.g., Ref. [12, p. 428] or [2] for a deriva-
tion). We now have a consistent description of the time-evolution of thermodynamic
systems. Even though this description is still very abstract, we can analyze properties
of such systems and relate them to the more applied class of methods that are used in
this thesis.

1.1.4 Metastability

An example of Brownian motion in a one-dimensional potential energy landscape is
shown in Fig. 1.1. It has two basins with an energy barrier separating them. Dynam-
ically, the two basins are connected by a stochastic process (Brownian dynamics, cf.
Sec. 1.1.3) with long decorrelation time† as compared to the fast exchange processes that
occur within each of the basins. Usually, we are interested in the slow exchange kinetics
between the two basins rather than the fast fluctuations within an individual one. For
example, in a biomolecular system, the slow (and relevant) kinetics could take place be-

*The equation used by the OpenMM [13] engine taken from the user handbook http://docs.
openmm.org/7.6.0/userguide/theory/04_integrators.html#langevinintegator

†Corresponding to the implied timescale of a Markov state model that is introduced later (Sec. 1.3.1).
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tslow

metastable 
state 1

metastable 
state 2

Figure 1.1: Metastability is defined by an exchange process that is very slow compared to other processes in a
system.

tween active and nonactive protein states, whereas fast fluctuations around these states
may not be relevant for a model.
This leads to metastability, an important concept for describing dynamical systems.

Generalizing the above example (Fig. 1.1), transitions between different parts of an en-
ergy landscape can occur with various decorrelation times, which is particularly true for
biomolecular systems. Therefore, we define a metastable state as a set of (molecular)
configurations q that is in a quasi-equilibrium state, i.e., it rarely changes into another
set of configurations. Within the metastable state, configurations exchange quickly [4].
Metastable states are often called (molecular) conformations [5]. Due to the connec-
tion between the eigenvalues of the PF operator and the relaxation timescales of cor-
responding processes, metastable dynamics can be modeled by eigenvalues λi that are
only slightly smaller than the equilibrium eigenvalue λ1 = 1 [5]. Themetastable dynam-
ics can therefore be seen in a spectral analysis of the PF operator and the slow (λi ≈ 1)
dynamics can be bisected from the fast fluctuations (λi ≈ 0) in a quantitative way, re-
sulting in a decomposition of the PF operator (cf. Eq. (1.7)) [6]

ρ(τ) = Pslow(τ) ◦ ρ0 + Pfast(τ) ◦ ρ0. (1.14)

The second part, i.e., the fast dynamics, generally describes processes that are of no
interest to molecular dynamics modeling [6]. An eigendecomposition of the underly-
ing operator can therefore be used to extract the slow, relevant processes (discarding
the fast ones). We finally note that the concept of metastability can be generalized to
coherent sets for non-reversible dynamics [14, 15].

1.1.5 Time averages and approximations to the Perron–Frobenius opera-
tor

The ergodicity hypothesis states that in the thermodynamic limit, the time average ō of
any observable o is the same as the ensemble average ⟨o⟩, i.e., the average over multiple

7



Chapter 1

copies of the same system [16]. It assumes that a trajectory of a single system visits all
states on its energy surface, yielding an equilibrium sample. In the NVE ensemble (i.e.,
conserved number of particlesN, volume V, and total energy E), it can be written [11, p.
96 ff]

⟨o⟩ =
∫
dq o(q)δ(H(q)− E)∫
dq δ(H(q)− E)

= lim
T→∞

1
T

∫ T

0
dt o(q(t)) = ō. (1.15)

The ergodicity hypothesis is usually assumed to hold in the thermodynamic limit
with infinite observation time, which corresponds to infinitely long molecular dynam-
ics trajectories or infinitelymany instances in the observation ensemble. However, with
regard to molecular dynamics, real simulation time is finite, and very often transitions
between different metastable regions are rare events, thus hampering attempts to fully
and adequately sample the energy surface [11, p. 96 ff]. Consequently, most molecular
simulations are too short to represent a sample of the global equilibrium state, which is
what most experiments measure. Therefore, computing simple time averages is often
not sufficient to obtain equilibriumproperties of an in silico system, impeding compara-
bility to experiments and reproducibility. This issue is broadly known as the sampling
problem of molecular dynamics (cf, e.g., Refs. [17, 18]). It states that trajectory lengths
necessary to appropriately approximate the right-hand side of Eq. (1.15) are often pro-
hibitively large for any biologically interesting protein system (cf. Sec. 1.2.5).
However, we can obtain equilibriumproperties by extracting them from a learned ap-

proximation to the PF operator, as estimating the latter only requires sampling the local
equilibrium state of the system *. As the PF operator encodes stationary or equilibrium
probabilities µ as an eigenmode, we find

⟨o⟩ =
∫
Γ
o(q)µ(dq). (1.16)

Importantly, ergodicity results in a unique stationary distribution [19, p. 93, 4] and
is therefore fundamental for the analysis conducted with Markov state models as pre-
sented in Sec. 1.3.
In the remainder of this thesis, averages will be computed from approximations to

PF operators. For this task, we use Markov state models (MSMs). MSMs are an ap-
proximation to a PF operator in a discrete state space †, or more precisely, a Galerkin
discretization [4]. Specifically, MSMs use indicator basis functions χi(q) that assign a
discrete state i to a continuous (molecular) configuration q if the configuration is in a
set Si ,

χi(q) =
{
1 q ∈ Si
0 else.

(1.17)

*E.g., a Markov state model (cf. Sec. 1.3) assumes that the simulation ensemble is in equilibrium
within the discrete Markov states [6], i.e., that the stochastic processes within a Markov state are very fast
compared to the dynamics between different ones.

†MSMs approximate a reweighed spatial PF operator. For details, cf. Refs. [5, 6].
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This is usually realized by lumping together molecular configurations into defined dis-
crete states by splitting the state space by a Voronoi tesselation [6]. The Galerkin dis-
cretization yields a transition matrix that is defined given the discrete basis functions,

(P(τ))ij =
⟨χj,P(τ) ◦ χi⟩µ

⟨χi, χj⟩µ
(1.18)

where ⟨·, ·⟩µ defines a µ-reweighed scalar product [6]. The transition matrix is a row-
stochastic matrix with

(P(τ))ij > 0 ∀ i, j and
∑
i
(P(τ))ij = 1 ∀ j. (1.19)

In comparison to the continuous case, probability densities become vectors that encode
probabilities per discrete state, i.e., the MSM transition matrix propagates probability
vectors in time. Its eigenvector corresponding to eigenvalue λ1 = 1 encodes the station-
ary or equilibrium state, now encoded as a vector of (equilibrium) probabilities denoted
by π. Computing averages simplifies to

⟨o⟩ =
N∑
i
oiπi (1.20)

with the additional assumption that the observable o can bemodeled as constant within
a given discrete state i. Sec. 1.3.1 provides a more comprehensive overview of discrete
state MSMs.

1.2 Atomisticmolecular dynamics simulations: Generators ofmany-body
system dynamics

Molecular dynamics (MD) simulations have been developed to gain physical insights
into molecular systems on the atomistic scale. They compute the time evolution of a
given molecular system by using empirical interaction potentials between its atoms.
In particular, the advent of fast and affordable computing resources has enabled the
method to take a remarkable leap over the last 45 years, from a 9 ps trajectory of bovine
pancreatic trypsin inhibitor (58 amino acid residues) in vacuum in 1977 [20] to 0.1 sec-
onds of the SARS-CoV-2 spike protein (∼ 1200 residues) in explicit solvent in 2021 [21].
The generator of the dynamics is usually a numerical integrator that evaluates

Newton’s equation of motion (akin to Hamiltonian dynamics cited above) in a high-
dimensional potential landscape [22]. Regardless of its complexity, the generator can
be interpreted in the form of the Liouville operator in Eq. (1.5).
MD simulations yield trajectories of particle coordinates, i.e., Cartesian coordinates

of every atom over time. This makes MD simulations intrinsically high-dimensional,
posing a challenge to quantify system properties and to describe the dynamics in a
human-readable fashion. In this work, much of these issues will be addressed using
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Markov state models (cf. Sec. 1.3). This section summarizes the basics of MD simula-
tions. For a more comprehensive overview, see, e.g., Refs. [16, 22].

1.2.1 Atomistic force fields

MD simulations define a potential function that describes particle interactions within
a system [22]. This potential is usually defined for up to 4-body interaction terms. In a
classical MD framework, the potential terms are split into bonded and non-bonded in-
teractions. Non-bonded forces describe repulsion and van-der-Waals interactions (usu-
ally via Lennard-Jones potentials) and electrostatics (via a Coulomb term). Bonded
interactions are composed of distances, angles, and dihedral angles between pairs,
triplets, and quadruplets of atoms, respectively. Many of these terms are governed by
harmonic potential terms, i.e., they are approximated by a harmonic oscillator fluctu-
ating around a mean with some force constant. The set of functional forms and param-
eters is called a force field. In order to achieve biologically relevant simulation time-
scales, MD force fields approximate quantum-mechanical interactions using classical
expressions (e.g., harmonic oscillators of atoms). This means that chemical reactions
and other electronic effects cannot be described unless they are parameterized specifi-
cally [22–24].
A force field that has been used in Chapter 4 of this work is CHARMM 36 [25]. Its

functional form is a sum over various energy terms including bonded and non-bonded
interactions. E.g., atomic bond terms are covered by a harmonic potential of the form∑

bonds Kb(b − b0)2 with the force constant Kb that determines the strength of the in-
teraction, the equilibrium value of the bond-length b0 , and b its time-dependent value.
Please compare Ref. [26] for the full energy expression. The parameters of the force
field are obtained by fitting them to ab initio quantummechanical calculations or exper-
imental observables such as NMR J-couplings [25, 26]. They are reported for different
atom types and can automatically be assigned to a given protein structure, a task that
is usually done by softwares such as OpenMMmodeler [13] or GROMACS [27].

1.2.2 Integration schemes

Having defined a potential function enables us to determine particle positions and ve-
locities over time according to the laws of classical mechanics. To generate the time
series of a molecule evolving over time, the above defined potential (or the force field)
is evaluated for some initial particle positions (and velocities), yielding the forces act-
ing on each particle of themolecule. Subsequently, particles aremoved according to the
forces acting on them. This procedure is repeated to evolve the particle coordinates in
time, using the last position (and velocities) as the new initial positions (and velocities).
As this can be conducted by several integration schemes, we start by illustrating the gen-
eral idea using a very simple integration scheme (Euler integrator) [16]: Let q(t) ∈ Rn

be the trajectory of a particle withmassm andU(q) be its position-dependent potential.
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We can expand Newton’s equation of motion,

∇U(q(t)) = −md2q(t)
dt2 (1.21)

by using a polynomial ansatz function q(t) ∈ Pn and write q(t) as a Taylor series. Using
the definition of the velocity v = dq(t)

dt and Eq. (1.21), we find

q(t0 +∆t) = q(t0) + v(t0)∆t−
1
2m∇U(q)∆t2. (1.22)

This equation can be evaluated for small ∆t with a known force field potential U(q),
however it comes with severe limitations and serves the purpose of demonstrating the
concept only. Most notably, the Euler integrator is not symplectic, i.e., it is not time-
reversible or energy conserving.
A commonly used symplectic integrator is the Velocity-Verlet algorithm, which can

be derived directly from the Liouville equation (Eq. (1.4)) by means of a Trotter ex-
pansion [16, p. 77ff.]. It comes at almost the same computational cost as the Euler
method but conserves a so called shadowHamiltonian [11, p. 120], i.e., the total energy
oscillates around the true value and does not diverge. The Velocity-Verlet integrator
therefore represents the microcanonical (or NVE) ensemble, which in many cases does
not mirror experimental conditions, as the total energy is rarely controlled (see next
Section 1.2.3).

1.2.3 Modeling the experimentally observed thermodynamic ensemble

So far, the presented MD methods describe classical (deterministic) mechanics at con-
stant energy E. However, conditions for biomolecular experiments pose different re-
quirements: Instead of working with single molecules, there is usually a large number
N of molecules in a sample, e.g., a protein solution in a test tube. Furthermore, sys-
tems are usually coupled to a heat bath, i.e., have constant temperature T rather than
constant (internal) energy E, and are conducted at atmospheric pressure P. Therefore,
it is crucial that the computational models of such experiments reproduce these condi-
tions, by controlling the variables N, P, and T. In statistical mechanics, this situation
is known as the isothermal-isobaric or NPT ensemble [11, p. 236]. In the following, we
will discuss how these conditions can be met in MD simulations.

Number of particles First, the number of particles N is kept constant trivially by
not adding or removing particles to a simulation.

Temperature Second, temperature T is not directly translatable to a single particle
inside a simulation box as it is defined for a thermodynamic system. In order to control
the temperature, it is important to note that by the equipartition theorem, the average
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kinetic energy ⟨K⟩ per degree of freedom scales with the temperature [16, p. 64]

⟨K⟩ = 1
2kBT. (1.23)

Temperature can therefore be controlled by adjusting the kinetic energy, or more pre-
cisely, the particle velocities. This can algorithmically be realized by computational
thermostats. It is important to note that velocities are distributed according to the
temperature-dependent Maxwell-Boltzmann distribution [11]

p(|v|) =
(

m
2πkBT

)1/2

exp
(
−m|v|2
2kBT

)
. (1.24)

A way of controlling temperature is to simulate a heat bath by randomly selecting parti-
cles and applying a stochastic force to them such that the resulting velocity distribution
follows the Maxwell-Boltzmann distribution [16, p. 141 f.]. This method is known as
the Andersen thermostat.
In the present work, temperature control is achieved by integrating the Langevin

equation rather than Newton’s equation of motion, directly describing the dynamics of
a systemwith an implicit coupling to a heat bath [11] (cf. Sec. 1.1.3). Thus, no additional
thermostat is necessary. The Langevin equation (Eq. (1.13)) is numerically integrated
using a random force that is modeled with two Gaussian random variables. They are
sampled at each integrator step and have zero mean, unit variance, and no cross corre-
lation [11, p. 591], modeling the Langevin random force described earlier (Sec 1.1.3).

Pressure Third, the pressure P can be controlled by introducing a pressure coupling.
In this work, the pressure is controlled using a Monte Carlo procedure* [28, 29] by
applying variations∆V = A · r to the volume of the simulation box, with r ∼ U(−1, 1) a
uniformly distributed random number and A a scaling factor.

We are now equipped with the basic concepts to model dynamics of an N-particle
system in the NPT ensemble.

1.2.4 Short overview of MD-related methods

There are numerous methods that are used to speed up MD simulations or to make
them feasible in general. Most of them are optimized such that they do not alter the
underlying physics. Therefore, we assume that these methods do not affect the results
presented in this thesis and only give a very brief overview.

Periodic boundary conditions Usually, an MD simulation is conducted in a peri-
odic box to mimic bulk behavior and to rule out surface effects [22].

*The presentedMonte Carlo barostat is the one implemented in OpenMM [13], cf. user manual http:
//docs.openmm.org/7.6.0/userguide/theory/02_standard_forces.html

12

http://docs.openmm.org/7.6.0/userguide/theory/02_standard_forces.html
http://docs.openmm.org/7.6.0/userguide/theory/02_standard_forces.html


Introduction

Neighbor lists In order to avoid computing interactions between all pairs of parti-
cles in a simulation, MD algorithms often work with neighbor lists that are updated in a
low frequency fashion [30]. Short-ranged non-bonded interaction terms are only com-
puted between neighbors in that list. Furthermore, non-bonded interaction terms from
Lennard-Jones potentials are usually truncated [22].

Particle mesh Ewald (PME) summation Coulomb interactions are long-range
non-bonded interaction terms that make MD simulations expensive when evaluated
directly. PME splits them into a long-range and a short-range part with the long-range
part being solved using a Fast Fourier Transform, reducing scaling of the computing
load from N2 to N log(N) [31].

Constraints Often, fast vibrating bonds are constrained to a fixed length in order to
allow for a larger integration time step. This is usually done using the SHAKE [32] or
RATTLE algorithm [33].

Hydrogen Mass Repartitioning (HMR) To artificially slow down the fastest de-
grees of freedom in a system, hydrogen masses can be increased while simultaneously
decreasing the masses of the heavy atoms that they are bound to. Usually, a mass of 4 u
is assigned to hydrogens [34]. This method allows to increase the integrator time step
to up to 5 fs and does not significantly alter the resulting trajectories.

While the listed methods are among the most important ones, there are many more
optimization schemes available that make MD feasible. This highlights the need of spe-
cialized software packages (such asOpenMM[13], GROMACS [27] orNAMD [35]), that
have been highly optimized over many years.

1.2.5 Biological timescales and the sampling problem

One of the fundamental problems of MD simulations is the timescale gap to biological
systems. Functionally relevant processes in molecular machines are intrinsically multi-
scale, ranging from nanoseconds (e.g., side-chain rotamers or local loop motions) to
minutes (larger domain rearrangements, protein-protein association/dissociation) [36,
37], i.e., about eight orders of magnitude. However, the fastest process that is still rele-
vant for all atomMD simulations is the vibration of bonds that contain hydrogen atoms.
With a period in the femtosecond range, it determines the integration step of anMD in-
tegrator to≤ 1 fs. This limit can be pushed up to 5 fs, e.g., bymethods such asHydrogen
Mass Repartitioning [4, 34, 38]. However, we stay up to 10 orders of magnitude away
from relevant biological timescales, rendering biological timescale simulations very ex-
pensive and in many cases even intractable [39, 40].
To gather significant statistics of a biological process in an MD simulation, i.e., to

compute quantitative results such as expectation values or averages, the slowest pro-
cesses must be observed in significant numbers [40]. To that end, a single simulation
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would need to sample the global equilibrium of the system–otherwise, time averages
do not represent meaningful quantities. Given that MD simulations are finite in real-
ity, this is often hard if not impossible to achieve. However, according to the ergodicity
hypothesis (Sec. 1.1.5), there is an alternative to computing time averages from a sin-
gle, infinitely long trajectory. We can use an ensemble of trajectories instead that cover
the slowest process in multiple instances (Sec. 1.1.5). In particular the development
of modern computational hardware and graphical processing units (GPU) cards has
opened the possibility to run MD simulations in a highly parallelized, multi-trajectory
fashion, shifting the paradigm towards ensembles of trajectories. To deal with the re-
sulting large number of MD trajectories, methods are needed that cast this data into
quantitative, human-readablemodels. A popular choice in that regard areMarkov state
models [41].

1.3 Markov state models: Low rank approximations to the generator*

In brief, Markov state models (MSMs) of molecular dynamics are an approximation
to the PF operator (Eq. (1.5)) [43] that is physically interpretable and yields a human-
readable quantitative model of the dynamics. MSMs can be estimated from MD data
and are capable of combiningmany short trajectories into a single model, making them
a useful tool to cope with the MD sampling problem (Sec. 1.2.5). The MSM transition
matrix describes (conditional) probabilities to jump from one state to another in a de-
fined time, e.g., it could encode transition probabilities between different protein con-
figurations.
Spectral analysis of the MSM transition matrix yields a rich toolbox for describing

dynamic systems. In particular, the concepts of equilibrium distributions and metasta-
bility (Secs. 1.1.2 and 1.1.4) are contained in the eigenvalue spectrum of that matrix [6].
Revisiting Eq. (1.9), we see that the equilibrium distribution of the system is an eigen-
vector of the transition matrix with unity eigenvalue. It can thus be extracted from
that matrix using standard eigendecomposition methods. Furthermore, we note that
the system relaxes into equilibrium along the other eigenvectors, with timescales that
can be computed from the corresponding eigenvalues λi with ti = τ

ln(|λi|)
. This gives a

quantitative handle on metastability via the slow processes of the system.

*The content of this section (Sec. 1.3 including subsections) was published as
Christoph Wehmeyer∗, Martin K. Scherer∗, Tim Hempel∗, Brooke E. Husic, Simon Olsson, and Frank
Noé. “Introduction to Markov State Modeling with the PyEMMA Software [Article v1.0]”. Living Journal
of ComputationalMolecular Science 1.1 (2019), 5965. (∗contributed equally). The article can be obtained
from the publisher under https://doi.org/10.33011/livecoms.1.1.5965.
THwas one of three lead authors in this project. Hehas substantially contributed towriting themanuscript.
Parts of the manuscript were modified or extended to fit the purpose of this introduction, other parts were
quoted verbatim. The publication is licensed under the Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.
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1.3.1 Markov state models

In its standard formulation, the estimation of anMSM involves decomposing the phase
or configuration space occupied by a (stochastic) dynamical system into a set of disjoint,
discrete states, and a transition matrix (cf. Sec. 1.1.5) P(τ) = [pij(τ)] denoting the con-
ditional probability of finding the system in state j at time t+ τ given that it was in state
i at time t. Let us make two remarks to avoid common misconceptions:

1. Equilibrium: While most analysis techniques require simulation trajectories to
be long enough to sample from the equilibrium distribution, this is not required
for MSMs. Because MSMs use the conditional probability pij(τ), they are useful
for the analysis of short simulation trajectories with arbitrary starting points—see
Ref. [44] for a thorough discussion of this matter.

2. Markovianity: An MSM is a memoryless model. Early MSM papers have argued
that accurateMSMs can be found if a few states with high energy barriers between
them are resolved so as to achieve a Mori-Zwanzig projection with fast-decaying
memory [8, 45, 46]. The modern view, however, is that MSMs can be highly accu-
rate if the MSM states discretize the reaction coordinates of the slowest processes
well [6]. This mainly requires that the system is characterized by only a few slow
processes at lag time τ , which is true for cooperative systems such as most pro-
teins, but not for highly frustrated systems such as glasses.

In order to create an MSM for a dynamical system, each data point in the time series
is assigned to a state. Given an appropriate lag time, every pairwise transition at that lag
time is counted and stored in a count matrix. Then, a row-stochastic transition matrix
P(τ) is estimated from the count matrix. It is defined for the specified lag time. For
MD simulations in equilibrium, P(τ) should obey detailed balance which is enforced by
constraining the estimation of P(τ) to the following equations:

πipij = πjpji, i, j = 1, . . .N, (1.25)

where πi is the stationary probability of state i, pij is the probability of transitioning to
state j conditional on being in state i, andN is the total number of states. The constraints
(Eq. (1.25)) are omitted if MD simulations are not conducted in equilibrium, e.g., for
systems experiencing a pulling force or an external potential (see Ref. [47] for a recent
review on nonequilibrium MSMs). For the remainder of this section we will simplify
thematter by assuming themore common scenario ofMD simulations without external
forces, such that Eq. (1.25) is assumed to hold.
When estimating anMSM it is critical to choose a lag time, τ , which is long enough to

ensure Markovian dynamics in our state space, but short enough to resolve the dynam-
ics in which we are interested. Plotting the implied timescales (ITS) as a function of τ
can be a helpful diagnostic when selecting the MSM lag time [45]. The ITS ti approxi-
mates the decorrelation time of the ith process and is computed from the eigenvalues λi
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of the MSM transition matrix via

ti =
−τ

ln |λi(τ)|
. (1.26)

When the ITS become approximately constant with the lag time, we say that our time-
scales have converged and choose the smallest lag time with the converged timescales
in order to maximize the model’s temporal resolution.
Once we have used the ITS to choose the lag time, we can further validate whether

a given transition matrix P(τ) is approximately Markovian using the Chapman-
Kolmogorov (CK) test [6, 48]. The CK property for a Markovian matrix is

P(kτ) = Pk(τ), (1.27)

where the left-hand side of the equation corresponds to an MSM estimated at lag time
kτ and k is an integer larger than 1. The right-hand side of the equation is our estimated
MSM transition matrix to the kth power. By assessing how well the approximated tran-
sition matrix adheres to the CK property, we can validate the appropriateness of the
Markovian assumption for the model (see Sec. IV.F in Ref. [6]).
Once validated, the transitionmatrix can be decomposed into eigenvectors and eigen-

values. The highest eigenvalue, λ1(τ), is equal to 1. As we assume that the underlying
dynamics are ergodic, λ1(τ) = 1 is a unique eigenvector (Sec. 1.1.5) and its correspond-
ing left eigenvector represents the stationary distribution, π (cf. Eq. (1.9)):

π⊤P(τ) = π⊤. (1.28)

For the systems of interest here, the subsequent eigenvalues λi>1(τ) are real valued
with |λi>1| < 1 [5] and are related to the characteristic or implied timescales of dynam-
ical processes within the system (Eq. (1.26)). The dynamical processes themselves (for
i > 1) are encoded by the right eigenvectors ψi,

P(τ)ψi = λi(τ)ψi, (1.29)

where the eigenvalue-eigenvector pairs are indexed in decreasing order according to
the eigenvalues. The coefficients of the eigenvectors represent the flux into and out of
the Markov states that characterize the corresponding process. The right eigenvector
ψ1 is a vector consisting of 1’s.

1.3.2 Variational approach

The theory described in the previous section required the decomposition of the phase or
configuration space occupied by a dynamical system into discrete, disjoint states. Start-
ing from the output of anMD simulation of a protein, there are several steps that can be
taken to obtain an MSM from the original configuration space, including featurization,
dimension reduction, and clustering (cf. Sec. 1.3.4). These steps can be summarized as
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finding appropriate basis functions or, more specifically, to optimize a set of indicator
functions such that the dynamics in the discretized space is Markovian (cf. Sec. 1.1.5).
In 2013, the variational approach to conformational dynamics (VAC) was derived to

quantify the process of optimizing basis functions for dynamical models in reversible
setting [49]. It enables an objective comparison among different state decomposition
choices for MSMs, or choices of basis functions in general.
Briefly, the VACuses functions l̂i to approximate the true left eigenfunctions of the PF

operator (Eq. (1.7)). The functions l̂i are therefore called approximated eigenfunctions.
Under the condition that l̂i are normalized and orthogonal to the true first eigenfunction
µ, the autocorrelation function acf of the weighted approximated eigenfunctions have
an upper limit that is given by the true eigenvalues [49]:

acf(µ−1̂li, τ) ≤ λi(τ) i ≥ 2. (1.30)

As autocorrelation functions can directly be obtained from simulation data, the VAC
can be used for the estimation of a Markov operator from data. Specifically, as the
MSM eigenvalues are bounded from above by the true ones, maximizing the transition
matrix eigenvalues represents a way of obtaining a VAC-optimal MSM [49].
However, the VAC is limited to reversible systems. A more general formalism was

derived later that is the variational approach toMarkov processes (VAMP) [50]. It uses
the Koopman operator [51, 52] instead of the PF operator, which – in brief – is aMarkov
operator that propagates observables rather than densities, and is adjoint to the PF
operator [53]. For the sake of space, we here only mention that in the special case
of stationary, time-reversible dynamics, the singular value decomposition (SVD) of the
Koopmanoperator is equivalent to the eigendecomposition of the transitionmatrix [50]
(Sec. 1.3). Please find more details about the Koopman operator in Refs. [53, 54].
Following Ref. [50], the VAMP states that we can quantify (or score) the approxima-

tion quality of test functions f and g to represent the underlying stochastic processes.
We make the ansatz of writing the test functions as linear combinations of basis func-
tions χt and χt+τ , i.e., f(qt) = U⊤χt(qt) and g(qt+τ ) = V⊤χt+τ (qt+τ ). We can now
optimize the basis functions without explicitly treating the linear expansion coefficients
U and V using the so-called VAMP-r scoreRr (r is a positive integer). To that end, we
compute the covariance matrices of the basis functions,

C00 = ET

[
χt(qt)χt(qt)⊤

]
C0τ = ET

[
χt(qt)χt+τ (qt+τ )

⊤
]

(1.31)

Cττ = ET

[
χt+τ (qt+τ )χt+τ (qt+τ )

⊤
]
.

Here, ET[·] denotes a simple time average. We can now compute a Koopman operator
K̄ from the covariance matrices,

K̄ = C−1/2
00 C0τC−1/2

ττ , (1.32)
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which represents an approximation to the true Koopman operator given the basis func-
tions χt and χt+τ . The VAMP states that the approximation quality of that operator K̄
can be controlled via the VAMP-r score,

Rr =
∥∥K̄∥∥rr (1.33)

with ∥ · ∥r denoting the r-Schatten norm (or the sum over the r-th power of singular
values) [50]. Maximizing this score with respect to the basis functions χt and χt+τ

gives an optimal approximation to the true eigenfunctions of the Koopman operator in
the test functions f and g. Their linear expansion coefficients are encoded in the SVD
of the approximated Koopman operator K̄,

K̄ ≈ UKV⊤, (1.34)

where K is a diagonal matrix with the singular values of the approximated Koopman
operator. Please note thatRr is maximized if f and g are the eigenfunctions of the true
Koopman operator.

1.3.3 Hidden Markov state models

P̃(τ) P̃(τ)s̃(t)

s(t)

s̃(t + τ) s̃(t + 2τ)

s(t + 2τ)s(t + τ)

χ (s | s̃) χ (s | s̃) χ (s | s̃)

Figure 1.2: The HMM transition matrix P̃(τ) propagates the hidden state trajectory s̃(t) (orange circles) and, at
each time step t, the emission into theobservable state s(t) (cyan circles) is governedby the emissionprobabilities
χ (s(t)|s̃(t)). Reprinted from [55].

The estimation of an MSM requires the dynamics between microstates to be Marko-
vian. However, in case of a poor dimension reduction, discretization, or short trajecto-
ries, we cannot anticipate this to be the case and the Markovianity assumption is often
violated [6].
An alternative, which ismuch less sensitive to poor discretization, is to estimate a hid-

denMarkovmodel (HMM) [56–60]. HMMs are less sensitive to the discretization error
as they sidestep the assumption of Markovian dynamics in the (observed) discretized
space (illustrated in Fig. 1.2). Instead, HMMs assume that there is an underlying (hid-
den) dynamic process that is Markovian and gives rise to our observed data, i.e., the
(n states) discretized trajectories s(t). This is a powerful principle as we know that there
is indeed an underlying process that is Markovian, which is generated by our molecular
dynamics integrator.
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To estimate an HMM, we need a spectral gap after the mth timescale; in practice,
a timescale separation of tm ≥ 2tm+1 is sufficient [61]. The HMM then consists of a
transition matrix P̃(τ) betweenm < n hidden states and a row-stochastic matrix (χ) of
probabilities χ (s|s̃) to emit the discrete state s conditional on being in the hidden state
s̃.
An HMM estimation yields a model with a small number of (hidden) states. For

the current application cases, these hidden states are optimized to describe metastable
states of, e.g., a protein, and thus, the number of hidden states is a newhyper-parameter
which needs to be chosen carefully. As the HMMs—like MSMs—approximate the full
phase-space dynamics, we can similarly compute the metastable kinetics, apply TPT,
visualize the network, and obtain physical observables. However, we note that HMMs
tend to be harder to train to high-dimensional MD data and therefore, the decision of
MSM vs. HMM needs to be adjusted to the specific problem at hand.

1.3.4 The Markov state modeling workflow

MD data

Featurization
feature selection

Dim. reduction
TICA
VAMP

Discretization
k-means
regspace
...

MSM analysis
spectral analysis
stationary properties
kinetic properties
uncertainty estimation

MSM estimation & validation
Maximum likelihood (ML) MSM
Bayesian MSM

ML hidden MSM
Bayesian hidden MSM

implied timescales convergence
Chapman-Kolmogorov test

identifying common problems

metastable states with PCCA++
TPT

Experimental observables

discrete
trajs

Markov 
model

discrete
trajs

Markov 
model Knowledge

Figure 1.3: TheMSM estimation workflow: MD trajectories are processed and discretized (first row). A Markov
statemodel is estimated from the resulting discrete trajectories and validated (middle row). By iterating between
data processing and MSM estimation/validation, a dynamical model is obtained that can be analyzed (last row).
Reprinted andmodified from [55].

In short, the workflow (Fig. 1.3) for a full analysis of an MD dataset might consist of

• extracting molecular features from the raw data,
• transforming those features into a suitable, low-dimensional subspace,
• discretizing the low-dimensional subsets into a state decomposition,
• estimating a maximum likelihood MSM from the discrete trajectories and per-
forming validation tests,

• analyzing the stationary and kinetic properties of the MSM,
• findingmetastablemacrostates and applying transition path theory (TPT) to iden-
tify the pathways of conformational change,

• computing expectation values for experimental observables, and
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• coarse-graining the MSM using a hidden Markov model approach.

For the remainder of this section we will walk through the example and analyze a
dataset of the Trp-Leu-Ala-Leu-Leu pentapeptide (Fig. 1.4a), consisting of 25 indepen-
dent MD trajectories conducted in implicit solvent with frames saved at an interval
of 0.1 ns.
Note that the modeler has to select hyper-parameters at most stages throughout the

workflow. This selection must be done carefully as poor choices make it hard, or even
impossible, to build a good MSM. While there exist automated schemes [62] for cross-
validated optimization in the full hyper-parameter space, we chose to adopt a sequential
approach where only the hyper-parameters of the current stage are optimized. This
approach is not only computationally cheaper but allows us to discuss the significance
of the necessary modeling choices.

1.3.5 Feature selection

(a)

(b) (c)

(d)
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Figure 1.4: Example analysis of the conformational dynamics of a pentapeptide backbone: (a) The Trp-Leu-Ala-
Leu-Leu pentapeptide in licorice representation [63]. (b) The VAMP-2 score indicates which of the tested featur-
izations contains the highest kinetic variance. (c)The sample free energy projected onto the first two time-lagged
independent components (ICs) at lag time τ = 0.5 ns shows multiple minima and (d) the time series of the first
two ICs of the first trajectory show rare transitions. Reprinted from [55].
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InMarkov statemodeling, our objective is tomodel the slow dynamics of amolecular
process. In order to approximate the slow dynamics in a statistically efficient manner,
a lower-dimensional representation of our simulation data is necessary. However, the
features (e.g., torsion angles, distances or contacts) which best represent the slow dy-
namical modes of a given molecular system are unknown a priori [64]. Fortunately,
the VAC [49, 65] and the more general VAMP [50] provide a systematic means to quan-
titatively compare multiple representations of the simulation data (Sec. 1.3.2). In par-
ticular, we can use a scalar score obtained using VAMP to directly compare the ability
of certain features to capture slow dynamical modes in a particular molecular system.
For the following analyses, we choose the VAMP-2 score (i.e., r = 2) as it maximizes

the kinetic variance contained in the features [66], i.e., has a physical interpretation. We
should always evaluate the score in a cross-validated manner to ensure that we include
neither too few (under-fitting) nor too many (over-fitting) features [50, 67]. To choose
among three different molecular features reflecting protein structure, we compute the
(cross-validated) VAMP-2 score. Although we cannot optimize MSM lag times with a
variational score [68], such as VAMP-2, it is important to ensure that the properties we
optimize are robust as a function of lag time. Consequently, we compute the VAMP-2
score at several lag times. We find that for our pentapeptide system, the relative rank-
ings of the different molecular features are highly robust as a function of lag time. We
show one example of this ranking and the absolute VAMP-2 scores for lag time 0.5ns in
Fig. 1.4b. We find that backbone torsions contain more kinetic variance than the back-
bone heavy atompositions or the distances between them (Fig. 1.4b). This suggests that
backbone torsions are the best of the options evaluated for MSM construction.

1.3.6 Dimensionality reduction

Subsequently, we perform TICA [66, 69, 70] in order to reduce the dimension from the
feature space, which is typically very high-dimensional, to a lower-dimensional space
that can be discretized with higher resolution and better statistical efficiency. TICA can
be understood as a special case of the VAC [49, 65] and is designed to find a projection
preserving the long-timescale dynamics in the dataset. Here, performing TICA on the
backbone torsions at lag time 0.5ns yields a four-dimensional subspace. The sample
free energy projected onto the first two independent components (ICs) exhibits several
minima (Fig. 1.4c). Discrete transitions between the minima can be observed by visual-
izing the transformation of the first trajectory into these ICs (Fig. 1.4d). We thus assume
that our TICA-transformed backbone torsion features describe one or more metastable
processes.

1.3.7 Discretization

TICA yields a representation of our molecular simulation data with a reduced dimen-
sionality, which can greatly facilitate the decomposition of our system into the discrete
Markovian states necessary for MSM estimation. Here, we use the k-means algorithm
to segment the four-dimensional TICA space into k = 75 cluster centers. The number
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of cluster centers has been chosen to optimize the VAMP-2 score in a manner identical
to how the feature selection was carried out above.

1.3.8 MSM estimation and validation
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Figure 1.5: Example analysis of the conformational dynamics of a pentapeptide backbone: (a) The convergence
behavior of the implied timescales associated with the four slowest processes. The solid lines refer to the maxi-
mum likelihood result while the dashed lines show the ensemble mean computed with a Bayesian sampling pro-
cedure [71]. The black line (marking equality of timescale and lag time) with grey area indicates the timescale
horizon belowwhich theMSMcannot resolve processes. As implied timescales arewell-converged at τ = 0.5 ns,
this lag time is chosen for subsequent MSM estimation. (b) CK test computed using an MSM estimated with lag
time τ = 0.5 ns assuming 5 metastable states. Predictions from this model agree with higher lag time estimates
within confidence intervals. Implied timescales convergence aswell as a passingCK test are a necessary condition
inMSMvalidation. In both panels, the (non-grey) shaded areas indicate95% confidence intervals computedwith
a Bayesian sampling procedure [71]. Reprinted from [55].

A necessary condition for Markovian dynamics in our reduced space is that the ITS
are approximately constant as a function of τ ; accordingly, we chose the smallest possi-
ble τ which fulfills this conditionwithin themodel uncertainty. The uncertainty bounds
are computed using a Bayesian scheme [71, 72] with 100 samples. In our example, we
find that the four slowest ITS converge quickly and are constant within a 95% confi-
dence interval for lag times above 0.5ns (Fig. 1.5a).
To test the validity of our MSM, we perform a CK test. Visualizing full transition ma-

trices P over a multitude of different lag-times is difficult; we therefore coarse-grain
P into a smaller number of metastable states before performing the test. An appropri-
ate number of metastable states can be chosen by identifying a relatively large gap in
the ITS plot. For this analysis, we chose five metastable states. The CK test (Fig. 1.5b)
shows that predictions from our MSM (blue-dashed lines) agrees well with MSMs es-
timated with longer lag times (black-solid lines). Thus, the CK test confirms that five
metastable states is an appropriate choice and shows that the MSM we have estimated
at lag time τ = 0.5ns indeed predicts the long-timescale behavior of our system within
error (blue/shaded area).
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1.3.9 MSM Analysis
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Figure1.6: Example analysis of the conformational dynamics of apentapeptidebackbone: (a)The reweighted free
energy surfaceprojectedonto thefirst two independent components exhibits fiveminimawhich (b)PCCA++ iden-
tifies as fivemetastable states. (c) The second right eigenvector shows that the slowest process shifts probability
between the least probable state (S1) and the other states, in particular states (S4,S5), whereas (d) the committor
S2 → S4 indicates that statesS(1,3,5) act as a transition region between statesS2 andS4. Reprinted from [55].

We can now directly extract several thermodynamic and kinetic properties from the
estimated and validated model. An example of the former is the free energy surface
in the projection onto the first two ICs (Fig. 1.6a) reweighted by the MSM stationary
distribution.
A spectral clustering using the PCCA++ algorithm [73–75] allows us to coarse-grain

the 75 k-means states into five metastable states (Fig. 1.6b) Si, i = 1, . . . , 5. Often, the
two different sets of states are distinguished by using the terms microstates for the
highly-resolved k-means states, andmacrostates for the metastable states. We here as-
sume that each microstate is uniquely assigned to a macrostate (crisp assignment). We
approximate the stationary probabilities for the macrostates and relative free energies
between them (defined up to an additive constant)

macrostate Si πSi GSi/kBT
S1 0.004 5.567
S2 0.014 4.293
S3 0.021 3.841
S4 0.021 3.875
S5 0.940 0.062
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Figure1.7: Exampleanalysisof theconformationaldynamicsofapentapeptidebackbone: visualizationof the tran-
sition paths fromS2 toS4. Metastable statesS(1−5) are represented by an ensemble of representative structures
and are arranged along the horizonal axis according to their committor probabilities. The three main transition
pathways starting fromS2 and ending inS4 are depicted by gray arrowswith thickness proportional to the transi-
tion flux. The dominant pathway proceeds throughS5.

using the relation
GSi = −kBT ln

∑
j∈Si

πj, (1.35)

where πj denotes the MSM stationary probability of the jth microstate.
In order to interpret the slowest relaxation timescales, we refer to the (right) eigen-

vectors. This enables us to specifically study what conformational changes are happen-
ing on a particular timescale independently of the equilibrium distribution. The first
right eigenvector corresponds to the stationary process with unity eigenvalue. The sec-
ond right eigenvector, on the other hand, corresponds to the slowest non-trivial process
in the system. Note that the eigenvectors are real because detailed balance (Eq. (1.25))
has been enforced duringMSMestimation [71]. Theminimal andmaximal components
of the second (and higher) right eigenvector(s) indicate the microstates between which
the process shifts probability density. The relaxation timescale of this exchange process
is exactly the corresponding implied timescale, which can be computed from its corre-
sponding eigenvalue using Eq. (1.26). In the projection onto the first two TICA compo-
nents, we identify the slowest MSM process as a probability shift between macrostate
S1 and the rest of the system, with macrostates S4 and S5 in particular (Fig. 1.6c).
The mean first passage times (MFPTs) out of and into the macrostate S1 compute to

direction mean / ns std / ns
S1 → S(2,3,4,5) 9.0 ± 1.9
S(2,3,4,5) → S1 2496.4 ± 470.0

using the Bayesian MSM.
TPT [76, 77] is a method used to analyze the statistics of transition pathways. TPT as

implemented in Ref. [48] can be conveniently applied to the estimated MSM. Here, we
compute the TPT flux betweenmacrostates S2 and S4 (Fig. 1.6d). The committor projec-
tion onto the first two TICA components shows that it is constant within themetastable

24



Introduction

states defined above. Transition regions (macrostates S(1,3,5)) can be identified by com-
mittor values ≈ 1

2 .
The transition network can be additionally visualized by plotting representative

structures of the five metastable states S(1−5) according to their committor probabil-
ity (Fig. 1.7). It is easy to see from this depiction that the dominant pathway from S2 to
S4 proceeds through S5.

1.3.10 VAMPnets

The above presented workflow represents estimation, validation, and analysis of classi-
cal MSMs. With the advent of deep learning (DL) methods in recent years, efforts were
taken to cast this multi-step procedure into an end-to-end DL framework. A key de-
velopment to that end was the derivation of variational scores that yield loss functions
for the underlying optimization problem, in particular the VAMP scores (cf. Sec. 1.3.2)
that can be used to optimize for basis functions that represent the slow dynamics of the
system. Given that these basis function often are highly nonlinear, artificial deep neu-
ral networks are a good candidate for the task, an idea that was implemented under the
name VAMPnets [78].
Summarizing Ref. [78], VAMPnets define two deep neural network lobes that encode

the molecular configurations qt and qt+τ at times t and t+ τ , respectively. The neural
network lobes represent the basis functions χt and χt+τ (cf. Sec. 1.3.2). In practice,
both lobes usually share weights, i.e., χ = χt = χt+τ . In that case, the variational
principle (Sec. 1.3.2) simplifies to using the same function for both t and t + τ . The
output layer of the neural networks has a defined number of nodes i; it is defined such
that

∑
iχ(q)i = 1 and χ(q)i ≥ 0 ∀ i. Though not being a requirement, this choice

allows us to interpret the neural network outputs as coarse-grained representations of
the state space, i.e., the probability of belonging to a certain metastable state i.
The deep neural network parameters are optimized by first evaluating the covariance

matrices using Eqs. (1.31) and by computing the approximated Koopman matrix from
them using Eq. (1.32). Different VAMP-scores can be estimated now (cf. Eq. (1.33)),
including the VAMP-2 score that was used in the original VAMPnet paper [78] or the
VAMP-E score proposed in Ref. [50]. Whichever score is chosen, its negative is sub-
sequently used as a loss function. As all involved operations are differentiable, the
score can be minimized to obtain the optimal neural network weights. Please compare
Sec. 6.4 for more details on VAMPnets and how to estimate them from data.
It is worth noting the relationship between VAMPnets and MSMs at this point.

MSMs, as introduced here, can be seen as approximations to the PF operator (Sec. 1.1.5),
whereas VAMPnets work with Koopman operators (cf. Sec. 1.3.2). These operators,
however, are adjoint to each other [53], i.e., they carry the same information content
encoded in a different way. Therefore, we can obtain a transition operator from VAMP-
nets that, in the special case of equilibrium sampling and crisp state assignments, is
equivalent to the transition matrix.
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This transition operator can be viewed as the Koopman operator in a whitened space,
i.e., is accessible by awhitening operation of theKoopman operator in the original space
K̄:

K̄ = C1/200 C−1
00C0τC−1/2

ττ (1.36)
→ P̃ = C−1

00C0τ (1.37)

In the case of anMSM, this definition encodes themaximum likelihood estimator of the
transition matrix [71]: With indicator basis functions (Eq. (1.17)), C0τ becomes the so-
called count matrix and C−1

00 is a diagonal matrix with elements of inverse total counts
per state. However, we note that in a usual non-equilibrium-sampling situation, P̃ only
approximately satisfies the properties of a transitionmatrix. We can still apply the anal-
ysis tools shown in Sec. 1.3.9 and, in particular, follow slow processes along the eigen-
vectors of that matrix.

1.4 Modeling molecular machines

In the previous Chapters, theory and methods have been discussed for the purpose of
modeling the kinetics of biomolecular machines. However, we have not mentioned
what biomolecular machines (or, more accurately, proteins) actually are, or why they
are important. As the application cases presented in this thesis (Chapters 4 and 5) are
studies of protein or protein-drug binding dynamics, we give a brief general overview
of the targets of these studies below.
Proteins are the major constituents of cells and fulfill most of a cell’s function. They

perform tasks ranging from enzymatic reactions through cellular signaling to immune
responses [79]. In other words, proteins enable life in all forms that we know, and are
therefore a fascinating and abundant research field. However, dynamics play a cru-
cial role for proteins to function, making them hard to fully describe by experimental
methods. Obtaining an appropriate description of protein dynamics necessitates spa-
tial and temporal resolutions of Ångstroms and nanoseconds, respectively, to capture
the underlying motions of single atoms. Achieving such resolutions experimentally is
difficult, if not impossible. However, computer simulations such as MD simulations
(Sec. 1.2) can aid in this task, providing mechanistic insights at theoretically arbitrary
spatio-temporal resolutions. Their predictions can be corroborated with experimental
studies or help to explain them [24, 36, 80].

1.4.1 Protein structure and dynamics

Proteins are macromolecules that consist of 20 different building blocks that are the
amino acids. These building blocks are chained up to an unbranched polypeptide chain
that can range from a few to thousands of amino acids in length. The sequence informa-
tion is read from the DNA in the cell nucleus, transcribed to an RNA sequence, trans-
ported from the nucleus to the cytosol, and finally translated into an amino acid chain
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by ribosomes. In brief, the translation of the RNA sequence into a protein requires for-
mation of peptide bonds between adjacent amino acids that is catalyzed by ribosomes,
and subsequent folding of the polypetid chain into a complex, three-dimensional pro-
tein structure [79].
The folding and structure of a protein is determined by different non-covalent forces

such as Coulomb interactions between charged amino acid side chains. Furthermore,
an important contribution to protein shape and stability is made by hydrophobicity of
certain amino acid residues, which causes hydrophobic side chains to cluster in the
protein core [79].
An interesting thought experiment, known as Levinthal’s paradox [81, 82], is to note

that each of the amino acids in a protein could be in one of multiple states. We could
conclude that the number of protein folds must be very large and that protein folding
must therefore be extremely slow (as in, too many conformations have to be sampled
in order to find the right one). However, it is paradoxically observed that most pro-
teins fold within seconds, which can be resolved by assuming that locally unfavorable
conformations have a higher energy than favorable ones [82].
In many cases, all information relevant for folding a protein into its native state

(in which the protein fulfills its function) is encoded in its DNA sequence, a postulate
known as Anfinsen’s dogma [83, 84]. A whole field of computational research has been
dedicated to predicting a three-dimensional protein structure from sequence alone, an
endeavor that culminated only recently in the development of a deep learning method
called AlphaFold 2 [85]. However, it should be noted that not all folding processes fol-
low this principle, as protein folding is not always self-catalized and, e.g., may require
molecular chaperones [79].
The details of protein folding are beyond the scope of this thesis. Most proteins fold

into a native state, which we here assume is measured experimentally (e.g., by X-ray
crystallography) and available to us. It should be noted, though, that in general, the
state of a protein under experimental conditions (e.g., crystallized proteins for X-ray)
may differ from the native state.
Under physiological conditions, proteins are subject to thermal fluctuations and

therefore do not rest in a single static structure. The high macromolecular complex-
ity fosters a complex dynamics that is expressed on a broad range of timescales [36].
Protein dynamics plays an existential role for function, for example in neurotransmit-
ter exocytosis [86], protein synthesis [87], the movement of molecular motors [88] or
active transmembrane transporters [89].
To assess the statistical nature of protein dynamics, we often refer to a protein’s en-

ergy landscape. The energy landscape of a protein, in brief, is defined by the energy
of a given protein conformation, i.e., it usually lives in a very high-dimensional space.
Protein dynamics had already been described by energy landscapes in themid-70s [90]
and gained popularity with the computational study of protein folding in the 90s [91].
Energy landscapes are therefore useful for understanding different kinds of protein dy-
namics. To achieve a human-readable model, energy landscapes are often projected
into a low-dimensional space such as a 2D map of a Ramachandran plot [92, 93]. We
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note that the choice of a meaningful space is crucial in this process, as the resulting
landscapemodel is fundamentally determined by this choice.
In this thesis, protein dynamics will instead be described byMarkovmodels. They do

not necessitate projections into a low-dimensional space but instead describe exchange
kinetics between metastable (protein) states. Compare Sec. 1.3 for a comprehensive
discussion of Markov models.

1.5 Conceptual problems with existing kinetic modeling approaches

In the Sections 1.2 and 1.3, we have reviewed the basics of MD simulations and MSM
analyses, and discussed the sampling problem that arises from the gap between integra-
tion time steps and biological timescales (Sec. 1.2.5). It has additionally become clear
(Sec. 1.4) that not only time plays a role, but also space: Proteins are macromolecules
and therefore are intrinsically high-dimensional in their Cartesian description. For ex-
ample, our model of the TMPRSS2 serine protease domain (Chapter 5) has 3611 atoms
(or 33,990 atoms with explicit water molecules), yielding 3× 3611 = 10,833 Cartesian
dimensions for the molecule alone. This poses computational and, especially, memory
burdens not only for MD simulations but also for kinetic modeling methods.

1.5.1 The scaling problem of global states

1 domain
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24k entries
3 domains
9k entries

4 domains
3k entries

5 domains
1k entries

6 domains
833 entries
7 domains
292 entries
8 domains
249 entries
9 domains
194 entries
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Figure1.8: Size scaling of all proteins found inUniProt [94]. Number of amino acids per domain is depictedbyblue
histograms, number of amino acids of the full protein in grey. The number of proteins in a specific group, i.e.,with
a fixed number of domains, is annotated.

The paradigm of global models is directly mirrored in the descriptors that have been
used to model biomolecules: Simple one-dimensional molecular features are used, e.g.,
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in protein folding, such as RMSD to a reference structure (usually to the folded state),
the fraction of formed native contacts [95, 96], or solvent accessible surface area [97].
Low-dimensional descriptors, often denoted as collective variables (CVs), have been

applied to great success in metadynamics [98–100] and related enhanced sampling
methods. Although enhanced sampling is out of scope of this thesis, we note that the
choice of CVs entails a definition of a basis function that represents the global phase
space of a protein. CV-based methods are subject to the same intrinsic scaling problem
as described above, although biasing approaches mitigate the problem to some extent.
This becomes particularly clear when considering methods such as infrequent metady-
namics [101] that aim to extract transition rates between (global) metastable states.
Furthermore, high-dimensional feature functions such as backbone dihedral angles

or minimal residue-residue distances have been used [97, 102]. As kinetic modeling of-
ten requires to work in a low-dimensional space, methods such as principal component
analysis (PCA) [103, 104] or TICA [69] are often applied tomap hundreds or thousands
of feature dimensions into a meaningful lower-dimensional subspace. In general, this
mapping is still a descriptor of a global state space.
A special case is hierarchical TICA (hTICA) [105] that, motivated by the highmemory

demands of TICA, estimates TICA approximations to sub-sets of input features (termed
level 1 TICA) to subsequently combine their dominant eigenfunctions into a level 2
TICA. As level 1 TICA can in principle be estimated in a spatially distributed fashion,
hTICA canmethodologically be considered a precursormethod of IndependentMarkov
Decomposition (IMD, Sec. 3). However, to our knowledge, hTICA has not been used to
model spatially distributed local features in the sense of IMD.
Put in a broader context, time series analysis methods are often developed to work

on global states. Among others, this includes MSM related methods such as HMMs
[57, 59, 106] (Sec. 1.3.3) or augmented Markov models [107]. The concept of a global
state description is hidden in linear dimension reductionmethods such as the ones cited
above, as well as in deep learning frameworks such as VAMPNets [78] (Sec. 1.3.10) or
auto-encoder based methods [108, 109]. Furthermore, global state descriptions are
not limited to the field of computational molecular biology but can be found in other
transfer operator derived techniques such as the ones presented in Ref. [15].
However, the sampling demands for global kinetic models increase drastically for

large systems, or in other words: The bigger the system, the more data we need to es-
timate a kinetic model such as an MSM. Driven by the curse of dimensionality [110,
p. 7], the number of global states of a molecular system scales exponentially with sys-
tem size [111], imposing a practical limit to any method that directly attempts to dis-
cover all these states and quantify exchange kinetics between them. In fact, larger sys-
tems require more data but are simultaneously also more computationally expensive
to simulate–the vicious cycle of molecular dynamics (MD) simulations. Decomposing
systems into smaller, weakly connected subsystems (or local domains) does not suffer
from the same scaling problem, given that such a decomposition can be found. It can
be viewed as a dynamical extension to describing molecular machines as consisting of
multiple domains (Fig. 1.8) that, structurally, are often treated independently of each
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other. As most existing methods rely on a global description of state space, the main
objective of the methods developed here is to deal with the described scaling problem
by decomposing the underlying dynamics into local domains.
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2
Overarching interpretation, evaluation, and

discussion

2.1 Contributions of this thesis

2.1.1 Decomposing systems into smaller domains

In this thesis, we provide a possible remedy to the explosion of global state space num-
bers in kinetic modeling. To this end, we advance theMSMmethod (cf. Sec. 1.3) to spa-
tially decompose global systems into local, independent Markovian subsystems or do-
mains. Instead of a global state description, e.g., expressed by a simple integer, we use
a set of local states describing individual, independent domains akin to an Ising model
(cf. Chapter 7). In Chapter 3, we focus on developing the mathematical framework to
describe such decomposed dynamics. We derive the underlying transfer operator de-
composition for truly independent systems, which, for MSMs, is given by a Kronecker
product: A globalMSM transitionmatrixP decomposes into transitionmatricesPi and
Pj that describe independent domains i and j, respectively,

P = Pi ⊗ Pj. (2.1)

As we show, this decomposition can be generalized for other dynamical operators and
arbitrary numbers of independent systems.
The first key contribution of this thesis are two methods to estimate such a dynami-

cal decomposition from data. First, we implement independentMarkov decomposition
(IMD), which decomposes MSM transition matrices as shown in Eq. (2.1). We exploit
properties of the Kronecker product [1] to find a domain decomposition with a network
analysis (Chapter 3). To this end, we use the discrepancy between pairwise and the
product of two local VAMP-n scores Rn [2] (cf. Sec 1.3.2) to measure dependency be-
tween these domains,

d(i, j) =
∣∣Rn(P)−Rn(Pi) · Rn(Pj)

∣∣ . (2.2)
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The dependency equals to zero for truly independent systems, which represents a nec-
essary but not a sufficient condition for independence.
In Chapter 3, we demonstrate that IMD can save three orders of magnitude of sam-

pling data compared to MSMs when applied to a truly independent numerical bench-
mark system of a tetrameric ion channel [3]. Using both analytical and numerical anal-
yses, we find that IMD can be applied and is robust even in the presence of weak cou-
plings (for analytical results, compare Appendix A.4).
Second, we develop a deep learning method to estimate a dynamical decomposition

from data, called iVAMPnets (Chapter 6). To this end, we derive a loss function L that
combines the dependency score (Eq. (2.2)) with the variational principle for Markov
processes (VAMP) (cf. Sec. 1.3.2). Making use of the VAMP-E score RE developed by
Wu & Noé [2], its functional form is given by

L = −
∑
i<j

Rij
E + ξ

∑
i<j

|Rij
E −Ri

E · Rj
E|

Rij
E

. (2.3)

The first sum accounts for the VAMP, i.e., is needed to find slow basis functions of do-
mains i and j. The second term penalizes dependency between these domains akin to
the dependency score. The parameter ξ is a scaling factor that balances these objectives.
The loss function is evaluated over all pairs of domains to secure the sampling advan-
tage of IMD, i.e., a global model of the kinetics is estimated at no point. The VAMP-E
score, in general, measures deviations between estimated and true dynamics and is con-
structed such that it maps local features (using the independence assumptions) into
joint spaces (not using independence assumptions). Additional to the loss function,
iVAMPnets come with a neural network architecture featuring a trainable mask that
identifies independent domains and assigns them to protein residues.
From a practical perspective, IMD and iVAMPnets add two contributions to Markov

modeling, given that a system indeed consists of weakly or uncoupled domains. a) Sam-
pling advantages, i.e., local models can be estimated with much less data compared
to global state MSMs. This advantage is analyzed in detail in Chapter 3 and particu-
larly used in Chapter 4. b) Models can be estimated at regions of interest (ROIs), if
these are dynamically independent, therefore simplifying estimation as well as analy-
sis tasks. E.g., it is much easier to model a single protein ROI than a full protein – less
degrees of freedom have to be accounted for, discretization can be conducted in a lower-
dimensional space, and less (metastable) states need to be interpreted. Advantage b)
becomes especially evident when considering the conformational switches discussed in
Chapter 4 or modeling drug-binding kinetics in Chapter 5.

2.1.2 Applying decomposition methods to molecular biology

The second key contribution of this thesis are application studies that tackle computa-
tional molecular biology questions, using the methods sketched above. In Chapter 4,
we apply IMD to MD data of synaptotagmin-1 (syt) C2A, which is a calcium sensor im-
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portant for neurotransmitter release. This protein system cannot be evaluated with the
classical MSM approach as the available sampling is too sparse to capture all global
state-to-state transitions. IMD therefore provides a means to analyze its mechanism of
action.
Syt C2A is a member of the C2 domain family that has 146,000 sequences reported

in pfam [4]*. C2 domains are proteins that bind to phospholipids, e.g., in a membrane,
and are often dependent on Ca2+ ion binding [5]. They consist of around 130 amino
acid residues and form a beta sandwich structure. C2 domains are functionally promis-
cuous protein modules used in signaling and membrane trafficking [5]; their function
can generally be described as ”attach[ing] their resident proteins to phospholipid mem-
branes” [6], a process that can be regulated by Ca2+ concentration.

1

2

3

Figure 2.1: Symbolic depiction of a chemical synapse [7, 8, p. 1072]. Neurotransmitters are depicted as filled
magentapolygons that start in a vesicle (1) and, in thepre-fusion state, are attached to themembranewith SNARE
proteins (grey sticks, 2). Upon calcium influx (blue dots), the calcium sensor synaptotagmin-1 (red circles) binds
the ions, the vesicle fuses with themembrane and neurotransmitters are released to the synaptic cleft (3).

A well-studied function of C2 domains is their role in the chemical synapse, where
neurotransmitter release is triggered via syt [9]. Here, C2 domains play the role of a
molecular switch that is activated by the local Ca2+ concentration at the release site [10]
as sketched in Fig. 2.1. In short, to enable fast neural exocytosis upon calcium influx,
the neural vesicles are primed, i.e., they are fixed close by the membrane by the solu-
ble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) complex. Mem-
brane fusion, the energetically favorable next step, is clamped by the SNARE complex
in concert with syt. Activated by the nerval membrane potential, calcium channels re-
lease ions into the synapse that bind to syt, causing conformational (cf. Chapter 4) and
charge [11] changes that lead to syt-phospholipid binding and, ultimately, tomembrane
fusion [8, 9].
Neural exocytosis from the primed vesicle is extraordinarily fast and occurs on time-

scales below 100μs [8]. As the details of conformational changes in syt C2A that are
triggered by calcium binding are not well understood, we apply IMD (Chapter 3) to
analyze these phenomena in atomistic detail. We approximate different protein loops
as dynamically independent local Markovian domains (here termed conformational

*Accession number PF00168.
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R199

R199

Figure 2.2:Metastable structures of an IMD subsystemmodel as a function of calciumbinding, highlighting R199.
Extracted from Fig. 4.3 [12].

switches) and assess how the dynamics in each of these domains change upon calcium
binding. In particular, we find that calcium enables an arginine residue (R199) to be
solvent-exposed (compare Fig. 2.2 for the structures). Given that R199 is crucial for
membrane penetration [13], among other functions, this calcium-triggered conforma-
tional change may play a functional role for fast neurotransmitter release.
We augment our IMD model of syt C2A by assessing interactions between local do-

mains in a subsequent step, an enhancement to IMD that goes beyond Chapter 3. We
use a method connected to the estimated hidden Markov models to filter the local dy-
namics into simplified time-series to conduct information theoretic analyses. Again, we
find that calcium binding has an impact, increasing directional information exchange
between the domains. Our analysis sheds light on the dynamics of syt C2A and provides
a quantitative, mechanistic model of protein kinetics as a function of calcium binding.
In Chapter 5, IMD is used to study the drug-binding kinetics of a serine protease.

Serine proteases are enzymes that cleave peptides. Being present in organisms from
viruses through prokaryotes to eukaryotes, serine-proteases are often characterized by
a so-called catalytic triad that is usually formed by a nucleophilic serine, a histidine,
and an aspartate [14]. For example, trypsins are a protein family of digestive enzymes
that fall into the super-family of serine proteases, featuring about 62,000 family mem-
bers [4]*. Trypsin (the enzyme that gave its name to the family) is produced in the
human pancreas and is secreted to the duodenum where it cleaves polypeptides into
smaller ones [7].
However, there are a variety of other functions that mammalian trypsins perform,

such as in the immune response, blood coagulation, and fibrinolysis [14]. The trypsin
family member studied in this chapter is the transmembrane protease serine 2 (TM-
PRSS2). It is highly expressed in the prostate epithelium compared to other human
cells and has been studied in the context of prostate cancer [17, 18]. The function of TM-
PRSS2 in healthy humans is unknown, but it has been shown to be important for, e.g.,
viral entry of influenza A and corona viruses [19–24]. Its domain structure is shown in
Fig. 2.3. In particular, TMPRSS2 gained attention during the SARS-CoV-2 pandemic as
a factor that facilitates viral entry [25]. It is therefore a possible drug target to mitigate
infection by the corona virus. It has been found to be inhibited by synthetic drugs such
as camostat and nafamostat [25–27] as well as protein inhibitors [28, 29].

*As by the number of reported sequences in pfam [4], accession number PF00089.
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TMDPeptidase S1 SRCR LDL

Figure 2.3: Domain structure of TMPRSS2 (from UniProt [15] accession number O15393) alongside a homology
model of the Scavenger receptor cysteine-rich (SRCR) protein with the catalytically active peptidase S1 domain.
Low-density lipoprotein (LDL) receptor and transmembrane domain (TMD) are not structurally resolved [16].

In Chapter 5, we shed light upon the mechanism of inhibition with nafamostat and
camostat by modeling the active site of TMPRSS2 with the drugs as a dynamically inde-
pendent local domain, i.e., as a single IMD domain. Our main contribution is a model
of the mechanism of action of these drugs, which includes the formation of a reactive
Michaelis complex (MC) and a subsequent covalent bond formation between enzyme
and drug. Even though the covalent bond formation cannot be observed with MD, we
reason that the differences in drug potency between camostat and nafamostat arise
from the differences in MC populations. As we show here next to our experimental
results, MC populations indeed show a good agreement with drug potency:

drug IC50 MC population
(experimental) (computational)

nafamostat 55 nm 3.1%
camostat 142nm 1.0%

The IC50 denotes the drug concentration that is sufficient to block 50% of the enzy-
matic activity in the assay presented in Chapter 5. A more effective drug needs a lower
concentration, which corresponds to a higher MC population. This model is corrobo-
rated by theMC population of GBPA (0.6%), ametabolite of camostat that is less potent
than camostat [27]. Our computational model therefore provides a heuristic to quanti-
tatively describe drug potency. Furthermore, it yields structural information about the
drug binding modes in the enzymatic active site.

2.1.3 Augmenting decomposition methods, understanding their context

In Chapters 4 and 5, we apply IMD to decompose large, macromolecular systems into
smaller ones. However, in both application studies, we use handcrafted decomposi-
tions of proteins into dynamically independent local domains. To make this approach
more systematic and less dependent on structural intuition, we develop an end-to-end
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deep learning method that combines IMD with VAMPnets [30]. To this end, we use
the loss function presented in Eq. (2.3) (Chapter 6). The resulting method, iVAMPnets,
provides an automated procedure for finding an optimal domain decomposition while
simultaneously modeling the slow exchange kinetics at local ROIs.
iVAMPnets is tested and validated using numerical benchmark systems with known

ground truth. It successfully decomposes these into domains and models their local
dynamics independently. For example, a system consisting of ten independent 2-state
subsystems can be solved, i.e., each subsystem feature is successfully identified from
the data and the implied timescales are recovered. For comparison, a global model
would need to describe all 210 × 210 state-to-state transitions. To validate the method
with a high-dimensional MD application case, we revisit syt C2A (cf. Chapter 4). We
show that iVAMPnets identifies domains that are congruent to the ones identified by the
network analysis presented in Chapter 3 (Sec. 3.3.3). Furthermore, local loop dynamics
are described by high-resolution models (cf. Appendix D.4) that are comparable to the
in-depth analysis conducted in Chapter 4. Therefore, iVAMPnets provide a systematic
approach for modeling local dynamics of high-dimensional MD systems.
Lastly, in Chapter 7, we generalize our decomposition approach and discuss IMD and

iVAMPnets in the context of other methods that use spatial decomposition techniques
for kinetic modeling. To this end, IMD and iVAMPnets are interpreted as a truncated
series expansion and related to the way we formally describe transfer operators, which
is explained below using IMD and the transition matrix decomposition Eq. (2.1) as an
example. Transition matrices (as well as any other matrix or, more generally, tensor)
can be written in different formats, e.g., the canonical format [31]: A matrix P ∈ RN×N

can be expressed as a sum over Kronecker products of smaller matricesPk
i ∈ Rn×n with

N = nd,

P =
r∑

k=1

d⊗
i=1

Pk
i . (2.4)

The canonical rank r is intrinsic to the matrix, and d ∈ N+ is a model parameter that
describes the number of product splits. Although not required, we assume that all Pk

i
have the same size for simplicity. This reformulation, in general, does not change the
information content, i.e., can be understood as a lossless compression. However, it has
advantages over a densematrix description if the rank r is low, as thememory consump-
tion of a dense matrix scales with O(N2) = O(n2d). In contrast, matrices stored in the
canonical format do not scale exponentially with system size but withO(r·n2 ·d), paving
the way to escape the curse of dimensionality [31].
In particularmotivated by suchmemory demands are advances in the appliedmathe-

matics community that build upon rewriting transitionmatrices (or in general, tensors)
into more favorable formats. An example is the tensor-train format [31, 32] which de-
composes a given tensor into a chain-like network of low-dimensional tensors. Tensor-
trains were shown to be appropriate for systems with nearest-neighbor interactions
such as Ising models [33], which are also discussed in Chapter 7. IMD is a rank 1 de-
composition of a transition matrix, i.e., it truncates the series expansion after the first
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term. As detailed in Chapter 3, IMD exploits weak couplings between (local) domains
of macromolecules to find this decomposition, i.e., the series expansion is exact only in
the case of fully independent domains. In general, IMD represents a first-order approx-
imation (or, in other words, a lossy compression) that neglects coupling terms.

2.2 Discussion and conclusions

2.2.1 Successes and caveats of decomposition methods

In this work, we have identified a fundamental scaling problem with the kinetic model-
ing of large macromolecules, which arises from a negative synergy between the curse of
dimensionality and the classical MD sampling problem: Larger systems require more
data for kinetic modeling – at the same time, generating this data becomes computa-
tionally more expensive (cf. Sec. 1.5). We have discussed a possible remedy that chal-
lenges the current paradigm of global protein descriptors (cf. Sec. 1.5) by decomposing
global dynamics into a coupling of local ones. To this end, we have proposed a local
approach to Markov modeling that decomposes a protein (or any other complex) into
smaller local domains, given that these domains are sufficiently weakly coupled. This
idea was cast into independent Markov decomposition (IMD, Chapter 3) and iVAMP-
nets (Chapter 6), two methods that can be used to a) find a domain decomposition and
b) model single domains independently of each other. IMD and iVAMPnets have been
derived by decomposing the underlying transfer operator (assuming that the domains
are truly independent), validated with appropriate benchmark models, and shown to
have practical applicability to high-dimensional MD data. In particular, both method
implementations have been proved to be stable even for high-dimensional systemswith
weak couplings, and to be a reasonable approximation of the underlying dynamics.
However, the applied decompositions of transfer operators presented in Chapter 3

(e.g., Eq. (2.1) for transition matrices) strictly applies only to the case of truly uncou-
pled dynamical systems. Therefore, the downstreammethodological results, including
IMD and iVAMPnets, are strictly true only in the case of fully uncoupled domains, a
case that may be rarely applicable to real biological systems. To prove the applicability
of this approximation, both IMD and iVAMPnets are evaluated with systems of various
degrees of coupling, showing that themodeling errormade in these cases is within toler-
ance and that the results indeed mirror ground truth. As the used benchmark systems
range from simple toymodels to high-dimensionalMD simulation data, we believe that
IMD and iVAMPnets are good approximations even if domains are only approximately
independent.

2.2.2 How local descriptions affect application studies

We applied IMD to two problems of computational molecular biology: First, we have
provided an IMDmodel of syt C2A, which is a small protein in the neurotransmitter re-
lease machinery (Chapter 4). This model relies on the sampling advantage of IMD over
MSMs. Aswe show later usingVAMPnets (AppendixD.3), the availableMDdata indeed
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does not sample all possible transitions in the global space, i.e., would not be sufficient
to estimate a global state MSM. Therefore, Chapter 4 successfully demonstrates that
decomposition approaches such as IMD can mitigate the scaling problem of molecular
kinetics modeling.

However, IMD has been carried out manually in Chapter 4 as the dependency score
(Sec. 3.2.3) had not been developed at the time. Therefore, the decomposition into
domains is approximate and guided by structural intuition. Though it can be mostly
reconciled when using systematic approaches such as network-based pairwise depen-
dency score analysis (Sec. 3.3.3) or iVAMPnets (Sec. 6.2.5), a new modeling error is
introduced here. Even if slow orthogonal degrees of freedom are ruled out by careful
MSM validation tests (Appendix B.2.4, also compare Sec. 1.3.8), a more systematic way
of partitioning systems is desirable. This issue has been addressed in Chapters 3 and 6.

Second, we used IMD to analyze drug binding to the catalytic pocket of the serine
protease TMPRSS2 (Chapter 5). We provide a local Markov model of the drug binding
kinetics, which, in concert with our experiments, successfully establishes a computa-
tional surrogate for the potency of TMPRSS2 inhibitors. As we show, the drug binding
process is governed by the dynamics of the binding pocket, and therefore IMD offers
a pragmatic way of modeling it. By removing other dynamical processes from the pic-
ture, a high-resolutionmodel of drug binding can be achieved and validated experimen-
tally. Potentially interesting, orthogonal processes are excluded from this analysis, i.e.,
focussing on one specific domain (active site and drug) is a modelers choice. Other do-
mains of TMPRSS2 could hypothetically be modeled as well but were not of interest for
the underlying goal to understand the inhibition mechanisms of a potential SARS-CoV-
2 drug.

Due to the lack of a crystal structure, Chapter 5 is based onMDdata seeded from a ho-
mology model which was chosen based on the properties and stability of its enzymatic
active site. Therefore, a comprehensive study of the whole protease domain and sub-
sequent domain decomposition, e.g., using iVAMPnets (Chapter 6), though desirable,
would likely not have succeeded using the same data. As a consequence, the identifica-
tion of the analyzed IMD domain has not been carried out using the dependency score
(Sec. 3.2.3) or related methods. Instead, the domain identification is based on two fac-
tors: For one, wedrawon establishedbiochemical knowledge (cf., e.g., Ref. [14]) to iden-
tify the enzymatic active site and substrate recognition pocket. For the other, local do-
mainMSMsare validated carefully using implied timescales andChapman-Kolmogorov
tests (cf. 1.3.8) as it had been done in Chapter 4. Thus, slow orthogonal degrees of free-
dom such as influences from other parts of the protein are ruled out. We note that
converged MSM validation measures are a necessary but not a sufficient condition for
independence. However, given the good agreement to our experimental results, we be-
lieve that our model is an appropriate representation of the drug binding process. This
assessment is backed by the crystal structure of TMPRSS2 in complex with nafamostat
that was published about one year after Chapter 5 [34], validating our model of the
drug-binding mode of nafamostat. Even though an approximation, IMD can therefore
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be used as a pragmatic approach to dealing with time-critical questions and helps pri-
oritizing dynamical features that are important to a given problem.

2.2.3 Manual decomposition vs. end-to-end learning

In the previous chapters, in particular Chapter 3, we performdecomposition and kinetic
modeling in two sequential steps, creating a separation between system decomposition
and kinetics thatmay contribute tomodel inaccuracies. This issue is tackled by deriving
a loss function (Eq. (2.3)) that combines both, dependency score (Eq. (2.2)) and the
variational principle for Markov processes (VAMP) [2] in Chapter 6.
The local approach to Markov modeling is complemented by an automated end-to-

end deep learning framework, called iVAMPnets (Chapter 6). Domain decomposition
and local kinetic modeling can now be conducted simultaneously. In comparison to
the manual decompositions performed in Chapters 4 and 5, iVAMPnets rely on a quan-
titative measure of independence rather than structural intuition. Building upon the
decomposition procedures developed with IMD (Chapter 3), iVAMPnets cast the whole
idea of decomposedmodeling into a single optimization problem, providing an easy-to-
use modeling tool for the kinetic modeling of large macromolecular systems. Harvest-
ing from deep learning and MSM decomposition methods, iVAMPnets have succeeded
in automatizing domaindecomposition andkineticmodeling ofweakly coupled systems
even in the case of highly complex and globally unconverged data samples.
However, optimizing for a representation of the slow dynamics while simultaneously

decomposing a system intomultiple domains is a hard optimization problem (also com-
pare Chapter 7). Balancing these two objectives can be a non-trivial task. Even though
iVAMPnets provide amuchmore systematic framework to decompose a system as com-
pared to our previous work (Chapters 4 and 5), there is now less control over the in-
termediate steps. E.g., domain decomposition cannot be treated as an independent
problem anymore. Additionally, an optimal representation of the independent Marko-
vian dynamics may not directly give access to a human-readable domain assignment.
This challenge is met, e.g., by regularization techniques that ensure crispness of the do-
main identification mask. We equipped iVAMPnets with a number of new validation
measures tomake sure that valid decompositions can be reached even for unknown sys-
tems. To guide future application studies, we additionally supplemented this chapter
with a counter example of a non-decomposable system (Sec. 6.2.6). Therefore, we are
confident that iVAMPnets is a useful tool that is capable to systematically decompose
macromolecular systems and to study their local kinetics.
In comparison to IMD (Chapter 3), the transfer operator found by iVAMPnets is a

Koopman operator, i.e., an operator that does not propagate probabilities in time but
observables (cf. Sec. 1.3.2). Therefore, we cannot directly derive physical quantities
such as rate models from the local VAMPnets as done, e.g., in Chapter 4. To that end,
augmenting iVAMPnets with physical constraints, as done by Ref. [35], is an important
task for future work.
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2.2.4 Assessing couplings

Furthermore, not every system can be partitioned into smaller parts, and most real-
world problems may range somewhere between strongly coupled and almost indepen-
dent. In this thesis, physical coupling terms have been excluded almost entirely from
the analyses and method developments, a first order approximation that enabled the
derivation of a simple formalism and the exploitation of vast sampling advantages.
Analyses of couplings, such as performed by the dependency score (Chapter 3) or in-
formation theoretic quantities (Chapter 4), are heuristics that do not represent physi-
cal coupling terms such as a coupling tensor for Ising models (cf. Sec. 7.6). They were
instead developed to work without the need to estimate a global transfer operator, a
route that was taken to not spoil the sampling advantages gained by IMD. Even though
the dependency score (Sec. 3.2.3) allows for a systematic and quantitative assessment
whether or not a system can be decomposed, it only measures deviations from the no-
coupling assumption and may not be regarded a quantitativemeasure of the degree of
coupling. Instead, it is a heuristic to separate strongly coupled fromweakly coupled do-
mains, the latter being amenable to IMD. It remains a task for future research to derive
a connection to a physical coupling model or to add coupling terms to the first order ap-
proximations suggested here, without fully sacrificing the gained sampling advantages.
To understand better how coupling terms relate to the presented methods, we have

linked various decomposition methods by rewriting the underlying decomposition as
a truncated series expansion Eq. (2.4) (cf. Chapter 7). We speculate that the coupling
terms may be hidden in higher order terms of the series expansion. However, we did
not find a direct connection between the latter and the dependency score, hampering
efforts to extract (approximate) coupling terms from IMD or iVAMPnets. Providing a
formal connection would be highly interesting as a means to quantify couplings, which
however may be a challenging task without knowledge of the global transfer operator.
Lastly, IMD and iVAMPnets are neither the only nor the first methods to describe

dynamics by decomposing systems into local domains. In Chapter 7, we put the con-
tributions of this thesis into a broader context, coining the umbrella termMarkov field
models (MFMs) to subsume the different incarnations of this idea. For example, dy-
namic Ising models are an MFM that features explicit couplings. Tracing dynamical
decomposition methods shows that the underlying problem, exploding state spaces, is
common to different scientific communities and has been dealt with for a long time.
Even though there are various models that describe decompositions into domains, ap-
proximate or exact, it is often not clear how to estimate such a model from data. IMD
and iVAMPnets have contributed to this more general problem as their applications are
not limited to computational molecular biology.
Being beneficial for independent or weakly coupled systems in terms of sampling

efficiency and expressiveness, MFMs come with challenges and open questions, too:
Estimating an optimal domain decomposition from data and modeling local kinetics in
these domains is a non-trivial task that still requires significant expert knowledge about
the studied system and the methods used to describe it. To make MFMs suitable for a
wide range of computational molecular biology applications, future research may focus
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on developing improved estimation procedures, in particular to further mitigate the
domain decomposition problem. Understanding MFM convergence behavior in data-
sparse situations may be crucial here, an aspect that was briefly touched in Chapter 3
using simple toy models (also compare Appendix A.6.2 for a system with coupling). Es-
pecially the important use case of sufficient local and insufficient global sampling is an
issue of high interest as it governs most estimation procedures. Additionally, model
uncertainties need to be further quantified to minimize systematic errors related to ne-
glecting or sparsifying system-intrinsic couplings.

2.2.5 General outlook

On a broader note, MD simulations have just crossed the exascale barrier with dis-
tributed computing on the folding@home infrastructure [36]. That said, larger and
more biologically relevant systems can be simulated with all-atom MD than ever, giv-
ing us the opportunity to observe, e.g., a whole SARS-CoV-2 virus in an aerosole par-
ticle [37] or a membrane model of the endoplasmic reticulum [38] in atomistic detail
through the computational microscope [39]. In other words, the gap between the sys-
tems studied in vitro and in silico is closing, promising exciting new insights intomolec-
ular biology in the coming years. We hypothesize that kinetic modeling methods will
follow that path, yielding new mechanistic insights and predictive models for future
biomolecular applications.
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Abstract

In order to advance the mission of in silico cell biology, modeling the interactions of
large and complex biological systems becomes increasingly relevant. The combination
ofmolecular dynamics (MD) simulations andMarkov statemodels (MSMs) has enabled
the construction of simplified models of molecular kinetics on long timescales. Despite
its success, this approach is inherently limited by the size of themolecular system. With
increasing size of macromolecular complexes, the number of independent or weakly
coupled subsystems increases, and the number of global system states increases expo-
nentially, making the sampling of all distinct global states unfeasible. In this work, we
present a technique called Independent Markov Decomposition (IMD) that leverages
weak coupling between subsystems in order to compute a global kinetic model with-
out requiring to sample all combinatorial states of subsystems. We give a theoretical
basis for IMD and propose an approach for finding and validating such a decomposi-
tion. Using empirical few-stateMSMs of ion channelmodels that are well established in
electrophysiology, we demonstrate that IMD models can reproduce experimental con-
ductance measurements with a major reduction in sampling compared with a standard
MSM approach. We further show how to find the optimal partition of all-atom protein
simulations into weakly coupled subunits.

Significance statement

Molecular simulations of proteins are often interpreted using Markov state models
(MSMs), in which each protein configuration is assigned to a global state. As we explore
larger and more complex biological systems, the size of this global state space will face
a combinatorial explosion, rendering it impossible to gather sufficient sampling data.
In this work, we introduce an approach to decompose a system of interest into separa-
ble subsystems. We show that MSMs built for each subsystem can be later coupled to
reproduce the behaviors of the global system. To aid in the choice of decomposition
we also describe a score to quantify its goodness. This decomposition strategy has the
promise to enable robust modeling of complex biomolecular systems.

3.1 Introduction

The dynamics of proteins and their functions are of key importance for biology. Molec-
ular dynamics (MD) simulations are a popular method for interrogating the motions
of proteins in various environments. A well-known limitation of MD is the timescale

53



Chapter 3

mismatch between simulations and real life. Despite advances in computer hardware
and algorithms, extreme timescale simulations remain orders of magnitude shorter
than many relevant protein processes. Since one requires sufficient numbers of ob-
servations in order to obtain statistical confidence, various strategies have been devel-
oped to address this. One approach, building Markov state models (MSM), enables the
construction of simple models of long-timescale molecular kinetics from many short
off-equilibrium MD simulations [1–6] – see Refs. [7, 8] for thorough reviews. MSMs
have successfully been built to obtain compact and yet accurate representations of the
kinetics of full proteins [9–16], protein-ligand [17–22] and even protein-protein sys-
tems [23].

Although MSMs have significantly helped to reduce the MD sampling problem, the
fundamental problem that arises from modeling increasingly large biomolecular sys-
tems remains. As protein complexes become larger, the number of uncoupled or weakly
coupled subsystems increases. If each of these subsystems contain two or more sub-
states, the number of global system states increases exponentially [24]. Therefore, any
model treating the whole system by means of a global state poses requirements on the
MD sampling that are fundamentally unscalable. This poses an inevitable problem as
evolution tends to lead to increased biological complexity, including the optimization
of processes through the formation of protein complexes and puncta [25–28].

In practice, many current models based onMD simulation of large biomolecular sys-
tems take the pragmatic approach of ignoring most of the system’s dynamics. For ex-
ample, if one is interested in how an ion channel conducts ions across a membrane,
it may be sufficient to prepare the system in a state of interest and collect sufficient
statistics of ion passages and perhaps local conformational changes of the selectivity fil-
ter residues, rather than trying to sample global conformational rearrangements of the
protein complex onmuch longer timescales. However, our field has a collective interest
in developing whole cell and systems modeling for in silicomedicine, which will neces-
sitate the eventual understanding of these large systems in a way that characterizes how
all their components interact, undergo transitions, and can be influenced by, e.g., drug
molecules, phosphorylation, and/or glycosylation states.

To this end, Noé & Olsson [24] have recently proposed dynamic graphical models
which attempt to decompose protein systems in a way similar to Ising or Potts models
– subsystems with states or “spins” that are coupled to one another. Dibak et al [29,
30] have developed a coupling of MSMs with reaction-diffusion dynamics in order to
establish an infrastructure in which MSMs can be integrated into whole-cell models.
Here we ask amore fundamental question, the answer of which is important to all these
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integrative approaches: given a large biomolecular system, how shouldwedecompose it
into subsystems, such that these subsystems can be described by independent or weakly
coupled MSMs?

Fragmenting proteins at the modeling stage is compatible with prior experience as
macromolecules are often sub-divided into structural or functional subunits [31]. There
is also evidence that proteins are decomposable into “quasi-independent groups of [spa-
tially adjacent] amino acids” coined “protein sectors” [32]. Furthermore, experimental
studies on drug binding or protein functional characterization often use isolated do-
mains or monomers with great success [33].

Estimating an MSM on the decomposed protein can significantly reduce the total
sampling necessary. From concepts in statistical physics, given a polymer of length N
where each subunit exists in one of k states, the total conformational space is expressed
as kN (cf. Fig. 3.1). Modeling subsystems of a constant size effectively restricts the
number of states that need to be sampled reversibly to a constant. Therefore exponen-
tially less sampling is required formodeling smaller subsystems as compared to a global
model [15, 24].

In this paper, we develop a mathematical framework of decomposing MSMs into lo-
cal subsystem MSMs, termed independent Markov decomposition (IMD, Sec. Inde-
pendent Markov decomposition), and propose a measure of decomposition quality, the
dependency score (Sec. An MSM score of independence). In the following, we refer to
IMD as the process of identifying subsystem MSMs and to an IMD model as a model
that describes a system as a set of independent, local Markovian subunits.

We speculate that the IMD strategy can forge a new connection to other uses ofMSMs
such as those employed by the neuronal and cardiacmodeling communities. There, phe-
nomenological MSMs parameterized from electrophysiology data are used to predict
the behavior of action potentials [34–39]. In Sec. Modeling a tetrameric ion channel us-
ing IMDwe describe how a decomposedMSM can be connected to a phenomenological
MSM. This new connection between fields brings us closer to our goals of understand-
ing these large systems and their behaviors, advancing in silico medicine. We further
showcase how the dependency score can be used to find an optimal partition of a system
that does not come with clearly defined independent subunits (Sec. Optimal indepen-
dent Markov partitions for tetrameric ion channels). We validate our approach with a
toy model, showing that the decomposition approximation is high quality and that the
proposed validation score works even with limited data (SI Appendix, Toy models). Fi-
nally, we demonstrate its applicability to an all-atomMDdataset of the Synaptotagmin-
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C2A domain (Sec. Optimal independent Markov partitions for all-atom simulations of
Synaptotagmin-C2A) and derive the graph structure of inter-residue dependencies.

2 3 4 5 6
# independent subsystems

102

103

104

# 
st

ep
s

independent models
full system model
pairwise models

Figure3.1: Scalingbehaviorof toy systemconsistingofn independent subsystemswith3 stateseach (SIAppendix,
Toymodels). Number of steps required to reversibly sample all transitions shown for proposed independentmod-
els (blue line), full system model (blue line) and pairwise models that are needed for computing the dependency
score (gray line). Shadowed areas indicate 95% confidence intervals.

3.2 Independent Markov Decomposition

We first describe IMD for discrete-state MSMs before generalizing it to time series with
continuous descriptors.

3.2.1 Markov State models

AnMSM consists of a discretization of molecular state space into a disjoint set of states
{S1, ..., Sn} and a Markov chain transition matrix P(τ) modeling a memoryless jump
process between these states. We can express whether we are in the ith state or not by
using indicator functions:

χi(x) =

1 x ∈ Si
0 otherwise.

(3.1)

The vector χ = [χ1, ...,χn]
⊤ is thus a “one-hot” (or binary) encoding that maps the

continuous state x to the MSM discretization. For this or any other choice of fea-
tures χ we can compute the instantaneous and time-lagged correlation matrices C00 =∑

tχ(xt)χ⊤(xt) and C0τ =
∑

tχ(xt)χ⊤(xt+τ ), respectively. For a fixed state discretiza-
tion, the transition matrix that has maximum likelihood and also maximizes the varia-
tional approach of conformation dynamics (VAC) [40] is:

P(τ) = C−1
00C0τ . (3.2)
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Let pt denote the probability distribution of being in any of the n states at time t, for
example p0 = [1,0, ...,0] denotes that the system starts in state 0 at time 0. This vector
can be evolved in time using the transition matrix, until it converges to the equilibrium
distribution π = limt→∞ pt:

p⊤
t+τ = p⊤

t P(τ). (3.3)

An important concept for optimizing the parameters or hyperparameters of MSMs
and other Markovian kinetic models is the variational approach for Markov processes
(VAMP) [41]. VAMP finds that a Markovian model that best approximates the high-
dimensional continuous dynamics maximizes the VAMP-n score:

Rn(P) =
∥∥∥C−1/2

00 C0τC−1/2
ττ

∥∥∥n
n

(3.4)

where we can either use n = 1 for the trace norm or n = 2 for the Frobenius norm. If we
run molecular dynamics at equilibrium conditions, we can employ correlation matrix
estimators that provide C00 = Cττ and symmetric C0τ (detailed balance). In this spe-
cial case, VAMP becomes the VAC mentioned above, and the variational score simply
becomesRn(P) = ∥P(τ)∥nn. In other words, the optimal MSM is the one that maximizes
the trace or the Frobenius normof the transitionmatrix, which is equivalent tomaximiz-
ing its eigenvalues. Since the eigenvalues equal the normalized time-autocorrelation of
the slowest processes [1, 42], the VAC tries to find the Markovian model that best re-
solves the slowest processes of themolecular process under investigation [40, 43]. For a
fixed state space discretization, optimizing the VAC results in the MSM estimator (3.2).
If we also want to search over different state space discretizations, we can use VAC or
VAMP as a score in a hyperparameter optimization problem [44] or optimize the VAMP
score while representing χ with deep neural networks, leading us to VAMPnets [45].

3.2.2 Independent Markov decomposition

Now we move beyond the common concept of modeling the dynamics of the entire
molecular system by a singleMSM and instead try to decompose the system into almost
independent MSMs. Let us start with the simple example shown in Fig. 3.2a, where a
molecule consists of two domains, A and B, that are each described by a two-stateMSM
describing whether the domain is “closed” (α, β = 0◦) or “open” (α, β = 90◦). We as-
sume that the kinetics of both domains are statistically independent, i.e. each domain
switches states independent of the states of the other one – we simultaneously have
pA,t+τ = PA(τ)pA,t and pB,t+τ = PB(τ)pB,t (Fig. 3.2b). As the MSMs A and B are statis-
tically independent, the probability distribution of the entire system follows Eq. (3.3)
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Figure 3.2: Operator decomposition and discretization on a testmolecule. (a)A testmolecule is decomposed into
two subsystems (blue and red). The two angles α and β span subspaces A and B corresponding to the two sub-
systems, respectively. The space Γ is composed of all system degrees of freedom. The space Ω is the Cartesian
product of A and B and its dynamics are described by Perron-Frobenius operators PA and PB, respectively. The
dynamics inΩ are given as the tensor productPA ⊗PB. (b) Themolecule hasmetastable states atα = 0, π/2 and
β = 0, π/2; the subspacesA andB can be discretized intoMSMswith transition probability matricesPA andPB.
The quantitiespij andqij are the transition probabilities from state i to jof subspacesA andB, respectively. (c)The
discretized dynamics inΩ are given by the tensor product PA ⊗ PB, yielding the four states of the full molecule.
(d) Illustration of the four possible states of themolecule and the transitions between them.

with

pt = pA,t ⊗ pB,t
P(τ) = PA(τ)⊗ PB(τ), (3.5)

where ⊗ is the Kronecker product [46] (see SI Appendix, Markov operators). The vec-
tor pt now contains the probabilities of being in the four combinatorial states (A and B
open, A open and B closed, A closed and B open, A and B closed), and P(τ) is the 4× 4
transitionmatrix between these combinatorial states whose transition probabilities are
simply products of the individual transition events in subsystems A and B (Fig. 3.2c,
d). The power of this approach is apparent when comparing Figures 3.2b and c: If
the dynamics in A and B are independent or almost independent, we can estimate the
sixteen transition probabilities that parametrize the whole system using only the eight
elements of the transition matrices of the subspaces. This advantage increases expo-
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nentially in larger systems: if we have N (almost) independent domains with m states
each, distinguishing all states would require us to sample and estimate an exponential
number of order ofm2N transitions, whereas a decomposition into independent MSMs
reduces this to a polynomial number of Nm2 transitions that can be scaled to large sys-
tems. From another point of view, IMD is more efficient because it obtains a greater
number of “effective” transition counts for the global model by applying the Kronecker
product (cf. SI Appendix, Effective counts and sampling). The above example trivially
generalizes toN systems withP(τ) =

⊗N
I PI(τ). We note that it is customary to dismiss

variables of the full state space Γ (Fig. 3.2a) that are assumed to average quickly, e.g.,
solvent degrees of freedom. Thus the modeled space Ω in practice only encompasses
the variables of interest, e.g., internal coordinates of a protein system.

3.2.3 AnMSM score of independence

In practice, subdomains of biomolecules or biomolecular complexes will not be exactly
independent. Moreover, the identification of a domain decomposition into almost in-
dependent subdomains is a non-trivial task. To enable algorithmic determination of
almost independent subdomains, we develop an independence score that quantifies de-
composition validity. To this end we come back to the variational approach Eq. (3.4).
Conveniently, matrix norms follow simple rules when applied to a Kronecker product
(SI Appendix, VAMP score decomposition). In practice, we will apply the trace and
Frobenius norms that correspond to the VAMP-1 and VAMP-2 scores of the Koopman
operator. The VAMP-2 score has successfully been used in many practical applica-
tions [16, 45, 47, 48]. If our molecular system consists of N independent subdomains
such that its global MSM is a Kronecker product of N subspace MSMs as described
above, its VAMP score is the simple product of VAMP scores (SI Appendix, VAMP score
decomposition):

Rn(P) =
N∏
I=1

Rn(PI). (3.6)

Here, Rn(·) denotes the VAMP-n score of the transition operator. It could be the trace
norm (VAMP-1) or Frobenius norm (VAMP-2) of the associated transition matrix. In
practical applications, the VAMP-n score could be rank-reduced, i.e., restricted to the
highest k < m singular values. Note that Eq. (3.6) is a necessary but not a sufficient
condition for Markov independence. Significant deviations from equality in Eq. (3.6)
indicate that the assumption of independence is invalid. However, if separateMSMsPI

can probe the samemolecular features, it is possible to satisfy Eq. (3.6) even though the
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subsystem MSMs are not statistically independent. Eq. (3.6) must therefore always be
used in conjunction with appropriate constraints. Here, we choose between different
ways to assign independent molecular features to different MSMs and check which of
these assignments best satisfies Eq. (3.6). In practice, we want to estimate an IMD
model because often we cannot compute the global MSM P due to limited sampling
(Fig. 3.1), and we consequently do not know Rn(P). Therefore, we choose to only check
the equality of Eq. (3.6) on pairs of subsystems A,B, i.e., Rn(PA,B) = Rn(PA) · Rn(PB).
We then search over possible partitions of the molecular system into subsystems by
evaluating the graph of pairwise dependencies d(A,B):

d(A,B) =
∣∣Rn(PA,B)− Rn(PA) · Rn(PB)

∣∣ (3.7)

In practice, computingPA,B involves a new estimate of the transition probability matrix
in the joint space of two systems. We show that our measure scales well with respect to
limited sampling (also compare SI Appendix, Toy models).

The product in Eqs. (3.6) and (3.7) is purely a result of the chosen basis set of
MSMs (Eq. (3.1), SI Appendix, VAMP score decomposition). In practical situations,
it is desirable to find a decomposition directly based on molecular features such as
distances or contacts instead of performing an MSM discretization and estimation
for each subsystem. When considering more general features χ, there are two main
changes to discrete-state MSMs: (i) observables are propagated by a different opera-
tor, called Koopman operator [49, 50], (ii) the joint space of observables is most eas-
iestly described by “stacking” observable feature vectors rather than by defining an
MSM discretization on the combinatorial space. For example, if ΨA = (ψ1A, ψ

2
A, . . .)

andΨB = (ψ1B, ψ
2
B, . . .) are the one-dimensional time series of features ψ ∈ R of two sys-

tems A and B, the joint space would be spanned byΨAB = ((ψ1A, ψ
1
B), (ψ

2
A, ψ

2
B), . . .). The

transfer operator describing the independent dynamics in joint space is thus a block
matrix of its constituting independent sub-operators (also called a direct sum, see SI
Appendix, Markov operators for details). This also means that independent subsystem
features are not correlated. We note that “stacking” in theMSM formulation would pro-
duce probability vectors not normalized to 1 and yield invalid (i.e., not irreducible)MSM
transition matrices in the joint space. The trace and Frobenius norm of the Koopman
operator thus decompose as sums such that the dependency score reads

d(A,B) =
∣∣Rn(KA) + Rn(KB)− Rn(KA,B)

∣∣ (3.8)
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where K, the Koopman operator, takes the place of the transition matrix P. See SI Ap-
pendix, VAMP score decomposition for the derivation. We note that even though dis-
cussingMSM artifacts is out of scope for this work, it is unclear how possible discretiza-
tion errors might propagate to the MSM-based dependency (Eq. (3.7)). However, such
artifacts are entirely ruled out when working in observable space (Eq. (3.8)).

3.3 Results

3.3.1 Modeling a tetrameric ion channel using IMD

In cardiac electrophysiology, Markov models have been used to model phenomenologi-
cal data from ion channels [37–39]. Ion channels are transmembrane proteins that re-
spond to physiological stimuli and selectively control the flow of ions in excitable cells.
Upon a change in membrane potential, voltage-gated ion channels undergo conforma-
tional changes that modulate ionic conductance. The symphony of ion channels col-
lectively facilitate the propagation of electrical signals in excitable tissues, such as the
heart and brain, and are important drug targets [51, 52]. The plethora of experimental
measurements of ion channel properties sets the stage for computational simulations
to providemolecular details andmechanistic insights [53]. Though possible to fit a phe-
nomenological MSM using data from electrophysiological experiments, atomistic mod-
eling remains out of reach due to the long timescales of channel opening. This is because
single gate activation events are rare, andmany ion channels havemultiple gates which
need to activate concurrently. Reversible samplingwill further be hampered by a combi-
natorial number of pathways that lead to a fully open channel. Wepropose that for cases
of non-cooperative gates, IMD can help solve this problem, which we demonstrate in
the following series of numerical experiments. We consider a voltage-gated tetrameric
potassium ion channel with four identical subunits, each with a voltage sensor. To con-
struct an IMD model, we exploit the independence of individual subunits or gates and
partition accordingly (Fig. 3.3a1). This produces fourmatricesPi ∈ R2×2, 1 ≤ i ≤ 4 that
describe individual gate opening and closing. As derived above, the Kronecker product
of subsystem transition matrices yields a transition matrix P ∈ R16×16 of the full ion
channel (Fig. 3.3a2). The 16 states enumerate all possible combinations of open and
closed gates of the full ion channel, a state space referred to as S̃ in the following. We
note that this decomposition is only possible between non-cooperative domains.
We construct a mapping to assign the 16 states of the transition matrix P to those

of a phenomenological MSM. Our reference empirical model is the one developed in
Ref. [54] for this channel (Fig. 3.3b). In Ref. [54], channel symmetry is used to define
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Figure3.3: Reconstructing theHodgkin-Huxleymodel froma simple discretemodel. (a)Pipeline of steps required
to assemble a full channel model from a single subunit model that describes opening and closing of a single sub-
unit in the vicinity of the others (step 1). Kronecker product between all four sub-unit models assembles a model
that still distinguishes between all combinatorial states (step 2). Empirical state definitions account for channel
symmetries (step 3). Black denotes open, white closed, and gray undefined subunit. (b)Graphical depiction of full
channelmodel in empirical state space. Note the symmetryof the channel, i.e. that at this stageonly thenumberof
opensubsystems is known. (c)Relaxation fromaclosed state into thenative state at63mV.Weshowconductance
predictedby IMDmodel (left column) and classicalMSM (right column) using different amounts of sampling. Note
that the classical approachonly yields results in thehigh sampling regimewhere all empirical states are connected.
Results are compared to the original Hodgkin-Huxleymodel (red dashed line). (d) Sampling time necessary to esti-
mate adecomposedMSM(left column) compared to a classical full systemMSM(right column) for ten realizations
of theMarkov chain. We show the percentage of fully connectedmodels in our ensemble of realizations (top row)
and the 1st and 4th implied timescale computed from it (bottom row). Note that for the classical MSM, extreme
amounts of sampling are necessary to even estimate all system-inherent implied timescales.

the full system states accordingly:

S =



C0 all gates closed

C1 1 gate open

C2 2 gates open

C3 3 gates open

C4 all gates open

Mapping of the transition matrix into the space of these empirical states can be ob-
tained by converting the empirical state definitions into crisp membership vectors
χs ∈ {0, 1}5, with each element indicating which empirical configuration a full sys-
tem configuration s ∈ S̃ belongs to. For example, the membership vector describing
any state sk with one open gate would be χsk = (0, 1,0,0,0), i.e., these states are asso-
ciated to macroconfiguration C1. The full membership matrix is constructed by stack-
ing χ = [χs1 ,χs2 , ...χs16 ] ∈ {0, 1}5×16. Subsequently, the transition-matrix is coarse-
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grained following [55, 56] Pempirical = Π−1
c χ

⊤ΠPχ ∈ R5×5 with Π = diag(π) the
diagonal matrix of the stationary distribution π in full space and in empirical space
Πc = diag(χ⊤π).

Choosing ratesα and β from the original work byHodgkin-Huxley [34] at a voltage of
63 mV, we produce a simple discrete model. Using this model, we can generate sample
trajectories from which to construct MSMs in accordance with Sec. Computational ex-
periments. We estimate amodel for the full system from this data by applying the afore-
mentioned pipeline. Using this derived full system model, experimental observables
from electrophysiology experiments can be assessed by relaxation of the Markov chain
from a non-equilibrium distribution (e.g., a closed configuration) into the equilibrium
at this particular voltage [57, 58]. We start from a configuration of fully closed states
and further assume that the channel only conducts ions if it is open, i.e., our observ-
able is only non-zero for the open state. This experiment is the computational analog
to a voltage jump experiment from resting to +63mV in voltage clamp mode. Shown
in Fig. 3.3c, the modeled conductance of the channel over time is reported. The pre-
dicted conductance time-series is compared with the numerically integrated ordinary
differential equation for the potassium ion channel derived byHodgkin andHuxley [34].
We find that the IMD model can accurately reproduce the full channel dynamics. IMD
models were built by separately fitting four single gate trajectories (i.e. a full system tra-
jectory split into its subsystems) and assembled using the aforementioned steps. For
comparison, traditional MSMs were fit to sample trajectories computed from the full
system transition matrix in its empirical state definition. We note that we compare the
sampling necessary for IMD models to the empirical 5-state formulation (which does
not resolve all 16 combinatorial states). In this way, we can rule out that the described
sampling advantages of IMD are an artifact of exploited channel symmetry. The re-
duction in the amount of sampling needed due to the use of IMD can be quantified in
terms of the length of simulation required to form a fully connected transition matrix.
In Fig. 3.3d we present the percentage of connected IMD models estimated on an en-
semble of ten realizations of the Markov chain and compare to a classical MSM. Note
that even though a necessary condition for MSM estimation, connectivity is not a qual-
ity criterion - we discuss approximation quality below. Connectivity is computed as a
function of simulated time (in ms), i.e., shows how probable a modeler can estimate a
connected Markov model, IMD or classical, from a fixed amount of sampling. We note
that the classical MSM approach can only estimate all system-inherent implied time-
scales when all empirical states are reversibly sampled, i.e., only for very large amounts
of data. In terms of model approximation quality, the higher computational efficiency

63



Chapter 3

of IMD is evident from the much faster convergence of implied timescales as a function
of simulation length (Fig. 3.3d, also note root-mean-square error between estimated
and ground truth eigenvalue spectra in SI Appendix, Fig. A.4). We find a reduction in
sampling by three orders of magnitude, from tens of seconds to tens of milliseconds
(Fig. 3.3d). For example, ionic conductance is reasonably approximated with 100 ms
of sampling and the IMD approach (3.3c).
Here, we have presented an example where each gate operates independently. In

practice, the gating behaviors ofmost ion channels are not completely independent, but
are instead coupled. In this case, the decomposition yields an approximatemodel of the
real dynamics, see SI Appendix, Weakly coupled systems for a discussion. The theoret-
ical limit is posed by the assumption of stationarity that underlies MSM estimation. It
is violated if external influences are strong and on similar timescales as the processes to
bemodeled. External influences that are much faster than the local dynamics are incor-
porated as an average over Markov states, similar to water molecules in regular MSMs.
As demonstrated in the SI Appendix, Fig. A.1, modeling of weakly coupled systems is
possible in a robust fashion.

3.3.2 Optimal independentMarkovpartitions for tetrameric ion channels

For our previous example, we prescribed a convenient partitioning scheme for the ion
channel system. In contrast, in real-world situations a complex systemmay involvemul-
tiple independent subsystems but the coupling graph is unknown a priori. For instance,
it might not be clear how to find independent protein segments of an unknown protein.
A method is necessary to aid in the discovery of viable partitions which produce inde-
pendent subsystems. In this section we demonstrate how the dependency defined in
Sec. AnMSM score of independence can be used as a score to bisect clusters of coupled
subsystems from weakly coupled ones. The idea is to compute all possible pairwise de-
pendencies between all subsystems and to use them as edge weights in a graph. If they
exist, (almost) independent clusters of strongly coupled subsystems will be revealed
by analyzing this graph. Once identified, these clusters might be modeled with single
subsystem transition matrices within the IMD framework. For the purposes of demon-
stration, we zoom out from a single channel protein to a membrane patch (Fig. 3.4a).
In our setup, this patch contains a dimer of channels which we model to be coupled by
a weak, cooperative coupling. Individual channels are modeled using the same param-
eters as the above ion channel model but contain the additional element of an external
deactivation switch (Fig. 3.4b). In a cellular environment, such a switch could, for ex-
ample, be an inhibitory ligand that binds and unbinds at a certain rate. It is modeled
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as a Markov process with probability 0.01 to change its state. The deactivation switch
alters the conformational dynamics of each gate such that the probability to close or
to stay closed is 95%. Thus, by construction, it is not possible to decompose a chan-
nel MSM into single gate MSMs because each gate is now coupled to the deactivation
switch. Further, the strength of the intra-channel coupling can be controlled by a lin-
ear mixture parameter λ. The dynamics described above correspond to λ = 1, strong
coupling. The coupling can be entirely deactivated by setting λ = 0. See SI Appendix,
Dimer model for implementation details.

a

b

dc

Figure 3.4: Visualization of channel dimer. (a) Two channels located in a membrane. Each channel consists of
four gates (akin to Hodgkin-Huxley model, depicted by cylinders) and one desensitization switch (depicted as an
additional oval domain). (b) States and possible transitions of individual channels (simplified, short lived switch-
deactivated open states are ommitted in this figure). As both channels have the samedynamics, only one is shown
as an example. (c)Dependency score as a function of coupling strength as defined by linear mixture parameter λ.
Color code: Grey denotes scores between twomolecules, black intra-channel pairs. (d)Graph of pairwise depen-
dencies between all channel subunits for λ = 1. Edges are color coded according to dependency scores between
two systems. Nodes belonging to a single channel are color-coded accordingly, squared nodes represent deacti-
vation switches.

We generate discrete time series data from a transition matrix that models a dimer
with these properties (SI Appendix, Dimer model and Computational experiments).
From the data, the dependency d is computed for all possible pairs of subsystems. This
involves the estimation of transition matrices for two isolated subsystems and compar-
ing them with the transition matrix estimated in the joint space using Eq. (3.7). For
example, one such pair could be the deactivation switch of one channel and a gate of
the other channel. A natural representation of these pairwise norms between subsys-
tems is a graph. It is formed by nodes (subsystems) and dependency-weighted edges;
no assumption about its structure is made (e.g., that it is a fully connected graph). For
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the numerical experiment described in this section, our analysis yields the graph shown
in Fig. 3.4d. The graph is visualized by positioning the subsystems or graph nodes with
the Fruchterman-Reingold algorithm [59, 60] which is sensitive to the edge weights.
This means that subsystems with high dependency are grouped together. This helps us
to visually identify clusters of coupled subsystems. Groups of subsystems that are far
apart in this representation are coupled relatively weakly. We find that dependencies
between subsystems of the same channel are significantly larger than zero while inter-
channel interactions yield dependencies close to zero (see Fig. 3.4d). Further, reducing
the coupling strength within a channel does not alter our qualitative results (Fig. 3.4c).
The observed bifurcation of dependencies is due to the two types of coupling in the sys-
tem (gate-gate vs. gate-deactivation switch) and is a feature of the dimer model system.
In summary, our results show that we can learn the connectivity of a network of sub-
systems from discrete, simulated time series data. In particular, the dependency score
provides an approach to find an optimal partition of a system with multiple types of
coupling.

3.3.3 Optimal independent Markov partitions for all-atom simulations of
Synaptotagmin-C2A

To showcase the applicability of the dependency score, we apply ourmethod to a 180μs
molecular dynamics data set of the C2A domain of Synaptotagmin-1 (Syt). Syt is a cru-
cial player in the neurotransmitter release machinery [61]. In our previous study we
have found that single loops of its C2A domain can be described independently of each
other using a hand crafted partition [15]. Here, we attempt to find an optimal parti-
tion by using the dependency score at the residue resolution (Sec. Application to MD
dataset). Instead of working withMSM transition probabilities, we directly work in pro-
tein feature space in order to omit discretization artifacts. We find that indeed, Syt-C2A
can be partitioned into defined subunits, or conformational switches, using a VAMP-
2 based dependency score (Fig. 3.5). The dependency network spanned by Syt-C2A
residues expresses defined subsystem clusters. Within each subsystem cluster, residues
are embedded with high normalized dependency scores whereas between different sub-
system clusters, these links are weaker (Fig. 3.5a). The boundary between what is con-
sidered a high and a low normalized dependency tends to be ∼ 0.6, we however note
that this value might be system-specific. The discovered partition contains the confor-
mational switches defined in our last study [15]: In particular, the C78 switch (Fig. 3.5b,
red) emerges as an independent cluster in the Fruchterman-Reingold projection, con-
firming our previous results. However, even though conformational switches in the
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CBR CBR

180˚

C78C78

1 1

2 2

33

a

b

Figure 3.5: Dependency-network between residues of Syt-1 C2A depicted using a standard graph layout
(Fruchterman-Reingold algorithm). (a) VAMP-2 normalized dependency network. Edge weights are indicated by
colorbar. Nodes are colored according to an unsupervised classification by the k-means algorithm (k = 7). De-
pendency histograms depict coupling strength of residues within a subsystem cluster (red) and between different
subsystemclusters (blue). (b)Visualizationof protein structurewith color coded segments fromourVAMP-2anal-
ysis (colors correspond toclassification inpanel a). VAMP-1yields similar results (not shownhere, seeSIAppendix,
Fig. A.2).

Calcium Binding Region (CBR), CBR-1 and 2 together (Fig. 3.5b, green), are connected
to the other protein residues by a lowdependency, describing these loops independently
is an approximation that is only partially backed by this current study. Similar results
are obtained when using a VAMP-1 based dependency (SI Appendix, Fig. A.2).

3.4 Discussion

Over the past several decades, MSM methodology has matured into a valuable tool for
MDdata analysis [1, 3, 4, 7, 8, 13, 20–23, 42]. For practitioners, modelingMDdatawith
MSMs remains a non-trivial task, especially as researchers turn their focus towards the
study of progressively larger biomolecular complexes. Larger systems generally come
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with an increasing number of (metastable) states that demand vast amounts of sam-
pling time and hamper attempts to rigorously model protein dynamics. In these sce-
narios, the classical MSM method reaches a point where the combinatorial explosion
of states becomes a critical bottleneck. It is a fundamental problem that is inherent to
any method which seeks to describe the global protein state [24]. One possible solu-
tion is to appreciate the notion of independent protein segments [32] and to split large
systems into smaller, moremanageable subsystems. In this spirit, we have proposed In-
dependent Markov Decomposition. For practitioners, this means that, for example, an
ion channel is modeled as a set of individual gates as opposed to a single protein. This
approach approximates the system as a set of independent subsystems and is naturally
agnostic to global system size. In this paper we have shown how the conceptual idea of
IMD relates to the underlying transfer operator formulation, what sampling advantages
can be expected, and how to use the proposed dependency score to find an optimal par-
tition of an unknown system. Using the tetrameric potassium ion channel as a model
system, we show that we can estimate a fully convergedmodel with approximately three
orders of magnitude less sampling when compared to a classical MSM. IMD therefore
has the potential to leverage sampling efforts for large biological systems into a regime
that is achievable with state-of-the-art simulation techniques and computer hardware.
This effect is due to data being usedmore efficiently while small compromises aremade
by a mean-field-like approximation. For systems with potentially weak couplings, the
validity of the approximation can be checked with our dependency score a posteriori.
We further posit that due to the tremendous sampling advantages, the estimation er-
rors introduced by weak couplings are likely to be smaller than the sampling error for
classical global state MSMs. Our results suggest that IMD improves the assessment of
sampling convergence for large systems. As real-world MD datasets are usually very
high dimensional, in practice, it is a non-trivial task to assess whether the sampling
is converged. Often, researchers can only speculate by using semi-empirical tests, i.e.,
matching of high-level experimental observables to model predictions. IMD offers a
more rigorous way to tackle this problem. For example, when modeling a single pro-
tein loop, it is much easier to see if the process is sampled reversibly, a question that
can be difficult to answer with a classical MSM on global states.

Furthermore, we have proposed a dependency score that quantifies the coupling be-
tween two subsystems. As there is no general rule how to define protein subsystems,
the dependency score serves as an objective function to judge IMD model approxima-
tion quality and to find an optimal partition of unknown systems. In a numerical test
system of a switched dimer model with weak cooperative coupling, the dependency
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score has robustly bisected clusters of strongly coupled subsystems from weakly cou-
pled ones. It thus enabled IMD model estimation without knowing the dependency
graph structure a priori. In order to optimally partition a system in practical applica-
tions, a sufficiently large biomolecular system could be first partitioned into minimal
subsystems such as residue side-chains. Scoring the dependency between these subsys-
tems can reveal the structure of the dependency graph and thus give rise to a definition
of (almost) independent protein segments. We note that IMD is designed for systems
with time-constant, independent subunits, i.e., it is most probably not suitable for few-
residue peptides or protein folding (for a counterexample using Chignolin [62], cf. SI
Appendix, Fig. A.3). We have shown that for the C2A domain of Synaptotagmin-1, the
dependency score can be used to identify clusters of subsystems that are linked rela-
tively weakly between each other. These subsystems are similar to the conformational
switches identified and independently modeled in Ref. [15]. We however note that the
current, prototypical implementation of assigning residues to subsystems is subject to
stochasticity. For futurework, in particular for larger biomolecular complexes, it will be
desirable to incorporate experimental knowledge about size and properties of “protein
sectors” [32]. An aspect excluded in this conceptual study is the discretization of MD
data, a step which can be crucial in practical MSM applications [4, 63]. We note that
subsystem MSMs have smaller dimensionality and therefore discretization errors are
smaller compared to the higher-dimensional full system. This implies that IMD mod-
els may reduce discretization artifacts compared to classical MSMs. However, further
work should consider the implications of the discretization error as it is unclear how
it propagates to joint space probability estimates and dependency score. Furthermore,
the lag time τ has two-fold implications on IMD: First, when estimating local, indepen-
dent subunit MSMs, the choice of lag time must be verified for each independent MSM
as for classical MSMs (e.g., by implied timescales test). This might yield different lag
times for different subunits, which is justified when working with independent models
alone. However, if a global (or pairwise) model is desired, all constituting local models
must strictly have the same lag time such that a global (or pairwise) operator is defined.
This, second, is the reason why the dependency score can only be applied for a single
global lag time. In practice, choosing a lag time for dependency network estimation
might therefore be done as common practice with, e.g., time-lagged independent com-
ponent analysis (TICA) analyses [63], i.e., starting with a lag time thatmost likely yields
converged estimates. This choice should be validated by ensuring subsystem implied
timescales convergence.
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In this work, we propose that one way to keep pace with our interest in modeling
large biological systems is by using a decomposition technique. For large systems, IMD
models are more data efficient and might be easier to apply than classical global state
MSMs. Webelieve that interrogating local features, e.g., ligandbinding pockets, instead
of global system states can be more informative and give better predictions at reduced
computational cost. Because this approach comes with all the establishedmethods and
software of the MD MSM community, we anticipate that IMD will have a broad appli-
cation basis for in-silico cell biology.

3.5 Methods

3.5.1 Computational experiments

Gate opening and closing rates of the toy potassium ion channel were obtained from the
Hodgkin-Huxley model. Under voltage clamp conditions and neglecting the sodium
and leak currents, we are left with the potassium ion channel contribution. The current
is given as follows,

IK = Gk(Vm − VK) = gKn4(Vm − VK),

where IK is the current, GK is the conductance, gK is the maximal conductance, Vm and
VK are the total transmembrane potential and potassium ion reversal potential respec-
tively. Here n ∈ [0, 1] is a dimensionless quantity corresponding to channel activation.
The time dependence ofn is described using the following ordinary differential equation
(ODE),

dn
dt = αn(Vm)(1− n)− βn(Vm)n,

where αn and βn are the kinetic rates (s−1) of activation and deactivation respectively.
In the original Hodgkin-Huxley model [34], the voltage sensitivity of the ion channel is
modeled by the voltage dependence of the rates αn and βn,

αn(Vm) =
0.01(10− Vm)
exp

( 10−Vm
10

)
− 1

,

βn(Vm) = 0.125 exp
(
−Vm
80

)
.

The term n4 is the joint probability that the four independent subunits of the
tetrameric potassium ion channel are concomitantly open. Thus αn and βn are the ki-
netic rates for an individual subunit to open and close respectively. This set of ODEs
were integrated using theodeint function provided by scipy [64] to serve as the ground
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truth for later comparison with IMDmodel andMSM results. We apply our framework
to discrete time series data with known full system dynamics. For each system that we
are using, details and generator matrix are given in the SI Appendix, Toy models and
Dimer model. Generally, a transition matrix describing a (full) test system (possibly
including couplings) is chosen, akin to P(τ) in Eq. (3.5). Time series are generated us-
ing theMarkov chain sampler implemented in pyEMMA/msmtools [65]. Subsequently,
full system states are mapped to individual subsystem states, yielding subsystem trajec-
tories which are parallel in time. Estimation of subsystem transition matrices (Pi(τ) in
Eq. (3.5)) is followed by assembly of a full system transitionmatrix. The latter is utilized
to extract full system observables such as implied timescales.

3.5.2 Application to MD dataset

The protocol that was used to obtain MD simulation data and featurization of Syt-C2A
is described in detail in Ref. [15]. In particular, as in the cited study, we use heavy
atom coordinates of the superposed protein. We are aware that this could potentially
yield spurious correlations, however a) no better descriptor of the slow dynamics could
be found and b) we want to ensure compatibility to our previous study. Each residue
is encoded as a vector of flattened coordinates Yi and the dependency is computed on
each pair of residues. The pairwise features are the stacked vectors [Yi,Yj]. Note that
when directly working on coordinate features, unlike in the MSM examples, the depen-
dency decomposes as a sum, not as a product (SI Appendix, VAMP score decomposi-
tion). Furthermore, the dependency is normalized to untangle the amount of kinetic
variance from actual dependency, i.e.

d =
|Rn(A) + Rn(B)− Rn(A,B)|

min(Rn(A),Rn(B))
∈ [0, 1] (3.9)

with Rn(x) being the VAMP-n-score of residue x. Note that in the case of high depen-
dency scores, the two observable featuresmight be proxies of the sameprocess, however
one of them could encode an additional one. Dividing by the min ensures we are only
normalizing to the processes contained in both subsystem vectors. To not obfuscate
the histogram analysis conducted for the dependency score network with weak links in
otherwise strongly coupled clusters, we have taken into account only the strongest link
connecting each residue. We thus extract the maximal normalized dependency score
that connects a given residue to all other residues within a subsystem cluster (intra-
subsystem) or to all residues of a different subsystem cluster (inter-subsystem), respec-
tively. The VAMP-n-scores for Syt-C2A are computed with PyEMMA [65] at a lag time
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of 50 ns. The lag time was chosen based on implied timescales convergence reported in
Ref. [15].

Data availability

The code that implements our discrete models, generates the data, and reproduces the
presented results can be found in our GitHub repository [66]. The molecular dynamics
data set of Synaptotagmin C2A is available upon request. Some study data are available
upon request.

Acknowledgements

TH thanks Moritz Hoffmann and Andreas Mardt (FU Berlin) for fruitful discus-
sions. We acknowledge funding from Deutsche Forschungsgemeinschaft (SFB/TRR
186, Project A12; SFB1114, Project A04), the Berlin Mathematics Research Center
MATH+ (AA1-6), the Bundesministerium für Bildung und Forschung, and the Euro-
pean Commission (ERC CoG 772230 “ScaleCell”). M.J.R. acknowledges support by the
Dutch Institute for Emergent Phenomena at the University of Amsterdam. BCT and
REA acknowledge support from the National Biomedical Computation Resource via
NIH Grant P41-GM103426. CTL acknowledges support from a Hartwell Foundation
Postdoctoral Fellowship. REA acknowledges funding from NIH R01 GM132826.

Author contributions

T.H., B.C.T., M.J.R., C.T.L., R.E.A., F.N. designed research; T.H., B.C.T., M.J.R., C.T.L.
performed research; T.H., B.C.T., C.T.L., F.N. analyzed data; T.H., B.C.T., M.J.R.,
C.T.L., R.E.A., F.N. wrote the paper.

72

https://github.com/markovmodel/decomposed_msms


Independent Markov Decomposition

Bibliography

[1] W. C. Swope, J.W. Pitera, and F. Suits. “Describing Protein Folding Kinetics byMolecular Dynam-
ics Simulations. 1. Theory”. J. Phys. Chem. B 108.21 (2004), pp. 6571–6581.

[2] N. Singhal, C. D. Snow, and V. S. Pande. “Using Path Sampling to Build Better Markovian State
Models: Predicting the Folding Rate and Mechanism of a Tryptophan Zipper Beta Hairpin”. J.
Chem. Phys. 121.1 (2004), pp. 415–425.

[3] F. Noé, C. Schütte, E. Vanden-Eijnden, L. Reich, and T. R. Weikl. “Constructing the Equilibrium
Ensemble of Folding Pathways from Short Off-Equilibrium Simulations”. Proc. Natl. Acad. Sci.
106.45 (2009), pp. 19011–19016.

[4] J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D. Chodera, C. Schütte, and F. Noé.
“Markov Models of Molecular Kinetics: Generation and Validation”. J. Chem. Phys. 134.17 (2011),
p. 174105.

[5] J. D. Chodera, N. Singhal, V. S. Pande, K. A. Dill, andW. C. Swope. “Automatic Discovery of Meta-
stable States for the Construction of Markov Models of Macromolecular Conformational Dynam-
ics”. The Journal of Chemical Physics 126.15 (2007), p. 155101.

[6] F. Noé, I. Horenko, C. Schütte, and J. C. Smith. “Hierarchical Analysis of Conformational Dynam-
ics in Biomolecules: Transition Networks of Metastable States”. J. Chem. Phys. 126.15 (2007),
p. 155102.

[7] J. D. Chodera and F. Noé. “Markov StateModels of Biomolecular Conformational Dynamics”.Cur-
rent Opinion in Structural Biology 25 (2014), pp. 135–144.

[8] B. E. Husic and V. S. Pande. “Markov State Models: From an Art to a Science”. J. Am. Chem. Soc.
140.7 (2018), pp. 2386–2396.

[9] V. A. Voelz, M. Jäger, S. Yao, Y. Chen, L. Zhu, S. A. Waldauer, G. R. Bowman, M. Friedrichs,
O. Bakajin, L. J. Lapidus, S. Weiss, and V. S. Pande. “Slow Unfolded-State Structuring in Acyl-
CoA Binding Protein Folding Revealed by Simulation and Experiment”. J. Am. Chem. Soc. 134.30
(2012), pp. 12565–12577.

[10] Q. Qiao, G. R. Bowman, and X. Huang. “Dynamics of an Intrinsically Disordered Protein Reveal
Metastable Conformations That Potentially Seed Aggregation”. J. Am. Chem. Soc. 135.43 (2013),
pp. 16092–16101.

[11] D. Shukla, Y. Meng, B. Roux, and V. S. Pande. “Activation Pathway of Src Kinase Reveals Interme-
diate States as Targets for Drug Design”. Nat Commun 5.1 (2014), p. 3397.

[12] M. M. Sultan, G. Kiss, and V. S. Pande. “Towards Simple Kinetic Models of Functional Dynamics
for a Kinase Subfamily”. Nature Chem 10.9 (2018), pp. 903–909.

[13] S. M. Hanson, G. Georghiou, M. K. Thakur, W. T. Miller, J. S. Rest, J. D. Chodera, and M. A.
Seeliger. “What Makes a Kinase Promiscuous for Inhibitors?” Cell Chemical Biology 26.3 (2019),
390–399.e5.

[14] F. Paul, Y. Meng, and B. Roux. “Identification of Druggable Kinase Target Conformations Using
Markov Model Metastable States Analysis of Apo-Abl”. J. Chem. Theory Comput. 16.3 (2020),
pp. 1896–1912.

73



Chapter 3

[15] T. Hempel, N. Plattner, and F. Noé. Coupling of Conformational Switches in Calcium Sensor
Unraveled with Local Markov Models and Transfer Entropy. Preprint. Biophysics, 2020. url:
http://biorxiv.org/lookup/doi/10.1101/2020.02.25.964353.

[16] T. Löhr, K. Kohlhoff, G. T. Heller, C. Camilloni, and M. Vendruscolo. “A Kinetic Ensemble of the
Alzheimer’s Aβ Peptide”. Nat Comput Sci 1.1 (2021), pp. 71–78.

[17] D.-A. Silva, G. R. Bowman, A. Sosa-Peinado, and X. Huang. “A Role for Both Conformational
Selection and Induced Fit in Ligand Binding by the LAO Protein”. PLoS Comput Biol 7.5 (2011).
Ed. by R. Nussinov, e1002054.

[18] K. J. Kohlhoff, D. Shukla,M. Lawrenz, G. R. Bowman,D. E. Konerding, D. Belov, R. B. Altman, and
V. S. Pande. “Cloud-Based Simulations on Google Exacycle Reveal Ligand Modulation of GPCR
Activation Pathways”. Nature Chem 6.1 (2014), pp. 15–21.

[19] P. Tiwary, V. Limongelli, M. Salvalaglio, and M. Parrinello. “Kinetics of Protein–Ligand Unbind-
ing: Predicting Pathways, Rates, and Rate-Limiting Steps”. Proc Natl Acad Sci USA 112.5 (2015),
E386–E391.

[20] N. Plattner and F. Noé. “Protein Conformational Plasticity and Complex Ligand-Binding Kinetics
Explored by Atomistic Simulations and Markov Models”. Nat. Commun. 6 (2015), p. 7653.

[21] F. Paul, C.Wehmeyer, E. T. Abualrous, H.Wu,M. D. Crabtree, J. Schöneberg, J. Clarke, C. Freund,
T. R.Weikl, and F. Noé. “Protein-Peptide AssociationKinetics beyond the Seconds Timescale from
Atomistic Simulations”. Nat. Commun. 8.1 (2017), p. 1095.

[22] B. C. Taylor, C. T. Lee, and R. E. Amaro. “Structural Basis for Ligand Modulation of the CCR2
Conformational Landscape”. PNAS 116.17 (2019), pp. 8131–8136.

[23] N. Plattner, S. Doerr, G. D. Fabritiis, and F. Noé. “Complete Protein–Protein Association Kinet-
ics in Atomic Detail Revealed by Molecular Dynamics Simulations and Markov Modelling”. Nat.
Chem. 9.10 (2017), p. 1005.

[24] S. Olsson and F. Noé. “Dynamic Graphical Models of Molecular Kinetics”. Proc. Natl. Acad. Sci.
116.30 (2019), pp. 15001–15006.

[25] C. Adami, C. Ofria, and T. C. Collier. “Evolution of Biological Complexity”. Proceedings of the
National Academy of Sciences 97.9 (2000), pp. 4463–4468.

[26] D.W.McShea and R. N. Brandon. Biology’s First Law: The Tendency for Diversity and Complex-
ity to Increase in Evolutionary Systems. Chicago; London: University of Chicago Press, 2010.

[27] Y. I. Wolf, M. I. Katsnelson, and E. V. Koonin. “Physical Foundations of Biological Complexity”.
Proc Natl Acad Sci USA 115.37 (2018), E8678–E8687.

[28] J. A. Marsh and S. A. Teichmann. “Structure, Dynamics, Assembly, and Evolution of Protein Com-
plexes”. Annu. Rev. Biochem. 84.1 (2015), pp. 551–575.

[29] M. Dibak, M. J. del Razo, D. De Sancho, C. Schütte, and F. Noé. “MSM/RD: Coupling Markov
State Models of Molecular Kinetics with Reaction-Diffusion Simulations”. The Journal of Chemi-
cal Physics 148.21 (2018), p. 214107.

[30] M. J. del Razo, M. Dibak, C. Schütte, and F. Noé. “Multiscale Molecular Kinetics by Coupling
Markov StateModels and Reaction-Diffusion Dynamics”. J. Chem. Phys. 155.12 (2021), p. 124109.

74

http://biorxiv.org/lookup/doi/10.1101/2020.02.25.964353


Independent Markov Decomposition

[31] C. P. Ponting and R. R. Russell. “The Natural History of Protein Domains”. Annu. Rev. Biophys.
Biomol. Struct. 31.1 (2002), pp. 45–71.

[32] N. Halabi, O. Rivoire, S. Leibler, and R. Ranganathan. “Protein Sectors: Evolutionary Units of
Three-Dimensional Structure”. Cell 138.4 (2009), pp. 774–786.

[33] Y. Tong, D. Hughes, L. Placanica, and M. Buck. “When Monomers Are Preferred: A Strategy for
the Identification and Disruption ofWeakly Oligomerized Proteins”. Structure 13.1 (2005), pp. 7–
15.

[34] A. L. Hodgkin and A. F. Huxley. “A Quantitative Description of Membrane Current and Its Appli-
cation to Conduction and Excitation in Nerve”. The Journal of Physiology 117.4 (1952), pp. 500–
544.

[35] D. Noble. “Cardiac Action and Pacemaker Potentials Based on the Hodgkin-Huxley Equations”.
Nature 188.4749 (1960), pp. 495–497.

[36] C. E. Clancy and Y. Rudy. “Linking a Genetic Defect to Its Cellular Phenotype in a Cardiac Arrhyth-
mia”. Nature 400.6744 (1999), pp. 566–569.

[37] M. Fink and D. Noble. “Markov Models for Ion Channels: Versatility versus Identifiability and
Speed”. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences 367.1896 (2009), pp. 2161–2179.

[38] D. Sigg. “Modeling Ion Channels: Past, Present, and Future”. J. Gen. Physiol. 144.1 (2014), pp. 7–
26.

[39] J. D. Moreno, T. J. Lewis, and C. E. Clancy. “Parameterization for In-Silico Modeling of Ion Chan-
nel Interactions with Drugs”. PLOS ONE 11.3 (2016), e0150761.

[40] F.Noé andF.Nüske. “AVariational Approach toModeling SlowProcesses in StochasticDynamical
Systems”.Multiscale Model. Simul. 11.2 (2013), pp. 635–655.

[41] H. Wu and F. Noé. “Variational Approach for Learning Markov Processes from Time Series Data”.
J Nonlinear Sci (2019).

[42] C. Schütte, A. Fischer, W. Huisinga, and P. Deuflhard. “A Direct Approach to Conformational Dy-
namics Based on Hybrid Monte Carlo”. J. Comput. Phys. 151.1 (1999), pp. 146–168.

[43] F. Nüske, B. G. Keller, G. Pérez-Hernández, A. S. J. S. Mey, and F. Noé. “Variational Approach to
Molecular Kinetics”. J. Chem. Theory Comput. 10.4 (2014), pp. 1739–1752.

[44] R. T.McGibbon andV. S. Pande. “Variational Cross-Validation of SlowDynamicalModes inMolec-
ular Kinetics”. The Journal of Chemical Physics 142.12 (2015), p. 124105.

[45] A. Mardt, L. Pasquali, H. Wu, and F. Noé. “VAMPnets for Deep Learning of Molecular Kinetics”.
Nat. Commun. 9.1 (2018), pp. 1–11.

[46] I. Satake. Linear Algebra. Pure and Applied Mathematics. New York: Dekker, 1975.

[47] A. Mardt, L. Pasquali, F. Noé, and H. Wu. “Deep Learning Markov and Koopman Models with
Physical Constraints”.Proc. FirstMath. Sci.Mach. Learn. Conf.Ed. by J. Lu andR.Ward. Vol. 107.
Proceedings of Machine Learning Research. Princeton University, Princeton, NJ, USA: PMLR,
2020, pp. 451–475.

75



Chapter 3

[48] T. Xie, A. France-Lanord, Y. Wang, Y. Shao-Horn, and J. C. Grossman. “Graph Dynamical Net-
works for Unsupervised Learning of Atomic Scale Dynamics in Materials”. Nat Commun 10.1
(2019), p. 2667.

[49] I. Mezić. “Analysis of Fluid Flows via Spectral Properties of the Koopman Operator”. Annu. Rev.
Fluid Mech. 45.1 (2013), pp. 357–378.

[50] H. Wu, F. Nüske, F. Paul, S. Klus, P. Koltai, and F. Noé. “Variational Koopman Models: Slow
Collective Variables and Molecular Kinetics from Short off-Equilibrium Simulations”. J. Chem.
Phys. 146.15 (2017), p. 154104.

[51] J. J. Clare. “Targeting Voltage-Gated Sodium Channels for Pain Therapy”. Expert Opinion on In-
vestigational Drugs 19.1 (2010), pp. 45–62.

[52] F. Ashcroft. Ion Channels and Disease: Channelopathies. 2000.

[53] E. Flood, C. Boiteux, B. Lev, I. Vorobyov, and T. W. Allen. “Atomistic Simulations of Membrane
Ion Channel Conduction, Gating, and Modulation”. Chem. Rev. 119.13 (2019), pp. 7737–7832.

[54] Y. Rudy and J. R. Silva. “Computational Biology in the Study of Cardiac Ion Channels and Cell
Electrophysiology”. Q. Rev. Biophys. 39.1 (2006), pp. 57–116.

[55] P. Deuflhard, W. Huisinga, A. Fischer, and C. Schütte. “Identification of Almost Invariant Aggre-
gates in Reversible Nearly Uncoupled Markov Chains”. Linear Algebra and its Applications 315.1
(2000), pp. 39–59.

[56] S. Röblitz andM.Weber. “Fuzzy Spectral Clustering by PCCA+: Application toMarkov State Mod-
els and Data Classification”. Adv. Data Anal. Classif. 7.2 (2013), pp. 147–179.

[57] F. Noé, S. Doose, I. Daidone, M. Löllmann, M. Sauer, J. D. Chodera, and J. C. Smith. “Dynamical
Fingerprints for Probing Individual Relaxation Processes in Biomolecular Dynamics with Simula-
tions and Kinetic Experiments”. PNAS 108.12 (2011), pp. 4822–4827.

[58] N.-V. Buchete and G. Hummer. “CoarseMaster Equations for Peptide Folding Dynamics”. J. Phys.
Chem. B 112.19 (2008), pp. 6057–6069.

[59] A. A. Hagberg, D. A. Schult, and P. J. Swart. “Exploring Network Structure, Dynamics, and Func-
tionUsingNetworkX”.Proc. 7th Python Sci. Conf.Ed. byG. Varoquaux, T. Vaught, and J.Millman.
Pasadena, CA USA, 2008, pp. 11–15.

[60] T. M. J. Fruchterman and E. M. Reingold. “Graph Drawing by Force-Directed Placement”. Softw:
Pract. Exper. 21.11 (1991), pp. 1129–1164.

[61] T. C. Südhof. “Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle”.
Neuron 80.3 (2013), pp. 675–690.

[62] K. Lindorff-Larsen, S. Piana, R. O. Dror, and D. E. Shaw. “How Fast-Folding Proteins Fold”. Sci-
ence 334.6055 (2011), pp. 517–520.

[63] C. Wehmeyer, M. K. Scherer, T. Hempel, B. E. Husic, S. Olsson, and F. Noé. “Introduction to
Markov State Modeling with the PyEMMA Software [Article v1.0]”. LiveCoMS 1.1 (2019), p. 5965.

[64] P. Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”. Nat.
Methods 17 (2020), pp. 261–272.

76



Independent Markov Decomposition

[65] M. K. Scherer, B. Trendelkamp-Schroer, F. Paul, G. Pérez-Hernández, M. Hoffmann, N. Plattner,
C. Wehmeyer, J.-H. Prinz, and F. Noé. “PyEMMA 2: A Software Package for Estimation, Valida-
tion, and Analysis of Markov Models”. J. Chem. Theory Comput. 11.11 (2015), pp. 5525–5542.

[66] T. Hempel, M. J. D. Razo, C. T. Lee, B. C. Taylor, R. E. Amaro, and F. Noé. Independent Markov
Decomposition. Zenodo. 2021. https://zenodo.org/record/5091726.

77

https://zenodo.org/record/5091726


Chapter 3

78



R199

R199

d
ire

c
te

d
n

e
tw

o
rk

a
n

a
ly

s
is

lo
c
a

l
M

a
rk

o
v

m
o

d
e

lin
g

s
w

itc
h

in
g

d
o

m
a

in
d

e
fin

itio
n

apo C2A

+3 Ca2+

Visual summary. 4
Coupling of Conformational Switches in
Calcium Sensor Unraveled with Local
Markov Models and Transfer Entropy

This Chapter has been published as

Tim Hempel, Nuria Plattner, and Frank Noé. “Coupling of
Conformational Switches in Calcium Sensor Unraveled with Local
Markov Models and Transfer Entropy”. Journal of Chemical Theory
and Computation 16.4 (2020), pp. 2584–2593.
https://doi.org/10.1021/acs.jctc.0c00043

79

https://doi.org/10.1021/acs.jctc.0c00043


Chapter 4

Reprinted with permission from T. Hempel, N. Plattner, and F. Noé. “Coupling of Conforma-
tional Switches in Calcium Sensor Unraveled with Local MarkovModels and Transfer Entropy”.
J. Chem. Theory Comput. 16.4 (2020), pp. 2584–2593. Copyright 2020 American Chemical
Society. The online article can be obtained from the publisher via http://pubs.acs.org/
articlesonrequest/AOR-KEXGHKDKPVT463FTHUZN.

Contributions THwas the lead author in this project. The research was designed by FN and
NP. TH has conducted the research, including running large-scale MD simulations and hidden
Markov state model estimation. The MD setup was contributed by NP. TH developed, imple-
mented, and validated the new methods presented in the manuscript, including local hidden
Markov state modeling and information theoretic coupling analyses. TH created the figures,
and was main author of the manuscript. All authors contributed to writing the manuscript.
(This paragraph summarizes TH’s contributions alone, it is not an exhaustive list of other au-
thors’ contributions.)

80

http://pubs.acs.org/articlesonrequest/AOR-KEXGHKDKPVT463FTHUZN
http://pubs.acs.org/articlesonrequest/AOR-KEXGHKDKPVT463FTHUZN


Coupling of Conformational Switches in Calcium Sensor

Abstract

Proteins often have multiple switching domains that are coupled to each other and
to the binding of ligands in order to realize signaling functions. Here we investigate
the C2A domain of Synaptotagmin-1 (Syt-1), a calcium sensor in the neurotransmitter
release machinery and a model system for the large family of C2 membrane binding
domains. We combine extensive molecular dynamics (MD) simulations with Markov
modeling in order to model conformational switching domains, their states, and their
dependence on bound calcium ions. Then, we use transfer entropy to characterize how
the switching domains are coupled via directed or allosteric mechanisms and give rise
to the calcium sensing function of the protein. Our proposed switchingmechanism con-
tributes to the understanding of the neurotransmitter release machinery. Furthermore,
themethodological approachwe develop serves as a template to analyze conformational
switching domains and the broad study of their coupling in macromolecular machines.

4.1 Introduction

Molecular modeling comes with challenges. Even though the advent of graphical pro-
cessing units (GPUs) has delivered vast amounts of data from increasingly large molec-
ular systems, modelers must still cope with two fundamental problems: the sampling
problem and the curse of dimensionality. In particular, a limiting factor of molecular
modeling is the (possibly exponential) growth of the number of metastable states with
system size. Sampling all metastable states reversibly can thus be infeasible, especially
if the described processes are extremely slow. Recently, dynamical graphical models
have been proposed to overcome this problem by treating the evolution of configura-
tions of many small molecular switches, e.g., dihedral rotamers, in an Ising-model like
fashion [1].
Here we develop a complementary approach that, instead of working with very small

spinlikemolecular switches that can be readily identified from the structure, we identify
conformational switching domains and model their kinetics with local Markov state
models (MSMs). To this end, we partition the protein into subsystems that aremodeled
separately as conformational switching domains (henceforth simply “conformational
switches”). We therefore do not need to parametrize an MSM of the full structure and
thus require less extensive molecular dynamics (MD) sampling. This decomposition
approach is supported by experimental evidence for dynamic protein segments that
have undergone evolutionary development in an independent fashion [2]. Furthermore,
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Figure 4.1: Methodworkflow at simplified example. From left to right: Two conformational switches are defined
(top and bottomof protein), and rawMD trajectories of two ensembles (depicted by colors blue and black) are dis-
cretized into a (micro-) state space that is common to all ensembles of a particular conformational switch. Markov
models are estimated separately, yielding transition matrices between metastable states and Markov state tra-
jectories. In a following step, metastable states for each conformational switch can be identified between ensem-
bles by comparingmetastable state probability distributions, exploiting the common state space. Further,Markov
state trajectories areused toestimatedirectional networksbetweenconformational switches, exploiting thecom-
mon time frame.

we quantify the coupling between the local conformational switches by using mutual
information and transfer entropy in the time series of Markov states. Our approach is
summarized in Fig. 4.1.
Our study is motivated by our interest in the role that protein conformational dy-

namics plays in determining spatiotemporal regulation of cellular processes and sig-
naling. A class of proteins that play important roles in cellular signaling (among other
processes) is the C2 family, which consists of 96,833 small β-sandwich structured pro-
tein domains [3]. C2 domains are membrane binders that in many cases require ion
binding for activation.
One of the most exciting yet unresolved problems connected to C2 domains is neuro-

transmitter exocytosis. Here, C2 domains play roles in vesicle recruitment (MUNC13)
as well as in the actual release mechanism (Synaptotagmin-1, -2, -7 and -9) [4]. More
specifically, synchronous neurotransmitter release is triggered by the double-C2-motif
Synaptotagmin-1 (Syt-1) as a reaction to the electrically driven calcium concentration
change. Syt-1 is specifically known to cause fast, concerted neurotransmitter release [5]
and hence is a good candidate for investigating calcium induced signaling with MD. Its
structure and environment is summarized in Figure 4.2. Even though the chain of reac-
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tions is well understood, it remains unclear how the ion concentration change triggers
signaling on the atomistic level. Possible mechanisms include a passive reaction due to
the change in electrostatic potential, changes of protein structure, or adapted confor-
mational dynamics. The first mechanism has been studied extensively; our aim here,
however, is to investigate the role of Syt-1 conformational dynamics for its signaling
function. Short preliminary test simulations of both Syt-1 domains, C2A and C2B, with
and without membrane revealed that even single domain conformational dynamics is
complex. However, extensively sampling the whole system’s rare transition events be-
tween all possiblemembrane bindingmodes and protein conformations is prohibitively
expensive with directMD.We thus break the problem down into obtaining kinetic mod-
els for individual components that will be coupled later [1]. As a first step, we analyze
the Syt-1 C2A domain as it showed the most interesting behavior in our tests.
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Figure 4.2: Syt-1 C2A with interaction partners for synaptic exocytosis. (a) Structure of Syt-1 C2A, active sites
used in later analysis highlighted by circles; calcium ions are depicted as blue spheres. (b) Syt-1 C2A (green) in
primed fusion complex with its sister domain, Syt-1 C2B, and SNARE/Cpx (gray) based on PDB 5W5C [6]. (c) cel-
lular context with plasmamembrane (PM) and vesicle membrane (VM) [6].

The difficulties in understanding the inherently complex signaling process arise par-
tially due to a lack of experimental methods capable of capturing the functional pro-
cesses at a high spatial resolution over sufficiently long time. Molecular dynamics
(MD) simulations, on the other hand, enable us to analyze the C2 signaling function
at atomistic resolution by assessing differences between the calcium bound and apo C2
domains, such as the Syt-1 C2A domain. We then use Markov modeling to analyze the
equilibrium reweighted conformational dynamics of the system, its Ca2+ configuration,
and the calcium dependent information exchange between its different conformational
switches.
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4.2 Determining Conformational Switches and Their Coupling

We employ two main methods in order to analyze protein dynamics as a coupling of
conformational switching domains: (1) decomposing the protein structure into confor-
mational switching domains andmodeling their kinetics using localMSMs and (2) char-
acterizing how these conformational switches are coupled by computing mutual infor-
mation and transfer entropy between local MSMs. Here we outline the main concepts,
see Figure 4.1 for a visual summary and Methods for details.

4.2.1 Local Markov State Models identify conformational switches

Conceptually, conformational switches are local protein regions that can exist in dif-
ferent discrete states, whose switching may be either spontaneous (i.e., due to thermal
noise) or induced, e.g., by ligand binding or other changes of the equilibrium. Here
we outline an approach to identify conformational switches that undergo spontaneous
transitions in the simulation data.
We first decompose the protein or protein complex into conformational switching do-

mains. When these are not obvious (as in the present application), one can choose from
a variety of methods to find optimal decompositions of the full system into subsystems,
e.g., refs [7] and [8].
Second, we discretize the conformational switch state space into metastable states

using MSMs [9–15]. In the context of MD, MSMs model exchange between often fine-
grained protein states by counting transitions between them. Based on this empiri-
cal count matrix, a transition probability matrix under reversibility constraints is esti-
mated. Equilibrium probabilities of protein conformations follow from an eigendecom-
position of this matrix. Not only does Markov modeling provide a means to combine
arbitrary numbers of short off-equilibrium trajectories, but also it has turned out to be
an efficient approach to learn about the slow and biologically relevant processes in vast
MD data sets [16–18]. We further note that kinetic modeling is necessary because in
the finite data regime, MD data sets are not equilibrium samples. Thus, simple time
averages in general do not represent thermodynamic ensemble averages. These can,
however, be estimated using MSMs.
While variousMSM approaches can be employed in order to identify metastable sets,

such as Robust Perron Cluster Cluster Analysis [19], VAMPnets [20], and others (e.g.,
refs [21] and [22]), here we estimate local Markovmodels via the hiddenMarkovmodel
(HMM) approach described in ref [23]. HMMs yield a mapping of the complex dynam-
ics into an easily interpretable set of a few “hidden” or metastable states of the local
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conformational switches. Besides the kinetic model, metastable trajectories are used
for the analysis. Choosing HMMs over MSMs has two advantages: (a) HMMs provide
information also at short time scales due to their faster convergence and (b) HMMs can
be used to generate metastable trajectories using the Viterbi algorithm [24]. In our ex-
perience, the Viterbi algorithm greatly outperforms metastable trajectory estimates of,
e.g., MSMs/PCCA+, which is crucial for the follow-up analysis withmutual information
and transfer entropy.

4.2.2 Coupling Conformational Switches via Transfer Entropy

To analyze pairwise directed influences between conformational switches, we use mu-
tual information and transfer entropy. Mutual information describes undirected cou-
plings akin to correlations which we estimate between conformational switches. A sim-
ilar strategy as proposed here was pursued in ref [25], where MSMs were built using
residue solvent-accessible surface area as features. Directed information, in contrast,
is directional. To estimate both quantities, we exploit (a) the fact that metastable trajec-
tories of different local protein features are time-synchronous and (b) that the systems
in theHMM formulation areMarkovian by definition. We can thus simplify Schreiber’s
original definition of transfer entropy [26] using the HMM transition matrix p(xn+1|xn)
and its stationary distribution πX(xn) that are defined for states xn in a time series X.
From time series Y to time series X, transfer entropy T(Y → X) is hence defined

T(Y → X) =
∑

xn,xn+1∈X
yn∈Y

πX,Y(xn,yn) · p(xn+1|xn,yn)

· log2
(
p(xn+1|xn,yn)
p(xn+1|xn)

)
.

(4.1)

Joint probabilities in X and Y, πX,Y, are obtained from a transition matrix estimate
in the combinatorial state space. The transition probability p(xn+1|xn,yn) is computed
from the combinatorial transition matrix by marginalization over yn+1. This takes into
account the common time frame and probes for causal effects of the current state onto
the state that follows one Markov step in the future. Choosing the lag time of the un-
derlying MSM ensures that our analysis indeed captures crosstalk of processes that our
MSMs describe, even though other choices are theoretically possible.
Transfer entropy can be interpreted as a measure of the “incorrectness of [the] as-

sumption“ that “the state of [Y] has no influence on the transition probabilities on sys-
tem [X]“ [26]. It probes dependency in a direction-dependent fashion, i.e., is a heuristic
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for the amount of influence the process Y has on the trajectory of a process X. Accord-
ing to this interpretation, we take T(X → Y) ≫ T(Y → X) as statistical evidence for
directed influence from process X to process Y.

Our approach resembles the one applied by ref [27] in which Schreiber’s transfer
entropywas used tomodel allostery by describing entropy sources and sinks in a protein
at residue resolution. However, whereas in ref [27] results are based on probability
estimates from histogramed fluctuation vectors, here we model interactions between
groups of residues in the space of Markov states and use probability estimates from
HMMs. In comparison to approaches such as ref [28], we do not alter the underlying
physical interactions to infer causal relationships.

4.3 Results

4.3.1 Syt-C2A Consists of Multiple Metastable Conformational
Switches

The analysis of conformational dynamics is conducted with focus on potentially func-
tional protein regions. The Syt-C2A protein body adopts a β-sandwich fold which is
naturally very rigid, while the connections between the β-sheets are flexible. Further-
more, the largest flexible parts coincide with the calcium binding region (CBR), but
there are several other flexible regions at various locations in the protein.

A simple analysis of root-mean-square fluctuations (SI Figure B.2) shows that only
the CBR-1 loop becomes significantly stabilizedwith calciumbinding. In the CBR-2, the
opposite seems to happen, which hints toward an opening of the rigid body structure
for this particular loop. CBR-2 is closely attached to the protein body in the crystal
structure.

In order to obtain a human-readable model, we exploit our observation that Syt-C2A
loops operate seemingly independently and subdivide Syt-C2A into three metastable
regions of interest that are henceforth described as conformational switches: CBR-1,
CBR-2, and a site opposite to the CBR (Figure 4.2). The latter region will be called C78
since it connects β-sheets 7 and 8 (according to nomenclature of ref [29]). According
to our analysis, the remaining regions express no metastability and will thus not be
analyzed. We employ aMarkov statemodel analysis, here usingHiddenMarkovModels
(HMMs) in order to identify themetastable states within these conformational switches
(Methods).
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4.3.2 Local Markov Models Reveal CalciumMediated Loop Dynamics

Our models predict that CBR-1 can form an α-helix as depicted in Figure 4.3a. The
free energy difference between the helical and other states is ∆Gα − ∆Gother =

1.08+0.26−0.26 kcalmol−1 (without calcium) and slightly shifts to ∆G∗
α − ∆G∗

other ...=
−0.02+0.8−0.11 kcalmol

−1 (with calcium). The lifetime of this helical state becomes higher,
from about 2.34+1.15−0.48 μs (without calcium) to 7.19

+3.23
−1.46 μs (with calcium). This means

that the calcium binding enables a more stable α-helical CBR-1 conformation.
This population change is mediated by the three calcium ions inside the CBR which

interact with the CBR-1 loops by Coulomb interactions, attracting the polar acidic
residue D172 (Figure 4.3a). This residue is located at the center of the α-helix sequence;
Coulomb attraction toward the protein core stabilizes this structure. We corroborate
this observation by noting that D172 has a very low solvent exposure in its α-helical
conformation (see SI Figure B.3). The second most probable structure in the calcium
bound protein is a β-hairpin-like structure (Figure 4.3a). In general, it is very rigid and
gives high solvent exposure to M137.
However, even without calcium, stabilized configurations exist, as depicted in Fig-

ure 4.3a. One of them is characterized by M173 being buried within the CBR (red
structure in Figure 4.3a). The stationary distribution is tilted toward the M173-burying
state in the calcium unbound protein. Besides a disordered state (denoted by D in Fig-
ure 4.3a), CBR-1 can form another α-helix located toward the N-terminal end of this
loop with D172 at its center (depicted in blue).
The CBR-2 loop in the crystal structures appears tightly bound to the protein body.

This conformation is populated in both of our MD data sets, however, we find meta-
stable states that are characterized by the rearrangement of CBR-2-stabilizing salt
bridges (Figure 4.3b).
In particular we note that the salt bridge R199-D178, which is found in the crystal

structure and in all of the calcium-unbound trajectories (Figure 4.3b, state A), can
be opened by calcium binding. R199 becomes solvent exposed in this highest popu-
lated calcium bound state. This change goes along with a particular Ca2+ arrangement
within the binding pocket (Figure 4.4b,c). Mechanistically, theCBR-2 residues are influ-
enced by the calcium ion charges. This explains why positively charged residues such as
R199 can loosen from the protein body in the calcium bound trajectories. The calcium
binding thus enables R199 to be solvent accessible. We found that the conformational
changes between the tightly bound state and the loosely bound ones is on the order of
12 μs with one exception: In the calcium bound case, it takes 50.65+61.45−22.61 μs to attach
the loop to the protein body again (result not shown in Figure 4.3b).
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b: CBR-2

c: C78

*

Legend

C78

CBR-1

CBR-2

(c)

(b)

(a)

V250

V255

V250

V255

R199

R199

M173

M173

M173

D172 D172

Figure 4.3: Markovmodels of Syt-1 C2A conformational switches in the apo state (left) and calcium-bound state
(right). Capital letters denote metastable states. Representative structures are shown and color-coded to distin-
guish states within bound/apomodels. Circle sizes are proportional to the state’s equilibrium probabilities within
eachmodel. Arrows indicate transitions betweenmetastable states, thickness proportional to the transition rate
and annotated by pairwise inverse transition rate. (a)MSMs of CBR-1 including sampled Ca2+ positions (black
dots). States D and D∗ denote disordered structures that could not be assigned to unique structural elements.
(b)MSMsof CBR-2with its loop in closed (crystal structure configuration, blue) and open (red, green, orange) con-
formations. (c)MSMs of C78. Stick representations of single residues were drawnwhere instructive.
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Figure4.4: Ca2+ andbindingpocket chargedistribution. (a)projectionplanedrawn inCa2+-boundSyt-C2Astruc-
ture. Panels (b)and (c): Chargedensity averagedover100MSMsamples andCa2+ distribution in the calciumbind-
ing pocket. Ca2+ density is depicted by black points, positively charged amino acids as blue, negatively charged
as red filled contour lines. MSM samples were drawn from CBR-2 MSM states A (panel (b)) and C (panel (c)), re-
spectively. 2D projection (x, y) into the plane that is depicted in panel (aO. (d)Conservation of charges among C2
domain family sequences (PFAM entry PF00168, seed alignment); histogram annotated with Syt-1 C2A domain
residue sequence.

The C78 loop undergoes slow processes between threemetastable states which could
be identified in both calcium bound and unbound data sets. With calcium binding, a
shift of probability toward a V250-exposed state (cf. red structure in Figure 4.3c) can be
observed. Figure 4.3c shows that two of the macrostates are characterized by releasing
valine residues from the protein body. Specifically, V250 and V255 can be attached in-
dependently of calcium binding. In order to switch from the V250 to the V255 exposing
state, both residues must be attached to the protein body as an intermediate state.
To conclude the discussion of our results, we would like to add that the applied

Langevin integrator has been shown to have a dampening effect on the dynamics in
the subnanosecond regime [30] which could possibly propagate to the high time scale
dynamics described here.

4.3.3 Ca2+ Distribution Depends upon Protein Conformation

When analyzing the calcium configuration within the binding pocket we find that the
Ca2+ distribution relaxes from the crystal structure coordinates into a broader distri-
bution due to Coulomb repulsion between the ions. The crystal structure position of
Ca1 acts as the inner edge of the binding pocket which is structured like a funnel along
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which the ions can collectively move. Therefore, the Ca2+ distribution is dynamic and
is concentrated acrossmultiple possible binding sites that aremore or less defined. The
residues forming these binding sites are dynamic themselves, i.e. they occupy different
conformations in different metastable states as exemplified in Figure 4.4b,c.
The importance of the charge distribution created by binding pocket residues be-

comes evident with a sequence alignment of all known members of the C2 family [3].
The histogram of conserved charges derived from the sequence alignment (Figure 4.4d)
confirms that charges at Ca2+ coordinating residues (Syt-1 C2A residues D172, D178,
D232, D230, and D238, also reported by ref [31]) are indeed conserved. Furthermore,
we find that positive charges at position 199-200 (Syt-1 nomenclature) are conserved,
underlining the significance of our findings. Another distinct feature in the charge con-
servation histogram is a conserved region of positive residues around K190, which cor-
responds to the lysine rich cluster described by ref [32] for the C2 domains of Syt-1 and
rabphilin 3A.
We can further qualitatively generalize our results. Beyond the sequence conserva-

tion, C2 domains are highly conserved in structure as the resolved structures from the
PFAM C2 family [3] have an RMSD of 1.80 ± 0.36Å to the analyzed crystal structure
(1BYN) [33]. It thus becomes very likely that conformational dynamics plays a role
for other C2 domains, too, most likely within the CBR (or equivalent for non-calcium
binders) or other non-β-sheet structural elements such as C78.

4.3.4 Distant Protein Features Show Allosteric Behavior

InMarkov state modeling and other statistical analysis methods, there is a trade-off be-
tween the complexity of the analyzed system and the amount of detail one can resolve
with statistical significance. The presented Syt-C2A example has distinct regions in
which conformational switches occur. As commonly observed, obtaining a joint MSM
including all combinations of conformational switches proved difficult due to insuffi-
cient statistics [1]. However, high-quality MSMs could be obtained for individual con-
formational switches, in the field of the remaining protein. Here we investigate how
these different subsystems interact using an information theoretic approach to model
the network.
A qualitative assessment of undirectional influences using Pearson’s correlation co-

efficient (of coordinates) and mutual information (of MSMs) shows that there indeed
is a weak coupling between conformational switches. As expected, coupling between
spatially adjacent sites is higher than between distant sites. In particular, Ca2+ ions
tighten the coupling between CBR-1 and CBR-2 (Figure 4.5).
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It is only natural to ask if this coupling is symmetric or if any kind of unidirectional
influence between conformational switches can be inferred. A crucial point for the anal-
ysis is that a common time frame can be defined from the Markov state trajectories of
the individual conformational switches as they occur simultaneously. Transfer entropy
T(X → Y) is a well establishedmeasure for assessing directional networks between time
seriesX andY [26]. It can be interpreted as a statisticalmeasure for the amount of infor-
mation transported between two systems and is thus direction dependent. We say that
X influences Y if T(X → Y) ≫ T(Y → X) (Methods). This attempts to model statistical
causality (in the Granger sense) between local protein features. In Granger’s original
definition [34] a random variable X “causes” Y if knowledge of the past of X reduces
the uncertainty of predicting Y’s future. Transfer entropy relates to this concept [35];
therefore we apply a tool corresponding to a very broad definition of allostery.

Figure 4.5: Coupling between conformational switching domains. Each link between conformational switches
(enumerated 1-3) is quantified by naive computation of Pearson’s correlation coefficient between plain coordi-
nates (rP), mutual information (MI) and probed for directionality with transfer entropy (TE). TE color code refers
to different directions as shown in crystal structure. Bootstrapping histograms forMI and TE are shown to assess
the estimation error (MI, TE columns). The correlation coefficients between all pairs of heavy atoms of two pro-
tein regions are depicted by histograms to qualitatively assess linear couplings (rP column).

The transfer entropy estimates from our data are presented in Figure 4.5. We can
identify a weak nonsymmetric coupling between C78 and CBR-1 in the calcium bound
case. The transfer entropy between this pair of loops is significantly higher from C78 to
CBR-1 than vice versa, i.e., the prediction error for CBR-1 dynamics can be decreased by
adding information about C78. This can be interpreted as a causal influence from C78
onto CBR-1, suggesting an allosteric coupling that is induced by calcium binding. It ac-
companies a slight increase in mutual information between this pair of conformational
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switches. We hypothesize that the effect is caused by long-range Coulomb interactions
from the ions that is further mediated by the network of chemical bonds of the rigid
protein body.
Please note that this result is purely based on statistical analysis, and however desir-

able, no mechanistic interpretation follows here.

4.4 Discussion

We have shown that challenges arising from theMD sampling problem and the curse of
dimensionality can be met by combining local Markov state models of conformational
switches with an information-theoretic analysis of their coupling. We find that the es-
timation of few-state local Markov models is very robust and avoids commonly experi-
enced statistical problems with estimating Markov models of the global protein state.
Furthermore, local models are easy to interpret. We therefore think that the present
approach will be instrumental for the modeling of large proteins with loosely coupled
local conformational switching domains.
Our results demonstrate that the effect of calcium binding to Syt-C2A is not a simple

linear response as might be expected by increasing the charge in a specific part of the
system but rather a complex change of the system kinetics. Even though experimen-
tal [36] andMD studies [37, 38] suggested that Syt-1 C2A does not switch between well-
defined conformations upon calcium binding, sampling the system extensively shows
that the C2A domain indeed undergoes subtle and rare conformational switching which
is profoundly impacted by Ca2+.
Furthermore, it is well established that upon calcium binding, the C2A domain ef-

fectively switches off its membrane repelling charge [39, 40] and is therefore attracted
to the membrane while interacting with the SNARE-cpx complex (cf. Figure 4.2 and
refs [5] and [6]). This model however neither specifies such an interaction nor does it
explain how the signal (calcium ions) spreads to possibly distant interaction sites. Our
model suggests that the conformational dynamics is altered upon calciumbinding. This
could be a potential mechanism for the calcium signal spreading to distant sites.
As in any study based on MD simulations, this work relies on the force field that was

used to generate the data. In particular, we note that the applied calcium ion model is
approximate and, e.g., does not account for electronic screening of charged moieties or
environment-dependent changes in partial charges [41, 42]. Furthermore, it does not
reflect multibody effects or even Ca2+selectivity [43]. Even though this should be taken
into account when basing experiments on our results, we are confident that charge-
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mediated effects to the protein dynamics such as the ones laid out in this work can
be described nevertheless but should be treated cautiously. Comparison to other force
fields, in particular polarizable ones, or correction terms to classical force fields such
as described in refs [44] and [45] would certainly improve the prediction quality at the
binding site but are beyond the scope of this work.
At this point, our systemmodel does not include elements of the cellular environment

such as phospholipid membranes. The conformational dynamics is expected to be al-
tered upon interactions with other proteins or membranes, e.g., membrane-inserted
Ca2+ bound Syt-C2A will not obey the exact same dynamics as presented in this study.
We note, however, that the presented methodological framework would be applicable
and could be used to quantify effects of membrane binding to C2A conformational dy-
namics.
Our model predicts a calcium induced population change toward a CBR-1 α-helix

(Figure 4.3a), burying negatively charged residues such as D172, thereby making the
CBR more attractive to the membrane. This is consistent with the charge neutraliza-
tion argument of ref [39]. Membrane attraction is further enhanced by hydrophobic
residues that are not necessary for stabilizing the α-helix. The CBR-1 configurations
that, according to ourmodel, are highly populated in the calcium unbound protein (Fig-
ure 4.3a)might even reinforce themembrane repelling function bymovinghydrophobic
residueM173, which is exposed in the disordered CBR-1 configuration, into the binding
pocket. CBR related polar acidic residues are solvent accessible in this case since they
are not bound by calcium ions. This has the side effect that CBR attraction to solvent
calcium ions rises.
In the CBR-2 conformational switch, we find that calcium binding enables release of

R199 from the protein body (Figure 4.3b). As R199 has been reported to be of impor-
tance for membrane penetration [29], ionic interactions with SNARE [46], and forma-
tion of the C2A-C2B interface [47], our model might be key for understanding the inter-
actions with the fusion machinery. In particular, Syt-1 interaction with SNARE might
be triggered by calcium that, given its positive charge, induces the release of R199.
The C78 region generally contains many hydrophobic amino acids which opens the

possibility of potential weak membrane interaction at this non-CBR site, a model previ-
ously proposed for Syt-1 C2B [48]. This interactionwould allow the C2Adomain to bind
both, vesicle and plasmamembrane, at the same time. Unfortunately, we are not aware
of thorough studies that investigate C78 or adjacent sites. In order to verify our model,
we thus propose experimental validation. Such a validation would include assessing
the relevance of this protein site, e.g., by a mutation experiment that neutralizes all hy-
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drophobic residues located there. If effects on membrane fusion can be determined, a
second step involving substitution of single C78 residues might help to understand the
mechanism and to validate our predictions. We expect especially valine residues 250
and 255 to alter functionality since their configurations are characteristic formetastable
states in the local models.
Our study further suggests cooperativity between the loops. As expected, our corre-

lation and mutual information analysis shows that CBR-1 and CBR-2 loops are weakly
coupled. Our model further predicts that calcium binding induces a stronger coupling.
Transfer entropy analysis suggests that calciumbinding increases the influence that C78
exerts onto CBR-1, even though the absolute magnitudemight be rather low. This weak
allosteric coupling insinuates that perturbation of C78, e.g., throughmembrane contact
or binding to another protein in the fusion complex, effects the conformational dynam-
ics of CBR loops. Even though our model does not predict the properties of such an
allosterically induced change, we believe that incorporating these findings into future
studies will help to understand cryptic behavior of C2 domains.
Transfer entropy analysis as conducted in this work is limited to modeling the inter-

play of conformational switches. However, modeling a high resolution allosteric path-
way with this technique is possible and the subject of current research.
We can further qualitatively generalize the mechanisms described here for Syt-1 C2A

to a larger spectrum of proteins that are not necessarily connected to neurotransmit-
ter secretion. As sequence alignment of the charges in the C2 family (Figure 4.4d) has
shown, especially our newly described calcium dependent mechanism of CBR-2 regula-
tion might indeed be a structural feature of C2 domains in general.
The present approach relies on identifying the conformational switching domains

treated by local Markov models with expert knowledge. The development of machine
learning approaches to select these conformational switches automatically is a topic of
future research.

4.5 Methods

4.5.1 Molecular Dynamics Simulations

In order to observe all important dynamical processes of the system, we have carried
out extensive sampling. Two hundred twenty trajectories of 2 μs individual length have
been generated, adding up to a cumulated simulation time of 440μs, which to the best
of our knowledge is the largest atomistic MD data set generated for a C2 domain up to
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now. Since synaptic vesicle fusion can be triggered by calcium in less than 100μs [4]
the assumption that all relevant processes have been sampled is justified.
Simulations have been carried out for the Syt-C2A domain in its Ca2+-bound and

Ca2+-free state using the CHARMM36 force field [49]. The setup is based on the C2A
structure contained in PDB2R83 (which contains the doublemotif C2AB), andCa2+ ion
positions are initiated from PDB 1BYN which contains three calcium ions bound to the
CBR. Starting structures for MD production runs were randomly drawn from a smaller
precursive data set. For both setups a water box of side length 6nm was generated
with a KCl ion concentration of 0.1mol L−1 at neutral total charge using the TIP3P [50]
water model. The setups contain 8363 (calcium free) and 8359 water molecules (with
calcium), respectively. The setup as well as equilibration in the NVT and NPT ensem-
bles (100ps each) were conducted with Gromacs [51], and production run simulations
of 2 μs were carried out in the NPT ensemble at 300 K and 1 bar using the OpenMM
software package [52]. We used 1 nm cutoff for nonbonded interactions, PME electro-
statics, and rigid watermolecules. We further exploited the heavy hydrogen approxima-
tion as described in the openMM documentation, allowing a 5 fs integration step with
the openMMLangevin integrator with a friction coefficient of 1/ps. A simplified python
script of our production run openMM configuration is given in SI Section B.2.1. An ag-
gregated simulation time of 184μs was obtained for the calcium free case, 256μs for
the calcium bound case, and in each case the accumulation of new data was continued
until converged MSMs were obtained. We note that the Ca2+binding positions are con-
verged with time (see SI Section B.2.2). Visual representations of molecular structures
were obtained with VMD [53].

4.5.2 Local MSMs

For modeling local loop dynamics, the full (bound and apo) trajectory data was directly
clustered according to a minRMSD norm. This includes superposing the full protein
(using MDTraj [54]) and defining discrete states according to the Euclidean norm be-
tween all atom coordinates of a specific region. This includes amino acid side chains
and hydrogen atoms. We chose A170-T176 (CBR-1), R199-N203 (CBR-2) and T249-
E258 (C78) to extract the local conformations, respectively. Discrete states (15-30) and
the k-means algorithm [55] were used for each local model.
The selection of regions is inspired by a precursive full protein analysis using pairwise

minimal residue distances between blocks of two residues and a state discretization in
a low dimensional TICA projection [56]. Besides a relatively low spatial resolution at
local sites, this analysis did not yield a valid MSM due to disconnected combinatorial
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states. It however motivated us to conduct analyses on local sites and to select the ones
with metastable dynamics. Please note that the distance feature described here was not
used any further; local MSMs are instead built using the procedure described above.
Discretizing local protein features after global minRMSD superposition could po-

tentially yield spurious correlations between distant protein sites [57]. We note that
this is unlikely because a) the largest mass of the protein is concentrated in its rigid β-
sandwich body and b) the comparably low number of discrete states at local sites is too
small to capture such subtle influences. Microstate definitions for the example of CBR-
2 are shown in SI Section B.2.3. Further and most importantly, the hidden metastable
states that we discuss and use for mutual information and transfer entropy analysis re-
flect major internal loop rearrangements and are therefore most likely not affected by
superposition artifacts.
HMMs were estimated separately for calcium bound and unbound data sets based

on the common discretization described above. In contrast to Markov state models,
HMMs are not based on the assumption that the microstates obtained by clustering are
approximately Markovian. Instead, a number of hidden states (usually less than the
observed microstates) are introduced as explained in detail in ref [24]. The number of
hidden states was chosen such that it yields the best resolution of the slow processes
in the protein and fulfills the validation criteria for Markov modeling (see below). All
HMMs were estimated at lag time 50ns using the PyEMMA software package [55]. We
observed that only in relatively small configuration spaces (such as the ones defined by
partitioning the protein into conformational switches), a robust, commondiscretization
into Markov states could be obtained.
Corresponding HMM states between calcium bound and unboundHMMswere iden-

tified by computing KL-divergences between their observation probabilities per micro-
state (i.e. in the joint state space) and using a cutoff to identify hidden states across
data sets. This operation is only possible because all data is discretized the sameway i.e.
microstate definitions do not differ. We use the KL-divergence between these distribu-
tions, and an example (identification of macrostates for C78) is shown in SI Figure B.4.
Note that the KL-divergence becomes zero in the limit of equal distributions, thus one
can define a cutoff of 2 below which states are identified for all models.
As our HMMs display high metastability, we can use the approximation K = T− 1 to

compute the rate matrix K from the transitionmatrix T. The elements of K are pairwise
inverse transition times.
Markovmodelswere validated using twomeasures [15]. First, the implied time scales

were tested for convergence. We further tested for stationary distribution convergence
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to ensure that the presented results do not depend on the model lag time. Second, the
Chapman-Kolmogorow equationwas used to check for consistency between predictions
of the presented models with direct estimates at higher lag times. Using Bayesian sam-
pling of the posterior, the error was estimated for all the quantities computed by the
MSMs/HMMs [58]. Results are presented in SI Section B.2.4.

4.5.3 Free Energy Validation of Ion Force Field

For model validation purposes, we derive binding free energies of each Ca2+ using al-
chemical free energy perturbation methods [59, 60] for the crystal structure conforma-
tion.
As a buffer solution contains monovalent ions, it can be expected that calcium bind-

ing sites are normally saturated by those ions. This is confirmed by our calcium-free
simulations in which we observe potassium ions in the binding pocket. Alchemical
free energy perturbation was hence simplified to a computational transformation of
Ca2+ → K + in the binding pocket and the opposite transformation in the solvent.
We further assume that in experiments, ions fill the binding pocket subsequently, i.e.,

we compute Ca3 in the presence of (Ca1, Ca2), Ca2 in the presence of Ca1, and Ca1 by
itself. As we are interested in the binding free energy difference of a particular protein
conformation, we apply harmonic constraints to the full protein. Relative free energies
were computed using MBAR [60].
Our results were validated according to ref [61]. This includes the validation of al-

chemical intermediate overlap and convergence analysis. Further, we repeat the same
calculation at least 20 times to make sure that our results are reproducible.
The resulting ion binding free energies from the equilibrated crystal structure are

comparable to experiment within error; however they do not fully match the experi-
mentally observed order (SI Section B.2.6).

4.5.4 Combinatorial Viterbi Path Model

Since a central concept of this work is hidden state space trajectories or Viterbi paths,
the most important concepts [24] are summarized here. The Viterbi algorithm maxi-
mizes the probability P of the hidden state sequence q1q2 . . . qn with the observed se-
quence O1O2 . . .On given our model λ

max
q1q2...qn

P(q1q2 . . . qn,O1O2 . . .On|λ). (4.2)
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To this end, the Viterbi path is a maximum likelihood path on the hidden states. It
naturally comes with the time step of the underlying HMM. Its estimation algorithm is
also part of PyEMMA [55].

The degree up to which the local models communicate was estimated by comparing
the stationary distribution of independentmodels to a new estimate. By assuming inde-
pendence, this property follows directly from the product of local model probabilities
per state.

Without assuming independence, a new estimate for the dynamics in combinatorial
state space was made based on the local model Viterbi paths. It yields the combinato-
rial transition matrix or conditional probabilities p(xi+1,yi+1|xi,yi) and joint stationary
distribution πX,Y(x,y) of two processes X and Y.

4.5.5 Mutual Information

Let X and Y be Markov processes that are localized at distinct spatial features of a pro-
tein and are well-described by (local, individual) HMMs. The mutual informationM of
X and Y is defined in terms of the joint probability pX,Y(x,y) and the independent prob-
abilities pX(x), pY(y) of x ∈ X and y ∈ Y. In this work, we identify these probabilities
p as the stationary probabilities of Markov models, most commonly denoted by π. We
can thus write

M(X,Y) =
∑
x∈X
y∈Y

πX,Y(x,y) log2
(
πX,Y(x,y)
πX(x)πY(y)

)
. (4.3)

We obtain the independent stationary distributions πX and πY from the local hidden
Markov models and the joint stationary distribution πX,Y from a combined Markov
model estimated based on the Viterbi paths. We use eq (4.3) to compute mutual in-
formation between all pairs of conformational switches of Syt-1 C2A .

For interpreting mutual information, it can be rewritten in terms of the KL-
divergenceD(·∥·) as follows:

M(X,Y) = D (πX,Y(x,y)∥πX(x)πY(y)) (4.4)

Mutual information can thus be interpreted as a measure of the incorrectness of the
assumption that both systems are independent [26].

Validation measures for both mutual information and transfer entropy are given in
SI Section B.2.5.

98



Coupling of Conformational Switches in Calcium Sensor

Acknowledgement

We acknowledge funding from the Deutsche Forschungsgemeinschaft (SFB / TRR186,
project A12 and NO825/3-2), the Einstein Foundation Berlin (SoOPic) and the Euro-
pean Commission (ERC CoG 772230 “ScaleCell”). We are grateful for discussions and
feedback from Martin Scherer, Simon Bärfuss, Thomas Söllner, Fabian Paul, Shreyas
Kaptan, Sebastian Stolzenberg, Guillermo Pérez-Hernández, Katarzyna Ziółkowska,
and Andreas Mardt and thank Brooke E. Husic for proofreading the manuscript.

99



Chapter 4

Bibliography

[1] S. Olsson and F. Noé. “Dynamic Graphical Models of Molecular Kinetics”. Proc. Natl. Acad. Sci.
116.30 (2019), pp. 15001–15006.

[2] P. Csermely, R. Palotai, andR.Nussinov. “InducedFit, Conformational Selection and Independent
Dynamic Segments: An Extended View of Binding Events”. Trends Biochem. Sci. 35.10 (2010),
pp. 539–546.

[3] S. El-Gebali, J. Mistry, A. Bateman, S. R. Eddy, A. Luciani, S. C. Potter, M. Qureshi, L. J. Richard-
son, G. A. Salazar, A. Smart, E. L. L. Sonnhammer, L. Hirsh, L. Paladin, D. Piovesan, S. C. E.
Tosatto, and R. D. Finn. “The Pfam Protein Families Database in 2019”. Nucleic Acids Res. 47.D1
(2019), pp. D427–D432.

[4] T. C. Südhof. “Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle”.
Neuron 80.3 (2013), pp. 675–690.

[5] E. R. Chapman. “How Does Synaptotagmin Trigger Neurotransmitter Release?” Annu. Rev.
Biochem. 77.1 (2008), pp. 615–641.

[6] Q. Zhou, P. Zhou, A. L. Wang, D. Wu, M. Zhao, T. C. Südhof, and A. T. Brunger. “The Primed
SNARE–Complexin–Synaptotagmin Complex for Neuronal Exocytosis”.Nature 548.7668 (2017),
pp. 420–425.

[7] S. Bernhard and F. Noé. “Optimal Identification of Semi-Rigid Domains in Macromolecules from
Molecular Dynamics Simulation”. PLoS ONE 5.5 (2010). Ed. by M. J. Buehler, e10491.

[8] L. Boninsegna, R. Banisch, and C. Clementi. “A Data-Driven Perspective on the Hierarchical As-
sembly of Molecular Structures”. J. Chem. Theory Comput. 14.1 (2018), pp. 453–460.

[9] C. Schütte, A. Fischer, W. Huisinga, and P. Deuflhard. “A Direct Approach to Conformational Dy-
namics Based on Hybrid Monte Carlo”. J. Comput. Phys. 151.1 (1999), pp. 146–168.

[10] W. C. Swope, J.W. Pitera, and F. Suits. “Describing Protein Folding Kinetics byMolecular Dynam-
ics Simulations. 1. Theory”. J. Phys. Chem. B 108.21 (2004), pp. 6571–6581.

[11] N. Singhal, C. D. Snow, and V. S. Pande. “Using Path Sampling to Build Better Markovian State
Models: Predicting the Folding Rate and Mechanism of a Tryptophan Zipper Beta Hairpin”. J.
Chem. Phys. 121.1 (2004), pp. 415–425.

[12] F. Noé, I. Horenko, C. Schütte, and J. C. Smith. “Hierarchical Analysis of Conformational Dynam-
ics in Biomolecules: Transition Networks of Metastable States”. J. Chem. Phys. 126.15 (2007),
p. 155102.

[13] F. Noé. “Probability Distributions of Molecular Observables Computed from Markov Models”. J.
Chem. Phys. 128.24 (2008), p. 244103.

[14] F. Noé, C. Schütte, E. Vanden-Eijnden, L. Reich, and T. R. Weikl. “Constructing the Equilibrium
Ensemble of Folding Pathways from Short Off-Equilibrium Simulations”. Proc. Natl. Acad. Sci.
106.45 (2009), pp. 19011–19016.

[15] J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D. Chodera, C. Schütte, and F. Noé.
“Markov Models of Molecular Kinetics: Generation and Validation”. J. Chem. Phys. 134.17 (2011),
p. 174105.

100



Coupling of Conformational Switches in Calcium Sensor

[16] N. Plattner, S. Doerr, G. D. Fabritiis, and F. Noé. “Complete Protein–Protein Association Kinet-
ics in Atomic Detail Revealed by Molecular Dynamics Simulations and Markov Modelling”. Nat.
Chem. 9.10 (2017), p. 1005.

[17] F. Paul, C.Wehmeyer, E. T. Abualrous, H.Wu,M. D. Crabtree, J. Schöneberg, J. Clarke, C. Freund,
T. R.Weikl, and F.Noé. “Protein-Peptide AssociationKinetics beyond the Seconds Timescale from
Atomistic Simulations”. Nat. Commun. 8.1 (2017), p. 1095.

[18] B. E. Husic and V. S. Pande. “Markov State Models: From an Art to a Science”. J. Am. Chem. Soc.
140.7 (2018), pp. 2386–2396.

[19] S. Röblitz andM.Weber. “Fuzzy Spectral Clustering by PCCA+: Application toMarkov State Mod-
els and Data Classification”. Adv. Data Anal. Classif. 7.2 (2013), pp. 147–179.

[20] A. Mardt, L. Pasquali, H. Wu, and F. Noé. “VAMPnets for Deep Learning of Molecular Kinetics”.
Nat. Commun. 9.1 (2018), pp. 1–11.

[21] W. Wang, T. Liang, F. K. Sheong, X. Fan, and X. Huang. “An Efficient Bayesian Kinetic Lumping
Algorithm to IdentifyMetastable Conformational States viaGibbs Sampling”. J. Chem. Phys. 149.7
(2018), p. 072337.

[22] L. Martini, A. Kells, R. Covino, G. Hummer, N.-V. Buchete, and E. Rosta. “Variational Identifica-
tion of Markovian Transition States”. Phys. Rev. X 7.3 (2017), p. 031060.

[23] F. Noé, H.Wu, J.-H. Prinz, andN. Plattner. “Projected andHiddenMarkovModels for Calculating
Kinetics and Metastable States of Complex Molecules”. J. Chem. Phys. 139.18 (2013), p. 184114.

[24] L. R. Rabiner. “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recog-
nition”. Proc. IEEE 77.2 (1989), pp. 257–286.

[25] J. R. Porter, K. E. Moeder, C. A. Sibbald, M. I. Zimmerman, K. M. Hart, M. J. Greenberg, and
G. R. Bowman. “Cooperative Changes in Solvent Exposure Identify Cryptic Pockets, Switches, and
Allosteric Coupling”. Biophys. J. 116.5 (2019), pp. 818–830.

[26] T. Schreiber. “Measuring Information Transfer”. Phys. Rev. Lett. 85.2 (2000), pp. 461–464.

[27] A. Hacisuleyman and B. Erman. “Entropy Transfer between Residue Pairs and Allostery in Pro-
teins: Quantifying Allosteric Communication in Ubiquitin”. PLOS Comput. Biol. 13.1 (2017),
e1005319.

[28] H. Kamberaj and A. van der Vaart. “Correlated Motions and Interactions at the Onset of the DNA-
Induced Partial Unfolding of Ets-1”. Biophys. J. 96.4 (2009), pp. 1307–1317.

[29] J. L. Jiménez, G. R. Smith, B. Contreras-Moreira, J. G. Sgouros, F. A. Meunier, P. A. Bates, and
G. Schiavo. “Functional Recycling of C2 Domains Throughout Evolution: A Comparative Study
of Synaptotagmin, Protein Kinase C and Phospholipase C by Sequence, Structural and Modelling
Approaches”. J. Mol. Biol. 333.3 (2003), pp. 621–639.

[30] J. E. Basconi and M. R. Shirts. “Effects of Temperature Control Algorithms on Transport Prop-
erties and Kinetics in Molecular Dynamics Simulations”. J. Chem. Theory Comput. 9.7 (2013),
pp. 2887–2899.

[31] R. Fernández-Chacón, A. Königstorfer, S.H.Gerber, J. García,M. F.Matos, C. F. Stevens, N. Brose,
J. Rizo, C. Rosenmund, and T. C. Südhof. “Synaptotagmin I Functions as a Calcium Regulator of
Release Probability”. Nature 410.6824 (2001), pp. 41–49.

101



Chapter 4

[32] J. Guillén, C. Ferrer-Orta, M. Buxaderas, D. Pérez-Sánchez, M. Guerrero-Valero, G. Luengo-Gil,
J. Pous, P. Guerra, J. C. Gómez-Fernández, N. Verdaguer, and S. Corbalán-García. “Structural
Insights into the Ca2+ and PI(4,5)P2 Binding Modes of the C2 Domains of Rabphilin 3A and
Synaptotagmin 1”. Proc. Natl. Acad. Sci. 110.51 (2013), pp. 20503–20508.

[33] L. Holm and L. M. Laakso. “Dali Server Update”. Nucleic Acids Res. 44.W1 (2016), W351–W355.

[34] C.W. J.Granger. “InvestigatingCausalRelations byEconometricModels andCross-spectralMeth-
ods”. Econometrica 37.3 (1969), pp. 424–438.

[35] P.-O. Amblard and O. J. J. Michel. “On Directed Information Theory and Granger Causality
Graphs”. J. Comput. Neurosci. 30.1 (2011), pp. 7–16.

[36] X. Shao, I. Fernandez, T. C. Südhof, and J. Rizo. “Solution Structures of the Ca2+-Free and Ca2+-
Bound C2ADomain of Synaptotagmin I: Does Ca2+ Induce a Conformational Change?” Biochem-
istry 37.46 (1998), pp. 16106–16115.

[37] Z. Wu and K. Schulten. “Synaptotagmin’s Role in Neurotransmitter Release Likely Involves Ca2+-
Induced Conformational Transition”. Biophys. J. 107.5 (2014), pp. 1156–1166.

[38] M. Bykhovskaia. “Calcium Binding Promotes Conformational Flexibility of the Neuronal Ca2+
Sensor Synaptotagmin”. Biophys. J. 108.10 (2015), pp. 2507–2520.

[39] A. R. Striegel, L. M. Biela, C. S. Evans, Z. Wang, J. B. Delehoy, R. B. Sutton, E. R. Chapman, and
N. E. Reist. “Calcium Binding by Synaptotagmin’s C2A Domain Is an Essential Element of the
Electrostatic Switch That Triggers Synchronous Synaptic Transmission”. J. Neurosci. 32.4 (2012),
pp. 1253–1260.

[40] S. Corbalan-Garcia and J. C. Gómez-Fernández. “Signaling through C2 Domains: More than One
Lipid Target”.Biochim. Biophys. Acta - Biomembr.Membrane Structure and Function: Relevance
in the Cell’s Physiology, Pathology and Therapy 1838.6 (2014), pp. 1536–1547.

[41] M. Kohagen, M. Lepšík, and P. Jungwirth. “Calcium Binding to Calmodulin by Molecular Dynam-
ics with Effective Polarization”. J. Phys. Chem. Lett. 5.22 (2014), pp. 3964–3969.

[42] I. Leontyev and A. Stuchebrukhov. “Accounting for Electronic Polarization in Non-Polarizable
Force Fields”. Phys. Chem. Chem. Phys. 13.7 (2011), pp. 2613–2626.

[43] Z. Jing, C. Liu, R. Qi, and P. Ren. “Many-Body Effect Determines the Selectivity for Ca2+ andMg2+

in Proteins”. Proc. Natl. Acad. Sci. 115.32 (2018), E7495–E7501.

[44] T. Martinek, E. Duboué-Dijon, Š. Timr, P. E. Mason, K. Baxová, H. E. Fischer, B. Schmidt, E.
Pluhařová, and P. Jungwirth. “Calcium Ions in Aqueous Solutions: Accurate Force Field Descrip-
tion Aided by Ab Initio Molecular Dynamics and Neutron Scattering”. J. Chem. Phys. 148.22
(2018), p. 222813.

[45] A. Saxena and D. Sept. “Multisite Ion Models That Improve Coordination and Free Energy Cal-
culations in Molecular Dynamics Simulations”. J. Chem. Theory Comput. 9.8 (2013), pp. 3538–
3542.

[46] Q. Zhou, Y. Lai, T. Bacaj, M. Zhao, A. Y. Lyubimov, M. Uervirojnangkoorn, O. B. Zeldin, A. S.
Brewster, N. K. Sauter, A. E. Cohen, S. M. Soltis, R. Alonso-Mori, M. Chollet, H. T. Lemke, R. A.
Pfuetzner, U. B. Choi, W. I. Weis, J. Diao, T. C. Südhof, and A. T. Brunger. “Architecture of the
Synaptotagmin-SNAREMachinery for Neuronal Exocytosis”.Nature 525.7567 (2015), pp. 62–67.

102



Coupling of Conformational Switches in Calcium Sensor

[47] K. L. Fuson, M. Montes, J. J. Robert, and R. B. Sutton. “Structure of Human Synaptotagmin 1
C2AB in the Absence of Ca2+ Reveals a Novel Domain Association,” Biochemistry 46.45 (2007),
pp. 13041–13048.

[48] J. Rizo. “Mechanism of Neurotransmitter Release Coming into Focus”. Protein Sci. 27.8 (2018),
pp. 1364–1391.

[49] J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O’Connor, D. J. Tobias, C. Mondragon-Ramirez, I.
Vorobyov, A. D. MacKerell, and R. W. Pastor. “Update of the CHARMM All-Atom Additive Force
Field for Lipids: Validation on Six Lipid Types”. J. Phys. Chem. B 114.23 (2010), pp. 7830–7843.

[50] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein. “Comparison of
Simple Potential Functions for Simulating Liquid Water”. J. Chem. Phys. 79.2 (1983), pp. 926–
935.

[51] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl. “GROMACS:
High PerformanceMolecular Simulations throughMulti-Level Parallelism fromLaptops to Super-
computers”. SoftwareX 1–2 (2015), pp. 19–25.

[52] P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A. Beauchamp, L.-P.Wang, A. C.
Simmonett, M. P. Harrigan, C. D. Stern, R. P. Wiewiora, B. R. Brooks, and V. S. Pande. “OpenMM
7: Rapid Development of High Performance Algorithms for Molecular Dynamics”. PLOS Comput.
Biol. 13.7 (2017), e1005659.

[53] W.Humphrey, A. Dalke, and K. Schulten. “VMD: VisualMolecular Dynamics”. J.Mol. Graph. 14.1
(1996), pp. 33–38.

[54] R. T. McGibbon, K. A. Beauchamp, M. P. Harrigan, C. Klein, J. M. Swails, C. X. Hernández, C. R.
Schwantes, L.-P. Wang, T. J. Lane, and V. S. Pande. “MDTraj: A Modern Open Library for the
Analysis of Molecular Dynamics Trajectories”. Biophys. J. 109.8 (2015), pp. 1528–1532.

[55] M. K. Scherer, B. Trendelkamp-Schroer, F. Paul, G. Pérez-Hernández, M. Hoffmann, N. Plattner,
C. Wehmeyer, J.-H. Prinz, and F. Noé. “PyEMMA 2: A Software Package for Estimation, Valida-
tion, and Analysis of Markov Models”. J. Chem. Theory Comput. 11.11 (2015), pp. 5525–5542.

[56] G. Pérez-Hernández, F. Paul, T. Giorgino,G.D. Fabritiis, andF.Noé. “Identification of SlowMolec-
ular Order Parameters for Markov Model Construction”. J. Chem. Phys. 139.1 (2013), p. 015102.

[57] P.H.Hünenberger, A. E.Mark, andW. F. vanGunsteren. “Fluctuation andCross-correlation Anal-
ysis of Protein Motions Observed in Nanosecond Molecular Dynamics Simulations”. J. Mol. Biol.
252.4 (1995), pp. 492–503.

[58] B. Trendelkamp-Schroer, H. Wu, F. Paul, and F. Noé. “Estimation and Uncertainty of Reversible
Markov Models”. J. Chem. Phys. 143.17 (2015), p. 174101.

[59] N. Hansen and W. F. van Gunsteren. “Practical Aspects of Free-Energy Calculations: A Review”.
J. Chem. Theory Comput. 10.7 (2014), pp. 2632–2647.

[60] M. R. Shirts and J. D. Chodera. “Statistically Optimal Analysis of Samples from Multiple Equilib-
rium States”. J. Chem. Phys. 129.12 (2008), p. 124105.

[61] P. V. Klimovich, M. R. Shirts, and D. L. Mobley. “Guidelines for the Analysis of Free Energy Cal-
culations”. J. Comput. Aided Mol. Des. 29.5 (2015), pp. 397–411.

103



Chapter 4

104



SARS-CoV-2

Host cell

Activates

Inhibits

Camostat 

Nafamostat

In-vitro 


Cell-based


Enzymatic


Assay

In-silico 

Atomistic


Molecular


Dynamics 


100 101 102 103

0.0

0.5

1.0

1.5

Camostat
Nafamostat

T
M

P
R

S
S

2

Concentration (nM)

A
c
ti
v
it
y

Catalytic triad

Drug

S1

pocket

Visual summary. 5
Molecular Mechanism of Inhibiting the

SARS-CoV-2 Cell Entry Facilitator TMPRSS2
with Camostat and Nafamostat

This Chapter has been published as

Tim Hempel, Lluís Raich, Simon Olsson, Nurit P. Azouz, Andrea M.
Klingler, Markus Hoffmann, Stefan Pöhlmann, Marc E. Rothenberg,
and Frank Noé. “Molecular Mechanism of Inhibiting the SARS-CoV-2
Cell Entry Facilitator TMPRSS2 with Camostat and Nafamostat”.
Chemical Science (2021), 10.1039.D0SC05064D.
https://doi.org/10.1039/D0SC05064D

105

https://doi.org/10.1039/D0SC05064D


Chapter 5

This Chapter is licensed under the Creative Commons Attribution Non-Commercial 3.0 Un-
ported License. To view a copy of this license, visit https://creativecommons.org/
licenses/by-nc/3.0/.

Contributions TH was lead author in this project. The research was designed by FN, MH,
SP, and MER. TH has conducted the majority of the computational and theoretical part of the
research presented in this manuscript. TH has created MD setups (with SO and LR), run large
scale MD simulations, analyzed and interpreted MD simulations (with LR), designed and es-
timated Markov state models, and analytically derived rate model (with FN). In-vitro exper-
iments were planned, conducted, analyzed, and contributed by NPA and AMK. TH created
Fig. 2c, Fig. 3, and Fig. 4. TH was main author of the manuscript. LR, SO, and FN contributed
to writing the manuscript. (This paragraph summarizes TH’s contributions alone, it is not an
exhaustive list of other authors’ contributions.)

106

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/


Molecular Mechanism of Inhibiting TMPRSS2

Abstract

The entry of the coronavirus SARS-CoV-2 into human lung cells can be inhibited by the
approved drugs camostat and nafamostat. Here we elucidate themolecularmechanism
of these drugs by combining experiments and simulations. In vitro assays confirm that
both drugs inhibit the human protein TMPRSS2, a SARS-Cov-2 spike protein activator.
As no experimental structure is available, we provide a model of the TMPRSS2 equi-
librium structure and its fluctuations by relaxing an initial homology structure with
extensive 330 microseconds of all-atom molecular dynamics (MD) and Markov mod-
eling. Through Markov modeling, we describe the binding process of both drugs and
a metabolic product of camostat (GBPA) to TMPRSS2, reaching a Michaelis complex
(MC) state, which precedes the formation of a long-lived covalent inhibitory state. We
find that nafamostat has a higher MC population than camostat and GBPA, suggesting
that nafamostat is more readily available to form the stable covalent enzyme-substrate
intermediate, effectively explaining its high potency. This model is backed by our in
vitro experiments and consistent with previous virus cell entry assays. Our TMPRSS2-
drug structures are made public to guide the design of more potent and specific in-
hibitors.

5.1 Introduction

In December 2019 several cases of unusual and severe pneumonia were reported in the
city of Wuhan, China. These cases were traced back to a new coronavirus, SARS-CoV-2
(Severe acute respiratory syndrome coronavirus 2); the disease is called COVID-19 [1].
As of October 11, 2020 there are over 37 million confirmed COVID-19 cases and more
than 1 million deaths [2], with both numbers likely to be severe underestimates. Given
estimates of the infection mortality rate of 0.4 to 1.4 % [3–5] the virus has the potential
to kill tens of millions of people unless efficient vaccines or drugs are available.
As other coronaviruses [6–9], SARS-CoV-2 exploits host proteins to initiate cell-

entry, in particular TMPRSS2 and ACE2, two membrane-bound proteins expressed
in the upper and lower respiratory tract [10–13]. TMPRSS2 contains an extracellu-
lar trypsin-like serine-protease domain that can proteolytically activate the spike (S)
protein on the surface of SARS-CoV-2 viral particles [14] (Fig. 5.1). While in certain
cell lines, the S-protein can also be activated by the endo/lysosomal pH-dependent
cysteine protease cathepsin L [14, 15], virus entry into human airway cells [14, 16]
seems to depend on TMPRSS2 but not cathepsin L. Consistently, epidemiological data
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of prostate cancer patients undergoing androgen-deprivation therapies, which lowers
TMPRSS2 levels, indicate a lower risk of contracting the SARS-CoV-2 infection [17].
We further note that low concentration levels of TMPRSS2 are observed in children
and infants, possibly explaining lower risks of severe COVID-19 infections in younger
age groups [18].
TMPRSS2 is also exploited by other coronaviruses and influenza A viruses for ac-

tivation of surface glycoproteins, viral spread, and pathogenesis [19–25]. TMPRSS2
knock-out mice have no phenotype in the absence of infection [26], indicating that in-
hibiting TMPRSS2 function might not be associated with substantial unwanted side
effects. As a result, TMPRSS2 is a promising therapeutic target in the context of in-
fluenza A and coronavirus infection, including SARS-CoV-2. Since TMPRSS2 is host
encoded and thus genetically stable, treatment should be associated with a low risk of
drug resistance
Here, we study the structural basis andmolecularmechanismof TMPRSS2 inhibition

by nafamostat, camostat, and its metabolic product 4-(4-guanidinobenzoyloxy)phenyl-
acetic acid (GBPA). These guanidinobenzoyl-containing drugs are approved for human
use in Japan and have been demonstrated to inhibit SARS-CoV-2 cell-entry [14, 27–
29]. A recent survey of FDA approved drugs further found nafamostat to be an effective
inhibitor of SARS-Cov-2 infection in human lung-cell cultures [30]. We report experi-
mental measurements demonstrating that nafamostat and camostat inhibit TMPRSS2
activity by using our recently established cell-based assay [31], consistent with in vitro
enzymatic TMPRSS2 activity assays [32].
Despite the hopes associated with TMPRSS2 inhibition, we are, as yet, lacking an ex-

perimental structure. We here go beyond the previous dependence on homology mod-
els by an extensive 330microseconds of high-throughput all-atommolecular dynamics
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(MD) simulations and Markov modeling. This approach provides an ensemble of equi-
librium structures of the protein-drug complex and also drug binding kinetics. We show
that nafamostat, camostat, and GBPA are covalent inhibitors with an identical covalent
complex, but their different inhibitory activity can be explained by different populations
of their Michaelis complex preceding the covalent complex. These findings, combined
with the simulation structures that we make publicly available, provide an important
basis for developing more potent and specific TMPRSS2 inhibitors.

5.2 Results

5.2.1 Camostat and Nafamostat inhibit the catalytic activity of TMPRSS2

First we confirm that camostat and nafamostat are TMPRSS2 inhibitors. To this end,
we employ our recently reported activity assay [31] of the full-length TMPRSS2 protein
on the surface of live cells with both inhibitors (Fig. 5.2A). Briefly, we transfected the
human cell-line HEK-293T with a TMPRSS2 expression vector. We then measured
the protease activity of the transfected cells using the fluorogenic peptide substrate
BOC-QAR-AMC, following incubation of the cell with increasing inhibitor concentra-
tions. Peptide-digestion induced a minimal increase in fluorescent signal in control
cells without exogenous TMPRSS2 expression (un-normalized mean enzyme activity =
2.4), while TMPRSS2 over-expression resulted in a much faster peptide digestion (un-
normalized mean enzyme activity = 12.8). Therefore, our assay is mostly specific for
TMPRSS2 [31]. Significantly lower enzyme activity at higher drug concentrations can
thus be attributed to TMPRSS2 inhibition.

For both camostat and nafamostat, we see a clear dose-dependent inhibition and
estimate their respective IC50 values to 142 ± 31 nM and 55 ± 7 nM (Fig. 5.2C). Our
results are consistent with the finding that both drugs inhibit cell entry of SARS-CoV-2
and other coronaviruses, and that nafamostat is the most potent inhibitor [27, 28, 32].

Note that in humans, camostat is rapidly processed to 4-(4-guanidinobenzoyloxy)-
phenylacetic acid (GBPA) (Fig. 5.2A) [33]. It has been recently shown thatGBPA also in-
hibits TMPRSS2 and cell entry of SARS-CoV-2 viruses, although slightly less efficiently
than camostat [29]. Hence, we subsequently study the molecular interactions between
TMPRSS2 and all three compounds: camostat, GBPA, and nafamostat.
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5.2.2 Equilibrium structures of TMPRSS2 in complex with Camostat and
Nafamostat

We now set off to investigate the molecular mechanism of TMPRSS2 inhibition by
nafamostat, camostat, and its metabolite GBPA. No TMPRSS2 crystal structure is avail-
able to date, however it has been shown that all-atom MD simulations can reliably
model the equilibrium structures of proteins when (i) a reasonable model is available
as starting structure, and (ii) simulations sample extensively, such that deficiencies of
the starting structure can be overcome [35–39].
Here, we initialize our simulations with recent homology models of the TMPRSS2

protease domain and with camostat/nafamostat docked to them [40]. Trypsins adopt
a common fold and share an active-site charge relay system whose structural require-
ments for catalytic activity are well understood [41]; we select ourMDmodel consistent
with these structural requirements. In particular, we focus on systems with Asp435
(substrate recognition) deprotonated and His296 (catalytic function) in a neutral form
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(Nδ protonated), as well as on the interactions of a charged lysine nearby the catalytic
Asp345 (Figs. C.1, C.2).
In order to avoid artifacts of the initial structural model and to simulate the equi-

librium ensemble of the TMPRSS2-drug complexes, we collected a total of 100μs
of simulation data for TMPRSS2-camostat, 50 μs for TMPRSS2-GBPA, and 180μs
for TMPRSS2-nafamostat. Every drug dataset has converged RMSD distributions
(Fig. C.5) and samples various drug poses andmultiple association / dissociation events.
UsingMarkovmodeling [42–46] we derive the structures of the long-lived (metastable)
states and characterize protein-drug binding kinetics and thermodynamics.
We find TMPRSS2 has flexible loops around the binding site but maintains stable

structural features shared by other trypsin-like proteases (Figs. 5.3A and C.6). After for-
mation of a non-covalent substrate-enzyme complex (binding step, Fig. 5.2B), trypsins
cleave peptide-like bonds in two catalytic steps, assisted by a conserved catalytic triad
(Asp345, His296, and Ser441 in TMPRSS2). The first step involves the formation of
a covalent acyl-enzyme intermediate between the substrate and Ser441 [41]. During
this step, His296 serves as a general base to deprotonate the nucleophilic Ser441, and
subsequently as a general acid to protonate the leaving group of the substrate. The sec-
ond step involves the hydrolysis of the acyl-enzyme intermediate, releasing the cleaved
substrate and restoring the active form of the enzyme (Fig. 5.2B).
Along these two steps, the so called “oxyanion hole”, formed by the backbone NHs

of Gly439 and Ser441, helps to activate and stabilize the carbonyl of the scissile bond.
Another important structural feature is the S1 pocket, which contains a well conserved
aspartate (Asp435) that is essential for substrate binding and recognition. At the oppo-
site site of the S1 pocket, a loop containing a hydrophobic patch delimits the binding
region of substrates within enzymatic active site. All these structural elements, known
to play crucial roles in the function of serine proteases [41], are generally stable and
preserved in our equilibrium structures (cf. Figs. C.2, C.6).

5.2.3 Structural basis of TMPRSS2 inhibition by Camostat and Nafamo-
stat

Drugs with a guanidinobenzoyl moiety can inhibit trypsins by mimicking their natural
substrates (Fig. 5.3B). Indeed, the ester group, resembling a peptide bond, can react
with the catalytic serine with rates that are orders of magnitude faster [47], forming the
acyl-enzyme intermediate. In contrast to peptide catalysis, the drug’s guanidinoben-
zoyl group stays covalently linked to the catalytic serine with a small off-rate, rendering
it an effective chemical inhibitor [48]. Note that in its inhibited state, the TMPRSS2
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active site is modified such that protease activity is disabled, preventing SARS-CoV-2
S-protein cleavage.

The present MD simulations sample different conformations of the complex formed
by the enzyme with each of the drugs that precede the covalent substrate-enzyme com-
plex. We can, therefore, elucidate their binding and how specific interactions stabilize
different modes. However, please note that our simulations do not simulate the cova-
lent complex’s formation. All bindingmodesmimic interactionsmade between trypsins
and their natural substrates, in which lysine heads interact with a conserved asparatate
in the S1 pocket (Asp435, Fig. 5.3B). In camostat, its metabolic product GPBA, and
nafamostat, the role of the lysine heads is taken by the guanidinium heads which bind
in the S1 pocket and also interact with Asp435 (Fig. 5.3C-E). However, the guanidinium-
Asp435 salt bridge is formed and broken transiently especially for camostat and GBPA
(Fig. 5.3G-I), indicating that these drugs are not optimized for the TMPRSS2 pocket
(Fig. C.4).

Nafamostat also binds in a “reverse” orientation where the amidinium head binds
into the S1 pocket and interacts with Asp435 (Fig. 5.3F, [40]). In this orientation, the
guanidinium head mainly interacts with Glu299, with the drug reactive center slightly
displaced from the oxyanion hole, while the “forward” orientation (Fig. 5.3E) keeps the
amidinium head mainly nearby Val280, with the ester center well positioned for the
reaction (Fig. C.3). This observation is in agreement with several crystal structures of
acyl-enzyme intermediates between different trypsins and guanidinobenzoylmolecules
bound to the S1 pocket (e.g. PDBs 2AH4 [49], 3DFL [50], 1GBT [51]). There are also
“inverse substrates” known to react with rates comparable to the ones of normal esters,
suggesting that the inverted nafamostat orientation may also be reactive [41].

A fraction of the bound-state structures resembles a reactiveMichaelis complex (MC)
which fulfills the necessary criteria for catalysis of the inhibitory acyl-enzyme complex:
small distances of (i) the drug ester carbon to catalytic serine oxygen, and (ii) the cat-
alytic serine hydrogen to catalytic histidine nitrogen (Methods). We observe that be-
sides Asp435 binding to the S1 pocket, drugs in the MC state are particularly stabi-
lized by the oxyanion hole. Our model predicts that nafamostat has the highest MC
state population followed by camostat and GBPA (Fig. 5.4), an order that coincides
with the one of experimental drug binding affinities [29]. We note that the relative
free energies of binding to the MC states are significantly different between nafamostat
(2.1± 0.1 kcal/mol) and the other drugs (2.8± 0.1 kcal/mol and 3.1± 0.2 kcal/mol for
camostat and GBPA, respectively), with the bootstrap sample distributions of camostat
and its metabolite displaying a partial overlap.
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Whereas the contact patterns of camostat and nafamostat associated states are simi-
lar, the leaving group in the inverted nafamostat conformation shows contacts predom-
inantly with residues E299 and Tyr337 (Fig. C.3). GBPA, due to its shorter length, has
less contacts to residues outside of the S1 pocket. In the reactiveMC state, interestingly,
all tested drugs display similar contact patterns overall, and their leaving groups bind
in between Val280 and His296, with their ester group in contact with Ser441 (Fig. C.3).

5.2.4 Kineticmechanism of TMPRSS2 inhibition by Camostat, GBPA, and
Nafamostat
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respectively. Rates and populations predicted by our model are annotated at reaction arrows and states, respec-
tively. The covalent complex is illustrated using a structure with prostatin (PDB 3DFL [50]).

Finally, we investigate the molecular basis for the greater inhibition by nafamostat
and formulate starting points for designing new and more efficient covalent TMPRSS2
inhibitors following these leads.
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To illustrate the reversible binding of camostat, its product GBPA, and nafamostat to
TMPRSS2, we used ourMarkovmodels to simulate long time-scale trajectories of 50μs
(Fig. 5.3G-I). We see a clear correlation between tight inhibitor - Asp435 interactions
and contact formation between catalytic serine and the inhibitor ester group, potentially
forming a reactive complex. In other words, the binding of reactive drugs in the S1
pocket favors the interactions necessary for a catalytically competent MC.

We estimate the dissociation constants for the non-covalent complex, i.e. the ratio
of dissociated state and non-covalent complex populations, to be between 6 and 9mm
for the three drugs. Even though our IC50-measurements include other processes and
thus are not straightforward to compare, IC50-values in the 10s-100s nanomolar range
(i.e. 4-5 orders of magnitude smaller, Fig. 5.2C) are a strong indicator that the major
source of inhibition cannot be the non-covalent complex, but is rather the longer-lived
covalent acyl-enzyme complex. However, as all three drugs yield identical acyl-enzyme
complexes, the differences in TMPRSS2 inhibition can only arise from either (1) the
formation or population of their MCs, or (2) differences in the catalytic rate kcat of acy-
lation.

Interestingly, we observe that theMSM-predicted populations of theMCs in nafamo-
stat, camostat, and GBPA have approximate ratios of 6:2:1, respectively, as well as a sig-
nificantly higher on-rate for nafamostat (Fig. 5.4). A simple three-state kinetic model
of dissociated state, MC and covalent complex shows that the overall association con-
stant (Ka, ratio of inhibited versus apo protein states) directly scales with the associa-
tion constant of the MC (KM

a , ratio of MC versus dissociated states) by a constant factor
(Methods):

Ka = KM
a
kcat + kdis

kdis
(5.1)

Simply speaking, this indicates that nafamostat is a better inhibitor because it is more
often found in the reactive MC state, and is therefore more likely to be attacked by the
catalytic serine oxygen and enter the long-lived acyl-enzyme inhibitor complex.

Moreover, we note that the kcat of acylation of these drugs may depend on their leav-
ing group pKa’s. Leaving groups with a low pKa will require less assistance from acid
catalysis and will be easily displaced by the nucleophilic serine, favoring the formation
of the acyl-enzyme intermediate. We expect the leaving group of nafamostat to have a
lower pKa than the one of camostat, following the values of similar molecules such as
naphtol (9.57 [52]) and 4-methylphenol (10.26 [53]), respectively. Indeed, these com-
parative insights are backed by computational pKa predictions for nafamostat (9.17),
camostat (9.36), and GBPA (10.02) (Fig. C.4). We note that these predictions are made
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in aqueous solution, which could differ slightly from the estimates in the enzyme due
to the different environment. Nonetheless, we expect the pKa values to be in the same
relative order given that the three compounds have similar contacts with the enzyme
in the reactive state (Fig. C.3). This suggests that the kcat of acylation will be slightly
faster for nafamostat in particular compared to the camostat metabolic product GBPA,
further contributing to nafamostat’s superior inhibition of TMPRSS2.

5.3 Discussion

Camostat and nafamostat are promising drug candidates for a COVID-19 treatment
strategy. Here we have combined cell-based assays, extensive molecular simulations,
and Markov modeling to unravel the molecular action principle of these drugs and pro-
vide data that may help to improve them further.
Our binding assays provide evidence that both inhibitors directly act on TMPRSS2

and that nafamostat is more potent compared to camostat, and this qualitative dif-
ference is in agreement with complementary in vitro assays on purified protein con-
struct [32] or cell-entry assays [27, 28]. We note that the absolute IC50 values differ
between these three assay types, reflecting differences in experimental conditions and
which function is being inhibited and measured.
While no crystallographic structure of TMPRSS2 is available, we provide extensive

330 microseconds of all-atom MD simulations starting from a homology model that
generate stable equilibrium structure ensembles of the protein-drug complexes. These
simulations samplemultiple association / dissociation events and various drug poses in
the protein active site. Our analyses show that the non-covalent complexes of nafamo-
stat, camostat, and its metabolic product GBPA are relatively short-lived, suggesting
that the main inhibitory effect is due to the formation of the long-lived covalent acyl-
enzyme complex between the drug’s guanidinobenzoyl moiety and the catalytic serine
of TMPRSS2.
Although the MC state is not the main cause of inhibition, its population directly

translates into the potency of the inhibitor, as higher MC population corresponds to a
higher catalytic rate and therefore yields a larger population of inhibited enzyme. Con-
sistently with the higher potency of nafamostat, it is found to have a threefold more
stable MC compared to camostat, and sixfold compared to GBPA. A second contribu-
tion may be the pKa of drug leaving groups, affecting the rate of enzyme acylation.
Our detailed models of the thermodynamic and kinetics of inhibitor binding high-

light the bound state’s heterogeneity, with both drugs adopting multiple distinct poses.
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We note the importance of residue Asp435 in the conserved S1-pocket, which stabi-
lizes the MC state and helps to orient the reactive molecules in a conformation that
is suited for catalysis. Nafamostat has two groups that can potentially bind into the
S1 pocket, whereas camostat has only one. However, we find that the population of
S1 associated states are similar between nafamostat, camostat, and GBPA, suggesting
that non-covalent inhibition is likely a minor contribution to the overall inhibition of
TMPRSS2.

We conclude that the design of future TMPRSS2 inhibitors with increased potency
and specificity should incorporate the following points:

First, stabilizing the non-covalent complex with the TMPRSS2 active site is benefi-
cial for both, covalent and non-covalent inhibitors. As S1 pocket binding is a major
contribution to the stability of the non-covalent complex, effective drugs may contain
hydrogen bond donors and positively charged moieties that could interact principally
with Asp435, but also with different backbone carbonyls of the loops that compose the
cavity (e.g. from Trp461 to Gly464).

Second, for covalent inhibitors, we must consider that the catalytic serine is at a dis-
tance of around 1.3 nm from Asp435. Thus, the reactive center of an effective drug and
its S1-interactingmoieties should be within that distance. We note that, even though all
threemolecules fit well in the overall active site, the guanidinobenzoyl moiety is slightly
shorter than the ideal size of the TMPRSS2 cavity (Fig. C.4). We further suggest that a
drug should be size-compatible to the hydrophobic patch on the S1 distal site (Figs. 5.3A
and C.4). We speculate that drugs with a large end to end distance and high rigiditymay
not fit well in the described TMPRSS2 scaffold, and in particular, might be significantly
less reactive.

Third, optimizing the pKa of the drug’s leaving group might be beneficial for improv-
ing covalent TMPRSS2 inhibitors. The first step of the reaction would be faster, and
the acetyl-enzyme intermediate would accumulate. We note that the deacetylation off-
rate must be very low, ideally on the order of magnitude of guanidinobenzoyl moiety
containing drugs.

Finally, we make our simulated equilibrium structures of TMPRSS2 in complex with
the simulated drugs available, hoping they will be useful to guide future drug discovery
efforts.
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5.4 Materials and Methods

5.4.1 TMPRSS2 activity assays

TheTMPRSS2activity assaywas describedpreviously [31]. Briefly, we transfectedHEK-
293T with a PLX304 plasmid containing the open reading frame (ORF) sequence of
TMPRSS2 which encodes for the full length protein (492 amino acids). Control experi-
ments are conducted with PLX304 plasmids.
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Eighteen hours later, we replaced the media to either PBS alone or PBS in the pres-
ence of varying concentrations of candidate inhibitors camostat and nafamostat. Fif-
teen minutes later, we added the fluorogenic substrate BOC-QAR-AMC to the wells to
induce a measurable signal of enzyme activity. We measured the fluorescent signal
immediately after adding the substrate, in 15 minutes intervals for a total time of 150
minutes [31]. A baseline proteolytic activity of control cells was measured; we hypoth-
esize that this is because of proteolytic cleavage of the substrate by endogenous trans-
membrane proteases. However, the TMPRSS2 overexpression cells have significantly
increased proteolytic activity compared with control cells [31].
To validate the exogenous expression of TMPRSS2, we performed western-blot anal-

ysis of cell lysates fromTMPRSS2 overexpressing cells and control cells. A 60 kDa band
was observed in TMPRSS2 overexpressing cells but not in control cells, which is the ex-
pected molecular weight of TMPRSS2 protein after post transcriptional modifications,
indicating that the target protein has been successfully expressed.

5.4.2 IC50 estimation

We used a generalized log-logistic dose-response model

f(x, (b, c,d, e)) = c+ d− c
1+ eb(ln(x)−ln(e))

with the concentration x, c and d representing the lower and upper limits, b steepness
of the curve, and e to estimate IC50 values [54].
Upper and lower limits were set to the means computed from control experiments

with no drug (upper limit) and PLX plasmid (no TMPRSS2; background noise). We
used scipy’s [55] curve fitting algorithms to extract the IC50 with error estimates.

5.4.3 Molecular dynamics simulations

MD simulations were run with OpenMM 7.4.0 [56] using the CHARMM 36 force
field (2019 version) [57]. Camostat and nafamostat structures were taken from Pub-
Chem [58] with PubChem CIDs 4413 (nafamostat) and 2536 (camostat), respectively,
and modeled with the CHARMM general force field (CGenFF v. 4.3) [59]. We gener-
ated our MD setups with CharmmGUI [60]. We initiate a simulation box of side length
7.5 nmwith aNaCl ion concentration of 0.1mol/l at neutral charge and the TIP3Pwater
model [61]. The setups contain 12038 (camostat), 12030 (GBPA), and 12039 (nafamo-
stat) water molecules, respectively.
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We run simulations in the NPT ensemble and keep the temperature at 310 K (physi-
ological temperature) and the pressure at 1 bar. We use a Langevin integrator with 5 fs
integration step and heavy hydrogen approximation (4 amu). PME electrostatics, rigid
water molecules, and a 1 nm cutoff for non-bonded interactions are used. Simulation
times vary between 100 and 500ns and accumulate to 100μs (camostat), 50 μs (GBPA),
180μs (nafamostat), respectively. Structures were visualized using VMD [62].
Due to the lack of a crystal structure for TMPRSS2, MD simulations were seeded

from a homology model. It is taken from Ref. [40], model 3W94 is chosen based on
precursive MD analyses that showed that 3W94 has the most stable catalytic triad con-
figuration (Figs. C.1, C.2). The construct includes amino acids 256 to 491 of the full
sequence, corresponding to the catalytic chain except for a C-terminal Glycine missing
due to homology modeling against a shorter sequence. MD simulations are seeded as
follows: Equilibrated docking poses (highest scorers of Ref. [40]) of the ligand were
generated in a precursive run using another homology model. We note that the used
camostat docking pose resembles the one described by [63]. This data set was equili-
brated with local energy minimization, 100 ps simulations with 2 fs time steps in NVT
and NPT ensemble subsequently. Frames are selected based on a preliminary metasta-
bility analysis, protein conformation is constraint to 3W94homologymodel using a con-
straint force minimizing minRMSD. Production run MD simulations are started from
these poses, i.e. from the same protein configuration and with 77 (nafamostat) and
60 (camostat) ligand docking poses, respectively. To ensure convergence of sampling
statistics, we ran multiple adaptive runs of simulations, seeding new simulations with
coordinates associated with sparsely sampled states.
We later added the camostat metabolite GBPA by following the same setup proce-

dure. Due to its similarity to camostat, we seeded production simulations from repre-
sentative structures of the camostat stage 1 Markov model (described below) using 200
representative structures.

5.4.4 Markov modeling

Wemodel the binding and unbinding rates in a two step procedure using Markov state
type models [42–45, 64–66]. First, we describe drug unbound and associated states
using a hidden Markov model (HMM) [67]. Second, we define a reactive state by using
distance cutoffs.
In detail, in the first stage we define distance features between drug guanidinium

group andTMPRSS2Asp435 (minimal distance), drug amidiniumgroup andTMPRSS2
Asp435 (minimal distance, nafamostat only). We further use a binary “reactive” dis-
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tance feature defined by drug ester carbon to catalytic Ser441-OG, and catalytic serine
(HG) to catalytic histidine (NE2) and a threshold of 0.35 nm. If both last mentioned
distances are below the threshold, both nucleophilic attack of the serine-OG to the drug
ester group and proton transfer from serine to histidin are possible, thus defining the
reactive state.
We discretize this space into 243 (camostat), 240 (GBPA), and 490 (nafamostat)

states using regular spatial clustering and use an HMM at lag time 5 ns with 5 (camo-
stat, GBPA) or 8 (nafamostat) hidden states. Nafamostat yields twometastable S1 asso-
ciated states encoding for both binding directions, camostat / GBPA a single one, that
are defined by being at salt bridge distance to Asp435. We note no significant correla-
tion between the hidden states and the reactive state, i.e. reactivity is not metastable.
Also note that in contrast to later modeling stages, reactivity according to this HMM
does not necessitate S1 pocket binding. The described HMMs are used to generate the
(non-equilibrium) time series presented in Fig. 5.3G-I. Besides distance to D435, we
also show a reactivity coordinate which we define as the mean of a) drug ester carbon
to catalytic serine oxygen and b) catalytic serine hydrogen to catalytic histidine nitro-
gen. Reactivity, i.e. when both reactive distances are within range, is indicated with red
markers (MC state).
In the second stage, we split the HMM bound states into reactive and non-reactive

by combining HMM Viterbi paths [68] and the reactive state trajectories to one single
discrete trajectory consisting of 3 states. We define the S1 associated states by filtering
the Viterbi paths of the HMM according to S1-association. We use the reactivity tra-
jectories to further bisect the S1 associated state into reactive and non-reactive states,
yielding a three state discretization of the drug binding mode. Note that the S1-reactive
state is a subset of the reactive state in the stage 1 HMMmodel.
We estimate a reversible maximum likelihood Markov state model (MSM) from the

stage 2 trajectories as described in [45]. We report the stationary probability vector as
well as transition rates. The latter are approximated using thematrix logarithm approx-
imation of scipy [55] to compute the transition rate matrix R from the transition proba-
bilitymatrixT using the definitionT = exp(Rτ)with the lag time τ . We found that all re-
ported quantities are convergedwith respect to the lag time above τ = 500nswhichwas
thus chosen as themodel lag time. Errors are estimated by bootstrapping validation us-
ing a random sample (with replacement) of the stage 2 trajectory data. All MSM/HMM
analyses were conducted using the PyEMMA 2 software (version 2.5.7) [69].
Dissociation constants Kd = punbound/pbound from the non-covalent state were esti-

mated from this model and amount to 5.95mm (4.60, 7.30) for camostat, 8.45mm
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(5.81, 11.65) for GBPA, and 6.07mm (5.55,6.93) for nafamostat (68% confidence inter-
vals).

5.4.5 Kinetic model

Simplifying the binding kinetics into a three-state model describing the binding to /
dissociation from the Michaelis complex (ligand concentration c and rates kon, koff),
catalytic rate of entering the covalent complex (kcat) and dissociation to the apo state
(kdis), the kinetics are described by the rate matrix:

K =

 −c kon c kon 0
koff −koff − kcat kcat
kdis 0 −kdis

 (5.2)

with the (unnormalized) equilibrium distribution

π =


kdis(koff+kcat)
c kon+kcat
kdis/kcat

1

 (5.3)

The overall dissociation constant is then:

Kd =
π1

π2 + π3
=

kdis(koff + kcat)
kon(kdis + kcat)

(5.4)

The non-covalent dissociation constant of the Michaelis complex:

KM
d =

π1
π2

=
koff

c kon + kcat
(5.5)

The dissociation constant scales as:

Kd = KM
d

kdis
kcat + kdis

(5.6)

And thus the association constant scales with the stability of the Michaelis complex by
a constant factor given by the rates of chemical catalysis and dissociation:

Ka = KM
a
kcat + kdis

kdis
(5.7)
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Deep Learning to Decompose Macromolecules

Abstract

The increasing interest in modeling the dynamics of ever larger proteins has revealed
a fundamental problem with models that describe the molecular system as being in a
global configuration state. This notion limits our ability to gather sufficient statistics
of state probabilities or state-to-state transitions because for large molecular systems
the number of metastable states grows exponentially with size. In this manuscript, we
approach this challenge by introducing a method that combines our recent progress on
independent Markov decomposition (IMD) with VAMPnets, a deep learning approach
to Markov modeling. We establish a training objective that quantifies how well a given
decomposition of the molecular system into independent subdomains with Markovian
dynamics approximates the overall dynamics. By constructing an end-to-end learning
framework, the decomposition into such subdomains and their individualMarkov state
models are simultaneously learned, providing a data-efficient and easily interpretable
summary of the complex system dynamics. While learning the dynamical coupling be-
tweenMarkovian subdomains is still an open issue, the present results are a significant
step towards learning Ising models of large molecular complexes from simulation data.

6.1 Introduction

The understanding of protein function is often interlinked with understanding protein
dynamics. Molecular dynamics (MD) simulations are a valuable tool to study these dy-
namics on an atomistic level [1–6]. However, further methods are necessary to extract
the statistically relevant information and to help overcome the discrepancy between fea-
sible simulation length and the timescales of relevant processes. A common approach
to enhance sampling of a specific process of interest is to bias the simulation along a
reaction coordinate aligning with the process [7–13]. In comparison, the Markov mod-
eling approach [14–20] extracts kinetic information and tackles the sampling problem
without requiring the definition of fewpredefined reaction coordinates by combining ar-
bitrary numbers of short unbiased distributed simulations to model the long-timescale
behavior of target systems. Consequently, multiple software packages [21, 22] have
been developed over the last decade providing assistance in estimating these models.
They often include a pipeline for feature selection [21–24], dimension reduction [25–
31], clustering [32–35], transition matrix estimation [15, 19, 36, 37], and coarse grain-
ing [38–44]. Markov state models (MSMs) have been applied to a wide range of molec-
ular biology problems such as protein aggregation [45–47] or ligand binding [48–50]
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Figure 6.1: The iVAMPconcept as visualized bymodeling dynamics of a protein that has two independent, flexible
regions separated by a rigid barrel. iVAMPnets learn an assignment of the C- (blue/top) andN-termini (green/bot-
tom) into independent subsystems from molecular dynamics trajectories (left column). Moreover, the dynamics
of both termini aremodeled with statistically independent VAMPnets (right column).

and can be a valuable tool to understand experimental data on the atomistic scale [51,
52].
The necessity to assess a model’s performance and thereby rank its quality encour-

aged the development of variational methods [53, 54], in particular the variational ap-
proach for Markov processes (VAMP) [55]. This variational formulation has allowed
us to replace the aforementioned pipeline with an end-to-end deep learning framework
called VAMPnet [56], which simultaneously learns a dimension reduction of the molec-
ular system to the collective variables best describing the rare event processes and an
MSM on these variables. The framework can be used to further drive MD simulations
along these learned collective variables [57, 58]. We can also use this framework to
estimate statistically reversible MSMs and incorporate constraints from experimental
observables [59–61].
Despite these developments, there is a fundamental scaling problem in describing

MD in terms of transitions between global system states: While the assignment of MD
configurations to discrete global states representing themetastable groups of structures
is an excellentmodel for small cooperativemolecular systems, such as small tomedium
proteins, larger molecular systems (e.g. proteins with hundreds of amino acids) have
an increasing number of subsystems whose dynamics are (nearly) independent [62]
(Fig. 6.1). Consider, for example, a solution of N proteins which undergo transitions
between their open and closed states independently when these proteins are dissoci-
ated and these transitions only (partially) couple when they are associated with other
proteins. The number of global system states is 2N, i.e. grows exponentially with the
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number of subsystemsN [63, 64]. This means any form of simulation or analysis which
explicitly distinguishes global system states will not scale to large molecular systems.
At the same time, the (approximate) independence between subsystems is also key

to the solution of the problem. A scalable solution needs to address two separate is-
sues: (a) dividing the protein system into approximately Markovian subsystems and
(b) learning the coupling between them. Olsson & Noé [63] made a first attempt at (b),
by learning a dynamic graphical model between predefined subsystems. This approach
leads to a graphical model, or Markov random field, resembling Ising or Potts models
in physics, with the key difference that both the definition of the individual subsystems
or spins as well as their transition dynamics need to be learned. In contrast, Hempel et
al. [64] proposed a solution for (a) by approximating the global system dynamics as a
set of independent (uncoupled) Markov models (termed Independent Markov decom-
position, IMD). They furthermore propose a pairwise independence score of features,
which allows to detect nearly uncoupled regions where independent Markov state mod-
els can be estimated subsequently.
In this manuscript, we present a joint IMD and VAMP approach (termed indepen-

dent VAMPnet, or shorthand iVAMPnet) that significantly advances our ability to iden-
tify approximately independent Markovian subsystems (issue a) by generalizing IMD
to neural network basis functions. iVAMPnets are an integrated end-to-end learning
approach that decomposes the macromolecular structure into subsystems that are dy-
namically weakly coupled, and estimates a VAMPnet for each of these subsystems to
promote a comprehensible analysis of the subsystem dynamics (Fig. 6.1). In compari-
son to previous implementations of IMD, our approach learns an optimal decomposi-
tion into independent subsystems and can find collective variables that are nonlinear
combinations of the input features.

6.2 Results

6.2.1 Markov state models and Koopmanmodels

Markovian dynamics can be modeled by the transition density:

pτ (y|x) = P(xt+τ = y|xt = x), (6.1)

which is the probability density to observe configuration y at time t + τ given that the
system was in configuration x at time t. Based on the transition density we can charac-
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Figure 6.2: Architecture of an iVAMPnet for N subsystems, where trainable parts are shaded green. Two lobes
are given for configuration pairsxt andxt+τ , where theweights are shared. Firstly, the input features are element
wise weighted Ȳt = G ⊙ xt with a maskG ∈ RD×N, where each subsystem learns its individual weighting. The
mask values can be interpreted as probabilities towhich subsystem the input feature belongs. In order to prevent
the subsequent neural network to reverse the effects of themask,wedraw for each input feature i and subsystem
jan independent, normallydistributed randomvariable ϵij ∼ N (0, σ(1−Gij)). Thisnoise is added to theweighted
features Yt = Ȳt + ϵ. Thereby, the attention weight linearly interpolates between input feature and Gaussian
noise, i.e., if theattentionweightGij = 1,Yij carriesexclusively the input featurexi, ifGij = 0,Yij is simpleGaussian
noise. Afterwards, the transformed feature vector is split for each individual subsystem Yt = [Y1

t , ...,YN
t ] and

passed through the subsystem specific neural networkηi. We call thewhole transformation for a subsystem i the
fuzzy state assignmentχi(xt) = ηi(Yi

t).

terize the time evolution of a probability density χ as:

χt+τ (y) =
∫

pτ (y|x)χt(x)dx. (6.2)

By discretizing the molecular state space in a suitable way and defining a transition
matrix T between discrete states, we can linearize this equation as:

χt+τ (y) = T⊤
τ χt(x) (6.3)

This is the equation of a Markov state model, where the element i of the vector χt+τ (y)
is the probability to be in the discrete state i at time t+ τ . Furthermore, the transition
matrix elements (Tτ )ij describe the transition probabilities for jumping to state j given
state i within a time τ . In the case of fuzzy state assignments, e.g., as with VAMPnets,
Eq. (6.3) describes the more general Koopman model [65] and Tτ becomes the Koop-
man matrix. This means that probability densities are still propagated but the matrix
elements cannot be interpreted as transition probabilities.
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The lag time τ is common to all Markovian models and is usually chosen with the aid
of an implied timescales test [66]. If a too small τ is chosen, the resulting model is not
a valid Markov model (resulting in errors of the predicted variables) – a too large lag
time produces a model that unnecessarily discards kinetic information. We therefore
usually choose the smallest lag time above which the implied timescales are approxi-
mately constant.
We now seek to find a state assignment χ and model matrix T that satisfy Eq. (6.3)

and also succeed in predicting the long-time behavior, i.e., for multiples of the lag time
τ . Formally, χ are (initially unknown) basis functions, i.e., we assume that the relevant
dynamic features can be expressed by a linear combination of them. VAMP [55] tells
us that an optimal solution is reached when χ can span the left (ψ1, ..., ψk)⊤ and right
singular functions (ϕi, ..., ϕk)⊤ of the transition operator. They can be found by maxi-
mizing the singular values of a matrix that can be estimated from simulation data (see
Eqs. (6.9)-(6.13) in Methods). In the case of a VAMPnet [56], deep neural networks are
trained by maximizing the VAMP score, so as to represent optimal fuzzy state assign-
ments.
In equilibrium, the singular functions correspond to the eigenfunctions of the

Markov state model and the singular values to its eigenvalues. As the Koopman model
still propagates densities, it is instructive to inspect the eigenfunctions and implied time-
scales of T since they describe the slow dynamics of a given system.

6.2.2 iVAMPnets and iVAMP-score

To implement iVAMPnets, we need to bridge the gap between the deep neural networks
of VAMPnets and the spatial decomposition of independent Markov models. The gen-
eral idea is to set upmultiple parallel VAMPnets, eachmodeling theMarkovian dynam-
ics of a separate, independent subsystem of the molecule, together with an attention
mechanism that identifies these subsystems. Thus, each independent VAMPnet should
only receive the time dependent molecular geometry features representing its specific
subsystem. For example, such an attentionmechanism could separate different protein
domains and channel the data of individual domains to separate VAMPnets. We there-
fore develop an architecture that combines a meaningful attentionmechanism and par-
allel VAMPnets and trains them with a loss function that simultaneously promotes dy-
namic independence between the subsystems and slow kinetics within each subsystem
(Fig. 6.2). iVAMPnets are designed to optimize both these objectives simultaneously.
In practice, we extract all time-lagged data pairs xt,xt+τ that contain all molecular

geometry features (e.g., distances, contacts, torsions) of our simulation data and pass

135



Chapter 6

them through the architecture presented in Fig. 6.2. The data is fed through an atten-
tion mechanism (represented by the matrix G) that yields subsystem specific vectors
Yi
t, each of which attends to features relevant for subsystem i. These vectors then serve

as inputs toN parallel feature transformations ηi (parallel VAMPnets) which transform
those into output features χ1, . . .χN (with χi(xt) = ηi(Yi

t(xt))) that represent slow col-
lective coordinates or directly fuzzy assignments to metastable Markov states of each
molecular subsystem. Equipped with the state assignments, we can compute correla-
tion matrices (Eq. (6.9)) and derive a Koopman model matrix from those (Eq. (6.10)).
As in VAMPnets, the feature transformations η1, . . .ηN are represented by deep neural
networks. In the present study we use multilayer perceptrons with a SoftMax output
layer representing fuzzy state assignments. However, other architectures could be cho-
sen, e.g. graph convolution networks when parameter sharing is desired [67, 68], and
a linear output layer could be chosen if the aim is to represent slow collective variable
rather than discrete states [57, 58]. The parameters of the feature transformations η
and the attention matrix are learned end-to-end via backpropagation.

In more detail, given N individual subsystem models, the global system state can be
given by the Kronecker product of all subsystem states:

χG(xt) =
⊗
i
χi(xt) (6.4)

and by computing the global correlation matrices (CG
00,CG

0τ ,CG
ττ ) from Eqs. (6.9) using

χG. We note that this step does not require that we have independent Markovian mod-
els, but it is simply a formalism to express global states in terms of a combination of
local states.

Furthermore, we construct a candidate for the global Koopman model from the sub-
system models by combining the individual singular values and vectors with a Kro-
necker product [64]:

K̂G =
⊗
i
Ki ÛG =

⊗
i
Ui V̂G =

⊗
i
Vi. (6.5)

The matrices ÛG and V̂G map the global state assignments onto the constructed singu-
lar functions and are computed from the local matrices as defined in Eqs. (6.11)-(6.12).
The diagonal matrix K̂G encodes the singular values and is computed from the sub-
system singular value matrices via Eq. (6.10).
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In order to evaluate the performance of the constructed model to predict the dynam-
ics in the global state space, the VAMP-E validation [55] score can be exploited,

RG
E = tr[2K̂G(ÛG)⊤CG

0τ V̂G − K̂G(ÛG)⊤CG
00ÛGK̂G(V̂G)⊤CG

ττ V̂G]. (6.6)

The VAMP-E score measures the difference between the estimated Koopman model
and the true dynamics. Here, it is evaluated for the global state assignments

⊗
iχ

i (as
encoded in CG

00,CG
0τ ,CG

ττ ) mapped on the constructed singular functions (as encoded
in ÛG, V̂G). If the subsystems are independent the constructed singular functions are
optimal and the singular values of the global system are indeed the product of singular
values of the subsystems (as formalized in Conditions for independent systems, also see
Supplementary Note 1). In this case, the global VAMP-E score Eq. (6.6) has a product
form

RG
E =

∏
i
Ri

E (6.7)

that poses a necessary condition for subsystem independence.

To finally train the model, we develop a loss function that (i) maximizes the global
VAMP-E score, assuming that they describe independent dynamics (Eqs. (6.4)-(6.6)) ,
and (ii) minimizes a term that penalizes statistical dependence between these subsys-
tems (Eqs. (6.7)) scaled by a weighting factor ξ.

We evaluate the scores only pairwise, to escape the growth of the global state space,
and sum over all possible pairs i, j:

L = −
∑
i<j

Rij
E + ξ

∑
i<j

||Rij
E −Ri

ER
j
E||

Rij
E

. (6.8)

Here,Rij
Emeasures the quality of the constructed Koopmanmodel of subsystems i and j

and is computed using Eq. (6.6). Theweighting factor ξ is a hyperparameter that should
be chosen large enough to find decoupled systems and small enough to not interfer with
the subsystem dynamics. Even though the choice of an appropriate ξ depends on the
nature of the dynamics and the coupling, it is directly related to the training procedure
as it, briefly, balances focus of the optimizer between kinetics and decoupling. Further
conditions (Eq. (6.18)), which evaluate the independence of the singular functions and
values, can be used as post training validation metrics for adjusting ξ and for testing to
which degree dynamically independent subsystems were found.
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Figure 6.3: Hidden Markov state model as a benchmark example for independent subsystems: (a) 2 subsystems
with 2 and 3 states emit independently to an x and y axis, respectively. The corresponding 2D space embeds all 6
global states. (b) The learnedmask shows that each subsystem focuses on one input dimension. (c) The estimated
subsystem transitionmatrices are comparedwith the ground truth (in percent). (d)Subsystemeigenfunctions and
corresponding eigenvalues as found by iVAMPnet. Independent processes are recovered from the 2D data.

6.2.3 Benchmark model with two independent subsystems

The iVAMPnet architecture, which is implemented using PyTorch [69], is depicted in
Fig. 6.2. Generally, various neural network architectures are possible; we here choose
fully connected feed forward neural networks with up to 5 hidden layers with 100 nodes
each. The scripts to reproduce the results including the details for the training rou-
tine, choice of hyper-parameters, and network architecture can be found in our GitHub
repository. We note that an implementation of VAMPnets is available in the current
version of DeepTime [70].
We first demonstrate that iVAMPnets are capable of decomposing a dynamical sys-

tem into its independent Markovian subsystems based on observed trajectory data us-
ing an exactly decomposable benchmark model (Fig. 6.3).
Akin to the protein illustrated in Fig. 6.1, we define a system that consists of two in-

dependent subsystems with two and three states, respectively. It is modeled by two
transition matrices with the corresponding number of states. We sample a discrete tra-
jectory with each matrix (100k steps) [70]. The global state is defined as a combination
of these discrete states. The discrete subsystem states are now interpreted as the hidden
states of hidden Markov models [71] that emit to separate, subsystem-specific dimen-
sions of a 2D space. The output of each subsystem is modeled with Gaussian noise
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N(µi, σ̃) ∈ R that is specific to the state that the system is in, specified by the mean µi,
and a constant σ̃. The two state subsystem therefore describes a jump process between
Gaussian basins along the x-axis and the three state subsystem along the y-axis, respec-
tively (Fig. 6.3a). These variables compare to collective variables of the green (x) and
blue (y) system depicted in Fig. 6.1. Please note that while in this benchmark system
the relevant slow collective variables are known, iVAMPnets are generally capable of
finding them (cf. 10D hypercube benchmark model and Synaptotagmin-C2A).
Since the generative benchmarkmodel consists of perfectly independent subsystems

and the pair already describes the global system, our method can simply be optimized
for the global VAMP-E score (Eq. (6.6)) without the need for any further constraints.
We train a model with a two and three state subsystem at a lag time of τ = 1 step.
Once trained, the iVAMPnet yields a model of the dynamics in each of the identified

subsystems. As expected, we find that the estimated transition matrices for both sub-
systems closely agree with the ground truth (Fig. 6.3c). To additionally assess the slow
subsystem dynamics in more detail, we borrow concepts from MSM analysis and con-
duct an eigenvalue decomposition of the iVAMPnet models (cf. VAMPnets). The anal-
ysis of the eigenfunctions demonstrates that, by construction, the system exhibits one
independent process along the x-axis (λ1 = 0.90) and two along the y-axis (λ2 = 0.89
and λ4 = 0.66) (Fig. 6.3d). In contrast, we note that in the picture of global states, two
additional processes would appear as a result of mixing the independent processes (cf.
SupplementaryNote 2), whichmakes the combined dynamicalmodelmore challenging
to analyze, whereas the iVAMPnet analysis remains straightforward and simple.
Besides the dynamical models, our iVAMPnet yields assignments between input fea-

tures and subsystems. We find that themethod correctly identifies the two state system
as the x-axis and the three states as the y-axis feature, respectively (Fig. 6.3b).

6.2.4 10D hypercube benchmark model

In a next step we test the iVAMPnet approach with ten 2-state subsystems, which corre-
sponds to 1024 global states (Fig. 6.4a,b). As before, the dynamics is generated by ten
independent hidden Markov state models with unique timescales. The system is split
into five pairs of subsystems, and the two coordinates governing the transition dynam-
ics of each pair are rotated in order to make them more difficult to separate (Fig. 6.4a).
Additionally, we make the learning problem harder by adding ten noise dimensions
such that the global system lives on a 10-dimensional hypercube embedded in a 20 di-
mensional space.
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Figure 6.4: Hidden Markov state model with 1024 global states forming a 10D hypercube embedded in a 20D
space. (a) The hypercube is composed of ten independent 2-state subsystems. A pair of two subsystems always
lives in a common rotated 2D-manifold. Therefore, two subsystems need the same input features to be well ap-
proximated. (b)2Ddepiction of the hypercube in an orthographic projection [72, 73], where the global systemcan
jump freely between all 1024 vertices, and the ten 2-statemodels retrieved from it by the iVAMPnet. (c) Learned
mask shows that for each subsystem, the network assigns two highly important input features which are shared
with exactly one other subsystem, mirroring the rotated input space. Noise dimensions (x10-x19) are assigned
low importance values. (d) Implied timescales of all ten subsystems learned by ourmethod (dots) approximate the
underlying true timescales (lines).

Although the subsystems are perfectly independent, we will estimate an iVAMPnet
with the VAMP-E score in a pairwise fashion, thereby avoiding to estimate expensively
large correlation matrices in R1024×1024. As this is only justified if all systems are inde-
pendent, we additionally enforce Eq. (6.7) during training by minimizing Eq. (6.8) and
thereby rule out that any two subsystems approximate the same process.

The iVAMPnet estimation yields subsystemmodels which, as common inMSM anal-
ysis, can be validated by testing whether their implied relaxation timescales are con-
verged in the model lag time τ . We find that the implied timescales learned by the
iVAMPnet are indeed converged and accurately reproduce the ground truth (Fig. 6.4d).
We note that in addition to the timescales of the individual subsystems that are iden-
tified by the iVAMPnet, a global model would also contain all timescales that result
from products of eigenvalues, resulting in a total of 1024 timescales. Thus, the iVAMP-
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net analysis provides a much simpler and more concise model than a global MSM or
VAMPnet would.
Furthermore, the subsystem assignment mask indicates that the method correctly

assigns high importance weight to two input features for each model (Fig. 6.4c). There-
fore, the method proves its capability of decomposing a noisy, high dimensional global
system into its independent sub-processes in a data efficient way.
Wehave generalized the 10-cube system to a variable number of subsystems (N-cube)

to conduct a performance benchmark, finding that iVAMPnets outperform VAMPnets
for this particular system. We however note that this result may not be generalizable to
arbitrary systems as the N-cube features truely independent 2-state subsystems (com-
pare Supplementary Note 6 for details).

6.2.5 Synaptotagmin-C2A

Finally, we test iVAMPnets on an all-atom protein system. In comparison to our bench-
mark examples, we expect the underlying global dynamics to be only approximately
decomposable into independent subsystems. Our test data consists of 184μs aggregate
MD data of each 2μs length (92 × 2μs) of the C2A domain of synaptotagmin (Supple-
mentary Note 7) that was described previously [74]; synaptotagmin plays a crucial role
in the regulation of neurotransmitter release [75]. It was shown to consist of approx-
imately uncoupled subsystems containing the calcium binding region (CBR) and the
C78 loop, respectively [64].
First, we attempted tomodel the protein with a global model, i.e., with a single (regu-

lar) VAMPnet. Indeed, this approach failed because there were not enough simulation
statistics to estimate a reversibly connected transition model between all global meta-
stable states, resulting in diverging implied timescales (Supplementary Note 3 and Sup-
plementary Fig. D.2). This is exactly the scenario where iVAMPnets should provide an
advantage, by only relying on locally rather than globally converged transition statistics.
Next, we train an iVAMPnet to seek two subsystems of twelve and six states, respec-

tively, each at a lag time of τ = 10ns where we enforce constraint Eq. (6.7) to find
uncoupled subsystems.
The trained iVAMPnet identifies one subsystem comprising all three CBR loops

(CBR-1, CBR-2, CBR-3; Fig. 6.5a). The second subsystem consists not only of the afore-
mentionedC78 loop but also of the loop connecting beta sheets 3 and4 [76] (termedC34
henceforth). When mapping the residue positions on the protein structure it becomes
obvious that the two subsystems are physically well separated (Fig. 6.5a), supporting
the conclusion that both regions are only weakly coupled [64].
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Figure 6.5: iVAMPnet of synaptotagmin-C2Awith two subsystems and twelve and six states, respectively. (a) Im-
portancevaluesof the trainablemaskdepictedas color-codedprotein secondary structure, indicating assignment
to subsystem I (II) in green (blue). (b) Implied timescales of the two subsystems with a 90% percentile over 20
runs. (c) Superposed representative structures of both extrema of the slowest resolved eigenfunctions of each
subsystem (residues not assigned a high importance value or not showing significant movement are omitted for
clarity). The slowest process of subsystem1changes between green and gray structures showing anorchestrated
movement of the full Calcium Binding Region (CBR1, CBR2, and CBR3). The slowest process of the second sub-
system occurs between the blue and gray structures and describes a combinedmovement of C78 and C34.

The implied timescales of both systems are approximately constant in the model lag
time τ . Most timescales are in the range of 1 − 10 μs, with the exception of one much
slower process with a 100μs relaxation time found in the first subsystem (Fig. 6.5b),
which has not been found previously. Analysis of the structural changes governing this
process reveals that it involves an orchestrated transition of all CBR loops (Fig. 6.5c).
Such a process could however not be resolved by the previous study [74] where the
CBR was modeled as individual loops. The process of the second system involves a
simultaneous movement of the C78 and C34 loops (Fig. 6.5c).
iVAMPnets find metastable structures in the local features that are comparable to

the ones described in our previous work [74]. Specifically, α-helices in two distinct po-
sitions and a state burying a methionine residue (Met173) can be found in the CBR1.
In the adjacent CBR2 site, both tightly bound and loose configurations are identified,
and the C78 site features all three previously described valine residue conformations
(Val250, Val255). In addition to the features modeled in our preceding study [74],
iVAMPnets identify dynamics in a lysine rich cluster (Lys189-192) that was previously
reported as important for membrane interaction [77]. Please compare Supplementary
Note 4 for a detailed view on the metastable states and exchange kinetics. In contrast
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to our previous work, the kinetic models in the local subsystems are more complex and
incorporate a larger number of dynamic processes, providing a more comprehensive
picture without the need to define a partitioning manually. In fact, conducting domain-
decomposition and local kineticmodeling simultaneously has enabled the identification
of very subtle dynamical features as long as they contribute significantly to the local
VAMP-scores.
Although estimating a global VAMPnet model for synaptotagmin was not feasible

given the sparse data sample, iVAMPnets use the same data efficiently and estimate a
statistically valid dynamicalmodel. This result is especially striking because the iVAMP-
net approach also simplifies the subsequent task of interpreting models by separating
dynamically independent protein domains.

6.2.6 Counterexample: folding of the villin miniprotein

Finally, we conducted an experiment on a villin protein folding trajectory of 125 μs
length [78] as a negative example (Supplementary Note 7). Small proteins such as
villin are typically cooperative, i.e., the slowest processes related to folding involve all
residues (Supplementary Note 5). Thus, these processes cannot be resolved when de-
composing the system into several subsystems. Indeed, we find that a splitting into two
subsystemswith two states each results in timescales that are not converged, andwhose
relaxation processes approximate a partial folding on disjoint areas (cf. Supplementary
Fig. D.6).

6.2.7 Testing statistical independence of the learned dynamical subsys-
tems

As constraint Eq. (6.7) was used as a penalty during training (as independence score
Eq. (6.19)), we assess the validity of an estimated subsystem assignment by evaluating
the constraints that were not enforced during training (Eq. (6.17)) as post-training inde-
pendence scoresMU,MV, andMUV (defined in Eq. (6.18)). Low values forMU andMV

imply that the constructed left and right singular functions are indeed valid candidates
for singular functions in the global state space. A small value for MUV indicates that
the kinetics in the global state space is well predicted by the Kronecker product of sub-
systemmodels. We find that the three metrics are well suited to indicate independence
of the learned subsystems (Tab. 6.1). Out of the tested systems only villin cannot be split
into independent parts (all scores > 0.1). In comparison, the benchmark models and
synaptotagmin can be decomposed into statistically uncoupled subsystems (all scores
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MU MV MUV MR

Benchmark 2 0.0058 0.0059 0.0055 0.0002
10-Cube 0.0039 0.0039 0.0046 0.0005

Synaptotagmin 0.0042 0.0042 0.0044 0.0018
Villin 0.1353 0.1364 0.1493 0.0021

Table 6.1: Post-training independence validation. The scores in columns 1-3 (MU,MV,MUV, cf. Eq. (6.18))
are computed from independence constraints that were not enforced during the training. The score in the
last column (MR) is used during the training and shown for reference. The three post-training validation
scoresMU,MV, andMUV indicate that the final subsystems of both benchmark examples and synaptotag-
min are indeed independent, whereas the scores for villin strictly oppose this conjunction. The standard
deviations (SD) over 10 different runs are on the order of 10−5 for all systems except villin, which has an
SD ∼ 10−4.

< 0.01). The slightly increasedMR-value for synaptotagmin suggest that its subsystems
might be weakly coupled.

6.3 Discussion

We have proposed an unsupervised deep learning framework that, using only molecu-
lar dynamics simulation data, learns to decompose a complex molecular system into
subsystems which behave as approximately independent Markov models. Thereby,
iVAMPnet is an end-to-end learning framework that points a way out of the exponen-
tially growing demand for simulation data that is required to sample increasingly large
biomolecular complexes.
Specifically, we have developed and demonstrated iVAMPnets for molecular dynam-

ics, but the approach is, in principle, also applicable to different application areas, such
as fluid dynamics. The specific implementation, such as the representation of the in-
put vectors xt and the neural network architecture of the χ-functions, depend on the
application and can be adapted as needed.
We now have a hierarchy of increasingly powerful models ranging from MSMs over

VAMPnets to iVAMPnets. MSMs always consist of (1) a state space decomposition and
(2) aMarkovian transitionmatrix governing the dynamics between these states. VAMP-
nets provide a deep learning framework for MSMs, and thereby (3) learn the collective
coordinates in which the state space discretization (1) is best made. iVAMPnets addi-
tionally learn (4) a physical separation of the molecular system into subsystems, each
of which has its own slow coordinates, Markov states, and transition matrix.
We have demonstrated that iVAMPNets are a powerful multiscale learning method

that succeeds in finding andmodelingmolecular subsystemswhen these subsystems in-

144



Deep Learning to Decompose Macromolecules

deed evolve statistically independently. Additionally, iVAMPnets are capable of learn-
ing from high dimensional MD data. To prove that point, we have demonstrated
that the synaptotagmin C2A domain is decomposable into two almost independent
Markov state models. Importantly, we have shown that this dynamical decomposition
of synaptotagmin C2A succeeds while an attempt to model the system with a global
Markov state model fails due to poor sampling. This is a direct demonstration that
iVAMPnets are statistically more efficient than VAMPnets, MSMs or other global-state
models and may indeed scale to much larger systems.

We note, however, that iVAMPnets do not learn how the subsystems are coupled, and
are therefore, in their current form, only applicable tomolecular systems that consist of
uncoupled or weakly coupled subsystems. Although most biomolecular complexes are
known to be cooperative, there are examples that have been modeled very successfully
using independent subsystems, such as the Hudgkin-Huxley model of voltage gated
channel proteins [79, 80]. For other systems, the degree of coupling is a matter of
debate, for example the C2-tandem (C2A and C2B domains) in synaptotagmins [81, 82].
Since isolated domains are known to conduct function by themselves in many cases, we
believe that discarding couplings is a first-order modeling assumption that is suitable
to identify these domains and their relevant metastable states.

Following up on Ref. [63] and introducing coupling parameters that describe how
the learned MSMs are coupled, is subject to ongoing research. Furthermore, the weak-
coupling assumption is made for the time-scale of the investigated molecular processes
and may not be generalizable to arbitrary times. E.g., the degree of coupling between
domains found in an MD simulations of a folded protein state may be very different in
its unfolded state, which will be eventually encountered for a long enough simulation
time.

Besides the usual hyperparameter choices in deep learning approaches, iVAMPnets
require the specification of the number of sought subsystems. This choice can be guided
by training an iVAMPnet for different numbers of subsystems and then interrogating
the independence scores (Eq. (6.19) and Eqs. (6.18)) to choose a decomposition where
statistical independence is optimal. We suggest to start with decomposing the system
into two subsystems as a starting point, and to increase this number subsequently. Non-
optimal choices may, e.g., reflect in non-converged implied timescales (possibly an in-
carnation of the sampling problem that may be mitigated by increasing the number of
subsystems) or high independence scores (not possible to split the system because too
many or non-optimal number of subsystems were chosen). Furthermore, the choice
of the number of subsystems can be guided by the number of structural domains in a
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protein (complex) or by using the network-based approach presented in Ref. [64]. Fur-
thermore, the number of states in each subsystems needs to balance a) the quality of the
singular function approximation (higher for few states) and b)model resolution (higher
formore states). Ultimately, different choicesmay yield converged validationmeasures,
and the number of states may be chosen to yield the desired model resolution in this
case.
iVAMPnets can be improved and further developed in multiple ways, e.g. by employ-

ing more advanced network architectures, e.g. graph neural networks, where parame-
ters could be shared across subsystems. This might result in higher quality models and
a greater robustness against the hyperparameter choice. Very recently, graph neural
networks were indeed successfully combined with VAMPnets, showing that the result-
ing method (GraphVAMPnets) is applicable to MD data and that the estimated models
are high quality [83].
In summary, iVAMPnets pave a possible path for modeling the kinetics of large bio-

logical systems in a data-efficient and interpretable manner.

6.4 Methods

6.4.1 VAMPnets

Since an iVAMPnet implements multiple parallel VAMPnets representing the kinetics
of separate independent subsystems, we will introduce VAMPnets first [56]. VAMP-
nets are multilayer perceptrons that represent feature functions χ (we omit the upper
subsystem index i for the sake of clearness here). Their last layer is often chosen to be
a SoftMax function, i.e., summing over all non-negative outputs yields a 1. Therefore,
the output of a VAMPnet can be interpreted as a fuzzy assignment to a metastable state.
Taking the linear combination of states with equal weights results in the constant sin-
gular function with the singular value 1, which will be reflected by the singular values
of the Koopman matrix (Eq. (6.10) with the normalized correlation matrix). Given the
feature functions χ, we can compute the following correlation matrices:

C00 =
1
L
∑
t
χ(xt)χ(xt)⊤

C0τ =
1
L
∑
t
χ(xt)χ(xt+τ )

⊤

Cττ =
1
L
∑
t
χ(xt+τ )χ(xt+τ )

⊤,

(6.9)
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where L is the number of collected data pairs in the simulations.

Training VAMPnets or iVAMPnets involves the computation of covariance matrices
over minibatches. We therefore need to choose the batchsize to balance large estimator
variance obtained for small batches and high memory requirements for large batches.
Instead of using the trivial covariance estimator (Eqs. (6.9)) which is asymptotically
unbiased [55] but has a high-variance, one can employ a shrinkage estimator [84, 85]
which reduces the overall estimator error by trading larger bias for lower variance. For
the current study, we assume that our benchmark and MD data has been sufficiently
sampled to yield adequate approximations with the estimator given in Eqs. (6.9).

The approximation of the singular functions and values can be estimated via the sin-
gular value decomposition (SVD) of the following matrix K̄:

K̄ = C−1/2
00 C0τC−1/2

ττ = AKB⊤ (6.10)

K is the diagonal matrix of approximated singular values corresponding to the left and
right singular functions:

f⊤(xt) = χ(xt)⊤U = χ(xt)⊤C−1/2
00 A (6.11)

g⊤(xt+τ ) = χ(xt+τ )
⊤V = χ(xt+τ )

⊤C−1/2
ττ B. (6.12)

The matrices U and V construct the left and right singular functions from the individ-
ual state assignments. The optimal state assignments can be found by maximizing the
VAMP-E score:

RE = tr[2KU⊤C0τV−KU⊤C00UKV⊤CττV]. (6.13)

Given trained state assignments χ(xt) and correlation matrices Eq. (6.9), the Koop-
man matrix T can then be evaluated as:

T = C−1
00C0τ . (6.14)

Furthermore, we can estimate the eigenfunction φ and timescales ti by its eigendecom-
position T = QΛQ−1:

φ(x) = Q⊤χ(x), (6.15)

ti =
−τ

log(|Λii|)
. (6.16)
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Please note that this operation is only possible if the eigendecomposition is (approxi-
mately) real-valued, a condition that is met for the presented application cases.

6.4.2 Conditions for independent systems

For Markov independent systems, the singular values and functions that are con-
structed by the Kronecker product match the true global ones,

(ÛG)⊤CG
00ÛG = 1

(V̂G)⊤CG
ττ V̂G = 1

(ÛG)⊤CG
0τ V̂G = K̂G,

(6.17)

where the first two equations guarantee the orthonormality of the constructed singular
functions. The latter verifies that the left and right singular functions correlate as pre-
dicted by the Kronecker product of the singular values.
These conditions can be translated to the following scores:

MU = |(ÛG)⊤CG
00ÛG − 1|

MV = |(V̂G)⊤CG
ττ V̂G − 1|

MUV = |(ÛG)⊤CG
0τ V̂G − K̂G|

(6.18)

Furthermore, using the identities Eq. (6.17) and the definition of the VAMP-E score
Eq. (6.13) yields

MR =
|RG

E −
∏

iRi
E|

RG
E

. (6.19)

The norms denote simple means. The last score, MR, is enforced during training in a
pairwise fashion (cf. Eq. (6.8)).

6.4.3 Network architecture

Given a global system, which we want to decompose into N subsystems, and a time
series of input features {xt}t=1,...T, xt ∈ RD×1, we pass the features through a mask
G ∈ RD×N, which weights each input differently for each subsystem, before the result
are transformed individually by the N independent state assignment functions ηi. It
should bementioned that themask ismerely introduced for interpretability reasons and
is not essential to find independent subsystems. If themaskwas omitted, the extraction
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of the relevant featureswould simply be transferred to the downstreamneural networks,
remaining hidden to the practitioner.
The weighted input is assessed by an element wise multiplication Ȳt = G ⊙ xt. In

order to prevent the neural networks to reverse the weighting of the mask in its consec-
utive layers, we draw for each input feature i and subsystem j an independent, normally
distributed random variable ϵij ∼ N (0, σ(1− Gij)). This noise is added to the weighted
features:

Yt = Ȳt + ϵ. (6.20)

Thereby, the attention weight linearly interpolates between input feature and Gaussian
noise, i.e., if the attention weight Gij = 1, Yij carries exclusively the input feature xi, if
Gij = 0, Yij is simple Gaussian noise. By tuning the noise scaling σ, a harder assign-
ment by G can be enforced. This hyperparameter should be optimized by adjusting it
so that the resulting mask yields clear subsystem assignments without being binary.
Subsequently, the transformed feature vector is split for each individual subsystem
Yt = [Y1t , ...,YN

t ] and passed through the subsystem specific neural network ηi resulting
in feature transformations χi(xt) = ηi(Yi

t). These features are then used to estimate
the Koopman models.
The training framework and neural network architecture were implemented in the

Python 3 programming language using numpy [86] and pyTorch [69]; benchmark sys-
tem data was generated using DeepTime [70]; data visualization was performed using
matplotlib [87] and VMD [24].

6.4.4 Constructing the mask

To train an interpretable mask, we use the following three premises:

1. A single subsystem should not focus on all input features.

2. Different subsystems compete for high weights for the same feature.

3. All weights should be in the range [0, 1] and the matrix should be sparse.

Therefore, the mask is constructed by trainable weights g ∈ RD×N which are first
processed by a softmax function which normalizes along the input feature axis g1 =

softmax(g,dim=0). Thereby, if a subsystem focuses on one part of the features, a lower
weight for the other parts is expected following the first premise.
In a next step, weights which are lower than a threshold θ are clipped to zero g2 =

relu(g1−θ) to guarantee sparsity. The threshold θ is a hyperparameter that can be opti-
mized by startingwith comparably small values (i.e., very little cutoff) and subsequently
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Figure 6.6: Attention scheme for amino acid chain. Windows of size B are placed along the chain with a step size
of s resulting intoWmany windows. A trainable weight g ∈ RW×N is assigned for a window in each subsystem
which aremadepositive andnormalized along thewindowaxis througha softmax ḡ = softmax(g, dim=0). Here a
window size ofB = 4 and a step size of s = 2 is chosen. As a consequence theweight of the amino acid glutamine
(Q) is given as the product of the twowindows it is part of g1(Q) = ḡiḡi+1. The choice of the step size determines
how many neighboring amino acids have the exact same weight within a subsystem, which applies here for the
tyrosine (Y). Togetherwith thewindow size it is regulated howmany residues share parts of their weights. Hence,
the serine (S) shares the weight ḡi+1 with the previous two amino acids g1(S) = ḡi+1ḡi+2, which has a smoothing
effect on the attentionmechanism along the chain.

increasing it without further training – a reasonable cutoff does not alter the results in
this case, as the downstream neural networks still obtain all relevant information.
Since input features could be negligible for all subsystems, a dummy system is added

which has a constant value c ∈ RD×1 for all features g3 = [g2, c]. Consequently, the
weights of all subsystems and the dummy system are normed for each feature g4 =

g3/sum(g3,dim = 1), which together with the clipping fulfills the premises two and
three.
Finally, the mask is given by truncating the dummy system g4 = [G, c̄]. Beware that

only g4 is normalized along the system axis.

6.4.5 Application to protein dynamics

Since for proteins the final model is often expected to be invariant with respect to rota-
tions and translations, internal coordinates are employed as input features. ForMarkov
state modeling, the minimal heavy atom distance dij between residues i, j has been
proven to be a good descriptor [56, 88]. However, for interpretability, mask weights
for each residue are preferable. Therefore, the mask is of size G ∈ RR×N with the num-
ber of residues R. The input features are then scaled as xij = GiGj exp(−dij).
Furthermore, a smoothing routine is implemented such that neighboring residues

along the chain have similar importance weights. Wwindows of size B are placed along
the chainwith step size s. Eachwindowhas a trainable weight g ∈ RW×N. Consequently,
the softmax function is taken along the window axis ḡ = softmax(g,dim=0). However,
before applying the clipping as before theweight for each residue g1∈ RR×N is calculated
as the product of all window weights the residue is part of (Fig. 6.6).
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Data availability

The benchmark data can be generated from the Jupyter notebooks that have been de-
posited on GitHub under https://github.com/markovmodel/ivampnets [89].
The molecular dynamics data set of synaptotagmin C2A have been deposited in Zen-
odo under https://zenodo.org/record/6908073 [90]. The crystal structure of
synaptotagmin C2A is available under PDB ID 2R83. The villin headpiece folding data
are available under restricted access and were used under license for this study as cour-
tesy of D.E. SHAW research [78], access can be obtained from the authors upon request.

Code availability

The code that implements the presented models and reproduces the presented re-
sults has been deposited on GitHub under https://github.com/markovmodel/
ivampnets [89].
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Abstract

With recent advances in structural biology, including experimental techniques anddeep
learning-enabled high-precision structure predictions, molecular dynamics methods
that scale up to large biomolecular systems are required. Current state-of-the-art ap-
proaches in molecular dynamics modeling focus on encoding global configurations of
molecular systems as distinct states. This paradigm commands us to map out all pos-
sible structures and sample transitions between them, a task that becomes impossible
for large-scale systems such as biomolecular complexes. To arrive at scalablemolecular
models, we suggest moving away from global state descriptions to a set of coupledmod-
els that each describe the dynamics of local domains or sites of the molecular system.
We describe limitations in the current state-of-the-art global-stateMarkovianmodeling
approaches and then introduce Markov field models as an umbrella term that includes
models from various scientific communities, including Independent Markov decompo-
sition, Ising and Potts models, and (dynamic) graphical models, and evaluate their use
for computationalmolecular biology. Finally, we give a few examples of early adoptions
of these ideas for modeling molecular kinetics and thermodynamics.

7.1 Introduction

Computer simulations such as molecular dynamics (MD) are established tools for un-
derstanding the function of molecular machines on an atomistic scale. In contrast to
experiments, in silico methods are not limited by their spatial or temporal resolution;
their Achilles’ heel is that enough data must be gathered to describe a biological system
in thermodynamic equilibrium. Many recent advances have contributed to the solution
of this so-called sampling problem, such as hardware developments like fast graphi-
cal processing units (GPUs), efficient software packages [1, 2], and enhanced sampling
methods that, for example, use bias potentials along a reaction coordinate [3–8] or dif-
fusion maps [9]. Additionally, Markov state models (MSMs) have leveraged fast paral-
lel processing power by combining large numbers of short off-equilibrium trajectories
without defining reaction coordinates or introducing bias potentials to the system [10–
15]. MSMs have been profiting substantially from the development of deep learning
methods in recent years [16–18]; see the study by Noé [19] for an overview of both shal-
low and deep machine learning (ML) methods in this area.
These combined efforts have been very successful, shedding light on complex molec-

ular processes such as protein folding [20–23], ligand-protein binding [24–27], or even
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protein-protein association kinetics [28]. These small tomedium-sized protein systems
are often cooperative, giving rise to a small number of rare-event processes between a
few long-lived, metastable states, and thus MSMs or other kinetic models can be used
to characterize their rare-event dynamics globally [29].

However, this approach does not scale with increasing size of the molecular system,
as its cooperativity decreases and thus the number of globally distinct metastable states
increases combinatorially. As an example, consider a solution of N dissociated pro-
teins [30]. If each protein can be in one of two states, the number of all global states
is 2N, that is, it scales exponentially with the number of constituents. Therefore, sam-
pling each global system configuration and the transitions between them becomes in-
feasible even for a small number of proteins. A biomolecular complex, of course, has
more cooperativity, and the coupling between domains may reduce the number of glob-
ally accessible states. However, the fundamental problem remains, as an increasing
number of loosely coupled domains will lead to an exponentially increasing number
of global system states. Therefore, even though all-atom MD simulations can now be
conducted with impressive system sizes such as a virus in an aerosol particle [31] or a
membrane model of the endoplasmic reticulum [32], they will not lead to the ability to
directly parameterize a global state model (e.g., an MSM) in the near future. This task
would require us to increase the aggregate simulation time exponentially with system
size, whereas it typically decreases with system size in reality.

The main idea proposed in this manuscript is to avoid the exponential scaling by
adopting ideas from Ising models (Fig. 7.1a,b), a multiscale approach that explicitly
recognizes that there are loosely coupled subsets of the complex structure (“domains”,
loosely associated with “spins” in an Ising model). Instead of modeling a biomolecular
complex as a global entity, we propose to describe its dynamics by a graph consisting of
domains (e.g., protein domains) that interact via edges (i.e., coupling) [33], thus form-
ing the full sequence protein complex (or assembly of domains) as shown in Fig. 7.1c,d.
In this setting, each domain has a limited number of states that can be sampled, and
the coupling depends only on local states (e.g. of the pair of coupled states) without the
need to explicitly encode the global state. Like in an Ising model, the global dynamics
arises from a combination of simple parts.

Although Ising models are established in statistical physics, marrying them with ki-
netic models of biomolecular complexes is challenging, as we need to identify the do-
mains that are useful for such a model. Furthermore, it is yet unclear which of the
various dynamical models and coupling approaches will be most suitable to describe
macromolecular dynamics. In contrast to simple physics models such as Ising models,
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there is no a priori definition of discrete sites, spins or subdomains in a protein system,
nor is the number or discreteness of states within each subsystem well-defined. Their
definition will instead largely depend on the observables in which one is interested in
computing. Here, we therefore introduce Markov field models (MFMs) as an umbrella
term and discuss recent progress and ideas in this direction. A key idea is Independent
Markov decomposition (IMD),which is an approach that spatially decomposes a system
into independent domains that are subsequently described by domain-specific (uncou-
pled)Markov statemodels. In this review, we trace the path from IMD to highermodels
in which the domains are coupled, such as Dynamical graphical models. We discuss a)
how domain decompositions can be estimated from data and b) ideas to represent the
global thermodynamics and kinetics in terms of a coupled local dynamics between such
domains.

7.2 Markovian dynamics

Markovian models describe the dynamics generated by an operator P , which propa-
gates the probability density ρ of a system over a finite time τ given an initial probability
density ρ0 [15],

ρτ = P(τ) ◦ ρ0.

These dynamics are usually approximated by lumping protein conformations into M
discrete global states. In this case, the operator P(τ) becomes the transition matrix
P(τ) with its element (i, j) describing the conditional probability to jump from state i
to state j within a lag time τ . Furthermore, the probability densities ρ become vectors
p that encode the probability distribution over the discrete states. The dynamics of the
resulting Markov State Model (MSM) is then

p⊤
τ = p⊤

0P(τ), (7.1)

with (·)⊤ denoting the vector transpose. This model describes the kinetics of the under-
lying system and can, e.g., be depicted as a network of exchanging states as in Fig. 7.1a.
In this review, we limit our discussion of Markovian models to discrete state MSMs,
while a whole zoo of such models exist, including transfer operator and Koopman op-
erator models, Master-equation models and fuzzy MSMs. Please compare the study by
Noé [19] for references and the DeepTime library [34] for software implementations.
We usually assume that the eigenvalue spectrum of the MSM transition matrix has

a small number of eigenvalues close to 1 at a given lagtime τ , corresponding to only a
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Figure 7.1: Markov field models: From a biomolecular complex to a graph of stochastically coupled subdomains.
(a)MSMwithMdistinct, global states thathavedifferentequilibriumprobabilities (denotedbycircle size). Arrows
indicatewhere direct transitions between states are possible. The instantaneous state of the system is defined by
being in a single state, here indicated by the filled circle. (b) Ising model withN local spins. Each Ising spin can be
in one of two states. The instantaneous state of the system is defined by the combination of all spin settings, here
indicated by the filled circles. Three spins, corresponding to threeMFMdomains, are highlighted by color-coding
as in subsequent panels. (c) Example of a molecular complex, where each of three protein chains is modeled as a
dynamical subsystem. d: Graphviewof themolecular complex, eachprotein chain is nowseen as a node in a graph.
The edges ( ) denote interaction terms, that is, where the state transitions of eachdomain canbe coupled. Next
to each node ( ), the states and transitions between states of that node or protein subsystem are shown.

few number of transition processes whose autocorrelation times significantly exceed
τ , and therefore are slow relative to τ . This is a mild assumption which has been
found to be practically useful for many small- to mid-sized proteins which have folded
structures and are therefore sufficiently cooperative. For example, a popular atomistic
model of capped alanine has three slow processes on the nanoseconds timescale which
may be identified by finding the number of implied timescales above the implied time-
scales gap (Fig. 7.2a, [15]). In our atomistic model of the C2A domain of Synaptotag-
min, we find 24 metastable states connected by processes on the 100s of nanoseconds
timescale [35], whereas we expect this number to be in the 100s for the C2AB dimer
(Fig. 7.2b). Parametrizing a global MSM for this system would require extensive MD
simulations, likely on the order of multiple milliseconds in aggregate trajectory data.
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Figure 7.2: Transition matrices and implied timescale spectra of a simple test system and a multi-domain pro-
tein. Descriptions from top to bottom. (a) Capped alanine, depicted in licorice representation, as represented by
100x100 transition matrix. The spectrum shows three implied timescales that describe slow processes. (b) Syt-
C2ABconsists of aC2Aand aC2B sub-domain [38, 39], color-codedmagenta and cyan. Assuming equal dynamics
in both domains and no coupling, the combined spectrum has >550 slow implied timescales (black dots). We note
that this represents an upper bound as the real number may be reduced by domain-domain couplings. For com-
parison, the spectrum of only the C2A domain has already 23 slow processes above the implied timescales gap
(magenta dots), as identified by our previous work [35].

7.3 Markov field models

The abstract idea ofMFMs is tomodel the global transitionmatrixP by a tensor product
of smaller transition matrices Pi that govern the dynamics of N local domains, and a
coupling term Y which models the statistical dependence between individual Markov
domains [36, 37]:

P ≈
N⊗
i=1

Pi + Y. (7.2)

In Fig. 7.5, we compare two methods that either explicitly model coupling terms Y or
discard them altogether. Intuitively, MFMs are suitable for larger systems as the num-
ber of model parameters stored on the right side of Eq. (7.2) may be smaller compared
to the left side, saving memory and increasing statistical efficiency as the number of
independent parameters that have to be estimated is smaller.

As indicated in Eq. (7.2), MFMs can in principle generate the global transitionmatrix
P as a function of local transition matrices Pi and their coupling, and they therefore al-
low us to compute thermodynamic and kinetic quantities and compare to experimental
data. However, in contrast to MSMs, it is not necessary and often not feasible to actu-
ally compute P explicitly. As an example consider an Ising model with N spins which
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IMD

Figure 7.3: Statistical efficiency of IMD versus MSM. How much sampling is necessary for reconstructing the
Hodgkin–Huxley model from simple discrete data? IMD (left column) is compared with classical MSMs (right col-
umn) for ten realizations of the underlying random process. The percentage of connected (valid) transition ma-
trices in this ensemble is assessed as well as representative implied timescales (ground truth given by red dashed
lines). Figure reproduced from the study byHempel et al [35].

possesses 2N global states with a 2N × 2N transition matrix. Instead of computing and
analyzing P directly, we will thus usually sample the dynamical models by running a
simulation algorithm that employs Pi and Y, for example, some form of Markov-Chain
Monte Carlo.
Compared to global-state models, MFMs come with the challenge of finding a mean-

ingful decomposition of the molecular system into domains (nodes) and learning the
interaction graph (edges), which is a problem that has been extensively studied [29,
40]. In the following, we will review methods that seek to approximate the right-hand
side of Eq. 7.2.

7.4 Independent Markov decomposition

When the local domain Markov processes are uncoupled, that is, statistically indepen-
dent of each other, Eq. (7.2) simplifies to the Kronecker product of local transition ma-
trices, a model termed Independent Markov decomposition (IMD) [35],

P =
⊗
i
Pi. (7.3)

An IMD model approximates the system dynamics by neglecting interaction terms be-
tween domains, that is, does not model couplings (the edges in Fig. 7.1d are assumed to
be negligible to first order). Even though this assumption is not expected to completely
model the global kinetics, its strength is that it can reduce the simulation data required
to get sufficient sampling by orders of magnitude compared to an MSM (Fig. 7.3) and
it extracts approximately independent Markov domains from data, often leading to a
muchmore straightforwardly interpretablemodel compared to a globalMSM (Tab. 7.1).
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Higher-order coupling termsY can then be added a posteriori in order to better approx-
imate the global dynamics.

Based on the variational approach to Markov processes (VAMP) [41], an indepen-
dence score could be defined that allows partitioning a system into domains, maximiz-
ing the metastability in the state definition of each domain. IMD has been shown to
be applicable to high-dimensional MD data [42]. An application example is shown in
Fig. 7.5. In amathematical context, IMD can be considered as an estimator for the near-
est Kronecker product problem [43, 44] which describes the decomposition of a matrix
A into a product B⊗ C.

7.5 iVAMPNets

The idea of IMDwas later combinedwithVAMPNets [16] to iVAMPNets [30], an end-to-
end unsupervised deep learning systemwhich performs IMDgivenMD simulation data.
To this end, iVAMPNets learn a probabilistic partitioning of the protein structure to ap-
proximately independent Markov domains by using an attention mechanism, and then
use VAMPnets in order to learn the nonlinear coordinate transform into collective co-
ordinates resolving the rare events in these individual domains as well as a partitioning
into their local Markov states. The local MSMs Pi can then be easily extracted. iVAMP-
Nets are trained by minimizing a loss function that combines VAMP [41] and IMD [35].
The deep neural network architecture is shown and compared to the original VAMPNet
architecture in Fig. 7.4.

7.6 Ising and Potts models, graphical models, and Markov random fields

Arguably the most famous models that rely on local properties instead of global state
space descriptions are the Ising model [45] (Fig. 7.1b) and the Potts model [46]. They
model equilibrium distributions of coupled local domains, which are called spins due
to their original use-case of modeling magnetic materials. Ising and Potts models were
successfully applied to biological systems, for example, in protein folding [47, 48] or
direct-coupling analysis (DCA) [49]. The Ising model was extended to a continuous-
time dynamical model by Glauber [50, 51]. The topology of the model is defined by
means of a coupling graph (Tab. 7.1). For the simplest case of a linear periodic chain of
spins with nearest-neighbor couplings and no external field, Glauber dynamics defines
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are color-coded and associated with sample projections of VAMPNetmetastable assignments.

the rate of a spin i to flip its state σi ∈ {−1, 1} as a function of its neighbors,

qi = qi(σi−1, σi+1) =
α

2 − γ
α

2σi
σi−1 + σi+1

2 (7.4)

with the flipping rate of an independent spin α/2 and the coupling parameter γ. Sam-
pling spin-flips from these rates (e.g. using a Markov chain sampler) will sample from
the Boltzmann distribution of the Ising model Hamiltonian and define dynamics in the
sense of an MFM. To compare with the general idea of MFMs (Eq. (7.2)), we can inter-
pret the α/2 term as the transition rate ignoring the coupling with neighbor spins and
the second term as the coupling term.

Ising model approaches can be generalized to higher dimensions, other coupling
graphs, other spin Hamiltonians with external fields, etc. When coupling graphs are
used that do not correspond to a regular lattice topology, one usually speaks of the
more general Markov random fields (MRF) or graphical models. Both models have
been extensively used in statistics and machine learning in order to express the condi-
tional dependence of random variables. In MRFs, which are a generalization of Ising
and Potts models, this dependence is expressed by an undirected graph – for example
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Figure 7.5: Comparison of a method explicitly modeling coupling terms (DGM) and one discarding them (IMD).
(a) The test system is a set of spinswith couplingwhich is constructed such that spin groups [0], [1, 2, 3], and [4, 5]
are mutually independent. (b)Modeling results of DGMs (left) compared to IMD (right). DGMs explicitly model
the coupling in a tensor, shown as a matrix here, whereas IMD qualitatively groups coupled spins together in a
graph plot. The implied timescales spectrum is well approximated by both methods, IMD matching the ground
truth to numerical precision as the test systems are truly independent.

the probability distribution of spin σi+1 in the 1D Ising model conditionally depends
on σi and vice versa. The classical periodic Ising chain in one dimension would be de-
picted as a circle with every node interacting with its left and right neighbors. MRFs
can be efficiently evaluated using energy functions defined over so-called cliques (i.e.,
fully connected subgraphs) [52, 53]. Conceptually, MRFs directly relate to the graph
shown in Fig. 7.1d.
Graphical models are another generalization of MRFs and use directed graphs, that

is, in a graphical model it is possible that the distribution of random variable σi+1 con-
ditionally depends on σi but not vice versa [54].

7.7 Dynamic graphical models

MRFs and graphical models specify the conditional dependence of random variables
and define an equilibrium distribution when sampled. However, they both do not de-
fine the dynamics, for example, they do not model how often a given spin flip or state
transition is attempted in a given physical timewindow. In order tomodel biomolecular
kinetics, we therefore need to additionally specify a dynamical model.
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In their 2017 article [55], Gerber and Horenko derive a method to model a system’s
dynamics from domain-specific feature vectors, e.g., encoding discrete backbone dihe-
dral states. Although it is not directly based on MRFs or graphical models, it can be
considered to be in this tradition. Olsson & Noé [29] derived a method explicitly devel-
oped as an extension ofMRFs to dynamical systems under the nameDynamic graphical
models (DGMs). Given a set of known domains, DGMs address the problem of learning
the coupling graph (Tab. 7.1) and, subsequently, the global transition matrix from the
data by solving an independent logistic regression problem per domain. They assume
conditional independence of the future states of a domain, given all domain states at a
previous time. More specifically, DGMsmodel the transition probabilities for a domain
configuration st = (σ0,t, σ1,t, . . . , σN,t) given an initial configuration st−τ . The coupling
is explicitly modeled with a coupling tensor J = J(τ). To compare to the general idea
(Eq. (7.2)), we re-write the DGM transition probabilities in the binary case and in ab-
sence of an external field,

p(st|st−τ ) ∼ exp

 N∑
i=1

σ⊤i,tJiiσi,t−τ +
N∑
i=1

σ⊤i,t

N∑
j=1
j ̸=i

Jijσj,t−τ

 , (7.5)

highlighting how self- and pair-coupling terms enter the model. Here, σi,t encode the
i’th domain state at time t and Jij is a sub-matrix of J encoding the coupling between
domains i and j. We note that Eq. (7.5) yields a probability for a given global spin con-
figuration s; the construction of a global transition matrix is equivalent to the Glauber
model. An example of a DGM application and the coupling tensor is shown in Fig. 7.5.

7.8 Stochastic automata networks

Stochastic automata networks (SANs) [56, 57] are MFMs that aim to reduce the dy-
namics of a system with a large state space into a network of weakly coupled random
processes (or stochastic automata) using Kronecker products. They operate on a known
set of domains and model couplings with fixed functional forms (Tab. 7.1), which are
occasional synchronization events and environment-dependent changes of transition
probabilities. SANs were originally developed in the computer science community and
have been applied to biophysical applications, for example, for modeling the state tran-
sition dynamics of coupled Ca2+ channels [58].
Within the SAN formulation, the transition matrix of the global system P can be

constructed from the local domain transition matrices P(l)
i and matrices P(s)

i and
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Model Domains Couplings
Glauber dynamics pre-specified Pre-specified
DGM pre-specified Learned
IMD Learned n/a
iVAMPNets Learned n/a
SAN Pre-specified Pre-specified

Table 7.1: Classification of differentMarkov fieldmodels.

P(s,n)
i = diag(

∑
rows P

(s)
i ) that encode synchronization events* s ∈ ϵ. The lower index

i denotes the local system, ϵ is the set of synchronization events, and l is the label that
determines the type of transition. The global transition matrix can be written as [59]

P =

N⊗
i=1

P(l)
i +

[∑
s∈ϵ

N⊗
i=1

P(s)
i −

N⊗
i=1

P(s,n)
i

]
, (7.6)

which again can be interpreted in light of the general idea of MFMs (Eq. (7.2)). When
stochastic automata – or, in other words, Markov processes – are mutually indepen-
dent, the SAN equation (Eq. (7.6)) simplifies to the Kronecker product of the local tran-
sition matrices [57] which is equivalent to IMD (Eq. (7.3)).

7.9 Related models

A slightly different approach to modeling dynamical systems which may be seen as re-
lated toMFMs is causalitymodeling, which is often based onGranger’s notion of causal-
ity [60] or Schreiber’s definition of transfer entropy [61]. Causality models often esti-
mate directed graphs between local domains butwithout attempting tomodel the global
dynamics of the system. Causality modeling may, for example, proceed by inferring
pairwise causality between measurement channels of recorded time-series data [62].
Gerber and Horenko present a mathematically rigorous approach to estimate such

models for MD simulations [63]. Estimating the causality graph from time-series data
of short peptide dihedral torsion angles, they shed light on the spatial and temporal
structure of residue-residue interactions. Furthermore, causality modeling has been
applied to quantify allosteric couplings in proteins [42, 64], that is, tomodel directional
influence between spatially distant residues or loops.

*Simplified notation, please consult B. Plateau andK. Atif. “Stochastic AutomataNetwork ofModeling
Parallel Systems”. IIEEE Trans. Software Eng. 17.10 (1991), pp. 1093–1108. for details.
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7.10 Discussion and outlook

MFMs take the view that the dynamics of a complex system, for example, a protein,
can be modeled by multiple weakly coupled, or independent dynamic domains. Even
though MFMs are proper generalizations of global-state methods such as MSMs, they
only unfold their full potential if subsystems exist such that their coupling is weak or
negligible, or when the subsystems and their coupling share similarities. In these cases
MFMs will require fewer parameters than MSMs and other global dynamic models
in which each transition probability is assumed to be an independent parameter, and
MFMs are then more statistically data efficient , avoiding the exponential scaling prob-
lem of MSMs for large systems. Even in cases where MFMs are not statistically more
efficient, learning MFMs from data can be very insighful as they can partition large
dynamical systems into smaller, weakly coupled domains and present a simpler and
better interpretable picture of the individual domain dynamics and their coupling than
a global state model in whose parameters the local dynamics and their couplings are
compounded.

TheMFMconcept has already been successfully applied as a simulationmodel to gen-
erate data on large molecular complexes. Notable examples are Ultra-Coarse-Graining
(UCG), which treats local domains as multi-state coarse-grained beads [65, 66] (com-
pare Fig. 7.1d), or MSM/RD, which describes whole proteins as multi-state particles
in a reaction-diffusion (RD) setting [67, 68]. Therefore, we believe that MFMs have a
broad application basis for recent and future problems of kinetic modeling.

Research on MFMs is still in its infancy and faces significant challenges. First, learn-
ing the dependency graph between subdomains is a highly nontrivial task, and a well-
known hard problem in computer science [69, 70]. Algorithms must be able to cope
with real world application cases that range somewhere in between the extreme cases
of strongly coupled systems and systems with well-defined, completely independent
domains. Finding the right trade-off between these extremes is related to defining the
domain decomposition optimally. Compared to the hard problemof identifying the true
graphical model structure underlying a dataset, MFMs for simulation data aremore for-
giving in that we are usually mainly interested in learning an MFM that can correctly
model statistical observables of the overall systems. This task can be completed, within
statistical uncertainty, even when it is not possible to uniquely determine a singleMFM
structure from the simulation data.

Second, systematic model errors are introduced by neglecting or sparsifying cou-
plings, possibly both at the local domain level and globally. Therefore, it is important
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to quantitatively validate MFMs, to model couplings explicitly with methods such as
DGMs [29] and / or to merge strongly coupled subsystems in such analyses. Quantify-
ing and controlling such model errors is a task for future work.
Third, validating computational models with experiments usually requires us to es-

timate the ensemble averages of the global system. In MFMs, it is often unfeasible to
explicitly construct and analyze the global transition matrix P, which means we have to
compute its properties by sampling the coupled subsystem dynamics, which results in
statistical errors and possibly sampling problems in order to compute such ensemble
averages.
In summary, we believe that MFMs have great potential for modeling and under-

standing the dynamics of large-scale biomolecular complexes and may significantly re-
duce the sampling problem, thus advancing the applicability of computationally expen-
sive, high-resolution simulation methods such as atomistic MD. However, many chal-
lenges need to be solved until these models have reached a similar maturity and practi-
cality as MSMs, providing fertile soil for future investigations.
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A
Supplemental information: Independent
Markov decomposition: Toward modeling

kinetics of biomolecular complexes

This appendix has been published as supplementary material to

Tim Hempel, Mauricio J. del Razo, Christopher T. Lee, Bryn C. Taylor,
Rommie E. Amaro, and Frank Noé. “Independent Markov
Decomposition: Toward Modeling Kinetics of Biomolecular
Complexes”. Proceedings of the National Academy of Sciences 118.31
(2021), e2105230118.

A.1 Markov operators

A.1.1 Infinitesimal generator

Given a stochastic dynamical system, such as an MD simulation, the operator P can be
understood as a propagator of the probability density f(x, t), where x is on the phase
space of the dynamical system. We can define P using the infinitesimal generator L [1]

∂tf = Lf. (A.1)

This equation is a generalization to non-deterministic systems of the Liouville equation
of statistical mechanics, which describes the time evolution of a density of an ensemble
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of systems. Its solution, given an initial density f(t = 0) = f0, is

f(·, t) = exp(tL)f0 = P(t)f0, (A.2)

where P(t) is the Perron-Frobenius operator. It can be understood as the propagator of
the probability density f0. In its decomposed form for two systemsA andB, the operator
is written as

f(x, t) = (PA(t)⊗ PB(t)) f0(x) = P(t)f0(x). (A.3)

A.1.2 MSM transition matrix decomposition

ThePerron-Frobenius operatorP can be approximated by aMarkovmodel. TheMarkov
model formulation propagates probability densities between discrete states; therefore,
the problem requires performing a Galerkin discretization of P using a discrete basis
set. This can be done by partitioning the phase space completely or into the metastable
regions, say {A1, ...,Ak}. The most common basis set are indicator functions on these
regions,

1Ai(x) =

1 if x ∈ Ai

0 else.
(A.4)

The Galerkin discretization will yield a low rank approximations of the operator P.
When using indicator functions, the output will usually be in the form of a discrete-time
MSM [2]. Assume that the dynamics of interest can be separated into two independent
disjoint regions in phase space. The Galerkin discretization of Eq. (A.2) in each region
yields two MSMs,

fA(t+ τ) = TAfA(t), fB(t+ τ) = TBfB(t), (A.5)

where τ is the lagtime; fA and fB are the probability vectors of the correspondingMSMs;
and TA, and TB are the corresponding transition probability matrices. In this case, the
matrices TA and TB approximate Perron-Frobenius operators, so following Eq. (A.3),
the solution of the whole systems is given by

f(t+ τ) = (TA ⊗ TB) f0(t), (A.6)

with f0 = f0A⊗ f0B. The individual transition probability matrices are linear maps given
by TA : Rk → Rk and TB : Rk′ → Rk′ , where k and k′ are the number of discretized states
in A and B, respectively. The joint space A⊗B will then have kk′ discretized states that

180



SI to Independent Markov Decomposition

are defined analogously to Eq. (A.4) by indicator functions 1(A⊗B)(i,j)(x) = 1 iff x ∈ Ai∩Bj,
so

TA ⊗ TB : Rkk′ → Rkk′ . (A.7)

In particular, the productTA⊗TB is theKronecker product [3]. An analogous expression
can be derived for continuous-time MSMs (see below).
In summary, we need the operator P to model the full system, and approximate it

by the Kronecker product between the transition probability matrices of the MSMs of
independent sub-systems.

A.1.3 Observable operator decomposition

To score dependency of subsystems in feature space, it is most natural to directly work
with the operator that propagates these features. This operator is called the Koopman
operator K; it propagates observable functions f,

Kf(x) = E[f(Φ(x))], (A.8)

i.e., is described by the expectation value of the observable of a particular configuration,
x, after the dynamics Φ has been applied. It is a infinite-dimensional linear operator
[4]. It is particularly interesting for the current application because the variational ap-
proach for Markov processes (VAMP) and the related VAMP scores are derived from
the Koopman operator [5].
As the Koopman formulation is a more general framework to deal with Markov pro-

cesses, we only refer to the estimator of the Koopman operator which reads [5]

K = C −1/2
00 C0tC

−1/2
tt (A.9)

with time-lagged covariance matrix C0t, “instantaneous” covariance matrices at times
0 and t C00 and Ctt, respectively. The lag time is t.
We define the common space of observables of two processes as a stacked vector

ΨAB = [ΨA,ΨA]. For example, if ΨA = (ψ1A, ψ
2
A, . . .) and ΨB = (ψ1B, ψ

2
B, . . .) are the one-

dimensional time series of features ψ ∈ R of two systems A and B, the joint space would
be spanned byΨAB = ((ψ1A, ψ

1
B), (ψ

2
A, ψ

2
B), . . .). Note that this means that the separation

of processes happens a priori by the choice of ΨA,ΨB, a situation which comes closest
to appliedmodeling situations. Given the above definition of the full system observable
ΨAB, the full system Koopman operator is the direct sum of Koopman sub-operators
KA,KB, KAB = KA ⊕ KB or, more generally,
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K


Ψ1

Ψ2
...
Ψn

 (x) =


K1 0 . . . 0

0 K2
. . . ...

... . . . . . . 0
0 . . . 0 Kn



Ψ1

Ψ2
...
Ψn

 (x) (A.10)

as all off-diagonal blocks must vanish by definition and each subsystem operator only
acts on the features of its space. Therefore, the decomposition can be written as the
direct sum

K =
⊕
i
Ki. (A.11)

In particular, this means that the Koopman operator has the shape of a block diagonal
matrix. It can be seen from the Koopman estimator (Eq. (A.9)) that the above structure
of the joint operator implies that independent processes are also uncorrelated.

A.2 VAMP score decomposition of independent systems

The VAMP-p score Rp can be interpreted as the Schatten-p norm ∥ · ∥p of the estimated
Koopman operator to the p-th power [5], i.e.

Rp(K) = ∥K∥pp. (A.12)

This general form is valid for both MSMs as well as Koopmanmodels, but note that the
estimator for K is different in these cases (see below). To simplify this expression, on
the one hand, we can exploit the property of the Schatten-p norm to be invariant under
unitary transformations for unitarian matrices U and V,

∥A∥p = ∥UAV∥p. (A.13)

On the other hand, we can write the Koopman operator in a singular value decomposi-
tion with its singular value diagonal matrix Λ as K = UΛV such that, using Eq. (A.13),
we find

∥K∥p = ∥Λ∥p =

(∑
i
λ
p
i

) 1
p

(A.14)

with the real valued singular values of the Koopman matrix λi.
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A.2.1 Sum space decomposition

Given a joint space that is spanned by the direct sum of subspaces, such as described
withmolecular observable vectors, and a decomposable Koopman operatorKAB = KA⊕
KB of two systems A and B, we can thus write

KAB = UABΛABVAB (A.15)

= (UA ⊕UB)(ΛA ⊕ ΛB)(VA ⊕ VB) (A.16)

= (UAΛAVA)⊕ (UBΛBVB) (A.17)

= KA ⊕ KB (A.18)

and hence

∥KAB∥pp = ∥ΛAB∥pp (A.19)

= ∥ΛA ⊕ ΛB∥pp. (A.20)

Further, the singular values of the direct sum joint operator are the set of subsystem
operator singular values. In detail, writing the p-th power of the p-Schatten norm of a
real valued diagonal matrix (Eq. (A.14)) reads∥∥∥∥∥∥∥∥∥∥∥


λA,1 0 · · · 0

0 . . . ...
... λB,1 0

0 · · · 0 . . .



∥∥∥∥∥∥∥∥∥∥∥

p

p

= Tr


λ
p
A,1 0 · · · 0

0 . . . ...
... λ

p
B,1 0

0 · · · 0 . . .


such that it follows that we can further simplify Eq. (A.20) to

= ∥ΛA∥pp + ∥ΛB∥pp (A.21)

= ∥KA∥pp + ∥KB∥pp (A.22)

which is the VAMP-p score of two independent systems in this particular basis. We can
see that the decomposability depends on the block diagonal shape of the joint Koopman
operator, which is also inherent to the covariance matrix itself. I.e., a decomposition of
the covariance matrix would be possible in the same way, however its trace and Frobe-
nius norm do not represent VAMP scores.
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A.2.2 Product space decomposition

When operating in a joint space that is spanned by the tensor product, as shown above,
the joint operator is formed by the Kronecker product TAB = TA ⊗ TB. However, the
VAMP-score of a transition matrix T is not directly computed from T but from the as-
sociated Koopman operator. We first show that a decomposition of TAB = TA ⊗ TB
also implies a decomposition of KAB in the same way. We note that that the instanta-
neous correlation matrices are diagonal for MSMs. In the following, we make use of
the transition matrix estimator T = C−1

00C0t and the mixed product rule of Kronecker
products.

KAB = ABC1/200 TABABC
−1/2
tt (A.23)

=
(
AC1/200 ⊗ BC1/200

)
(TA ⊗ TB)

(
AC−1/2

tt ⊗ BC−1/2
tt

)
(A.24)

=
(
AC1/200 TAAC

−1/2
tt

)
⊗
(
BC1/200 TBBC

−1/2
tt

)
(A.25)

= KA ⊗ KB (A.26)

Please note that this simple proof is only valid for indicator function basis sets such as
for classical MSMs.

We can further make use of a simple rule that applies to the singular value decom-
position of the Kronecker product. If the subsystem operators have n and m singular
values λA,i ∈ R and λB,i ∈ R, respectively, the singular values of its Kronecker product
are {λA,i · λB,j : 0 < i < n,0 < j < m}. It thus follows that

∥KAB∥pp =
∑
i
λ
p
AB,i (A.27)

=
∑
i,j

(λA,i · λB,j)p (A.28)

=
∑
i
λ
p
A,i ·

∑
j
λ
p
B,j (A.29)

= ∥KA∥pp · ∥KB∥pp. (A.30)

This is the decomposition for the VAMP-p score of two independent systems in a prod-
uct basis such as the one applied for MSM transition matrices.
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A.3 Continuous-time MSM decomposition

Discretizations of the operator P can also yield continuous-time MSMs [6, 7]. Analo-
gously to the analysis done with discrete time MSMs, assume two independent regions
in phase space that are discretized into two continuous-time MSMs. Their solution is

fA(t) = exp(tRA)f0A, fB(t) = exp(tRB)f0B, (A.31)

where RA and RB are the transition rate matrices; fA and fB the probability densities
in the corresponding regions; and f0A and f0B the initial conditions. The operator P is
approximated by the exponential functions, so the solution of the whole system is given
by the tensor product of exponentials,

f(t) = exp(t(RA ⊕ RB))f0, (A.32)

which yields a Kronecker sum ⊕ for the matrices in the exponent.
In summary, in order to approximate the operator P of the full system, we need to

either use the Kronecker sum on rate matrices of continuous-time MSMs, or the Kro-
necker product on transition probability matrices of discrete-time MSMs. In general,
the full systemPerron-Frobenius operator can be reassembled by using the tensor prod-
uct on all the subsystems operators.

A.4 Weakly coupled systems

Practical situations – for example, an ion channel with quasi-independent subunits –
might often involve weak coupling. The transition matrix T̃ of a weakly coupled system
can be expressed as a perturbation of the transitionmatrix T of the non-coupled system,

T̃T = (1− ϵ)TT + ϵPT, ϵ ∈ [0, 1] (A.33)

where P is another Markov transition matrix defined on the same state space as T, and
ϵ≪ 1 corresponds to small perturbations/weak coupling. Note this definition enforces
the required MSM condition that columns sum to one.
As the eigenvalues of T̃ are continuous functions of ϵ, the eigenvalues of the coupled

systemwill be arbitrarily close to those of the uncoupled one as ϵ→ 0. Further analysis
on the convergence speed of the eigenvalues as ϵ → 0 is system dependent and not
easy to assess in general. However, upper error bounds for the stationary distribution
error exist and can be assessed in multiple ways [8, 9]. We focus on one formulation
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framed in terms of mean first passage times mij, since it provides physical intuition
on the sensitivity of the MSM [8, 10]. Assume T and P define finite, irreducible and
homogeneous MSMs, as the MSMs of interest within the scope of this work, then

∥π − π̃∥∞ ≤ 1
2 maxj

[maxi ̸=jmij
mjj

]
∥(T− T̃)T∥∞, (A.34)

where π denotes the stationary distribution; the tilde denotes quantities of the per-
turbed system; the ∞-norm is the maximum absolute row sum, and mjj is the mean
return time of state j, i.e. the time to return to j for the first time, starting from j.
In terms of our application, if the coupling is sufficiently weak (ϵ ≪ 1), the eigenval-

ues of the uncoupled system will be close to those of the weakly coupled system, provid-
ing a good approximation of the implied timescales. Furthermore, an upper bound for
the stationary distribution error can be easily calculated using software like PyEMMA
[11]. The bound is very effective for MSMs consisting of a dominant central state with
strong connections to and from all other states [8].

A.5 Effective counts and sampling

For comparing classical MSMs and IMD models, one can assess the total number of
transition counts (going into and out of a particular state) in a global state space. It
is either estimated directly based on state definitions in the global system (MSM) or
computed from the Kronecker product of subsystem transition matrices (IMD model).
Let us consider two independent systems with transition matrices Ti, count matrices

Ci, and total countsNi. The latter is a diagonal matrix for classical MSMs that describes
the total number of counts for each state. One can write Ti = N−1

i Ci (maximum likeli-
hood estimator of the transition matrix). We can compute the total transition matrix
from the Kronecker product as follows

TAB = TA ⊗ TB = N−1
A CA ⊗N−1

B CB = (NA ⊗NB)
−1(CA ⊗ CB). (A.35)

We write the global count matrix as NAB = NA ⊗ NB. It can be interpreted as the
effective number of counts for each state in the global system when estimated from the
Kronecker product, i.e., each diagonal element is the product of the sub-system total
counts of a particular state. These numbers, which could be interpreted as the number
of “effective transitions” in global state space, will necessarily be greater than the ones
from a classical MSM in the same space.
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A.6 Toy models

A.6.1 Scaling behavior: uncoupled 3 state sub-systems

A system consisting of n independent sub-systems with 3 states each was set up to ex-
emplify scaling with number of sub-systems. The transition matrix of each sub-system
is given by

Ti =

1− p p/2 p/2
p/2 1− p p/2
p/2 p/2 1− p

 (A.36)

with p = 0.1, i.e., the probability to stay in a particular state is 1 − p = 0.9. The full
system is described with a Kronecker product Tfull =

⊗n
i Ti. Markov chains of length

N are sampled from this transition matrix using PyEMMA /msmtools [11] until the de-
sired set of states is connected. To quantify the confidence, 30 trial runs are conducted
for each number of sub-systems.

A.6.2 Approximation quality: 2 weakly coupled 2 state sub-systems

In the following, we utilize a system comprised of 2 sub-systems with 2 states each in
order to exemplify the IMD framework. We further analyze its behavior with regard to
limited sampling and weak couplings. The toy model consists of two sub-systems with
transition matrices T1,T2 that each have a probability to transition to another state of
ϵ = 0.1.

These sub-systems are coupled in a tunable fashion. A parameter λ is introduced
which results in two independent sub-systems for λ = 0 and weakly coupled sub-
systems for λ > 0. The full system is represented by a reversible transition matrix T for
any given λ ∈]0, ϵ(1− ϵ)[. The transition matrix of the applied toy model can explicitly
be written as

T =


(1− ϵ)2 − λ ϵ(1− ϵ)− λ ϵ(1− ϵ) + λ ϵ2 + λ

ϵ(1− ϵ)− λ (1− ϵ)2 − λ ϵ2 + λ ϵ(1− ϵ) + λ

ϵ(1− ϵ) + λ ϵ2 + λ (1− ϵ)2 − λ ϵ(1− ϵ)− λ

ϵ2 + λ ϵ(1− ϵ) + λ ϵ(1− ϵ)− λ (1− ϵ)2 − λ

 (A.37)

λ=0
= T1 ⊗ T2. (A.38)
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In the un-coupled case, T reduces to the Kronecker product of the two sub-system tran-
sition matrices. The sub-system transition matrices are given by

T1,T2 =
(
1− ϵ ϵ

ϵ 1− ϵ

)
. (A.39)

We sample discrete trajectories from T, de-compose into sub-system trajectories and
estimate the models presented in Fig. A.1.
As expected, all properties of the Markov model can be easily retained in the uncou-

pled case (Fig. A.1). Stronger coupling yields less accurate results; especially transi-
tion probabilities are over or underestimated (Fig. A.1a) while the error on the implied
timescales is comparably small, possibly yielding underestimated implied timescales
(Fig. A.1b). We note that the stationary probabilities are not affected by the coupling,
i.e. that p1 ·p2 = p1,2 holds in any case (Fig. A.1c). We find that indeed, the dependency
d in both its forms, trace and Frobenius norms, is a fast converging and significant in-
dicator for the approximation quality (Fig. A.1d).
Due to its small size, this particular example is not suitable to demonstrate that con-

vergence is reached faster with the decomposed model.
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A.7 Dimer model

The following model system serves the purpose to demonstrate that the presented de-
pendency scores can bisect coupled from weakly coupled systems. Our example mod-
els a dimer of protein channels. Each of those channels resembles a Hodgkin-Huxley
potassium channel but possesses an additional deactivation switch. This switch alters
the dynamics completely, i.e. upon activation each gate will close or stay closed with a
high probability. The deactivation switch is a Markov process itself and switches state
with a probability of pswitch = 0.01. Thus, each channel has strongly coupled sub-units
and cannot be described by individual gate MSMs as in the previous example.
Our test system consists of two such channels. They possess someweak cooperativity

whichwemodel by a slight shift in gate opening probability if both deactivation switches
are disabled at the same time.
In the following, we define a block matrix that describes the whole system dynamics.

For the sake of simplicity, we present it in multiple layers. The highest layer describing
the full system is given by

Tdimer =



T
(
S1 : 0→ 0
S2 : 0→ 0

)
T
(
S1 : 0→ 0
S2 : 0→ 1

)
T
(
S1 : 0→ 1
S2 : 0→ 0

)
T
(
S1 : 0→ 1
S2 : 0→ 1

)

T
(
S1 : 0→ 0
S2 : 1→ 0

)
T
(
S1 : 0→ 0
S2 : 1→ 1

)
T
(
S1 : 0→ 1
S2 : 1→ 0

)
T
(
S1 : 0→ 1
S2 : 1→ 1

)

T
(
S1 : 1→ 0
S2 : 0→ 0

)
T
(
S1 : 1→ 0
S2 : 0→ 1

)
T
(
S1 : 1→ 1
S2 : 0→ 0

)
T
(
S1 : 1→ 1
S2 : 0→ 1

)

T
(
S1 : 1→ 0
S2 : 1→ 0

)
T
(
S1 : 1→ 0
S2 : 1→ 1

)
T
(
S1 : 1→ 1
S2 : 1→ 0

)
T
(
S1 : 1→ 1
S2 : 1→ 1

)


.

(A.40)
Its block elements depend on deactivation switches of the individual channels, S1 and
S2. On the next layer, for each transition pair of the deactivation switches,

T
(

S1 : i → j
S2 : n → m

)
=

Tc ⊗ Tc if n = m = i = j = 0

T(S1 : i → j)⊗ T(S2 : n → m) else.
(A.41)

This implements the coupling between channels by selecting different transition proba-
bilities if both deactivation gates are inactive at the same time. The next layer describes
individual channel transition probabilities (rescaled such that the full system transition
matrix has row-sum 1):
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T(S : i → j) =


pswitch · 116 n ̸= m switching switch

(1− pswitch) · THH n = m = 0 inactive switch

(1− pswitch) · Tinactive(λ) n = m = 1 active switch

(A.42)

with the Hodgkin-Huxley transition matrix THH = Thh ⊗ Thh ⊗ Thh ⊗ Thh with indi-
vidual gate transition matrices Thh that describe gate opening and closing in the native
state. Further, a transition matrix describing gate dynamics if the deactivation switch
is active is given. For fully activated coupling between gates and deactivation switch, it
reads T̃inactive = To ⊗ To ⊗ To ⊗ To with To being the single gate transition matrices for
that case. In order to control the intensity of the gate-deactivation switch coupling, we
use a linear mixture parameter λ,

Tinactive(λ) = λT̃inactive + (1− λ)THH, (A.43)

i.e., the coupling can gradually be turned off by adjusting λ ∈]0, 1[, and the case λ = 0
leaves the deactivation switch with no effect on the gate dynamics.

Finally, on the last layer, the single gate matrices are given by

Thh =

(
0.9483 0.0517
0.0055 0.9945

)
unperturbed (A.44)

To =
(
0.9483 0.0517
0.95 .05

)
active deactivation switch (A.45)

Tc =
(

0.8 0.2
0.0055 0.9945

)
both deactivation switches inactive (A.46)

The Markov chain is sampled from the transition matrix Tdimer using PyEMMA /
msmtools [11] with a time step of 20 steps for 1 million time steps. The code used to
generate and analyze the example can be found in our GitHub repository.
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A.8 Supplementary figures
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FigureA.1: Analysisoferror fromweakcouplingsand limitedsampling. MSMpropertiesof full-systemanddecom-
posed estimates are shown as functions of sampling (x-axis) and coupling (color code). (a) first row of transition
probability matrix, (b) two highest implied timescales. (c) Stationary probabilities (shown for two example states).
(d) dependency d as difference in trace norms (line) and Frobenius norms (diamonds).
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Figure A.2: Dependency-network between residues of Syt-1 C2A depicted using a standard graph layout
(Fruchterman-Rheingold algorithm). (a) VAMP-1 normalized dependency network. Edge weights are indicated
by colorbar. Nodes are colored according to an unsupervised classification by the k-means algorithm (k = 7).
(b) Visualization of protein structure with color coded segments from our VAMP-1 analysis, i.e., same color code
as in panel a.
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Figure A.3: Counterexample to IMD with dependency-network between residues of Chignolin [12]. Analysis is
based on flexible torsion angles [13]. We show VAMP-1 (a) and VAMP-2 (b) normalized dependency networks.
Edge weights are indicated by colorbar. (a) VAMP-1 dependency network with nodes colored according to an
unsupervised classification by the k-means algorithm (k = 4). Dependency histograms depict coupling strength
of residues within a subsystem cluster (red) and between different subsystem clusters (blue). Note that links be-
tween residue clusters express high normalized dependency scores, which is alsomirrored in the twodistributions
having significantoverlap. Therefore, thepeptidecannotbe split into independent subsystems. (b)VAMP-2depen-
dency network showsnoclustering; every residue is connected to thenetworkwith scores>0.8, further indicating
that Chignolin cannot bemodeled with IMD.

102 103 104
sampling t (ms)

0.00

0.05

0.10

RM
SE

IMD

102 103 104
sampling t (ms)

MSM

Figure A.4: Deviations of Hodgkin-Huxley ion channel models (IMD, MSM) from the ground truth, assessed with
Root Mean Square Error (RMSE). RMSE is computed between estimated eigenvalue spectrum (IMD, MSM) and
spectrumof thegenerator transitionmatrix (ground truth) for all caseswhereconnected transitionmatrices could
be estimated.
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B.1 Additional Syt-1 C2A analyses

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
minRMSD to crystal structure (nm)

hi
st

og
ra

m

0 Ca2 +

3 Ca2 +

Figure B.1: Histograms of minimum root-mean-square deviation (RMSD) between calcium bound and unbound
trajectories to their respective PDB structures (1BYN: bound; 2R83: unbound). The multi-peak structure shows
thatbesides thecrystal structure, reasonablypopulatedconformationsexistwhichbecomemorepopulated in the
bound case.
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Figure B.2: Syt-C2A RMSF per residue as computed from the full set of trajectories. Several regions appear to
have significant motion, most of them correspond to CBR loops.
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Figure B.3: SASA of charged polar or hydrophobic residues in CBR-1 (upper panel). The bars are color-coded
according to the convention used throughout this paper. Stationary probabilities are added (lower panel). SASA
and stationary distributions of calcium bound and unbound states are sorted left and right of the vertical dotted
lines for each residue.
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Figure B.4: HMM macrostate identification: KL-divergences between state observation probabilities per
macrostate for calcium bound and unbound datasets. Both HMMs have 3 hidden states. White hatches depict
states that are identified between datasets.
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Figure B.5: Conservation of positive and negative charges. Bottom: Sequence alignment of C2 domain family
members (PFAMentry PF00168, seed). Top: Sub-sample of synaptotagmin C2 domains.
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B.2 Method supplement

B.2.1 openMM run script

import simtk.openmm.app as app
import simtk.openmm as mm
import simtk.unit as u
from parmed import gromacs

# input files
topfile = 'path/to/gromacs_top_file.top'
grofile = 'path/to/gromacs_gro_file.gro'

# user parameters
integrator_timestep_ps = 0.005 # picoseconds
simulation_time_ns = 2000 # nanoseconds
equilibration_steps = 1500 # steps

# physical values:
temperature = 300 * u.kelvin
pressure = 1 * u.bar

# load pdb, force field and create system
gromacs.GROMACS_TOPDIR = 'path/to/gromacs-5.1.1/share/top'
top = gromacs.GromacsTopologyFile(topfile)
gro = gromacs.GromacsGroFile.parse(grofile)
top.box = gro.box

# create system object
system = top.createSystem(

nonbondedMethod=app.PME,
nonbondedCutoff=1.0 * u.nanometer,
constraints=app.AllBonds,
rigidWater=True,
hydrogenMass=4 * u.amu,
ewaldErrorTolerance=0.0005)

# integrator
integrator = mm.LangevinIntegrator(

temperature,
1/u.picoseconds,
integrator_timestep_ps * u.picoseconds)

integrator.setConstraintTolerance(1e-5)

platform = mm.Platform.getPlatformByName('CUDA')
properties = {'CudaPrecision': 'mixed'}
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# pressure coupling
system.addForce(mm.MonteCarloBarostat(pressure, temperature))

# initialize simulation object
simulation = app.Simulation(

top.topology, system, integrator,
platform, properties)

# load positions and velocities
simulation.context.setPositions(gro.positions)
simulation.context.setVelocitiesToTemperature(temperature)

# HBond constraints
simulation.context.applyConstraints(1e-12)

# minimize energy
simulation.minimizeEnergy(maxIterations=1000)
simulation.step(equilibration_steps)

# start simulation
simulation.step(int(simulation_time_ns /

(integrator_timestep_ps * 1e-3)))

B.2.2 Calcium position convergence

Wehave assessed if the calcium ions have relaxed to equilibrium by computing the start
and end distributions of the RMSD to the crystal structure. After superposition of the
protein to the crystal structure, RMSDof calcium ion coordinates to the crystal structure
was computed for the first and last 10 ns of each trajectory (individual trajectory length
is 2 µs). We note no significant difference between the start and end distributions.
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Figure B.6: Histograms of calcium ion position RMSDs from crystal structure. Compared are the first 10 ns (blue)
to the last 10 ns (orange) of each trajectory.
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B.2.3 Local clustering

Figure B.7: Representative structures of microstates of CBR-2 obtained from k-means clustering. Residues
AR199-N203 that were used for discretization are color coded in orange. Microstates mirror internal configu-
rations of CBR-2 as well as its distance to the protein body.

B.2.4 Markov model validation

Generally, when building a Markov model, it needs to be checked if the process in dis-
crete state space is Markovian for a certain lag time τ . This can be done by checking for
the convergence of model properties with respect to the model parameter τ [1] and by
testing for the Chapman-Kolmogorov equation.

Implied timescales and stationary properties convergence. When sampling
rare processes in a large data set however, one faces the problem that processes can be
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lost at high time scales. This is why the model parameter was tuned to a value which
allows the implied timescales and the stationary distribution of all six models to be
constant within error.
As depicted in Fig. B.8, especially in the case of calcium bound CBR-1, the interval

between timescale convergence and loosing the process is very short. The reason is that
this rare event is sampled poorly. Nevertheless it is assumed that this model is valid
since the chosen lag time of τ = 50ns ensures Markovianity in all of the other models.
Further, the behavior is reflected in the error estimate of the derived properties such as
stationary distribution and mean first passage times (MFPT).

Chapman-Kolmogorov test Consistency of the Chapman-Kolmogorov equation
T(n · τ) = T(τ)n is tested for all the models presented here. As already mentioned,
we are operating in the data sparse regime, so estimates can only be done for a finite
number of multiples of the lag time τ .
Predictions as well es estimates from the presented models are depicted in Fig. B.9.

Generally, we note that transition probabilities have the same trends, i.e. stay in the
same order of magnitude. The presented error is estimated by Bayesian sampling of
the posterior, it shows significant overlap in all cases. However, data sparsity leads to
divergence at lag times of 3 · τ = 150ns.
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B.2.5 Validation of transfer entropy and mutual information
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FigureB.10: Bootstrappingvalidation formutual information (bottom)and transferentropy (top). Estimatesusing
the full set of data are depictedwith large black symbols. Left panels show calcium unbound, right panels calcium
bound data.

Mutual information and transfer entropy were validated using bootstrapping of tra-
jectory data (cf. Fig. B.10). In order to assess if the results are significantly different to
zero, a comparison was made to shuffled trajectories, i.e. the time information within
the trajectories was kept constant while trajectories were combined that did not happen
at the same time. As depicted in Fig. B.11, the results in this case are at least one order
of magnitude smaller than the results in the correct time frame.
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Figure B.11:Mutual information and transfer entropy validation by comparing to results obtained from shuffling
trajectories among each other but keeping frames within the single sub-system trajectories.
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B.2.6 Ion model validation by Alchemical free energy perturbation

a

b

Figure B.12: Alchemical free energy computations and binding pocket projection for crystal structure. Box plots
of free energy results shows that experimental values (solid vertical lines) can be matched within the error. The
only exception is ion Ca2which in terms of its binding free energy is indistinguishable fromCa1. Configuration of
(color coded) calcium ions is shownwithin binding pocket of crystal structure.

FigureB.13: Validationof alchemical free energy computationswithMBARusing crystal structure. Left: Forward-
backward convergence. Top right: results of about 50 indipendent computations. Bottom right: Overlapmatrices
with boxes denoting sufficient overlap according to Ref. [2].
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C.1 Supplementary figures

X-ray structures 3W94 model 2ANY model 1O5E model

5CE1 model 5TJX model 6O1G model 4NA8 model

Figure C.1: Selection of homology model from Ref. 38 by specific interactions around the catalytic triad. Com-
parison of TMPRSS2 models (black) and four serine protease structures that contain a lysine residue next to the
catalytic aspartate (cyan, PDBs 1EKB, 1FUJ, 3W94 and 4DGJ). Note that the four crystal structures show a very
conserved and rigid environment around the catalytic aspartate,with just fewfluctuations of the lysine head (K99
in 1EKB). The structural models of TMPRSS2, instead, show a wide variability of conformations of both the back-
bone and sidechains, with 3W94 being themost conservativemodel.
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Figure C.6: Per-residue root mean squared fluctuations (RMSF) along the protein sequence. The protein core,
mainly consisting of β-strands, has a low RMSF, i.e. is rigid compared to coil or helical protein segments such as a
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213



Appendix C

Bibliography

[1] S. Rensi, R. B Altman, T. Liu, Y.-C. Lo, G. McInnes, A. Derry, and A. Keys. Homology Model-
ing of TMPRSS2 Yields Candidate Drugs That May Inhibit Entry of SARS-CoV-2 into Human
Cells. Preprint. 2020. url: https://chemrxiv.org/articles/Homology_Modeling_
of_TMPRSS2_Yields_Candidate_Drugs_That_May_Inhibit_Entry_of_SARS-CoV-
2_into_Human_Cells/12009582.

214

https://chemrxiv.org/articles/Homology_Modeling_of_TMPRSS2_Yields_Candidate_Drugs_That_May_Inhibit_Entry_of_SARS-CoV-2_into_Human_Cells/12009582
https://chemrxiv.org/articles/Homology_Modeling_of_TMPRSS2_Yields_Candidate_Drugs_That_May_Inhibit_Entry_of_SARS-CoV-2_into_Human_Cells/12009582
https://chemrxiv.org/articles/Homology_Modeling_of_TMPRSS2_Yields_Candidate_Drugs_That_May_Inhibit_Entry_of_SARS-CoV-2_into_Human_Cells/12009582


D
Supplemental information: Deep learning to

decompose macromolecules into
independent Markovian domains

This appendix has been published as supplementary material to

Andreas Mardt∗, Tim Hempel∗, Cecilia Clementi, and Frank Noé.
“Deep Learning to Decompose Macromolecules into Independent
Markovian Domains”. Nature Communications 13.1 (2022), p. 7101.

D.1 Supplementary Note 1: Independent Koopman operators

The true Koopman operator Kτ can be written in two ways. First, if the operator is a
Hilbert-Schmidt operator, the following singular value decomposition (SVD) exists:

Kτg(x) =
∞∑
i=1

σi⟨g, ϕi⟩ρ1ψi(x). (D.1)

A low-rank approximation to the Koopman operator is obtained by truncating the sum
after k ≪ ∞ terms.

This Chapter is licensed under the Creative Commons Attribution 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
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Second, the Koopman operator can be expressed via the transition density pτ (y|x)
that describes the transitions from configuration x to y within a time window τ :

Kτg(x) =
∫

pτ (y|x)g(y)dy. (D.2)

Given two independent systems with configurations x1,x2 and y1,y2 and their transi-
tion densities p1τ (y1|x1), p2τ (y2|x2), respectively, the global transition density is then:

pGτ (y1,y2|x1,x2) = p1τ (y1|x1) · p2τ (y2|x2). (D.3)

As a consequence, if we study observables which can be expressed as the product of
the subsystem specific observables (hence the Kronecker product of the feature func-
tions χ) gG(x1,x2) = g1(x1)g2(x2), the global Koopman operator decomposes into the
product of subsystem operators:

KG
τ gG(x1,x2) =

∫∫
pGτ (y1,y2|x1,x2)gG(y1,y2)dy1dy2

=

∫
p1τ (y1|x1)g1(y1)dy1

∫
p2τ (y2|x2)g2(y2)dy2

= K1
τg1(x1)K2

τg2(x2).

(D.4)

The low rank approximation of the decomposed Koopman operator (defined in
Eq. (D.1)) for independent systems can now be written as follows, taking into account
only k1 and k2 singular functions:

K̂G
τ gG(x1,x2) = K̂1

τg1(x1)K̂2
τg2(x2)

=
k1∑
i=1

σ1i ⟨g
1, ϕ1i ⟩ρ11ψ

1
i (x1)

k2∑
j=1

σ2j ⟨g
2, ϕ2j ⟩ρ21ψ

2
j (x2)

=
k1∑
i=1

k2∑
j=1

σ1i σ
2
j ⟨g

1g2, ϕ1iϕ
2
j ⟩ρG1 ψ

1
i (x1)ψ2j (x2)

=

k1k2∑
l=1

σGl ⟨g
G, ϕGl ⟩ρG1 ψ

G
l ,

(D.5)

Therefore in case of independent systems, the optimal singular functions and values of
the global system are given by the Kronecker product of the subsystem singular func-
tions and values, σGl = σ1i σ

2
j , ψ

G
l = ψ1iψ

2
j , and ϕ

G
l = ϕ1iϕ

2
j . This procedure can be applied

to arbitrarily many independent subsystems.
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D.2 Supplementary Note 2: Global model of 3x2 benchmark system

0-1 +1

1.0 0.90

0.89 0.80

0.66 0.60

FigureD.1: HiddenMarkov statemodel as a benchmark example for independent subsystems: The 6 global eigen-
functions supplied with their eigenvalues revealing the 4 independent processes and the 2 resulting mixed prod-
uct processes. Eigenvalues of the latter are computed from the product of independent process eigenvalues:
λ4 = λ2 · λ3 = 0.80 and λ6 = λ2 · λ5 = 0.60

D.3 Supplementary Note 3: Global model of Syt-C2A

To compare iVAMPnets to existing methods, we estimate a classical (global) VAMP-
net model with 8 output nodes and no attention mechanism, but otherwise the same
hyperparameters that were used for the iVAMPnet estimation (lag time, batch size, ar-
chitecture, and training routine).
The training score converges to the theoretical maximum of 8. However, when pro-

jecting on the eigenfunctions, it becomes apparent that some of them do not describe
any real transition event, i.e., stay constant during each single trajectory. Rather, these
eigenfunctions model disconnected configurations that belong to different trajectories,
which is an artifact of sparse sampling seeded from multiple distinct configurations. It
manifests in the implied timescales (Fig. D.2) that become infinite for these processes,
i.e., the eigenvalues are≈ 1, resulting in numerically unstable implied timescales calcu-
lations.
These results imply that in order to model the global Syt-C2A system with classical

VAMPnets,more simulation data has to be collected to connect these structures, i.e., the
amount of data is not sufficient to build a global model. The iVAMPnet model does not
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suffer from these shortcomings because products of the mentioned disconnected pro-
cesses will not be observable in the data, which would result in a lower score. Therefore,
the VAMP-E score will favor the processes which are truly observed.

Figure D.2: Failed global implied timescales test with a classical VAMPnet of synaptotagmin with 8 output nodes.
Since the model resolves processes which are not connected, the eigenvalues are≈ 1, making the implied time-
scales estimation numerical unstable. It indicates that the amount of data is insufficient to build a global model.
The model has no attention mechanism, but utilizes otherwise the same hyper-parameter than the ones used in
iVAMPNets.

D.4 Supplementary Note 4: iVAMPnet model of Syt-C2A

The iVAMPnet model of synaptotagmin presented in this paper identifies two distinct
subsystems that roughly correspond to the calcium binding region (CBR) and the op-
posite site of the protein, in particular, two loops that we call C34 and C78. In the fol-
lowing, we discuss the features of our iVAMPnetmodels that describe these subsystems
individually. To that end, wemake use of the system description provided in our earlier
publication [1]. Furthermore, we approximate transition probabilities and stationary
probabilities by computing the transition operator C−1

00C0τ using the iVAMPnet basis
functions in each of the subsystems. We note that this approximate transition model is
given only for orientation and comparison with the previous model, since the approxi-
mated transition operator is generally not a row-stochastic matrix (also compare [2]).
In general, we find that the structural features resolved by our previous study are

also resolved by iVAMPnets. In the CBR (cf. Table D.1), we find CBR1 α-helices at two
locations and a state buryingMet173, as well as a structural rearrangement in the CBR2
that may be described as attachment / detachment of that loop to the protein body.
Furthermore, iVAMPnets identify metastable dynamics in the CBR3 loop that was not
previously described. In comparison to our previous model, the iVAMPnet model for
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State 3State 1 State 2 State 4 State 5State 0

State 6 State 7 State 8 State 9 State 10 State 11

Figure D.3: Metastable states and transition model of the first subsystem of synaptotagmin that is located in the
CBR. For each state, structural renders from two perspectives are given. Helical conformations are highlighted in
red. The transition model is an approximation; we show only the most important pathways (Tij ≥ 0.0008) and
depict transition probabilities by arrow thickness. Additionally, approximated stationary probabilities are shown
as circle diameters for each state. Arrows are colorized tomake them distinguishable.

the CBRdescribes kinetics involving concertedmotions of all three CBR loops. We show
structural renders of the metastable states in Fig. D.3.
The second subsystem identifyed by iVAMPnets contains the C34 and C78 loops

(Fig. D.4): The C78 loop shows structural features as described in [1], i.e., loop re-
arrangements that are governed by different conformations of two valine residues
(Val250, Val255) (Tab. D.2). However, iVAMPnets identify another related site that
we call C34, a region that is rich in lysine and has been previously described as impor-
tant for membrane interactions [3]. Its metastable states are described by different
conformations of three lysines (Lys 189-191).
Finally, we compare the probabilities of our previousmodel [1] with the approximate

stationary probabilities obtained here (Fig. D.5) and find that bothmodels agree qualita-
tively. Differences between stationary probabilities may be due to the previous model’s
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iVAMPnet
state legacy CBR1 legacy CBR2

0 disordered (D) in (A)
1 Met-in (B) out (B)
2 disordered (D) in (A)
3 disordered (D) in (A)
4 disordered (D) in (A)
5 disordered (D) out (B)
6 disordered (D) n/a
7 top-helix (A) in (A)
8 top-helix (A) out (B)
9 site-helix (C) out (B)
10 disordered (D) in (A)
11 site-helix (C)* out (B)

Table D.1: iVAMPnet states of the first subsystem (CBR, shown in Fig. D.3) and their correspondence to our pre-
vious model (“legacy”) [1]. *State 11, which is structurally similar to state 9, was assigned to legacy state C to
incorporate uncertainties of themetastable state assignment in our previousmodel.

iVAMPnet
state legacy C78

0 C
1 A
2 C
3 C
4 n/a
5 B

Table D.2: iVAMPnet states of the second subsystem (C34 and C78, shown in Fig. D.4) and their correspondence
to our previousmodel (“legacy”) [1].

non-optimal subsystemdecomposition anddifferences inmetastable state assignments,
in particular regarding the CBR1.
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State 0 State 1 State 2 State 3 State 4 State 5

FigureD.4:Metastable statesand transitionmodelof thesecondsubsystemof synaptotagmin,whichcorresponds
to the site opposite of the CBR (loops C78 and C34). Each state is depicted by two structural renders, showing
details of C78 (top) and C34 (bottom), respectively. The transitionmodel is explained in the caption of Fig. D.3.
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Figure D.5: Comparison of approximated stationary probabilities of iVAMPnet states with estimates of hidden
Markov models (HMMs) given in Ref. [1]. iVAMPnet populations are obtained by summing probabilities over all
states that are in a certain legacy state (cf. Tabs. D.1,D.2), HMM popluations are obtained from maximum likeli-
hoodHMMestimate, the error interval representsHMMmodel uncertainty (5-95%percentile of BayesianHMM
samples that were obtained using amixed prior [4, 5], cf. Ref. [1] for details).
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D.5 SupplementaryNote 5: Counter-example villin: Anon-decomposable
system

Wedemonstrate the behavior of iVAMPnets when confrontedwith a system that cannot
be decomposed into subsystems without missing the slowest global processes. There-
fore, we employ the method on the villin dataset [6] where several folding and unfold-
ing events are encoded. If studied by a classical VAMPnet, the folding is recovered as
the second slowest process. The slowest process describes a transition between a mis-
folded and the folded state [7]. However, the majority of residues are involved in both
of these processes, making it hard to decouple these processes into independent sub-
systems.
For the analysis, the same hyperparameters are used as for synaptotagmin, but we

choose only two states per subsystem. The resolved processes resemble a localized fold-
ing of either the left or right helix of the folded structure in each subsystem (Fig. D.6).
However, the implied timescales do not converge, expressing non-Markovian behavior.
The results can be interpreted as representing a compromise between learning nearly
independent processes and approximating slow processes.
Since the independence is strongly enforced, the processes are badly approximated,

resulting in unconverged implied timescales. In order to interpret this model, we have
furthermore correlated the iVAMPnet eigenfunctions with the ones of a standard global
VAMPNet (Fig. D.7). We find that the process found by subsystem 1 has the highest
Pearson correlation (r = −0.79) with the second global process, which corresponds to
peptide folding. However, the second subsystem cannot be clearly assigned to a global
process. These results are not surprising since the poor implied timescales convergence
and the post-training validation scores (Tab. 1) indicate that the independence approx-
imation does not hold in this example. The system expresses dynamics on the global
level that are not or are only poorly approximated by the described iVAMPnets.
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Figure D.6: Counter example to iVAMPNets using villin, trained with independence constraint. (a) Subsystem as-
signment, i.e., masked importance values, are shown as color code on the folded structure. (b) Implied timescales
of the 2 subsystems, the black dotted lines are reference timescales of a global model trained with a standard
VAMPnet. (c) 20 representative structures of both extrema of the slowest resolved eigenfunctions for both sub-
systems. The processes tend to approximate formation of the N- and C-terminal helices, respectively.
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Figure D.7: Interpreting the processes found by the iVAMPnets for villin by correlating themwith the global pro-
cesses foundwithastandardVAMPnet. Shownare theprocesseswith thehighest correlationplottedagainsteach
other. The first subsystem correlateswith the second global process, which relates to peptide folding. The second
subsystem cannot clearly assigned to a global process. However, the product of the two eigenfunctions exhibits
significant correlation with the third global eigenfunction.
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D.6 Supplementary Note 6: Performance evaluation

In order to evaluate the performance of iVAMPnets, we have modified the 10-cube
benchmark system to a variable (even) number of subsystems (N-cube). We gener-
ate trajectories of 100,000 data points for each N-cube and train ten instances of both,
VAMPnets and iVAMPnets, on it. We recorded the training to be converged when the
validation score did not improve by 0.25% compared to the best score so far for 5 train-
ing epochs in a row. The results are evaluated first by checking that the global VAMP-E
score is indeed converged to its optimum (Fig. D.8a), which is true for all instances of
trained iVAMPnets. Regular VAMPnets expectedly fail to scale to larger numbers of
subsystems – in this case, they do not converge for 8 subsystems and beyond as that
corresponds to a number of states larger or equal to 28 = 256. The performance is now
evaluated in terms of elapsed real time for training (Fig. D.8b). We find that expect-
edly, both methods have increasing time demands for growing numbers of subsystems
or states. We note that the elapsed time for VAMPnets with ≥ 8 subsystems could not
be evaluated due to the failed training procedure. Furthermore, iVAMPnets slightly out-
perform VAMPnets, which may be caused by the following features of the benchmark
system: a) The N-cube consists of fully independent subsystems, therefore iVAMPnets
can find a domain decomposition quickly. b) The number of states per subsystem in
iVAMPnets is just 2, i.e., the neural network parameters can be learned from less data
(given a domain decomposition) as compared to a VAMPnet that need to be trained on
all transitions between 2N states.
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Figure D.8: Performance evaluation of iVAMPnets compared to VAMPnets using an N-cube. (a) Global VAMP-
score as function of the number of subsystems. (b) Training time (in real time) for both methods, as a function
of the number of subsystems. Ten instances of VAMPnets and iVAMPnets are trained for each given number of
subsystems and drawn as a swarmplot; mean and standard deviations are shown in grey. VAMPnets fail to consis-
tently predict a valid score for 8 subsystems and beyond.
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D.7 Supplementary Note 7: MD setups

The used MD data sets were generated with the following properties: The synaptotag-
min C2A data set [1] consists of 92 trajectories with a length of 2 μs each, adding up to
184μs total simulation time. Simulations were conducted with the CHARMM36 force
field [8] in explicit solvent and the NPT ensemble at 300K and 1 bar. Trajectories were
seeded from a smaller precursive data set which was based on PDB-ID 2R83 [9]. The
villin data set [6] consists of a single trajectory of 125 μs length that was started from
the unfolded structure. Simulations were performed with the CHARMM22* force field
[10] in explicit solvent and the NVT ensemble at 360K.
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Short summary

Computer simulations such as molecular dynamics (MD) provide a possible means to
understand protein dynamics and mechanisms on an atomistic scale. The resulting
simulation data can be analyzed with Markov state models (MSMs), yielding a quanti-
tative kinetic model that, e.g., encodes state populations and transition rates. However,
the larger an investigated system, the more data is required to estimate a valid kinetic
model. In this work, we show that this scaling problem can be escaped when decompos-
ing a system into smaller ones, leveraging weak couplings between local domains. Our
approach, termed independent Markov decomposition (IMD), is a first-order approxi-
mation neglecting couplings, i.e., it represents a decomposition of the underlying global
dynamics into a set of independent local ones. We demonstrate that for truly indepen-
dent systems, IMD can reduce the sampling by three orders of magnitude. IMD is ap-
plied to two biomolecular systems. First, synaptotagmin-1 is analyzed, a rapid calcium
switch from the neurotransmitter release machinery. Within its C2A domain, local con-
formational switches are identified and modeled with independent MSMs, shedding
light on the mechanism of its calcium-mediated activation. Second, the catalytic site
of the serine protease TMPRSS2 is analyzed with a local drug-binding model. Equi-
librium populations of different drug-binding modes are derived for three inhibitors,
mirroring experimentally determined drug efficiencies. IMD is subsequently extended
to an end-to-end deep learning framework called iVAMPnets, which learns a domain
decomposition from simulation data and simultaneously models the kinetics in the lo-
cal domains. We finally classify IMD and iVAMPnets as Markov field models (MFM),
which we define as a class of models that describe dynamics by decomposing systems
into local domains. Overall, this thesis introduces a local approach to Markov model-
ing that enables to quantitatively assess the kinetics of largemacromolecular complexes,
opening up possibilities to tackle current and future computational molecular biology
questions.
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Kurzfassung

Rechnergestützte Molekulardynamik-Simulationen ermöglichen es, die Dynamik und
Mechanismen von Proteinen auf atomarer Ebene nachzuvollziehen. Die resultieren-
den Simulationsdaten können mithilfe von Markov-Zustandsmodellen (MSMs) ana-
lysiert werden, welche die Kinetik beispielsweisemittels Zustandswahrscheinlichkeiten
und Übergangsraten quantitativ beschreiben. Der Bedarf an benötigten Daten für
MSMs steigt allerdings mit der Größe der untersuchten Systeme stark an. Diese
Arbeit zeigt, dass sich das Skalierungsproblem durch die Zerlegung eines Systems
in kleinere Teile umgehen lässt. Dafür werden schwache Kopplungen zwischen
lokalen Domänen genutzt. Der hier vorgestellte Ansatz, die unabhängige Markov-
Zerlegung (IMD), ist eine Näherung erster Ordnung, die Kopplungen vernachlässigt.
Die vorliegende globale Dynamik wird in eine Menge von unabhängigen, lokalen Dy-
namiken zerlegt, welche dann getrennt betrachtet werden. Durch IMD kann die
für MSMs erforderliche Datenmenge um drei Größenordnungen reduziert werden.
Als Anwendungsbeispiele dienen zwei Proteinsysteme: Den Anfang macht die Anal-
yse von Synaptotagmin-1, einem calciumbindenden Protein in der Neurotransmitter-
Exozytose. Innerhalb seiner C2A-Domäne werden lokale Konformationsschalter iden-
tifiziert und mit unabhängigen MSMs modelliert. Dies gibt Aufschluss über die cal-
ciumabhängige Aktivierung des Proteins. Zweites Anwendungsbeispiel ist ein lokales
Modell des katalytischen Zentrums der Serinprotease TMPRSS2, dessen Hemmung
mit verschiedenen Medikamenten vergleichend untersucht wird. Für drei Inhibitoren
werden Zustandswahrscheinlichkeiten und ein Ratenmodell verschiedener Wirkstoff-
bindungsmodi geschätzt, welches experimentell ermittelteWirksamkeiten gut abbildet.
Zusätzlich wird IMD zu einer Deep-Learning-Methode erweitert (iVAMPnets). An-
hand von Simulationsdaten lernt sie eine Domänenzerlegung undmodelliert die lokale
Kinetik in diesen Domänen. Abschließend ordnet die Arbeit die entwickelten Meth-
oden als sogenannte Markovsche Feldmodelle in den größeren Kontext verwandter
Methoden ein. Zusammenfassend stellt diese Arbeit einen lokalen Ansatz für Markov-
Modellierung vor, mit dem große makromolekulare Systeme quantitativ beschrieben
werden können. Der Ansatz eröffnet damit neue Möglichkeiten zur Lösung derzeitiger
und zukünftiger Probleme der rechnergestützten Molekularbiologie.
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