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Simple Summary: It is well known that antibiotics alter the gut microbiome, and because it plays
a role in drug metabolism, alterations to the microbiome may lead to ineffective immunotherapy
in cancer patients. We investigated a real-world cohort of oral cancer patients who received im-
munotherapy. Patients were matched for age, sex, BMI, metastases, alcohol and nicotine dependence
and sepsis to create two comparable groups. Patients who received antibiotics had a significantly
decreased survival compared to those who did not. We believe that this finding is associated with
less effective immunotherapy due to antibiotic-related changes in the gut microbiome.

Abstract: Objective: The human gut microbiome is strongly influenced by the administration of drugs,
namely antibiotics. We hypothesized that the effectiveness of immunotherapy with pembrolizumab
in oral squamous cell carcinoma patients is decreased by the administration of antibiotics three
months before and after immunotherapy. Methods: We retrieved data from patients diagnosed with
head and neck squamous cell carcinoma (HNSCC) (International Classification of Diseases [ICD]-10
codes C00-C14) and receiving immunotherapy with pembrolizumab from the TriNetX network. Two
cohorts were built: patients in cohort I did not receive any antibiotics within three months before or
up to three months after immunotherapy, while patients in cohort II were administered antibiotics at
least once within three months before or after immunotherapy. To exclude confounders, we matched
cohorts 1:1 for age, sex, secondary lymph node metastases, nicotine dependence, the insertion of
feeding devices, body mass index (BMI) and severe sepsis. After defining the primary outcome as
“death”, a Kaplan–Meier analysis was performed, and the risk ratio (RR), odds ratio (OR) and hazard
ratio (HR) were calculated. Results: A total of 3651 patients were enrolled, and after matching, each
cohort consisted of 1362 patients. Among cohorts I and II, 346 and 511 patients were deceased within
one year (risk of death = 25.5 and 38.3%, respectively), whereby the risk difference was significant
(p = 0.000; log-rank test). The RR was 0.68 (95% confidence interval: 0.60–0.76), OR was 0.57 (0.48–0.67)
and HR was 0.58 (0.51–0.67). Conclusions: Our hypothesis was confirmed: administering antibiotics
significantly decreases the drug effectiveness of immunotherapy. We hypothesize that this finding
is associated with antibiotic-related changes in the gut microbiome. Prospective clinical studies
on the gut microbiome in cancer patients are necessary to understand the complex ecosystem of
microbiota during immunotherapy. Trial Registration: Due to the retrospective nature of the study,
no registration was necessary.

Keywords: oral squamous cell carcinoma; oral cancer; immunotherapy; pembrolizumab; antibiotics;
gut microbiome; survival rate; real-world data
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC), among the most common can-
cers [1], is mainly caused by risk factors such as smoking and alcohol consumption. Despite
intensive efforts, this cancer not been significantly reduced in recent decades. The current
primary treatment regimen consists of surgery or radiation with or without chemother-
apy [2]. In the setting of first-line treatment failure, the administration of PD-1 to target
immune checkpoint inhibitors (ICIs), such as pembrolizumab (with chemotherapy or as a
monotherapy) [3,4] or nivolumab [5], is well established and has become an integral part of
treatment guidelines [6,7]. The benefit of these new agents is a reduction in severe treatment
side effects, commonly associated with an extreme chemotherapy/Erbitux regimen, which
leads to a massively improved quality of life, as well as significantly increased survival
rates. Depending on the combined positive score (CPS) that reflects PD-L1 expression
on tumor cells, infiltrating lymphocytes and macrophages, overall survival (OS) was sig-
nificantly prolonged in patients receiving pembrolizumab compared to those receiving
cetuximab–chemotherapy: PD-L1 CPS ≥ 20 and CPS ≥ 1, respectively. Pembrolizumab
alone and pembrolizumab–chemotherapy also demonstrated a substantially longer dura-
tion of response (DOR) in all populations [8]. Similar effects can be observed in real-world
treatment data on nivolumab monotherapy [9]. When comparing all ICI response rates
in squamous cell cancers, it is striking that recurrent/metastatic head and neck cancers
(R/M HNSCCs) are found within the lowest third of all cancers and have a response rate of
15–20%. To date, there is no obvious molecular or immunological reason why this response
rate to ICI in R/M HNSCC is so low [10].

One possible explanation could be the timepoint of ICI treatment, which, to date,
has only been available for patients in first-line failure settings such as recurrences or
metastases. It is well-recognized that recurrent/metastatic cancers do not share clonal
similarities with primary cancers in HNSCC [11,12]. New neoadjuvant treatment studies
are already revealing different response rates to ICI [13–15].

Another reason could be the specifically altered microbiome of HNSCC patients.
Very early on in the checkpoint treatment, several groups published data which found
that primary resistance to ICIs can be attributed to abnormal gut microbiome composi-
tion, thereby [16,17] unravelling the importance of the commensal microbiota in immuno-
oncology. Meanwhile, it is well known that this complex ecosystem is influenced by various
drugs and can also influence treatment response [18,19]. In several pre-clinical models,
the absence of an intact gut microbiome adversely affected ICI efficacy. So far in HNSCC,
it remains unclear whether antibiotic-induced dysbiosis influences the clinical response
through the modulation of the gut microbiome or whether it constitutes an additional
surrogate marker of unfit or immunodeficient patients [20,21].

To investigate the influence of antibiotics on the clinical outcome of pembrolizumab
treatment in a large real-world cohort, we selected the TriNetX Global Health Research Net-
work (TriNetX, Cambridge, MA, USA) to take a closer look at patients’ data. The TriNetX
provides access to a significant number of medical records from more than 78 healthcare
organizations (HCOs) in 11 countries. Its intent is to bring together HCOs, contract research
institutes and pharmaceutical companies to collect and exchange longitudinal clinical data
and provide state-of-the-art statistical analytics. As of April 2023, TriNetX had collated
electronic medical records of more than 250 million individuals. The network had previ-
ously been used to research medical topics of global importance, including the COVID-19
pandemic [22]. Detailed data analyses were performed to improve understanding of how
the use of antibiotics before or after ICI therapy might change clinical prognoses.

2. Patients and Methods
2.1. Data Acquisition, Allocation and Matching

We retrieved data from patients diagnosed with head and neck squamous cell car-
cinoma (HNSCC) (International Classification of Diseases [ICD]-10 codes C00-C14) and
receiving immunotherapy with pembrolizumab from the TriNetX network. Two cohorts
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were built: patients in cohort I did not receive any antibiotics within three months before or
up to three months after immunotherapy, while patients in cohort II were administered
antibiotics at least once within three months before or after immunotherapy. To exclude
confounders, we matched cohorts 1:1 for age, sex, secondary lymph node metastases,
nicotine dependence, insertion of feeding devices and body mass index (BMI).

2.2. Data Analysis

After defining the primary outcome as “death”, the time window was set to one year
after the index event (ICD-10 codes C00-C14). Outcome events were recorded on a daily
interval. Subsequently, a Kaplan–Meier analysis was performed, and the risk ratio (RR),
odds ratio (OR) and hazard ratio (HR) were calculated. Statistical analysis was performed
using the log-rank test, where p ≤ 0.05 was defined as significant. For 1:1 matching, a
propensity score-matching algorithm was used. The system generated propensity scores
for each patient in each cohort using logistic regression (software package scikit-learn). The
propensity score ranged between 0 and 1 and indicated the predicted probability that a
patient was in cohort I or II given the patient’s covariates. The greedy nearest-neighbor
matching algorithm with a caliper of 0.1 pooled standard deviation was used. The caliper
of 0.1 means that patients with very different propensity scores are not matched.

Furthermore, treatment pathways for the antibiotics used in cohort II were investigated.

3. Results
3.1. Assessment, Allocation and Matching

The access date was 6 April 2023, so no patients had to be excluded for index events
that were more than 20 years old. A total of 42 HCOs responded with patients, and
3651 patients were enrolled. After matching for age, sex, secondary lymph node metastases,
nicotine dependence, insertion of feeding devices, body mass index (BMI) and severe
sepsis, each cohort accounted for 1362 patients. After matching, the cohorts did not differ
significantly from each other (p > 0.05), as illustrated in Table 1.

Table 1. Propensity score density function (purple: cohort I, green: cohort II).

Propensity Score Density Function—Before (Left) and after (Right) Matching (Cohort I—Purple, Cohort II—Green)
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Details about the assessment, allocation and matching can be found in the modified
Consort diagram (Figure 1), as well as in Table 2.
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Figure 1. Modified Consort flow diagram. ICD-10: International Classification of Diseases 10, C00-14:
malignant neoplasms of lip, oral cavity and pharynx.

Table 2. Characteristics of cohorts I (individuals with ICD-10 codes C00-14 and no antibiotics) and II
(with antibiotics) before and after matching for age and sex, BMI, secondary lymph node metastases,
tobacco use and feeding device. ICD-10 = International Classification of Diseases.

Before Matching After Matching

Patients (n) Cohort I Cohort II p-Value Standardized
Mean Difference Cohort I Cohort II p-Value Standardized

Mean Difference

Total 2149 1502 1362 1362

Age at
index 65.7 64.0 <0.001 0.141 64.5 64.4 0.773 0.011
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Table 2. Cont.

Before Matching After Matching

Patients (n) Cohort I Cohort II p-Value Standardized
Mean Difference Cohort I Cohort II p-Value Standardized

Mean Difference

Standard
deviation 12.1 12.2 12.1 12.1

Males 1579
73.5%

1117
74.4% 0.546 0.020 1043

76.6%
1007

73.9% 0.110 0.061

Females 570
26.5%

385
25.6% 0.546 0.020 319

23.4%
355

26.1% 0.110 0.061

BMI 24.8 23.9 <0.001 0.148 24.6 24.1 0.065 0.086

Standard
deviation 5.6 5.4 5.4 5.4

Metastases 1126
31.8%

890
40.1% <0.001 0.138 785

57.6%
788

57.9% 0.907 0.004

Tobacco use 684
32.1%

603
35.4% 0.059 0.070 524

38.5%
523

38.4% 0.969 0.002

Feeding
device

363
16.9%

423
28.1% <0.001 0.138 319

23.5%
322

23.6% 0.961 0.002

Severe
sepsis

41
1.9%

145
9.7% <0.001 0.337 40

2.9%
43

3.2% 0.738 0.013

3.2. Survival Analysis

In cohorts I and II, 346 and 511 patients, respectively, died within one year (risk of
death = 25.4 and 37.5%), for which the risk difference was significant (p < 0.0001; log-rank
test). The RR was 0.68 (95% confidence interval (CI) 0.60–0.76), OR was 0.57 (CI, 0.48–0.67)
and HR was 0.58 (0.51–0.67).

Table 3 includes patients in each cohort with the outcome (death in the cohort and
the number of patients that had the outcome in the time window), median survival (the
number of days when the survival dropped below 50%; “–” indicates that survival did not
drop below 50% during the time window of one year) and survival probability at the end
of the time window (% survival at the end of the time window). In addition, a log-rank
test, hazard ratio and z-test for proportionality were performed.

Table 3. Kaplan–Meier survival analysis for one year (purple: cohort I, green: cohort II).

Cohort Patients in
Cohort

Patients with
Outcome

Median
Survival (days)

Survival Probability at
End of Time Window

I w/o antibiotics 1362 346 – 68.42%

II w antibiotics 1362 511 – 53.89%

χ2 df p

Log-rank test 61.522 1 0.000

Hazard Ratio 95% CI χ2 df p

Hazard ratio and
proportionality 0.58 (0.51, 0.67) 6.52 1 0.011
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3.3. Treatment Pathways

For cohort II, a treatment pathway analysis was run. In the first line of treatment (LOT
1), the most administered regimen was erythromycin, followed by a combination therapy
of extended spectrum penicillins and cephalosporins (third generation). Quinolones are
more present in the second line of treatment (Figure 2).
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4. Discussion

In concordance with many publications in recent years, our data confirmed that there
is a crucial balance between human health and disease mediated by the gut microbiome,
which modulates the host immune system both locally and systemically [23,24].

Especially in the context of immunotherapy, the gut microbiome appears to be among
the most dominant biological markers for distinguishing therapy-responding patients from
non-responders in various types of immunotherapies [25–30].

Although not understood in mechanistic details, emerging evidence indicates that
disruption of the intestinal flora by different antibiotics can result in several negative
consequences for the gut microbiota: the reduced diversity of species and an alteration
in metabolic activity and the selection of antibiotic-resistant organisms [31,32]. This fact
is not only important during the early assembly of the gut microbiome during neonatal
growth [33] but especially during cancer therapy, such as surgery in non-sterile areas
such as the head and neck region or during radiotherapy [34,35] and in immunotherapy
especially [36]. The sample size of those studies reviewed in meta-analyses is usually
low, which motivated the authors of our study to analyze a large database of malignant
neoplasms of the head and neck. In total, 1502 datasets were available for patients with
antibiotics, and 2149 datasets were available for those without antibiotics during or before
immunotherapy. By exploiting the TriNetX Global Health Research Network, we can prove
that the drug effectiveness of immunotherapy is decreased by the administration of antibi-
otics. Individuals who were administered antibiotics within ±3 months of immunotherapy
had a significantly higher risk of dying within one year compared to individuals who were
not administered antibiotics.

There are studies analyzing the degree of perturbation of the commensal microbiome
by four commonly used antibiotics: azithromycin, levofloxacin, cefpodoxime and combina-
tions thereof [37]. Consequently, if antibiotic therapy cannot be avoided in immunotherapy,
certain drug regimens such as azithromycin and its combinations should be avoided as they
have been shown to delay for two months the recovery of species richness. Whether probi-
otic administration or an additional immunotherapy delay improves the outcome of anti-
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cancer immunotherapy needs to be examined in prospective clinical trials. Furthermore, it
is unclear whether the parameters used to characterize the gut microbiome, such as species
richness or aerobic/anaerobic composition, are relevant to the differences in the observed
outcomes. Mechanistic studies could help identify certain relevant species, (biosynthetic)
pathways, messengers, metabolites or other supportive effects of the microbiome.

Alongside the applied methods are specific limitations regarding the results that need
to be addressed. Most importantly, we had no data on the microbiome of the patients, so
we used the administration of antibiotics as a marker for an altered gut microbiome [38]. By
matching the cohorts for age, sex, lymph node metastases, BMI, feeding device, smoking
habits and severe sepsis, we designed two cohorts that were as similar as possible. A
disease-specific survival analysis would be interesting, but due to the de-identified data,
we had no data on individual causes of death. It must be mentioned that tobacco use
is self-reported, and we had no detailed data on tobacco use (e.g., pack-years) [39]. A
certain risk of confounders, such as metabolic alterations after alcohol consumption, an
important lifestyle factor frequently associated with smoking, has yet to be comprehensively
investigated, so a certain bias should be considered [40]. Another important limitation
was the lack of information on the form of antibiotic administration: oral or intravenous.
Depending on how the drug was metabolized, agents with no or low bile or fecal excretion
were available and may have affected the gut microbiome less. The implications of drug
excretion on the gut microbiome are still controversial [41].

Future studies may apply a prospective approach to include data, especially on the
microbiome before, during and after treatment, and smoking/drinking behavior. Fur-
thermore, tumor status (e.g., HPV+) should include lifestyle factors and the form of drug
administration. Particularly in HNSCC reconstructive surgery, long phases of parental tube
feeding might add an additional load to gut dysbiosis, so special care should be applied
with regard to the length and composition of the applied nutrients.

5. Conclusions

In summary, our data impressively underlined the assumptions of studies connecting
antibiotics-induced dysbiosis and therapeutic outcomes. At the very least, the harvested
data support our hypotheses of decreased therapy effectiveness due to antibiotic use. This
might encourage further research on the gut and locoregional microbiome in head and
neck cancer patients. If the results could be confirmed in the future, the microbiome should
be considered in individualized cancer therapy, e.g., for applying supportive probiotics
when antibiotics must be administered [42].
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