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Introduction: The computational modelling of blood flow is known to provide 
vital hemodynamic parameters for diagnosis and treatment-support for patients 
with valvular heart disease. However, most diagnosis/treatment-support 
solutions based on flow modelling proposed utilize time- and resource-intensive 
computational fluid dynamics (CFD) and are therefore difficult to implement into 
clinical practice. In contrast, deep learning (DL) algorithms provide results quickly 
with little need for computational power. Thus, modelling blood flow with DL 
instead of CFD may substantially enhances the usability of flow modelling-based 
diagnosis/treatment support in clinical routine. In this study, we propose a DL-
based approach to compute pressure and wall-shear-stress (WSS) in the aorta 
and aortic valve of patients with aortic stenosis (AS).

Methods: A total of 103 individual surface models of the aorta and aortic valve 
were constructed from computed tomography data of AS patients. Based on 
these surface models, a total of 267 patient-specific, steady-state CFD simulations 
of aortic flow under various flow rates were performed. Using this simulation 
data, an artificial neural network (ANN) was trained to compute spatially resolved 
pressure and WSS using a centerline-based representation. An unseen test subset 
of 23 cases was used to compare both methods.

Results: ANN and CFD-based computations agreed well with a median relative 
difference between both methods of 6.0% for pressure and 4.9% for wall-shear-
stress. Demonstrating the ability of DL to compute clinically relevant hemodynamic 
parameters for AS patients, this work presents a possible solution to facilitate the 
introduction of modelling-based treatment support into clinical practice.
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1. Introduction

In the medical health sector, the impact of artificial intelligence 
(AI)-based technologies is steadily increasing. While automated medical 
image analysis is arguably the most successful domain of medical AI 
applications (1–4), its use becomes conceivable in almost all medical 
fields, such as diagnostic assessments (5), prediction of patients 
prognoses (6, 7), assistance in surgical interventions (8) and many more.

On the other hand, hemodynamic modelling, i.e., the computational 
modelling of blood flow using computational fluid dynamics (CFD) 
simulations, is also gaining more and more attention as the availability 
of computational power steadily increases. Having the potential to 
improve, facilitate and complement current diagnostic and therapy 
decision-making processes (9–14), CFD simulations are increasingly 
applied in cardiovascular research (15–17). In the case of aortic valve 
disease specifically, CFD simulations are used to predict hemodynamic 
parameters which may be critical to clinical outcome. These include, but 
are not limited to, paravalvular leakage (18–20), pressure and wall-shear-
stress (WSS) in the aorta after aortic valve replacement for different valve 
types and sizes (21, 22) as well flow patterns generated by different valve 
diseases and prosthesis types (15, 23).

However, translation of these models into clinical routine remains 
cumbersome. Not only are CFD simulations very demanding with 
respect to time and computational costs (several hours on high-end 
workstations), they also often require expertise in both engineering 
and medicine. As a result, diagnosis and/or treatment support 
solutions based on cardiovascular modelling rarely find their way into 
clinical practice (24–26). Although there are examples of a successful 
translation [e.g., HeartFlow® (14)], there is a strong discrepancy 
between the amount of proposed cardiovascular modelling 
applications and actual clinical applications.

In this regard, deep learning (DL)-based algorithms are potentially 
suited to overcome the problem of computational demand for higher 
order cardiovascular modelling. Once trained, a DL algorithm can 
provide results quickly with little need for computational power or 
user experience. Considering that clinicians rarely have access to 
high-end workstations on the one hand and need to perform diagnosis 
and treatment planning quickly on the other, the above mentioned 
advantages of a DL-based method may substantially increase the 
clinical feasibility of hemodynamic modelling. Several studies already 
showcased the potential of DL-based methods to accurately predict 
hemodynamic parameters. Examples of application include coronary 
arteries (27), aortic coarctation (28) and abdominal aortic aneurysms 
(29). In this study, we investigate the ability of DL-based methods to 
model hemodynamics of patients with aortic valve stenosis (AS).

AS represents the leading valvular heart disease with surgical 
(aortic valve reconstruction or replacement) and interventional 
(transcatheter aortic valve implantation, TAVI) treatment options that 
are increasingly applied also in elderly patients. It is thus a pathology 
with a considerable socio-economic burden. Accurate diagnostic 
assessment including either echocardiographic or catheter-based 
pressure measurements is mandatory to quantify AS severity degree 
and to define treatment indication (30). Given the complex nature of 
the pathological patterns of aortic flow and WSS encountered in AS 
patients, a more detailed and multimodal diagnostic assessment is 
desirable and necessary to identify the best patient-individual 
treatment strategy and the benefits of patient-specific modelling of 
hemodynamics in that context are widely recognized (15, 21–24, 31).

In this study, we  use CFD generated hemodynamic data to 
develop an artificial neural network (ANN) which computes clinically 
relevant hemodynamic parameters for AS patients. Using high 
resolution computed tomography (CT) image data, a large set of 
patient-specific hemodynamic CFD simulations is built based on a 
workflow developed earlier (22). Using these simulation results, an 
ANN is trained to predict pressure and WSS from patient specific 
geometry in a compact, centerline-based representation. Additionally, 
the centerline-based pressure and WSS is computed for a separate set 
of test cases using ANN and CFD to assess the ANN’s ability to 
compete with CFD simulations.

2. Materials and methods

2.1. Clinical data acquisition

Temporally resolved CT image data sets of 103 patients with AS 
who were treated in two different centers between February 2019 and 
October 2020 were retrospectively analyzed.

Inclusion criteria were the presence of aortic valve stenosis with 
indication for aortic valve replacement according to the European 
Society for Cardiology (ESC) guidelines and the interdisciplinary 
decision of the Heart Team and the availability of temporally resolved, 
high-resolution CT images for each patient. No further exclusion 
criteria were defined. The study was registered at ClinicalTrials.gov 
(NCT04600739) and was approved by the internal review board 
(EA2/174/19). Individual informed consent was waived due to the 
retrospective nature of this study. Patient’s characteristics at baseline 
are depicted in Table 1.

Computed tomography image data sets of the entire heart were 
acquired prior to the TAVI-procedure. The detailed protocol was 
previously published (32). An electrocardiogram-synchronized scan 
was conducted using either a wide area-detector volume CT scanner 
(Aquilion One Vision, Canon Medical 79 Systems, or Revolution CT, 
GE Healthcare) or a dual-source multi slice spiral CT scanner 
(Somatom Definition Flash, Siemens 78 Healthcare). Intravenous 
contrast medium was injected prior to each examination in order to 
improve image data contrast.

To allow the exact identification of the systolic phase with the 
widest aortic valve opening area, a multiphase data set, i.e., multiple 
scans at different time points, was reconstructed for each patient. All 
images were reconstructed with a soft-tissue convolution kernel and 
with the use of a dedicated noise reduction software. The spatial 
resolution used for segmentation was (0.39–0.648 mm) x (0.39–
0.648 mm) in-plane resolution and (0.5–1 mm) slice thickness. The 
temporal resolution ranged from 70 ms to 140 ms.

Baseline echocardiographic evaluation results are additionally 
presented in Table 1. The echocardiographic data shows a wide range 
of aortic valve area (AVA) within the patient cohort, including cases 
with healthy AVA (>1 cm2), moderately (up to 0.7 cm2) and highly 
stenosed (<0.5 cm2) cases.

2.2. Image data segmentation

Based on the acquired CT data, the patient-specific surfaces 
of the aorta and aortic valve were segmented semi-automatically 
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using a shape-constrained deformable model that was described 
earlier (32). Briefly, a parametric surface model of the aorta and 
aortic valve (33) is automatically adjusted to fit a given set of 
patient-specific CT images. Since the aortic valve is expected to 
be  fully opened during the ejection phase simulated here, the 
valve is reconstructed in its fully-opened position using the 
respective CT images from the multiphasic dataset. An additional 
manual adjustment of the leaflet surfaces ensures an accurate 
representation of the aortic valve, which is critical for calculating 
transvalvular and aortic hemodynamics. Aorta and aortic valve 
surfaces are then combined into a single surface that defines the 
flow domain for the CFD simulation and the ANN input. The 
final model includes the left-ventricular outflow tract (LVOT), 
the open valve as seen at the time of peak systolic flow and the 
ascending aorta, aortic arch and descending aorta. Aortic 
branching vessels are not included in the model since their 
impact on hemodynamics in the valve region is considered 
negligible. Figure  1 shows a typical surface geometry with a 
labelling of the different parts (LVOT, valve, ascending, arch, 
descending aorta) as well as a close-up of the aortic valve.

2.3. Numerical simulation

Numerical flow simulations were performed using Siemens 
StarCCM+ v.15.04 (Siemens PLM, Plano, Texas). StarCCM+ uses the 
finite volume method to numerically solve the incompressible Navier–
Stokes governing equations for the pressure and velocity fields. Given 
the high Reynolds number expected, a k-omega SST was used to 
account for turbulence. Blood was considered incompressible with a 
shear rate dependent viscosity based on the works of Abraham et al. 
(34) to account for the non-Newtonian behavior of blood 
(density = 1,050 kg/m3, zero/infinite-shear viscosity = 0.16/0.0035 Pa·s).

Discretization of the flow domain was performed using 
StarCCM+‘s built in polyhedral meshing algorithm with five boundary 
layers to improve near wall flow resolution. Mesh size and structure is 
based on experience from similar studies made previously (22) for 
which mesh independency was analyzed. The analysis compared 
centerline-based pressure and WSS between four different mesh sizes 
ranging from very fine (10 million cells) to coarse (0.5 million cells) 
meshes. Medium sized meshes containing approximately 1.5–3 
million cell/ 5–15 million nodes (depending on the size of the flow 
domain) yielded the best balance between accuracy and runtime 
showing a mean difference of 1–2 mmHg/2–4 Pa for pressure and 
WSS, respectively, compared to the reference solution. Figure 2 shows 
a longitudinal cross section of the mesh in the LVOT, aortic valve and 
ascending aorta.

Owed the complex nature of three-dimensional viscous fluid flow 
on the one hand and the limited amount of clinical data on the other, 
some simplifications regarding the numerical modelling process were 
necessary however. Simulations were therefore performed with steady 

TABLE 1 Patient characteristics.

Patient 
characteristic

Mean ± SD Range

General patient information

Age [years] 82 ± 5 61–94

Height [cm] 168 ± 10 145–195

Weight [kg] 77 ± 19 35–135

Echocardiographic assessment

TPG [mmHg] 61.9 ± 22.0 20–118

AVA [cm2] 0.74 ± 0.17 0.4–1.1

Stroke volume [ml] 52.2 ± 16.7 17–97

Ejection fraction [%] 57.3 ± 8.9 25–73

FIGURE 1

Surface model of the aorta and aortic valve of a typical case with 
severe aortic stenosis. Additionally, labels for the various parts of the 
aorta are provided as well as a schematic depiction of the left 
ventricle attached to the left-ventricular outflow tract (LVOT).

FIGURE 2

An example of the computational mesh structure in the aortic valve 
and ascending aorta used for the computational fluid dynamics 
simulations. The boundary layer structure used to resolve near wall 
flow can be seen around the valve and vessel walls.
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flow boundary conditions at peak systolic flow rates, i.e., the maximum 
flow rate achieved during the ejection phase of the cardiac cycle. 
Furthermore, vessel wall and valve leaflets were considered rigid. 
Thus, the simulations model peak-systolic, instantaneous 
hemodynamics only, where the AS induced transvalvular pressure 
gradient (TPG) is expected to have the highest relevance. A transient 
solver (second order backward, 0.001 s time step) was used however 
to capture small-scaled unsteady flow effects such as flow separation 
and the valve jet mixture layer. The time step size of 1 ms ensures that 
the CFL-number remains at the order of one for a sufficient numerical 
stability and temporal resolution of the aforementioned 
unsteady effects.

Peak systolic flow rates were derived from left-ventricular 
volumetry (LVV) (32), which computes flow rate from the change of 
ventricular volume over time. However, multiphasic imagery suitable 
for LVV was available for only 67 of the 103 patients. For the 
remaining 36 patients, flow rates were drawn from a normal 
distribution whose mean and standard deviation were shifted based 
on case-specific AVA. This provided physiologically plausible flow 
rates with a certain degree of randomness, thus avoiding any 
deterministic relationships between geometry and flow rate which 
might harm the ANNs ability to generalize. Inlet boundary pressure 
was not prescribed since the pressure level has no influence on the 
solution of incompressible flow. However, pressure values were shifted 
to match an outlet pressure of 130 mmHg during post-processing for 
improved presentability. This value is based on the average of systolic 
pressure found in our patient cohort (Table 1).

Although the ability of the quasi-steady approach utilized here to 
accurately compute peak-systolic hemodynamics was investigated in 
earlier work (21, 22, 35), an additional analysis was performed for this 
study. Here, a flow rate curve was derived from LVV data for one 

patient with a severe stenosis and an unsteady simulation was 
performed containing the entire ejection phase. The centerline based 
values for pressure and WSS (as described in the next section) were 
compared between the unsteady and the quasi-steady simulation. The 
results of this comparison are shown in Figure 3 with centerline based 
pressure and WSS plotted for both simulations. The mean absolute 
and relative errors for pressure and WSS were found to be 
0.7 mmHg/1.2% and 1.8 Pa/1.6% respectively, further supporting the 
validity of the peak-systolic simulation approach.

In addition to the baseline peak-systolic flow rates, simulations 
with varied flow rates were also performed to increase the amount of 
training data for the ANN. Flow rates were varied by ±25% of the 
respective base peak-systolic flow. This flow variation produces a 
desired substantial change in hemodynamics and corresponds with 
literature data on exercise-induced peak systolic flow change (36–39). 
This increased the total amount of simulations from 103 to 309.

2.4. Computational fluid dynamics 
post-processing

Although it is technically possible to use the three-dimensional 
data fields to train the ANN, a more compact representation of the 
simulation results becomes necessary considering the limited amount 
of training data available. This compact representation is constructed 
by locally averaging pressure and WSS along the aortic centerline 
using cross-section planes. This centerline-based representation 
substantially reduces input data dimensionality while retaining key 
spatial information. Moreover, this representation has shown to 
be  more feasible for clinical use in our experience than three-
dimensional data fields. Constructing the centerline-based 
representation of static pressure is performed in three steps:

 • Generation of a discrete (2 mm point spacing) aortic centerline 
from the case-specific surface model.

 • Creation of centerline-orthogonal vessel cross-sections at each 
centerline point.

 • Calculating the average of static pressure on each cross-section 
and assigning the resulting value to the respective centerline point.

In the valve region, only the area bound by the valve leaflets is 
used to calculate cross-section averaged pressure.

For WSS, the process is identical except that WSS is not averaged 
on the cross-sections planes but on vessel segments between two 
adjacent cross sections. For WSS in the valve region, only the inner 
leaflet surfaces are used to compute local WSS. Figure 4 illustrates the 
creation of the centerline-based representation from the 
CFD simulations.

2.5. Artificial neural network architecture

A recurrent neural network (RNN) is used to compute the 
hemodynamic parameters of pressure and WSS in the compact 
representation described above from a sequence of input features. 
These two hemodynamic parameters are chosen based on their 
clinical relevance. Static pressure derived TPG is the primary 
parameter for AS diagnostic and treatment (30) whereas aortic WSS 

FIGURE 3

Comparison between a simulation with unsteady flow boundary 
conditions (BC) and a steady flow BC at peak systolic flow rate for a 
patient with a severe aortic stenosis. Top diagram compares 
pressure, bottom diagram wall-shear-stress (WSS). The flow curve 
for the ejection phase as well as the peak-systolic flow rate were 
derived from left-ventricular volumetry data.
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is known to be  a factor for aneurysm growth and other vessel 
degradation mechanisms (40–43).

A bi-directional long short-term memory (LSTM) RNN is used. 
This choice of architecture is well suited to work with the sequence-
like data provided by the centerline-based representation and has 
proven successful in a similar study published earlier (28). The RNN 
is built using Matlab’s Deep Learning Toolbox R2020a (MathWorks, 
Natick, MA, United States).

The LSTM uses a sequence of input features derived from the case-
specific surface model and flow rate and outputs a sequence of state 
vectors. From these state vectors, a fully connected layer computes the 
values of pressure and WSS along the vessel centerline. Figure  5 
illustrates the various components of the network as well as the data 
flow through the components. Both input and output sequences are 
centerline-based, meaning their values are defined at their respective 
centerline points. The following input features are used:

 • Centerline point coordinates (n × 3).
 • Cross-section area (n × 1).
 • Cross-section area normalized flow rate (n × 1).
 • m-dimensional encoded cross-section shape (n × m).

Where n denotes the number of centerline points for a given case 
(usually 110–130, depending on the length of the aorta).

The last feature is provided by an auto encoder (AE) which is 
trained separately. Using the AE, information on cross-section shape 
can be passed to the LSTM using only a few parameters of size m 
instead of complex polygons or triangulations. This information is 
deemed necessary since valve geometry varies substantially between 
individual cases and using cross-section area alone might not suffice 
to account for this geometrical variation.

The AE used here is part of Matlab’s Deep Learning toolbox and 
consists of a single-layer neural network (the encoder) that maps an 
input of size n to a hidden state of size m. From this hidden state, a 
second neural network (the decoder) reconstruct the original input 
data. The error between original and reconstructed input allows to 
define a cost function which is used to extract information critical to 
ANN accuracy from the original input (in this case cross-section 
shape), thereby allowing to substantially reduce input dimensionality 
without compromising accuracy. The size of the encoded state m (i.e., 
the amount of ‘essential’ information contained in the raw cross-
section shapes) is determined during hyperparameter optimization. 
Further reference on the AE used in this study can be found in the 
respective Matlab documentation (44).

2.6. Artificial neural network training and 
hyperparameter optimization

A total of 309 simulation results were available for training and 
validation. This dataset was reduced to 267 cases based on a maximum 
pressure drop (MPD), defined as the difference between inlet pressure 

FIGURE 4

Deriving the compact representation (bottom plot) from the three-
dimensional pressure and velocity field (top). Cross-section planes 
are defined along the vessel centerline. The average values of 
pressure on these planes are used to plot locally averaged pressure 
along the vessel centerline. Similarly, average values of WSS are 
computed from vessel sections between two adjacent cross-
sections.

FIGURE 5

Schematic depiction of the artificial neural network (ANN) based 
workflow for computing pressure and wall-shear-stress (WSS) along 
the vessel centerline. Clinical data pre-processing includes the 
extraction of the vessel surface model as well as peak systolic flow 
rate from multiphasic computed tomography (CT) image data. 
Vessel centerline and cross-section shapes are then derived from the 
surface model and passed to the ANN directly (centerline-
coordinates) and through an auto encoder, respectively. A long-
short-term-memory (LSTM) recurrent neural network computes the 
flow states at each centerline point based on centerline coordinates, 
encoded cross-sections and flow rate. Lastly, a fully connected layer 
derives pressure and wall-shear-stress along vessel centerline from 
the flow states provided by the LSTM. Hidden state and input/output 
sizes are also provided in the schematic.
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and the lowest pressure found within the vessel, of 120 mmHg. This 
removed cases with an unphysiologically high pressure drop caused 
by either an excessive flow rate (+25% or modelled flow), an 
underestimation of valve area (i.e., segmentation errors) or a 
combination of both. The threshold of 120 mmHg is based on clinical 
guidelines, where TPG of 60 mmHg is already considered severe (30). 
Thus, an MPD in excess of twice this value is believed to be beyond 
what is found in the vast majority of AS patients. This is further 
supported by the echocardiographic TPG data obtained for this cohort 
(Table 1). Although this retains cases with a TPG that is well above any 
value considered critical for an intervention, it is believed that 
retaining this data is beneficial for the ANN’s accuracy in the clinically 
relevant range.

The remaining 267 cases were split into 11 datasets, one for 
testing and the other 10 for training and validation/optimization. 
Stratification was achieved by ensuring that each subset covers the 
whole range of allowable MPD (approx. 0–120 mmHg). Moreover, 
individual geometries were not distributed across subsets, meaning 
that a particular case will have all of its flow variations (baseline 
±25%) within one subset. Thus, it is ensured that validation/test 
data remains fully unknown during training/testing. The test 
subset contained 23 cases, leaving 244 cases for training and 
hyperparameter optimization.

Network training was performed using adaptive moment 
estimation, a stochastic gradient descend algorithm that aims at 
minimizing the loss function (i.e., the difference between desired and 
actual network output). Hyperparameter optimization was performed 
using grid search. For each configuration, a 10-fold cross validation 
was performed. The configuration with the highest average accuracy 
was chosen as the final model. The following hyperparameters were 
considered (optimum values in brackets):

 • AE input size (68 × 68).
 • AE hidden size (4).
 • LSTM hidden size (900).
 • Fully connected layer size (200).

ANN robustness and explainability was analyzed using a local 
feature perturbation approach used earlier (28). This method locally 
changes the input feature sequences around a given centerline point 
by ± one standard deviation and measures the output RMSE between 
the altered and original input.

2.7. Artificial neural network accuracy 
assessment

ANN accuracy was assessed by computing the root-mean-square-
error (RMSE) between CFD- and ANN-based pressure/WSS on the 
test dataset. The pressure RMSE for a specific case is defined as:

 
RMSE
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Where PiANN  and PiCFD  are the ANN/CFD-based values of 
pressure at the i-th centerline point and N is the number of 
centerline points.

RMSEs for pressure and WSS were furthermore normalized to 
provide a relative measure of accuracy. Pressure RMSE was normalized 
with CFD-based MPD whereas WSS was normalized with the 
maximum WSS observed in the respective CFD result.
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Additionally, a test for statistical equivalence is performed using 
a two one-sided tests (TOST) procedure. TOST based equivalence 
tests decide whether two different measuring methods applied on a 
set of subjects can be considered statistically equivalent within some 
bounds εL  and εU . In this study, the ANN- and CFD-based 
computation of TPG, which is the primary clinical parameters for AS 
assessment, are tested for equivalence as follows:

Let CFDµ  and ANNµ  be  the median values of the CFD and 
ANN-based TPG values. Then the median difference:

 Θ = −µ µCFD ANN  (4)

is hypothesized to be  outside of a reference value 0Θ  ± an 
equivalence margin ε  using two separate null-hypotheses as:

 
0

01 :Θ < Θ −H ε
 

(5)

 
0

02 :Θ > Θ +H ε
 

(6)

Hypotheses (5) and (6) are tested using a signed rank test, since 
the TPG values are not normally distributed in our data. If both (5) 
and (6) can be rejected at some significance level α , it follows that 
both methods are equivalent in computing TPG within the bounds 
provided by ε  (45, 46).

For this study, an equivalence margin ε  of ±5 mmHg is used 
which corresponds to the accuracy of current clinical catheter-based 
pressure measurements (47). TPG is defined as the difference between 
inlet pressure and the pressure at the point of highest pressure 
recovery downstream of the aortic valve, exemplary depicted in 
Figure 6 (bottom).

3. Results

3.1. Computational fluid dynamics results

A total of 309 simulations were performed using 103 patient-
specific geometries (baseline flow ±25%). 42 simulations were 
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excluded based on an MPD of 120 mmHg as mentioned previously, 
leaving 267 simulations results. Figure 6 (top left) shows a histogram 
of the MPD distribution found in the simulation results. MPDs were 
not normally distributed with low to moderate MPD values 
(<40 mmHg) dominating the distribution. Median of MPD is 
42 mmHg with an inter-quartile range (IQR) of 43 mmHg. The MPD 
distribution within the set test cases (Figure 6, top right) is equal to 
that of all cases (Wilcoxon rank sum test, p < 0.05) with a median of 
34 mmHg and an IQR of 40 mmHg. The available training data is 
therefore biased towards moderate MPD values/stenosis severity. 
However, low and high MPD values appear sufficiently represented.

Figure 6 (bottom) provides an example of a typical case with a 
high pressure drop. The plot shows the simulation results in the 
compact representation described earlier, depicting locally averaged 
values for pressure and WSS along the vessel centerline. Additionally, 
the points defining MPD and TPG are shown with a green and red 
circle, respectively.

The characteristic rapid pressure drop and increase of WSS in the 
valve region can be seen as well as a slight pressure recovery in the 
ascending aorta along with a reduction of WSS. Moreover, a slight 
fluctuation of WSS with local maxima in the ascending aorta are 
observed, which is a result of secondary flow structures in that region 
generated by the valve jet.

3.2. Artificial neural network explainability 
and robustness

The explainability and robustness analysis revealed that the 
network is most sensitive to perturbations in the valve region while 
changes to the input downstream of the aortic valve have little effect 
on output (RMSE <1 mmHg). Moreover, the input parameters of flow 

and encoded cross-section shape appear to have the most influence 
on the hemodynamic results provided by the ANN. Reducing cross-
section area/shape and/or increasing flow-rate results in an increase 
of TPG and vice-versa (RMSE 10–20 mmHg). These finding are in 
line with the fluid dynamic behavior expected for such a 
configuration, i.e., pressure drop over a local constriction as a 
function orifice area and flow velocity.

3.3. Artificial neural network accuracy

Median of absolute pressure RMSE for all 23 test cases was 
2.0 mmHg with an IQR of 3.2 mmHg. Absolute WSS RMSE was 
normally distributed (Lilliefors test at p < 0.05) with a mean of 
5.3 ± 3.9 Pa. Normalized pressure and WSS RMSE were not normally 
distributed with a normalized pressure RMSE median of 6.0% (IQR 
5.7%) and a normalized WSS RMSE median of 4.9% (IQR 1.5%). A 
significant (p < 0.001) correlation between case-specific RMSE and 
MPD/peak WSS was observed, with correlations of 0.53 and 0.71, 
respectively. Neither geometric parameters such as AVA or aortic 
diameter/length nor the type of flow boundary condition (i.e., LVV 
based or modelled flow rate) were found to correlate with ANN accuracy.

Figure 7 shows scatter-plots of absolute (top) and relative (bottom) 
pressure and WSS RMSE over MPD and peak WSS for the 23 test 
cases. Data points in Figure  7 are color and shape coded to 
discriminate cases with baseline flow from those with reduced/
increased flow. The absolute RMSE plots visually confirm the tendency 
of higher absolute RMSE with higher MPD. Moreover, an increased 
dispersion of absolute pressure RMSE can be seen at higher MPD 
whereas absolute WSS RMSE increases along a narrow band. A sole 
outlier with a comparably high WSS RMSE of 19.4 Pa is present 

FIGURE 6

Top left: Distribution of maximum pressure drop (MPD) within the 
entire simulation data. Top right: Distribution of MPD within the set 
of test cases. Bottom: An exemplary depiction of CFD-based 
pressure and wall-shear-stress (WSS) in the compact representation 
(i.e., average along centerline). Additionally, the measurement points 
for transvalvular pressure gradient (TPG, red) and MPD (green) are 
shown with their respective values.

FIGURE 7

Scatter plots of absolute and normalized root-mean-square-errors 
(RMSE), calculated between computational fluid dynamics (CFD) 
simulations and artificial neural network (ANN)-based results for the 
set of 23 test cases. Top shows absolute pressure and wall-shear-
stress (WSS) RMSE over CFD computed maximum pressure drop and 
maximum WSS, respectively. Bottom shows pressure and WSS RMSE 
normalized with TPG and maximum WSS, respectively.
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though. A tendency of either baseline or +/− 25% flow to produce 
particularly large RMSE for pressure or WSS could not be observed.

A more detailed presentation of the ANN’s performance is provided 
in Figure 8. In this figure, a selection of six cases (A through F) of various 
MPD/TPG levels are shown with their respective CFD and ANN-based 
pressure/WSS along vessel centerline. ANN and CFD computed pressure 
match closely throughout the whole vessel except for case A, where the 
pressure drop in the valve region is overestimated by approximately 
8 mmHg. This error propagates further downstream resulting in an 
overall discrepancy between ANN- and CFD-based pressure. Moreover, 
a slight fluctuation of pressure can be seen in cases B, C and E at the point 
of lowest pressure which is not present in the CFD data.

WSS appears to match similarly well between CFD and ANN, 
however, notable differences occur in the ascending aorta. In that region, 
the ANN either overestimates WSS (case C) or fails to capture local 
fluctuations (case B) or a combination of both (case A). WSS in the valve 
region on the other hand matches well between ANN and CFD.

Finally, the TOST for TPG measurement equivalency between 
CFD (median 32 mmHg, IQR 37 mmHg) and ANN (median 
34 mmHg, IQR 33 mmHg) resulted in both methods being equivalent 
within the equivalency bounds of ±5 mmHg (p < 0.001).

4. Discussion

In this pilot study, we presented a deep ANN computing spatially 
resolved, compact hemodynamics in the aorta and aortic valve of AS 
patients as an alternative to traditional numerical modelling. The 

network was trained using 244 patient-specific CFD simulations of the 
aorta and aortic valve while 23 simulation were used for the evaluation 
of the ANN’s performance. Modelling hemodynamics using AI has 
been undertaken by several studies earlier (27, 28, 48, 49). However, 
this kind of application is still rather underrepresented in the medical 
field (50–52), although it appears worthwhile exploring given the 
potential benefits outlined in the introduction.

The comparison between ANN- and CFD-based pressure 
computations provided in the results section showed good agreement 
between both methods with differences being at the order of a few 
mmHg. Considering that clinically relevant TPG values are at the 
order of 20 mmHg and upwards (30), the observed pressure error can 
be considered rather low. For the computation of TPG, both methods 
can even be considered equivalent within current clinical pressure 
measurement margins.

Assessing the accuracy of ANN-based WSS computation is more 
difficult, since no current clinical guidelines for WSS measurement or 
evaluation exist. Thus, the mean error of approx. 5 Pa is difficult to put 
into a meaningful clinical perspective. However, judging by the 
normalized accuracy, WSS and pressure computations are similarly 
accurate, although some test cases showed substantial errors in the 
ascending aorta. Another interesting finding is that ANN accuracy 
does not suffer from altering the flow rate given any particular 
geometry. This may provide an important capability for clinical use, 
as outlined further below.

All in all, an ANN-based modelling of aortic hemodynamics of AS 
patients appears to be  a viable alternative to CFD. Considering the 
enormously lower computational time required (hours for CFD vs. 
seconds for ANN), ANN-based methods may facilitate the translation of 
hemodynamic modelling into clinical practice, something that 
CFD-based methods struggle with, despite their potential (15, 21–23, 53).

4.1. Potential clinical application

In the context of the use case of AS discussed here, such an ANN 
could be embedded into a CT or magnetic resonance imaging (MRI) 
scanner, expanding the diagnostic capability of the device to provide 
treatment-critical hemodynamic information (e.g., pressure, TPG) along 
with image data in real-time. This could in turn reduce the requirement 
for invasive diagnostics of TPG and thus reduce costs and patient risk. 
Furthermore, the change in TPG under increased cardiac output (i.e., 
flow) could be  simulated for borderline-symptomatic patients, thus 
reducing or even replacing the current practice of measuring pressure 
under drug or exercise induced stress for such patients (54, 55). Finally, 
the ANN presented here can be expanded to model aortic hemodynamics 
for bicuspid aortic valves, prosthetic valves such as TAVI, biological or 
mechanical valve replacement, thereby providing treatment planning 
and hemodynamic outcome prediction capabilities (21, 22).

4.2. Error analysis and potential 
improvement

Although the results are promising, the work presented here does 
not fully provide the potential capabilities outlined above yet and 
several factors need to be  considered for a successful clinical 
translation. First of all, the ANN and CFD-based results show notable 

A B

C D

E F

FIGURE 8

Comparison of ANN and CFD-based pressure and wall-shear-stress 
(WSS) along vessel centerline. Cases (A–F) are ordered by 
descending transvalvular-pressure-gradient.
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differences for cases with high MPD/TPG. Especially WSS appears to 
diverge substantially between the two methods in the ascending aorta, 
as seen in Figure 8. These errors indicate that the ANN does not fully 
capture the relationship between geometry, flow rate and pressure/
WSS distribution inside the vessel.

For both pressure and WSS, an increase in ANN pressure and WSS 
RMSE was observed with an increase of MPD and max WSS, 
respectively. This was more pronounced for WSS, where maximum 
WSS and WSS RMSE where notably correlated. This suggests that the 
overall error can be viewed as a combination of a systematic error 
which depends on some parameter/feature and a random error. The 
systematic error may be explained by the fact that with higher MPD/
maximum WSS, the ANN struggles to capture the resulting high 
spatial variation of these parameters along the centerline since the 
distance between the centerline points is fixed to 2 mm. Moreover, the 
loss of spatial information from the cross-section averaging process has 
a greater impact on cases with a severe stenosis and thus high MPD/
maximum WSS. For such cases, the pressure/WSS on a single cross 
section plane may vary by up to 20 mmHg/50 Pa, which appears mostly 
in the region where the valve jet impinges the vessel wall. The cases 
displayed in Figures 8A–C confirm this, since the largest differences 
ANN and CFD-based WSS are seen downstream of the valve at the end 
of the ascending aorta (50–75 mm downstream). For cases with a less 
severe stenosis and thus weaker valve-jet, the differences are far lower 
making the cross-section averaged representation more true to the 
actual distribution of pressure and WSS.

In this context, the correlation between RMSE and MPD/max 
WSS may be seen as an indicator which of the two error sources, 
constant or random, dominates the overall error. Hence, the random 
error appears more influential for pressure RMSE than it is for WSS 
RMSE, where it supposedly accounts for half of the variance in the 
WSS RMSE (R2 of 0.5). This appears reasonable given the fact that the 
local variation of WSS across the vessel wall is higher than the local 
variation of pressure on the cross sections (with respect to the overall 
level of pressure/WSS). The random error, on the other hand, is likely 
the result of uncertainties in the input data, as will be discussed further 
below. All in all, the differences observed between CFD and ANN 
based solutions can be attributed to the following factors:

 1. Uncertainty in the input data.
 2. Random numerical errors in the training data (i.e., CFD).
 3. Comparably low amount of training data/biased training data.
 4. Input data pre-processing.

The first two factors mostly contribute to the random error 
described earlier. The uncertainty in the input data for instance, which 
results from inconsistencies in the definitions of the cross-sections/
vessel segments in the valve region, may omit pressure/WSS data in 
some cases, leading to an erroneous input and thus result. The random 
numerical errors are the result of the discretization error inherent to 
the CFD method on the one hand and the fact that the pressure and 
velocity fields fluctuate slightly during runtime on the other. These are 
at the order of 1–2 mmHg based on the mesh independency study as 
well as the convergence behavior observed in our simulations.

The last two points are likely to influence both the systematic and 
the random error. More training data would provide a denser sampling 
of the parameter space (both geometric and hemodynamic 
parameters) and allow for more sophisticated inputs to be used, thus 

potentially reducing the random error. Moreover, additional cases in 
the high MPD range would remove the bias in the training data which 
could be another factor contributing to the systematic error besides 
the ones discussed earlier.

The pre-processing of input data plays a key role in how 
information is passed to the network. Currently, the raw simulation as 
well as the shape data are substantially reduced using the centerline-
based representation. This was deemed necessary to efficiently utilize 
the clinical data available for this study. However, it creates the 
aforementioned problems of spatial discretization as well as the 
mismatch between average and actual pressure/WSS distributions. 
Furthermore, the auto encoder-based reduction of the cross section 
shape dimensionality is also likely to introduce errors into the input 
data and hence the results. Increasing input data dimensionality with 
a denser centerline sampling, a larger AE hidden-state size and more 
distribution parameters for pressure and WSS are likely to reduce both 
the systematic error as well as the random error through input data 
uncertainty. However, the possibility of providing additional input 
data is closely tied to clinical data availability.

Finally, the choice of ANN architecture itself is worth evaluating, 
although the question of optimal ANN architecture cannot 
be definitely answered within the scope of this study. While the choice 
of architecture used here appears reasonable given the underlying 
physical modelling problem, it is not necessarily the best one. Other 
ANN types such as convolutional neural networks, which are highly 
successful in working with image data, may produce even better 
results depending on available input data and required output. 
Evaluating different types of architectures should therefore be another 
key aspect of future studies.

4.3. Limitations

An important concern regarding the translatability of the ANN into 
clinical practice is the underlying CFD method, on which the ANN is 
trained. Since the ANN can only be as good as the training data it uses 
(i.e., the CFD data), it must be ensured that the CFD-based hemodynamic 
modelling is accurate and validated against clinical data. Although CFD 
simulations of aortic flow in AS patients using the setup employed here 
showed good agreement with clinical data in earlier studies (15, 21, 22, 
32), a thorough validation under controlled conditions is necessary. This 
was not possible in this study since the CT imaging on which the CFD is 
based and echocardiographic measurements were performed on 
different appointments. This potentially introduces a number of 
unknown errors. In addition, echocardiographic TPG measurements are 
suspected to systematically overestimate TPG (56) making the clinical 
TPG data available here unsuitable for validation purposes. The above 
however does not necessarily impact the potential of an ANN to 
substitute CFD modelling, since CFD simulation inaccuracies often 
result from inaccurate input data (segmentation, flow boundary 
conditions) rather than from a lack of modelling complexity.

The steady-state, peak systolic computational model employed in 
this study is another limitation worth mentioning. This simplification 
was deemed necessary to find a good balance between modelling 
complexity and clinical relevance for this initial work. And while this 
approach may already provide clinically relevant data (15, 21, 35, 57), 
obtaining hemodynamic information from a whole cardiac cycle is 
certainly desirable. In particular, the time averaged TPG, which is 
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another important factor in AS diagnosis and treatment decision (30), 
cannot be calculated using the quasi steady-state approach used here. 
Other clinically relevant hemodynamic parameters such as time-
averaged WSS and the oscillatory shear index, which are hypothesized 
to influence aortic valve and aortic wall degeneration (58–61), also fall 
outside of the current capabilities of the ANN. Therefore, extending 
the CFD and the ANN to model unsteady hemodynamics is necessary 
to fully evaluate the potential of ANN-based hemodynamic modelling.

Finally, an important aspect necessary to realize an application of an 
ANN-based hemodynamic computation as outlined earlier in the section 
is the pre-processing of clinical input data. Although the ANN presented 
here partially uses image data for the input, this image data is not raw CT 
or MRI data and all input sequences are derived from a segmented surface 
of the aorta and valve. This surface is currently the result of a lengthy 
semi-manual segmentation of CT data, which negates the ANN’s primary 
benefits of low computational times and user interaction. Therefore, a fast 
segmentation algorithm capable of automatically extracting aortic 
centerline, aortic- and valve-surfaces from cardiac CT or MRI is 
necessary. The development of such algorithms is ongoing and several 
promising methods exist, however, automatic segmentation of cardiac 
image data remains a challenging task (62).

5. Conclusion

The ANN-based computation of pressure and WSS in patients 
with AS is a viable alternative to time- and resource-intensive 
CFD-based modelling. Requiring very little computational power or 
user interaction, ANN-based hemodynamic modelling can become a 
key part in the integration of hemodynamic modelling into clinical 
practice, thereby expanding diagnostic capabilities, reducing costs and 
improving outcome. However, in its current state, the ANN presented 
here needs further improvement to be  suitable for a clinical 
application. Apart from improving the ANN’s accuracy as outlined in 
section 4.2, further work is required to validate ANN accuracy against 
clinical data as well as provide an automatic image segmentation tool 
in order to derive a hemodynamic outcome from raw image data in a 
clinical setting. Nevertheless, the suitability of ML-based methods to 
perform hemodynamic modelling has been demonstrated.
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